501
|
Ko JL, Chen HC, Loh HH. Differential promoter usage of mouse mu-opioid receptor gene during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:184-93. [PMID: 12225873 DOI: 10.1016/s0169-328x(02)00357-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, we demonstrated that mouse mu-opioid receptor (MOR) gene expression is regulated by both distal and proximal promoters, with the latter playing a major role in controlling MOR transcription in the adult mouse brain. Here, we report studies of the relative usages of the mouse MOR dual promoters during murine development. We used the reverse transcription-polymerase chain reaction (RT-PCR) method, which gave results similar to those using binding assays or in situ hybridization. However, due to the greater sensitivity of RT-PCR method, we were able to detect the emergence of MOR as early as at embryonic day 8.5 (E8.5). We found that both proximal and distal promoters were active at E8.5. The proximal promoter initiated approximately two-thirds of total MOR transcripts at E8.5, with the distal promoter directing transcription of the remaining one-third. This is the greatest relative contribution of the distal promoter to MOR transcription we have observed during any time in development. Thereafter, the percentage of transcripts directed by the distal promoter gradually declined, and remained at a low but detectable level (approximately 5% of total MOR transcripts) throughout development and adulthood. Conversely, a progressive increase of the contribution of the proximal promoter to MOR transcription was observed during development, reaching its maximum in the adult. In summary, our results demonstrated the pivotal role of the proximal promoter in directing MOR transcription during murine development.
Collapse
Affiliation(s)
- Jane L Ko
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
502
|
Hoover BR, Marshall JF. Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus. Neuroscience 2002; 111:111-25. [PMID: 11955716 DOI: 10.1016/s0306-4522(01)00565-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The globus pallidus (external pallidum of primates) is an essential nucleus within basal ganglia circuitry, in part because it receives at least one-half of striatal efferent projections. Neurons of the globus pallidus can be divided into subpopulations based on anatomical, physiological, and chemical features. Globus pallidus neurons project to several structures (the striatum, subthalamic nucleus, entopeduncular nucleus, and substantia nigra pars reticulata), have one of two alternative waveforms (positive/negative versus negative/positive), contain either the calcium binding protein parvalbumin or the neuropeptide precursor preproenkephalin mRNA and show differential immediate early gene responses to dopamine receptor agonists and antagonists. The objective of the present study was to characterize in greater detail the preproenkephalin mRNA-containing pallidal neurons using Sprague-Dawley rats. In situ hybridization for preproenkephalin mRNA was combined with immunocytochemical detection of: (i) the neuron-specific nuclear protein, NeuN, (ii) FluoroGold-labeled pallidostriatal and pallidosubthalamic cells, or (iii) Fos induced by either systemic combined D1-class/D2-class dopamine receptor agonists or a D2-class receptor antagonist. These experiments demonstrated that a substantial population (42%) of globus pallidus neurons contains preproenkephalin mRNA, and that globus pallidus neurons retrogradely labeled after FluoroGold injections into the striatum are more frequently preproenkephalinergic, compared to the population of pallidosubthalamic neurons. Furthermore, systemic administration of a D2 receptor antagonist, eticlopride, induced Fos immunoreactivity predominantly in globus pallidus neurons expressing preproenkephalin mRNA, while combined administration of D1 and D2 receptor agonists induced Fos predominantly in pallidal neurons lacking preproenkephalin mRNA.These results support the conclusion that preproenkephalin mRNA identifies one of the two major subpopulations of pallidal neurons. This preproenkephalin mRNA-expressing pallidal subpopulation preferentially targets the striatum and is more readily activated in its immediate early gene expression by D2 receptor antagonists than by dopamine receptor agonists. This projection provides a pallidal substrate for the dopaminergic regulation of striatal information processing.
Collapse
Affiliation(s)
- B R Hoover
- Department of Neurobiology and Behavior, 2215 Bio Sci II, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
503
|
Bidlack JM, Cohen DJ, McLaughlin JP, Lou R, Ye Y, Wentland MP. 8-Carboxamidocyclazocine: a long-acting, novel benzomorphan. J Pharmacol Exp Ther 2002; 302:374-80. [PMID: 12065740 DOI: 10.1124/jpet.302.1.374] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To obtain benzomorphans with a longer duration of action that may be potential therapeutics for treating cocaine abuse, 8-carboxamidocyclazocine was synthesized. The pharmacological properties of 8-carboxamidocyclazocine were compared with the parent compound cyclazocine. Changing the 8-hydroxyl group on cyclazocine to an 8-carboxamido group resulted in only a 2-fold decrease in the affinity of the compound for the kappa-receptor, and no change in the affinity for the mu-opioid receptor, with both compounds having K(i) values of less than 1 nM, based on radioligand binding assays. In the guanosine 5'-O -(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assay, the two compounds produced moderate stimulation of GTP binding to the human kappa- and mu-receptors. When given by i.c.v. injection, the compounds produced less than 60% antinociception in the mouse 55 degrees C warm-water tail-flick test. However, in the mouse writhing test, the compounds had high potency in producing antinociception. Antinociception induced by either 8-carboxamidocyclazocine or cyclazocine was mediated by both kappa- and mu-opioid receptors. Cyclazocine acted as a mu-antagonist in addition to its agonist properties at the mu-receptor, as measured by the inhibition of morphine-induced antinociception. In contrast, 8-carboxamidocyclazocine did not inhibit morphine-induced antinociception, demonstrating that it was not a mu-opioid receptor antagonist in this assay. An i.p. injection of an ED(70) dose of 8-carboxamidocyclazocine produced antinociception that lasted for 15 h in contrast to cyclazocine, which produced antinociception, lasting 2 h. 8-Carboxamidocyclazocine is a novel, long-acting benzomorphan, which possesses pharmacological properties that are distinct from the properties of cyclazocine.
Collapse
Affiliation(s)
- Jean M Bidlack
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642-8711, USA.
| | | | | | | | | | | |
Collapse
|
504
|
Chiang CY, Hu B, Hu JW, Dostrovsky JO, Sessle BJ. Central sensitization of nociceptive neurons in trigeminal subnucleus oralis depends on integrity of subnucleus caudalis. J Neurophysiol 2002; 88:256-64. [PMID: 12091551 DOI: 10.1152/jn.00944.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our recent studies have shown that application to the tooth pulp of the inflammatory irritant mustard oil (MO) produces a prolonged (>40 min) "central sensitization" reflected in neuroplastic changes in the mechanoreceptive field (RF) and response properties of nociceptive brain stem neurons in subnuclei oralis (Vo) and caudalis (Vc) of the trigeminal spinal tract nucleus. In view of the previously demonstrated ascending modulatory influence of Vc on Vo, our aim was to determine whether the Vo neuroplastic changes induced by MO application to the tooth pulp depend on an ascending influence from Vc. In chloralose/urethan-anesthetized rats, MO application to the pulp produced significant increases in Vo nociceptive neuronal orofacial RF size and responses to mechanical noxious stimuli that lasted as long as 40-60 min. These changes were not affected by vehicle (saline) microinjected into Vc at 20 min after MO application, but 0.3 microl of a 5 mM CoCl(2) solution microinjected into the ipsilateral Vc produced a reversible blockade of the MO-induced Vo neuroplastic changes. A similar volume and concentration of CoCl(2) solution injected into subnucleus interpolaris of the trigeminal spinal tract nucleus did not affect the MO-induced neuroplastic changes in Vo. These findings indicate that inflammatory pulp-induced central sensitization in Vo is dependent on the functional integrity of Vc.
Collapse
Affiliation(s)
- Chen Yu Chiang
- Faculty of Dentistry, University of Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | |
Collapse
|
505
|
Li Y, Li JJ, Yu LC. Anti-nociceptive effect of neuropeptide Y in the nucleus accumbens of rats: an involvement of opioid receptors in the effect. Brain Res 2002; 940:69-78. [PMID: 12020877 DOI: 10.1016/s0006-8993(02)02594-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study investigated the effect of neuropeptide Y on nociception in the nucleus accumbens of rats. Intra-nucleus accumbens administration of neuropeptide Y induced dose-dependent increases in the hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats. There were no significant changes in the HWL to both stimulation during 60 min after the administration of NPY to outside of the nucleus accumbens. The anti-nociceptive effect of NPY was blocked by subsequent intra-nucleus accumbens injection of the Y1 receptor antagonist neuropeptide Y 28-36, indicating that Y1 receptor is involved in the neuropeptide Y-induced anti-nociception in the nucleus accumbens. Furthermore, the anti-nociceptive effect of neuropeptide Y was attenuated by intra-nucleus accumbens administration of the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in the neuropeptide Y-induced anti-nociception in the nucleus accumbens of rats. Moreover, the neuropeptide Y-induced anti-nociception was attenuated by following intra-nucleus accumbens injection of the selective opioid antagonists nor-binaltorphimine and beta-funaltrexamine, but not by naltrindole, illustrating that mu- and kappa-opioid receptors, not the delta-opioid receptor, were involved in the neuropeptide Y-induced anti-nociception in the nucleus accumbens of rats.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology, College of Life Science, Peking University, 100871, Beijing, China
| | | | | |
Collapse
|
506
|
Milner TA, Drake CT, Aicher SA. C1 adrenergic neurons are contacted by presynaptic profiles containing DELTA-opioid receptor immunoreactivity. Neuroscience 2002; 110:691-701. [PMID: 11934476 DOI: 10.1016/s0306-4522(01)00487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ligands of the delta-opioid receptor tonically influence sympathetic outflow. Some of the actions of delta-opioid receptor agonists may be mediated through C1 adrenergic neurons in the rostral ventrolateral medulla. The goal of this study was to determine whether C1 adrenergic neurons or their afferents contain delta-opioid receptors. Single sections through the rostral ventrolateral medulla were labeled for delta-opioid receptor using the immunoperoxidase method and the epinephrine synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT) using the immunogold method, and examined at the light and electron microscopic level. Few ( approximately 5% of 903) profiles dually labeled for PNMT and delta-opioid receptor were detected; most of these were dendrites with diameters < 1.5 microm. delta-Opioid receptor immunoreactivity was affiliated with multivesicular bodies in dually labeled perikarya, whereas delta-opioid receptor immunoperoxidase labeling appeared as isolated clusters within both singly and dually labeled dendrites. The majority ( approximately 83% of 338) of delta-opioid receptor-immunoreactive profiles were axons and axon terminals. delta-Opioid receptor-immunoreactive terminals averaged 0.75 microm in diameter, contained numerous large dense-core vesicles and usually formed appositions or asymmetric (excitatory-type) synapses with their targets. The majority (>50% of 250) of delta-opioid receptor-immunoreactive axons and axon terminals contacted PNMT-immunoreactive profiles. Most of the contacts formed by delta-opioid receptor-immunoreactive profiles ( approximately 75% of 132) were on single-labeled PNMT-immunoreactive dendrites with diameters <1.5 microm. The prominent localization of delta-opioid receptors to dense-core vesicle-rich presynaptic profiles suggests that delta-opioid receptor activation by endogenous or exogenous agonists may modulate neuropeptide release. Furthermore, the presence of delta-opioid receptors on axon terminals that form excitatory-type synapses with PNMT-immunoreactive dendrites suggests that delta-opioid receptor ligands may modulate afferent activity to C1 adrenergic neurons. The observation that some PNMT-immunoreactive neurons contain delta-opioid receptor immunoreactivity associated with multivesicular bodies and other intracellular organelles suggests that some C1 adrenergic neurons may present, endocytose and/or recycle delta-opioid receptors.
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
507
|
Colman AS, Miller JH. mu-1 opioid receptor stimulation decreases body temperature in conscious, unrestrained neonatal rats. Exp Biol Med (Maywood) 2002; 227:377-81. [PMID: 12037126 DOI: 10.1177/153537020222700602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The influence of mu-selective opioid agonists on neonatal thermoregulatory mechanisms has received little attention. Opioid treatment in adult subjects can cause either hyper- or hypothermia, depending on the experimental conditions, the strain of rat used, and the dose and route of administration of the drug. The present study assessed the effect of two mu opioid agonists on body temperature in neonatal Wistar rats aged 2 to 13 days. Rat pups were administered either saline or one of the two mu-selective opioid agonists, dermorphin (0.4 mg/kg) or fentanyl (0.06 mg/kg), by subcutaneous injection. Continuous rectal temperatures were measured both prior to and following drug or saline injection in freely moving, conscious animals. Ambient temperature in a plethysmograph chamber was maintained within or close to the thermoneutral zone for pups (32 degrees C). To distinguish between mu-1 and mu-2 effects, all animals received either saline or 10 mg/kg of the irreversible mu-1 antagonist naloxonazine (NALZ) 1 day prior to agonist administration. NALZ on its own had no effect on body temperature. Dermorphin and fentanyl both caused a fall in body temperature in pups of all age groups. The temperature decreases ranged from 0.8 degrees -2.2 degrees C. These opioid-induced changes were inhibited by NALZ pretreatment. Although there was no evidence for endogenous mu-1 opioid activity, this study indicated that stimulation of mu-1 opioid receptors causes a decrease in body temperature in conscious, unrestrained neonatal rats under or close to thermoneutral conditions.
Collapse
Affiliation(s)
- Atalie S Colman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
508
|
Tierno A, Fiore P, Gannon RL. Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms. Brain Res 2002; 937:66-73. [PMID: 12020864 DOI: 10.1016/s0006-8993(02)02468-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A master neuronal pacemaker located within the suprachiasmatic nucleus in the ventral hypothalamus generates circadian activity rhythms in hamsters. The circadian pacemaker receives afferent input from many brain regions, one of which is the intergeniculate leaflet of the thalamus. This thalamic input to the suprachiasmatic nucleus in hamsters contains enkephalins, neuropeptide Y, neurotensin, and GABA. The role of enkephalins in modulating light-induced phase shifts of hamster activity rhythms has not been reported. Therefore, in this study, we examined the ability of enkephalin-mimetic and other opioid compounds to modulate light-induced phase advances in hamster circadian activity rhythms. The delta opioid agonists SNC 80 and BW373U86 both inhibited light-induced phase advances of hamster circadian activity rhythms. Neither the mu opioid agonist morphine, nor the kappa opioid agonist U50488H had any effect on light-induced phase shifts. The antagonists naltrindole, naltrexone, and nor-binaltorphimine, selective for delta, mu, and kappa opioids respectively, were also without effect on light-induced phase advances. Therefore, we found that only delta opioid agonists modulate light-induced phase advances in hamster circadian activity rhythms. These results imply that enkephalins released from the intergeniculate leaflet onto components of the suprachiasmatic pacemaker may be capable of inhibiting the responsiveness of the pacemaker to photic input arriving from the retina. The inability of antagonists to modulate light-induced phase advances suggests that endogenous opiate systems are not tonically active in generating circadian activity rhythms, but rather that enkephalins are probably used by the circadian system to modulate responses only under certain conditions or time of day.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Benzamides/pharmacology
- Biological Clocks/drug effects
- Biological Clocks/physiology
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Circadian Rhythm/radiation effects
- Cricetinae
- Enkephalins/physiology
- Light
- Male
- Mesocricetus
- Morphine/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Nerve Tissue Proteins/physiology
- Opioid Peptides/physiology
- Piperazines/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Suprachiasmatic Nucleus/drug effects
- Suprachiasmatic Nucleus/physiology
- Suprachiasmatic Nucleus/radiation effects
Collapse
Affiliation(s)
- Antonio Tierno
- Department of Biology, Dowling College, Oakdale, NY 11769, USA
| | | | | |
Collapse
|
509
|
Monconduit L, Bourgeais L, Bernard JF, Villanueva L. Systemic morphine selectively depresses a thalamic link of widespread nociceptive inputs in the rat. Eur J Pain 2002; 6:81-7. [PMID: 11888231 DOI: 10.1053/eujp.2001.0308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lateral part of the ventromedial thalamus (VM l) relays nociceptive inputs from the whole body surface to the dorsolateral frontal cortex. The aim of the present study was to investigate the effects of systemic morphine on nociceptive activity evoked in VM l neurones either by thermal (48 degrees C) or by supramaximal percutaneous electrical stimuli. The noxious thermal evoked responses were depressed by 10.8 +/- 10.1%, 48.3 +/- 23.0% and 67.3 +/- 10.1%, 5 min after i.v. injections of 1.0, 1.73 and 3.0 mg/kg of morphine, respectively. Moreover, strong depressive effects on the Adelta- and C-fibre responses were already present 5 min after the injection. The responses were significantly reduced by 7.2 +/- 5.9%, 32.5 +/ 11.1% and 37.2 +/- 11.8% for Adelta fibres after i.v. injections of 1.0, 1.73 and 3.0 mg/kg of morphine, respectively. The corresponding values for C-fibre evoked responses were 16.3 +/- 16.2%, 57.0 +/- 12.0% and 69.0 +/- 8.2%. The dose of morphine that reduced VM l neuronal nociceptive responses by 50% (1.73 mg/kg) was around 3.5 times lower than that necessary to inhibit the responses of its spinal or medullary relays under similar experimental conditions. These results, added to the data of the literature, suggest that supraspinal effects of morphine are primarily mediated at the thalamic level. It is tempting to speculate that morphine-induced reductions of attentional or psychomotor responses related to pain may be mediated by its action on VM l.
Collapse
Affiliation(s)
- Lénaïc Monconduit
- Physiopharmacologie du Système Nerveux, INSERM U-161, 2 rue d'Alésia, 75014 Paris, France.
| | | | | | | |
Collapse
|
510
|
Wang H, Wessendorf MW. Mu- and delta-opioid receptor mRNAs are expressed in periaqueductal gray neurons projecting to the rostral ventromedial medulla. Neuroscience 2002; 109:619-34. [PMID: 11823071 DOI: 10.1016/s0306-4522(01)00328-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opioid antinociception appears to be mediated at least in part by a pathway that projects from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM), but the relationship between opioid receptors and PAG-RVM projection neurons is unclear. Previous electrophysiological studies have suggested that opioids act directly on some PAG neurons projecting to the RVM. However, immunoreactivity for neither the cloned mu-opioid receptor (MOR1) nor the cloned delta-opioid receptor (DOR1) has been observed in PAG cells retrogradely labeled from the RVM. In the present study, we examined the expression of DOR1 and MOR1 mRNAs in PAG neurons projecting to RVM using quantitative in situ hybridization and retrograde tract-tracing. Mesencephalic neurons were labeled in three male Sprague-Dawley rats by microinjection of Fluoro-Gold into the RVM. Five micrometer cryostat sections were cut and in situ hybridization was performed using full-length cRNA probes labeled with 35S-UTP. Retrogradely labeled neurons that were also labeled for MOR1 or DOR1 mRNA were observed in the dorsomedial, lateral, and ventrolateral portions of the PAG. Quantification was performed in the dorsomedial and ventrolateral PAG using the physical disector. We found that of 219 retrogradely labeled neurons, 50 +/- 14% expressed DOR1 mRNA. In a second set of 120 Fluoro-Gold-labeled neurons, 27 +/- 8% expressed MOR1 mRNA. Significantly more PAG-RVM projection neurons were labeled for MOR1 mRNA in the ventrolateral subregion of the PAG than in the dorsomedial subregion. However, no significant difference was observed in the proportions of retrogradely labeled neurons labeled for DOR1 mRNA in the ventrolateral subregion compared to the dorsomedial subregion. We conclude that opioids are likely to exert direct effects on PAG-RVM projection neurons through both delta- and mu-opioid receptors. In addition, direct effects on PAG-RVM projection neurons from activation of MOR1 appear more likely to be exerted in the ventrolateral PAG than in the dorsomedial PAG.
Collapse
Affiliation(s)
- H Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
511
|
Henderson LA, Keay KA, Bandler R. Delta- and kappa-opioid receptors in the caudal midline medulla mediate haemorrhage-evoked hypotension. Neuroreport 2002; 13:729-33. [PMID: 11973479 DOI: 10.1097/00001756-200204160-00038] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals blood loss can trigger, shock, an abrupt, life-threatening hypotension and bradycardia. In the halothane-anaesthetised rat this response is blocked by inactivation of a discrete, vasodepressor area in the caudal midline medulla (CMM). Haemorrhagic shock is blocked also by systemic or ventricular injections of the opioid antagonist, naloxone. This study investigated, in the halothane anaesthetised rat, the contribution of delta-, kappa- and mu-opioid receptors in the CMM vasodepressor region to haemorrhage-evoked shock (i.e. hypotension and bradycardia) and its recovery. It was found that microinjections into the CMM of the delta-opioid receptor antagonist, naltrindole delayed and attenuated the hypotension and bradycardia evoked by haemorrhage, but did not promote recompensation. In contrast, CMM microinjections of the kappa-opioid receptor antagonist, nor-binaltorphamine, although it did not alter haemorrhage-evoked hypotension and bradycardia, did lead to a rapid restoration of AP, but not HR. CMM microinjections of the mu-opioid receptor antagonist, CTAP had no effect on haemorrhage-evoked shock or recompensation. These data indicate that delta- and kappa- (but not mu-) opioid receptor-mediated events within the CMM contribute to the hypotension and bradycardia evoked by haemorrhage and the effectiveness of naloxone in reversing shock.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- Hypotension/etiology
- Hypotension/physiopathology
- Male
- Medulla Oblongata/drug effects
- Medulla Oblongata/physiology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Shock, Hemorrhagic/physiopathology
Collapse
Affiliation(s)
- Luke A Henderson
- Department of Anatomy and Histology, The University of Sydney, NSW, Australia 2006
| | | | | |
Collapse
|
512
|
McGaraughty S, Heinricher MM. Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity. Pain 2002; 96:153-62. [PMID: 11932071 DOI: 10.1016/s0304-3959(01)00440-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The goal of the present study was to identify nuclei of the amygdala in which opioid-sensitive systems can act to recruit nociceptive modulatory circuitry in the rostral ventromedial medulla (RVM) and affect nociceptive responsiveness. In lightly anesthetized rats, 10 microg of morphine was bilaterally microinjected into basolateral, cortical, medial, central, and lateral nuclei of the amygdala to determine the relative influence on the activity of identified ON, OFF and NEUTRAL cells in the RVM and on the latency of the tail flick reflex evoked by noxious radiant heat. Infusions of morphine into the basolateral nuclei resulted in a substantial, naloxone-reversible increase in tail flick latency, and significantly increased ongoing firing of OFF cells and depressed that of ON cells. The reflex-related changes in cell firing were also attenuated. Morphine infusions into the cortical nuclei resulted in a small (approximately 1 s) but significant increase in tail flick latency. As with basolateral microinjections, ongoing activity of the OFF cells was increased, and although the ongoing firing of ON cells was not significantly changed, the reflex-related burst that characterizes these neurons was reduced. Microinjections in the medial nuclei again altered ongoing activity of both ON cells and OFF cells. However, the duration of the OFF cell pause and tail flick latency were unchanged. NEUTRAL cells were not affected by morphine at any site. Morphine applied within the central, medial lateral and dorsal lateral nuclei had no effect on RVM neurons or on the tail flick. Thus, focal application of morphine within the basolateral nucleus of the amygdala produced hypoalgesia and influenced RVM ON and OFF cells in a manner similar to that seen following systemic or RVM opioid administration. Opioid action within the medial and cortical nuclei also influenced RVM cell activity, but did not prevent the reflex-related OFF cell pause, and failed to alter the tail flick substantially. These observations, plus the lack of an opioid-activated influence from the central and lateral nuclei, demonstrate fundamental differences among systems linking the different amygdalar nuclei with the RVM. One way in which the modulatory circuitry of the RVM might be engaged physiologically in behaving animals is via opioid-mediated activation of the basolateral nucleus.
Collapse
Affiliation(s)
- Steve McGaraughty
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, OR 97201, USA.
| | | |
Collapse
|
513
|
The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 2002. [PMID: 11739602 DOI: 10.1523/jneurosci.21-24-09955.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin 5-HT(2A) receptors have been implicated in psychiatric illness and the psychotomimetic effects of hallucinogens. In brain slices, focal stimulation of 5-HT(2A) receptors in rat prefrontal cortex results in dramatically increased glutamate release onto layer V pyramidal neurons, as measured by an increase in "spontaneous" (nonelectrically evoked) EPSCs. This glutamate release is blocked by tetrodotoxin (TTX) and is thought to involve local spiking in thalamocortical axon terminals; however, the detailed mechanism has remained unclear. Here, we investigate parallels in EPSCs induced by either serotonin or the potassium channel blockers 4-aminopyridine (4-AP) or alpha-dendrotoxin (DTX). DTX, a selective blocker of Kv1.1-, Kv1.2-, and Kv1.6-containing potassium channels, has been shown to release glutamate in cortical synaptosomes, presumably by inhibiting a subthreshold-activated, slowly inactivating potassium conductance. By comparing DTX with other potassium channel blockers, we found that the ability to induce EPSCs in cortical pyramidal neurons depends on affinity for Kv1.2 subunits. DTX-induced EPSCs are similar to 5-HT-induced EPSCs in terms of sensitivity to TTX and omega-agatoxin-IVA (a blocker of P-type calcium channels) and laminar selectivity. The involvement of thalamocortical terminals in DTX-induced EPSCs was confirmed by suppression of these EPSCs by micro-opiates and thalamic lesions. More directly, DTX-induced EPSCs substantially occlude those induced by 5-HT, suggesting a common mechanism of action. No occlusion by DTX was seen when EPSCs were induced by a nicotinic mechanism. These results indicate that blockade of Kv1.2-containing potassium channels is part of the mechanism underlying 5-HT-induced glutamate release from thalamocortical terminals.
Collapse
|
514
|
Marek GJ, Wright RA, Gewirtz JC, Schoepp DD. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 2002; 105:379-92. [PMID: 11672605 DOI: 10.1016/s0306-4522(01)00199-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation of 5-hydroxytryptamine(2A) (5-HT(2A)) receptors by hallucinogenic drugs is thought to mediate many psychotomimetic effects including changes in affect, cognition and perception. Conversely, blockade of 5-HT(2A) receptors may mediate therapeutic effects of many atypical antidepressant and antipsychotic drugs. The purpose of the present study was to determine the source of subcortical glutamatergic afferents, which would project widely throughout the anterior-posterior axis of the rat brain to the apical dendrites of layer V pyramidal cells of the medial prefrontal cortex, from which serotonin induces transmitter release via activation of 5-HT(2A) receptors. Fiber-sparing chemical lesions of the medial thalamus selectively decreased the frequency of serotonin-induced excitatory postsynaptic currents recorded from layer V pyramidal cells in the prelimbic region of the medial prefrontal cortex by 60%. In contrast, large bilateral lesions of the amygdala did not alter the serotonin response. These thalamic lesions significantly decreased the amount of binding to either mu-opioid or metabotropic glutamate 2/3 receptors in the prelimbic region of the medial prefrontal cortex as expected from previous evidence that these agonists for these receptors suppress serotonin-induced excitatory postsynaptic currents by a presynaptic mechanism. Surprisingly, the amount of specific binding to cortical 5-HT(2A) receptors was significantly increased by the medial thalamic lesions. Thus, these experiments demonstrate that activation of cortical 5-HT(2A) receptors modulates transmitter release from thalamocortical terminals. Unexpectedly, lesioning the thalamocortical terminals also alters 5-HT(2A) receptor binding in the prefrontal cortex. These findings are of interest with respect to understanding therapeutic effects of antidepressant/antipsychotic drugs and the known behavioral effects of thalamic lesions in humans.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/metabolism
- Animals
- Bridged Bicyclo Compounds/pharmacology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Hallucinogens/pharmacology
- Male
- N-Methylaspartate/pharmacology
- Neural Pathways/cytology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Prefrontal Cortex/cytology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Pyramidal Cells/cytology
- Pyramidal Cells/drug effects
- Pyramidal Cells/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Serotonin/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Thalamus/cytology
- Thalamus/drug effects
- Thalamus/metabolism
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- G J Marek
- Department of Psychiatry, Yale University School of Medicine, New Haven CT 06508, USA.
| | | | | | | |
Collapse
|
515
|
Cahill CM, McClellan KA, Morinville A, Hoffert C, Hubatsch D, O'Donnell D, Beaudet A. Immunohistochemical distribution of delta opioid receptors in the rat central nervous system: evidence for somatodendritic labeling and antigen-specific cellular compartmentalization. J Comp Neurol 2001; 440:65-84. [PMID: 11745608 DOI: 10.1002/cne.1370] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many studies have reported on the distribution of delta opioid receptors (delta OR) in the mammalian central nervous system (CNS) by using a variety of techniques. However, no general consensus has emerged with regards to the localization of this receptor due to inconsistencies in the immunohistochemical literature. In the present study, we analyzed the cellular and subcellular distribution of immunoreactive delta OR in the rat CNS using two different antibodies (directed against a sequence in the C-terminus or N-terminus of the rat delta OR). By using Western blotting, these two antibodies recognized similar forms of the delta OR in COS-7 cells transfected with this receptor, but distinct forms in membranes from the rat spinal cord. By using light microscopic immunohistochemistry, both antibodies recognized identical populations of nerve cell bodies throughout the CNS; the distribution of these cell bodies conformed to that of delta OR mRNA-expressing cells detected by in situ hybridization. However, whereas the C-terminus-directed antibody recognized predominantly perikarya and proximal dendrites, the N-terminus-directed antibody also labeled extensively dendritic and terminal arbors. Furthermore, by using electron microscopy, the two antibodies were found not only to label differentially somatodendritic versus axonal compartments, but also plasma membrane versus cytoplasmic ones, suggesting that distinct immunological forms of the receptor are being targeted preferentially to different cellular and subcellular domains.
Collapse
Affiliation(s)
- C M Cahill
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
516
|
Douglas AJ, Russell JA. Endogenous opioid regulation of oxytocin and ACTH secretion during pregnancy and parturition. PROGRESS IN BRAIN RESEARCH 2001; 133:67-82. [PMID: 11589146 DOI: 10.1016/s0079-6123(01)33006-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Progress of parturition in the rat is optimal when there is increased oxytocin secretion, thus ensuring quick birth and otherwise risking adverse neonatal health. To ensure that the mechanisms for this are available, oxytocin neurons adapt in pregnancy and this includes development of a tonic inhibition by endogenous opioids. Endogenous opioid inhibition of oxytocin secretion increases in pregnancy, initially acting on the nerve terminals in the posterior pituitary and later on oxytocin cell bodies and their inputs. This inhibition enhances stores of oxytocin and enables restraint of oxytocin neuron responsiveness to selected excitatory inputs. The hypothalamic neurons which mediate stress also adapt in late pregnancy so that hypothalamo-pituitary-adrenal axis and oxytocin secretory responses to stressor exposure are attenuated. This is also partly due to endogenous opioid inhibition. Thus, in pregnancy oxytocin and hypothalamo-pituitary-adrenal axis secretion in response to stimulation is restrained, protecting the unborn fetus(es) from premature delivery and glucocorticoid exposure and preparing the oxytocin neurons for their important secretory role during parturition. In parturition itself, endogenous opioids continue to inhibit these neurons. Stress exposure during parturition delays births, probably due to endogenous opioid inhibition of pulsatile oxytocin secretion. On the other hand, basal ACTH and corticosterone secretion are reduced in parturition through inhibition by endogenous opioids. So, opioids continue to regulate the activity of oxytocin and hypothalamo-pituitary-adrenal mechanisms in labor; inhibition of oxytocin neurons at this time may control the spacing of pup births.
Collapse
Affiliation(s)
- A J Douglas
- Laboratory of Neuroendocrinology, Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | | |
Collapse
|
517
|
Neal CR, Akil H, Watson SJ. Expression of orphanin FQ and the opioid receptor-like (ORL1) receptor in the developing human and rat brain. J Chem Neuroanat 2001; 22:219-49. [PMID: 11719021 DOI: 10.1016/s0891-0618(01)00135-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The orphanin peptide system, although structurally similar to the endogenous opioid family of peptides and receptors, has been established as a distinct neurochemical entity. The distribution of the opioid receptor-like (ORL1) receptor and its endogenous ligand orphanin FQ (OFQ) in the central nervous system of the adult rat has been recently reported, and although diffusely disseminated throughout the brain, this neuropeptide system is particularly expressed within stress and pain circuitry. Little is known concerning the normal expression of the orphanin system during gestation, nor how opiate or stress exposure may influence its development. Using in situ hybridization techniques, the present study was undertaken to determine the normal pattern of expression of ORL1 mRNA in the human and rat brain at various developmental stages. Rat embryos, postnatal rat brains and postmortem human brains were collected, frozen and cut into 15 microm coronal sections. In situ hybridization was performed using riboprobes generated from cDNA containing representative human and rat ORL1 and OFQ sequences. Both ORL1 and OFQ mRNA is detected as early as E12 in the cortical plate, basal forebrain, brainstem and spinal cord. Expression for both ORL1 and OFQ is strongest during the early postnatal period, remaining strong in the spinal cord, brainstem, ventral forebrain, and neocortex into the adult. Human ORL1 and OFQ expression is observed at 16 weeks gestation, remaining relatively unchanged up to 36 weeks. The influence of early orphanin expression on maturation of stress and pain circuitry in the developing brain remains unknown.
Collapse
Affiliation(s)
- C R Neal
- Mental Health Research Institute, University of Michigan, 205 Zina Pitcher Place, 48109-0720, Ann Arbor, MI, USA
| | | | | |
Collapse
|
518
|
Tzaferis JA, McGinty JF. Kappa opioid receptor stimulation decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:27-35. [PMID: 11532335 DOI: 10.1016/s0169-328x(01)00178-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to investigate the role that kappa opioid receptor stimulation has upon stimulant-induced behavior and neuropeptide gene expression in the striatum. Acute administration of amphetamine (2.5 mg/kg i.p.) caused an increase in behavioral activity and preprodynorphin, substance P, and preproenkephalin mRNA expression. When amphetamine-treated rats were pretreated with U69593, a kappa agonist (0.16 or 0.32 mg/kg s.c.), there was a significant decrease in behavioral activity. Quantitative in situ hybridization histochemistry revealed that 0.32 mg/kg U69593 significantly decreased amphetamine-induced mRNA expression of all three neuropeptides; however, only the induction of preproenkephalin mRNA was decreased by 0.16 mg/kg. These data suggest that stimulation of kappa receptors decreases acute amphetamine-induced behavior and mRNA expression of neuropeptides in the rat striatum.
Collapse
Affiliation(s)
- J A Tzaferis
- Department of Physiology and Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA
| | | |
Collapse
|
519
|
Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J Neurosci 2001. [PMID: 11438603 DOI: 10.1523/jneurosci.21-14-05281.2001] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the rostroventromedial medulla (RVM) project to spinal loci where the neurons inhibit or facilitate pain transmission. Abnormal activity of facilitatory processes may thus represent a mechanism of chronic pain. This possibility and the phenotype of RVM cells that might underlie experimental neuropathic pain were investigated. Cells expressing mu-opioid receptors were targeted with a single microinjection of saporin conjugated to the mu-opioid agonist dermorphin; unconjugated saporin and dermorphin were used as controls. RVM dermorphin-saporin, but not dermorphin or saporin, significantly decreased cells expressing mu-opioid receptor transcript. RVM dermorphin, saporin, or dermorphin-saporin did not change baseline hindpaw sensitivity to non-noxious or noxious stimuli. Spinal nerve ligation (SNL) injury in rats pretreated with RVM dermorphin-saporin failed to elicit the expected increase in sensitivity to non-noxious mechanical or noxious thermal stimuli applied to the paw. RVM dermorphin or saporin did not alter SNL-induced experimental pain, and no pretreatment affected the responses of sham-operated groups. This protective effect of dermorphin-saporin against SNL-induced pain was blocked by beta-funaltrexamine, a selective mu-opioid receptor antagonist, indicating specific interaction of dermorphin-saporin with the mu-opioid receptor. RVM microinjection of dermorphin-saporin, but not of dermorphin or saporin, in animals previously undergoing SNL showed a time-related reversal of the SNL-induced experimental pain to preinjury baseline levels. Thus, loss of RVM mu receptor-expressing cells both prevents and reverses experimental neuropathic pain. The data support the hypothesis that inappropriate tonic-descending facilitation may underlie some chronic pain states and offer new possibilities for the design of therapeutic strategies.
Collapse
|
520
|
Morin-Surun MP, Boudinot E, Dubois C, Matthes HW, Kieffer BL, Denavit-Saubié M, Champagnat J, Foutz AS. Respiratory function in adult mice lacking the mu-opioid receptor: role of delta-receptors. Eur J Neurosci 2001; 13:1703-10. [PMID: 11359522 DOI: 10.1046/j.0953-816x.2001.01547.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice lacking the mu-opioid receptor (MOR) provide a unique model to determine whether opioid receptors are functionally interactive. Recent results have shown that respiratory depression produced by delta-opioid receptor agonists is suppressed in mice lacking the mu-opioid receptor. Here we investigated the involvement of mu- and delta-opioid receptors in the control of ventilation and mu/delta receptor interactions in brainstem rhythm-generating structures. Unrestrained MOR-/- and wild-type mice showed similar ventilatory patterns at rest and similar chemosensory responses to hyperoxia (100% O2), hypoxia (10% O2) or hypercapnia (5%CO2-95%O2). Blockade of delta-opioid receptors with naltrindole affected neither the ventilatory patterns nor the ventilatory responses to hypoxia in MOR-/- and wild-type mice. In-vitro, respiratory neurons were recorded in the pre-Bötzinger complex of thick brainstem slices of MOR-/- and wild-type young adult mice. Respiratory frequency was not significantly different between these two groups. The delta2 receptor agonist deltorphin II (0.1-1.0 microM) decreased respiratory frequency in both groups whereas doses of the delta1 receptor agonist enkephalin[D-Pen2,5] (0.1-1.0 microM) which were ineffective in wild-type mice significantly decreased respiratory frequency in MOR-/- mice. We conclude that deletion of the mu-opioid receptor gene has no significant effect on ensuing respiratory rhythm generation, ventilatory pattern, or chemosensory control. In MOR-/- mice, the loss of respiratory-depressant effects of delta2-opioid receptor agonists previously observed in vivo does not result from a blunted response of delta receptors in brainstem rhythm-generating structures. These structures show an unaltered response to delta2-receptor agonists and an augmented response to delta1-receptor agonists.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Female
- Male
- Medulla Oblongata/drug effects
- Medulla Oblongata/metabolism
- Mice
- Mice, Knockout/abnormalities
- Mice, Knockout/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Oligopeptides/pharmacology
- Organ Culture Techniques
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/genetics
- Respiratory Center/drug effects
- Respiratory Center/metabolism
- Respiratory Physiological Phenomena/drug effects
Collapse
Affiliation(s)
- M P Morin-Surun
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
521
|
Kim EM, Shi Q, Olszewski PK, Grace MK, O'Hare E, Billington CJ, Levine AS. Identification of central sites involved in butorphanol-induced feeding in rats. Brain Res 2001; 907:125-9. [PMID: 11430893 DOI: 10.1016/s0006-8993(01)02322-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Butorphanol (BT), a mixed kappa- and mu-opioid receptor agonist, induces vigorous food intake in rats. Peripheral injection of BT seems to increase food intake more effectively than intracerebroventricular administration. To further elucidate the nature of BT's influence on consummatory behavior, we examined which feeding-related brain areas exhibit increased c-Fos immunoreactivity (IR) following subcutaneous injection of 4 mg/kg body weight BT, a dose known to induce a maximal orexigenic response. We also evaluated whether direct administration of BT into the forebrain regions activated by peripheral BT injection affects food intake. Peripheral BT administration induced c-Fos-IR in the hypothalamic paraventricular nucleus (PVN), central nucleus of the amygdala (CeA), and nucleus of the solitary tract (NTS). However, 0.1-30 microg BT infused into the CeA, failed to increase food intake 1, 2, and 4 h after injection. Only the highest dose of BT (30 microg) injected into the PVN increased feeding. These results suggest that the PVN, CeA, and NTS mediate the effects of peripherally-injected BT. The PVN or CeA are probably not the main target sites of immediate BT action.
Collapse
Affiliation(s)
- E M Kim
- School of Psychology, University of Ulster, Northern Ireland, Newtonabbey, UK
| | | | | | | | | | | | | |
Collapse
|
522
|
Harris JA, Drake CT. Kappa opioid receptor density is consistent along the rostrocaudal axis of the female rat spinal cord. Brain Res 2001; 905:236-9. [PMID: 11423100 DOI: 10.1016/s0006-8993(01)02515-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptors (KORs) were immunocytochemically localized at four different levels of the spinal cord of normally-cycling female rats in estrus or diestrus. KOR labeling was primarily observed in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that there were no significant differences in KOR densities among spinal segments C1--C2, T2, T13--L1, and L6--S1 in either the estrus or diestrus phases. These results suggest that the potential for KOR-mediated antinociceptive responses is consistent along the rostrocaudal axis of the female rat spinal cord.
Collapse
Affiliation(s)
- J A Harris
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA
| | | |
Collapse
|
523
|
Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors. J Neurosci 2001. [PMID: 11312309 DOI: 10.1523/jneurosci.21-09-03242.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activation of delta-opioid receptors (DORs) in the caudate-putamen nucleus (CPN) produces regionally distinct changes in motor functions, many of which are also influenced by opioids active at micro-opioid receptors (MORs). These actions most likely occur in MOR-enriched patch compartments in the CPN. To determine the functional sites for DOR activation and potential interactions involving MOR in these regions, immunoperoxidase and immunogold-silver labeling methods were applied reversibly for the ultrastructural localization of DOR and MOR in single rat brain sections containing patches of the CPN. DOR immunoreactivity was commonly seen within the cytoplasm of spiny and aspiny neurons, many of which also expressed MOR. In dendrites and spines, DOR labeling was preferentially localized to membranes of the smooth endoplasmic reticulum and spine apparatus, whereas MOR showed a prominent plasmalemmal distribution. DOR- and/or MOR-labeled spines received asymmetric, excitatory synapses, some of which showed notable perforations, suggesting the involvement of these receptors in activity-dependent synaptic plasticity. DORs were more frequently detected than were MORs within axon terminals that formed either asymmetric synapses with spine heads or symmetric synapses with spine necks. Our results suggest that in striatal patches, DORs, often in cooperation with MORs, play a direct modulatory role in controlling the postsynaptic excitability of spines, whereas presynaptic neurotransmitter release onto spines is mainly influenced by DOR activation. In comparison with MOR, the prevalent association of DOR with cytoplasmic organelles that are involved in intracellular trafficking of cell surface proteins suggests major differences in availability of these receptors to extracellular opioids.
Collapse
|
524
|
Drolet G, Dumont EC, Gosselin I, Kinkead R, Laforest S, Trottier JF. Role of endogenous opioid system in the regulation of the stress response. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:729-41. [PMID: 11383975 DOI: 10.1016/s0278-5846(01)00161-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous studies and reviews support an important contribution of endogenous opioid peptide systems in the mediation, modulation, and regulation of stress responses including endocrine (hypothalamopituitary-adrenal, HPA axis), autonomic nervous system (ANS axis), and behavioral responses. Although several discrepancies exist, the most consistent finding among such studies using different species and stressors is that opioids not only diminish stress-induced neuroendocrine and autonomic responses, but also stimulate these effector systems in the non-stressed state. A distinctive feature of the analgesic action of opioids is the blunting of the distressing, affective component of pain without dulling the sensation itself. Therefore, opioid peptides may diminish the impact of stress by attenuating an array of physiologic responses including emotional and affective states. The widespread distribution of enkephalin (ENK) throughout the limbic system (including the extended amygdala, cingulate cortex, entorhinal cortex, septum, hippocampus, and the hypothalamus) is consistent with a direct role in the modulation the stress responses. The predictability of stressful events reduces the impact of a wide range of stressors and ENK appears to play an important role in this process. Therefore, ENK and its receptors could represent a major modulatory system in the adaptation of an organism to stress, balancing the response that the stressor places on the central stress system with the potentially detrimental effects that a sustained stress may produce. Chronic neurogenic stressors will induce changes in specific components of the stress-induced ENKergic system, including ENK, delta- and mu-opioid receptors. This review presents evidences for adaptive cellular mechanisms underlying the response of the central stress system when assaulted by repeated psychogenic stress, and the involvement of ENK in these processes.
Collapse
Affiliation(s)
- G Drolet
- Unité de Neuroscience, Centre de Recherche du CHUL (CHUQ) & Université Laval, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
525
|
Park SJ, Chiang CY, Hu JW, Sessle BJ. Neuroplasticity Induced by Tooth Pulp Stimulation in Trigeminal Subnucleus Oralis Involves NMDA Receptor Mechanisms. J Neurophysiol 2001; 85:1836-46. [PMID: 11353000 DOI: 10.1152/jn.2001.85.5.1836] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated that application of the mustard oil (MO), a small-fiber excitant and inflammatory irritant, to the rat maxillary molar tooth pulp induces significant increases in jaw muscle electromyographic (EMG) activity and neuroplastic changes in trigeminal (V) subnucleus caudalis. Since subnucleus oralis (Vo) as well as caudalis receives projections from molar pulp afferents and is also an integral brain stem relay of afferent input from orofacial structures, we tested whether MO application to the exposed pulp induces neuroplastic changes in oralis neurons and whether microinjection of MK-801, a noncompetitive NMDA antagonist, into the Vo influences the pulp/MO-induced neuroplastic changes in chloralose/urethan-anesthetized rats. Single neuronal activity was recorded in Vo, and neurons classified as low-threshold mechanoreceptive (LTM), wide dynamic range (WDR), nociceptive-specific (NS), deep (D), or skin/mucosa and deep (S + D). The spontaneous activity, mechanoreceptive field (RF) size, mechanical threshold, and response to suprathreshold mechanical stimuli applied to the neuronal RF were assessed prior to and throughout a 40- to 60-min period after MO application to the maxillary molar pulp. In animals pretreated with saline microinjection (0.3 μl) into the Vo, MO application to the pulp produced a significant increase in spontaneous activity, expansion of the pinch or deep RF, decrease in the mechanical threshold, and increase in response to suprathreshold mechanical stimuli of the nociceptive (WDR, NS, and S + D) neurons except for those nociceptive neurons having their RF only in the intraoral region. The pulpal application of MO did not produce any significant neuroplastic changes in LTM neurons. Furthermore, in animals pretreated with MK-801 microinjection (3 μg/0.3 μl) into the Vo, MO application to the pulp did not produce any significant changes in the RF and response properties of nociceptive neurons. In other animals pretreated with saline (0.3 μl) or MK-801 (3 μg/0.3 μl) microinjected into the Vo, mineral oil application to the pulp did not produce any significant changes in RF and response properties of nociceptive neurons. These findings indicate that the application of MO to the tooth pulp can induce significant neuroplastic changes in oralis nociceptive neurons and that central NMDA receptor mechanisms may be involved in these neuroplastic changes.
Collapse
Affiliation(s)
- S J Park
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | |
Collapse
|
526
|
Aicher SA, Kraus JA, Sharma S, Patel A, Milner TA. Selective distribution of mu-opioid receptors in C1 adrenergic neurons and their afferents. J Comp Neurol 2001; 433:23-33. [PMID: 11283946 DOI: 10.1002/cne.1122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Agonists of the mu-opioid receptor (MOR) have profound effects on blood pressure, heart rate, and respiration that may be mediated by C1 adrenergic neurons in the rostral ventrolateral medulla (RVL). C1 neurons are sympathoexcitatory and are involved in both tonic and reflex regulation of sympathetic outflow. This study was designed to determine whether C1 neurons, or their afferents, contain MOR. C1 neurons were identified by using an antibody against the epinephrine synthesizing enzyme phenylethanolamine-N-methyl transferase (PNMT), whereas MOR was localized by using an antipeptide antibody that recognizes the cloned MOR, MOR1. Combined immunoperoxidase and immunogold methods were used to examine the cellular distribution of MOR1 relative to PNMT-containing neurons in the RVL. MOR1 was found in 22% of PNMT-containing dendrites (n = 392), whereas MOR1-containing axons or axon terminals contacted 14% of PNMT-containing dendrites. This distribution was heterogenous with regard to dendritic size: PNMT-labeled dendrites containing MOR1 were usually large (60% were >1.2 microm), whereas PNMT-containing dendrites that received MOR1-labeled afferents were usually small (79% were <1.2 microm). Individual dendrites rarely contained MOR1 at both pre- and postsynaptic sites. Together these results suggest that MOR agonists may directly influence the activity of C1 neurons, as well as the activity of select afferents to these cells. Plasmalemmal membrane labeling for MOR1 was more frequent in smaller PNMT-containing dendrites, suggesting that postsynaptic receptors are more readily available for ligand binding in small dendrites, although the receptor was more frequently detected in larger PNMT dendrites. The selective distribution of MORs to specific pre- and postsynaptic sites suggests the receptor may be selectively trafficked to positions where it may regulate afferent activity that is heterogeneously distributed along the dendritic tree of C1 neurons.
Collapse
Affiliation(s)
- S A Aicher
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
527
|
Aicher SA, Schreihofer AM, Kraus JA, Sharma S, Milner TA, Guyenet PG. Mu-opioid receptors are present in functionally identified sympathoexcitatory neurons in the rat rostral ventrolateral medulla. J Comp Neurol 2001; 433:34-47. [PMID: 11283947 DOI: 10.1002/cne.1123] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agonists of the mu-opioid receptor (MOR) produce profound hypotension and sympathoinhibition when microinjected into the rostral ventrolateral medulla (RVL). These effects are likely to be mediated by the inhibition of adrenergic and other presympathetic vasomotor neurons located in the RVL. The present ultrastructural studies were designed to determine whether these vasomotor neurons, or their afferents, contain MORs. RVL bulbospinal barosensitive neurons were recorded in anesthetized rats and filled individually with biotinamide by using a juxtacellular labeling method. Biotinamide was visualized by using a peroxidase method and MOR was identified by using immunogold localization of an antipeptide antibody that recognizes the cloned MOR, MOR1. The subcellular relationship of MOR1 to RVL neurons with fast- or slow-conducting spinal axons was examined by electron microscopy. Fast- and slow-conducting cells were not morphologically distinguishable. Immunogold-labeling for MOR1 was found in all RVL bulbospinal barosensitive neurons examined (9 of 9). MOR1 was present in 52% of the dendrites from both types of cells and in approximately half of these dendrites the MOR1 was at nonsynaptic plasmalemmal sites. A smaller portion of biotinamide-labeled dendrites (16%) from both types of cells were contacted by MOR1-containing axons or axon terminals. Together, these results suggest that MOR agonists can directly influence the activity of all types of RVL sympathoexcitatory neurons and that MOR agonists may also influence the activity of afferent inputs to these cells. The heterogenous distribution of MORs within individual RVL neurons indicates that the receptor is selectively targeted to specific pre- and postsynaptic sites.
Collapse
Affiliation(s)
- S A Aicher
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
528
|
Smith MJ, Wise PM. Localization of kappa opioid receptors in oxytocin magnocellular neurons in the paraventricular and supraoptic nuclei. Brain Res 2001; 898:162-5. [PMID: 11292460 DOI: 10.1016/s0006-8993(01)02154-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been demonstrated previously that kappa opioid receptor agonists, such as dynorphin, inhibit oxytocin secretion in the rat. To determine whether kappa agonists act directly on oxytocin-containing magnocellular neurons to inhibit hormone secretion, we utilized immunofluorescence to examine the cellular localization of kappa opioid receptors in the rat paraventricular and supraoptic nuclei. kappa Opioid receptor immunoreactivity co-localized with oxytocin-containing cell bodies, their axons and axon terminals. Thus, our results suggest that kappa opioid receptor agonists can exert direct inhibitory actions on oxytocin magnocellular neurons.
Collapse
Affiliation(s)
- M J Smith
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, MS508, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
529
|
Johansson PA, Andersson M, Andersson KE, Cenci MA. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 2001; 8:220-39. [PMID: 11300719 DOI: 10.1006/nbdi.2000.0372] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid receptor-binding autoradiography was used as a way to map sites of altered opioid transmission in a rat model of l-DOPA-induced dyskinesia. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathways sustained a 3-week treatment with l-DOPA (6 mg/kg/day, combined with 12 mg/kg/day benserazide), causing about half of them to develop dyskinetic-like movements on the side of the body contralateral to the lesion. Autoradiographic analysis of mu-, delta-, and kappa-opioid binding sites was carried out in the caudate-putamen (CPu), the globus pallidus (GP), the substantia nigra (SN), the primary motor area, and the premotor-cingulate cortex. The dopamine-denervating lesion alone caused an ipsilateral reduction in opioid radioligand binding in the CPu, GP, and SN, but not in the cerebral cortex. Chronic l-DOPA treatment affected opioid receptor binding in both the basal ganglia and the cerebral cortex, producing changes that were both structure- and receptor-type specific, and closely related to the motor response elicited by the treatment. In the basal ganglia, the most clear-cut differences between dyskinetic and nondyskinetic rats pertained to kappa opioid sites. On the lesioned side, both striatal and nigral levels of kappa binding densities were significantly lower in the dyskinetic group, showing a negative correlation with the rats' dyskinesia scores on one hand and with the striatal expression of opioid precursor mRNAs on the other hand. In the cerebral cortex, levels of mu and delta binding site densities were bilaterally elevated in the dyskinetic group, whereas kappa radioligand binding was specifically increased in the nondyskinetic cases and showed a negative correlation with the rats' dyskinesia scores. These data demonstrate that bilateral changes in cortical opioid transmission are closely associated with l-DOPA-induced dyskinesia in the rat. Moreover, the fact that dyskinetic and nondyskinetic animals often show opposite changes in opioid radioligand binding suggests that the motor response to l-DOPA is determined, at least in part, by compensatory adjustments of brain opioid receptors.
Collapse
MESH Headings
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Basal Ganglia/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Binding Sites/drug effects
- Binding Sites/physiology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Diprenorphine/pharmacokinetics
- Disease Models, Animal
- Dopamine Agents/pharmacology
- Dyskinesia, Drug-Induced/etiology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Enkephalins/genetics
- Female
- Levodopa/pharmacology
- Narcotic Antagonists/pharmacokinetics
- Oxidopamine/pharmacology
- Protein Precursors/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Sympatholytics/pharmacology
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- P A Johansson
- Department of Physiological Sciences, Neurobiology Division, Wallenberg Neuroscience Centre, University of Lund, Sölvegatan 17, Lund, S-223 62, Sweden
| | | | | | | |
Collapse
|
530
|
Abstract
It has been found that heterodimers of kappa- and delta-opioid receptors can occur in vitro, but it has been unclear whether they also occur in intact animals. In the present study we examined whether kappa-delta heterodimers might occur in vivo by staining for these receptors with two-color fluorescence immunocytochemistry. Sections of rat spinal cord were double-stained using rabbit anti-kappa opioid receptor combined with rat anti-delta-opioid receptor. It was found that axons in the superficial dorsal horn of the spinal cord were double-labeled. In addition, structures within axonal varicosities were sometimes double-labeled. We conclude that single axons, and single structures within axons, express both kappa- and delta-opioid receptors. These observations are consistent with heterodimers of these receptors existing in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Axons/chemistry
- Fluorescent Antibody Technique
- Male
- Molecular Sequence Data
- Neurons, Afferent/chemistry
- Neurons, Afferent/cytology
- Pain/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/analysis
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, kappa/analysis
- Receptors, Opioid, kappa/chemistry
- Substantia Gelatinosa/chemistry
- Substantia Gelatinosa/cytology
Collapse
Affiliation(s)
- M W Wessendorf
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street S.E., Minneapolis MN 55455, USA.
| | | |
Collapse
|
531
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
532
|
Abstract
Subjective tinnitus may be defined as the perceptual correlate of altered spontaneous neural activity occurring in the absence of an externally evoking auditory stimulus. Tinnitus can be caused or exacerbated by one or more of five forms of stress. We propose and provide evidence supporting a model that explains, but is not limited to, peripheral (cochlear) tinnitus. In this model, naturally occurring opioid dynorphins are released from lateral efferent axons into the synaptic region beneath the cochlear inner hair cells during stressful episodes. In the presence of dynorphins, the excitatory neurotransmitter glutamate, released by inner hair cells in response to stimuli or (spontaneously) in silence, is enhanced at cochlear N-methyl-D-aspartate (NMDA) receptors. This results in altered neural excitability and/or an altered discharge spectrum in (modiolar-oriented) type I neurons normally characterized by low rates of spontaneous discharge and relatively poor thresholds. It is also possible that chronic exposure to dynorphins leads to auditory neural excitotoxicity via the same receptor mechanism. Finally, the proposed excitatory interactions of dynorphins and glutamate at NMDA receptors need not be restricted to the auditory periphery.
Collapse
Affiliation(s)
- T L Sahley
- Departments of Speech and hearing, Cleveland State University, Main Classroom Building, Room 431, 1899 East 22nd Street, Cleveland, OH 44115, USA.
| | | |
Collapse
|
533
|
Abstract
Previous studies have reported that the mRNAs encoding the cloned mu-opioid receptor (MOR1) and the cloned delta-opioid receptor (DOR1) are expressed in the dorsal root ganglia (DRG) of rats. In the present study, we determined the sizes of DRG neurons expressing DOR1 and MOR1 mRNAs and examined whether or not DRG neurons were likely to be the source of the DOR1 and MOR1 immunoreactivity previously observed in the spinal dorsal horn. DRG neurons were labeled in five male Sprague-Dawley rats by applying Fluoro-Gold (FG) topically to the dorsal root entry zone. Five-micrometer cryostat sections were cut, and in situ hybridization was performed using full-length cRNA probes labeled with 35S-UTP. The distribution of sizes of DRG neuronal profiles (1372 neuronal profiles were evaluated) ranged from 98 to 2081 microm(2) and was similar to those found in previous reports. Of 583 retrogradely labeled neuronal profiles in DRGs, 246 (40 +/- 14%, mean +/- SD, n = 5) expressed MOR1 mRNA. Of 789 DRG cell profiles from sections that were hybridized for DOR1 mRNA, 687 (85 +/- 18%, mean +/- SD, n = 5) were labeled for DOR1. The proportion of DRG cell profiles expressing DOR1 mRNA was significantly higher than that expressing MOR1 mRNA (P < 0.0001, chi-square test). No significant differences were observed between small (less than or = 700 microm(2)) and large (> 700 microm(2)) FG-labeled neurons in the proportions labeled for either MOR1 mRNA (202/497 vs. 44/86, P > 0.2, chi-square test) or DOR1 mRNA (555/651 vs. 132/138, P > 0.3, chi-square test). Most FG-labeled neurons that expressed either MOR1 mRNA or DOR1 mRNA (82.1 and 80.8%, respectively) were smaller than 700 microm(2). In addition to cells expressing a single opioid receptor, individual DRG neurons were observed that expressed both MOR1 and DOR1. In a sample of 25 DRG neurons expressing MOR1-mRNA, 23 also expressed DOR1 mRNA. Within the spinal cord itself, DOR1 and MOR1 mRNAs had different patterns of expression. Both were expressed in the dorsal horn, but of the two, only MOR1 message was expressed in the superficial dorsal horn. We conclude that both small and large DRG neurons express DOR1 and MOR1 mRNAs, but most cells expressing these mRNAs are small. In addition, some DRG neurons express both MOR1 and DOR1 mRNAs. Finally, both DOR1 and MOR1 in the spinal dorsal horn originate, at least in part, from DRG neurons.
Collapse
Affiliation(s)
- H Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
534
|
Oliveira MA, Prado WA. Role of PAG in the antinociception evoked from the medial or central amygdala in rats. Brain Res Bull 2001; 54:55-63. [PMID: 11226714 DOI: 10.1016/s0361-9230(00)00420-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of stimulating the periaqueductal gray (PAG) against the rat tail flick reflex (TFR) was not changed significantly by the microinjection of lidocaine (5%/0.5 microl) into the medial (ME) or central (CE) nuclei of the amygdala. In contrast, lidocaine into the PAG blocked the effects from the ME or CE. The microinjection of naloxone (1 microg), beta-funaltrexamine (2 microg), propranolol (1 microg), or methysergide (1 microg), but not atropine (1 microg) or mecamylamine (1 microg) into the PAG significantly reduced the effects from the CE. The effect from the ME was not altered significantly by microinjecting naloxone into the PAG. Therefore, the ME or CE are unlikely to be intermediary stations for depression of the TFR evoked by stimulating the PAG, but the PAG may be a relay station for the effects of stimulating the ME or CE. The circuitry activated from the CE, but not the ME, utilises opioid mediation in the PAG. The effect from the CE depends at least on mu-opioid, serotonergic, and probably beta-adrenergic mediation in the PAG.
Collapse
Affiliation(s)
- M A Oliveira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
535
|
Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 2001; 81:299-343. [PMID: 11152760 DOI: 10.1152/physrev.2001.81.1.299] [Citation(s) in RCA: 608] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although opioids are highly effective for the treatment of pain, they are also known to be intensely addictive. There has been a massive research investment in the development of opioid analgesics, resulting in a plethora of compounds with varying affinity and efficacy at all the known opioid receptor subtypes. Although compounds of extremely high potency have been produced, the problem of tolerance to and dependence on these agonists persists. This review centers on the adaptive changes in cellular and synaptic function induced by chronic morphine treatment. The initial steps of opioid action are mediated through the activation of G protein-linked receptors. As is true for all G protein-linked receptors, opioid receptors activate and regulate multiple second messenger pathways associated with effector coupling, receptor trafficking, and nuclear signaling. These events are critical for understanding the early events leading to nonassociative tolerance and dependence. Equally important are associative and network changes that affect neurons that do not have opioid receptors but that are indirectly altered by opioid-sensitive cells. Finally, opioids and other drugs of abuse have some common cellular and anatomical pathways. The characterization of common pathways affected by different drugs, particularly after repeated treatment, is important in the understanding of drug abuse.
Collapse
Affiliation(s)
- J T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA.
| | | | | |
Collapse
|
536
|
Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, Hauser KF. Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience 2001; 102:555-63. [PMID: 11226693 PMCID: PMC4300203 DOI: 10.1016/s0306-4522(00)00461-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human immunodeficiency virus (HIV) infection selectively targets the striatum, a region rich in opioid receptor-expressing neural cells, resulting in gliosis and neuronal losses. Opioids can be neuroprotective or can promote neurodegeneration. To determine whether opioids modify the response of neurons to human immunodeficiency virus type 1 (HIV-1) Tat protein-induced neurotoxicity, neural cell cultures from mouse striatum were initially characterized for mu and/or kappa opioid receptor immunoreactivity. These cultures were continuously treated with morphine, the opioid antagonist naloxone, and/or HIV-1 Tat (1-72) protein, a non-neurotoxic HIV-1 Tat deletion mutant (TatDelta31-61) protein, or immunoneutralized HIV-1 Tat (1-72) protein. Neuronal and astrocyte viability was examined by ethidium monoazide exclusion, and by apoptotic changes in nuclear heterochromatin using Hoechst 33342. Morphine (10nM, 100nM or 1microM) significantly increased Tat-induced (100 or 200nM) neuronal losses by about two-fold at 24h following exposure. The synergistic effects of morphine and Tat were prevented by naloxone (3microM), indicating the involvement of opioid receptors. Furthermore, morphine was not toxic when combined with mutant Tat or immunoneutralized Tat. Neuronal losses were accompanied by chromatin condensation and pyknosis. Astrocyte viability was unaffected. These findings demonstrate that acute opioid exposure can exacerbate the neurodegenerative effect of HIV-1 Tat protein in striatal neurons, and infer a means by which opioids may hasten the progression of HIV-associated dementia.
Collapse
Affiliation(s)
- Julie A. Gurwell
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Avindra Nath
- Department of Neurology University of Kentucky College of Medicine Lexington, Kentucky 40536-0284
- Department of Microbiology & Immunology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Qinmiao Sun
- Department of Microbiology & Immunology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Jiayou Zhang
- Department of Microbiology & Immunology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Kenneth M. Martin
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Yan Chen
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Kurt F. Hauser
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
- Markey Cancer Center University of Kentucky Medical Center Lexington, Kentucky 40536-0084
- To whom correspondence should be addressed: Kurt F. Hauser, Ph.D. Department of Anatomy & Neurobiology University of Kentucky College of Medicine 800 Rose Street, Lexington, KY 40536-0298 Phone: (859) 323-6477; FAX: (859) 323-5946
| |
Collapse
|
537
|
Dumont EC, Kinkead R, Trottier JF, Gosselin I, Drolet G. Effect of chronic psychogenic stress exposure on enkephalin neuronal activity and expression in the rat hypothalamic paraventricular nucleus. J Neurochem 2000; 75:2200-11. [PMID: 11032909 DOI: 10.1046/j.1471-4159.2000.0752200.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study tested the hypothesis that the activation pattern of enkephalinergic (ENKergic) neurons within the paraventricular nucleus of the hypothalamus (PVH) in response to psychogenic stress is identical whether in response to repeated exposure to the same stress (homotypic; immobilization) or to a novel stress (heterotypic; air jet puff). Rats were assigned to either acute or chronic immobilization stress paradigms (90 min/day for 1 or 10 days, respectively). The chronic group was then subjected to an additional 90-min session of either heterotypic or homotypic stress. A single 90-min stress session (immobilization or air jet) increased PVH-ENK heteronuclear (hn) RNA expression. In chronically stressed rats, exposure to an additional stress session (whether homotypic or heterotypic) continued to stimulate ENK hnRNA expression. Acute immobilization caused a marked increase in the numbers of Fos-immunoreactive and Fos-ENK double-labeled cells in the dorsal and ventral medial parvicellular, and lateral parvicellular subdivisions of the PVH. Chronic immobilization caused an attenuated Fos response ( approximately 66%) to subsequent immobilization. In contrast, chronic immobilization did not impair ENKergic neuron activation within the PVH following homotypic or heterotypic stress. These results indicate that within the PVH, chronic psychogenic stress markedly attenuates the Fos response, whereas ENKergic neurons resist habituation, principally within the ventral neuroendocrine portion of the nucleus. This suggests an increase in ENK effect during chronic stress exposure. Homotypic (immobilization) and heterotypic (air jet) psychogenic stressors produce similar responses, including Fos, ENK-Fos, and ENK hnRNA, within each subdivision of the PVH, suggesting similar processing for painless neurogenic stimuli.
Collapse
Affiliation(s)
- E C Dumont
- CHUL Research Centre, Neuroscience Unit and Faculté de Médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
538
|
Eriksson KS, Stevens DR, Haas HL. Opposite modulation of histaminergic neurons by nociceptin and morphine. Neuropharmacology 2000; 39:2492-8. [PMID: 10974333 DOI: 10.1016/s0028-3908(00)00062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the effects of nociceptin/orphanin FQ on the histaminergic neurons in the tuberomammillary (TM) nucleus and compared them with the actions of opioid agonists. Intracellular recordings of the membrane potential were made with sharp electrodes from superfused rat hypothalamic slices. Nociceptin strongly inhibited the firing of the TM neurons. In the concentration range 10-300 nM, nociceptin hyperpolarized the neurons in a dose-dependent and reversible manner. Insensitivity to tetrodotoxin indicated a postsynaptic effect which was associated with decreased input resistance. Voltage-current plots suggested the involvement of a potassium conductance which was highly sensitive to Ba(2+) and decreased by Cs(+), in keeping with the activation of an inwardly rectifying potassium channel. Morphine (20-100 microM) depolarized the TM neurons and increased their firing, and this effect was blocked by tetrodotoxin. Dynorphin A(1-13) at 100-300 nM did not affect the TM neurons. Nociceptin and morphine modulate the activity of the TM neurons, and most likely histamine release, in opposite ways. Histamine has an antinociceptive effect in the brain and may be involved in opioid-induced analgesia. Nociceptin might therefore influence pain transmission by inhibiting opioid-induced histamine release from the TM nucleus and also modulate other physiological mechanisms which have been ascribed to the histaminergic system.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Physiology II, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225, Düsseldorf, Germany.
| | | | | |
Collapse
|
539
|
Taki K, Kaneko T, Mizuno N. A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 2000; 98:221-31. [PMID: 10854753 DOI: 10.1016/s0306-4522(00)00124-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
mu-Opioid receptor-expressing neurons in the rat cerebral neocortex were characterized by an immunolabeling method with an antibody to a carboxyl terminal portion of the receptor. They were small, bipolar, vertically elongated, non-pyramidal neurons, and scattered mainly in layers II-IV. We examined chemical characteristics of mu-opioid receptor-expressing neocortical neurons by the double immunofluorescence method. Almost all neuronal cell bodies expressing mu-opioid receptor-like immunoreactivity showed immunoreactivity for GABA, suggesting that they were cortical inhibitory interneurons. mu-Opioid receptor-immunoreactive neurons were further studied by the double staining method with markers for the subgroups of cortical GABAergic neurons. Immunoreactivities for vasoactive intestinal polypeptide, corticotropin releasing factor, choline acetyltransferase, calretinin and cholecystokinin were found in 92, 79, 67, 35 and 35% of mu-opioid receptor-immunoreactive cortical neurons, respectively. In contrast, less than 10% of mu-opioid receptor-immunoreactive neurons showed immunoreactivity for parvalbumin, calbindin, somatostatin, neuropeptide Y or nitric oxide synthase. Moreover, mu-opioid receptor-immunoreactive neurons very frequently exhibited preproenkephalin immunoreactivity, but not preprodynorphin immunoreactivity. The present results indicate that mu-opioid receptor-expressing neurons belong to a distinct subgroup of neocortical GABAergic neurons, because vasoactive intestinal polypeptide, corticotropin releasing factor, choline acetyltransferase, calretinin and cholecystokinin have often been reported to coexist with one another in single neocortical neurons. Methionine-enkephalin, which is a major product of the preproenkephalin gene, is known to be one of the most potent endogenous ligands for mu-opioid receptor. Thus, the expression of mu-opioid receptor in preproenkephalin-producing neurons suggested that mu-opioid receptor serves as an autoreceptor for the subpopulation of GABAergic interneurons at a single-neuron or population level.
Collapse
Affiliation(s)
- K Taki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | | | | |
Collapse
|
540
|
Bouret S, Prevot V, Croix D, Viltart O, Stefano GB, Mitchell V, Beauvillain JC. Mu opioid receptor mRNA expression in neuronal nitric oxide synthase-immunopositive preoptic area neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:46-52. [PMID: 11039728 DOI: 10.1016/s0169-328x(00)00118-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) as well as beta-endorphin are involved in the neuroendocrine control of gonadotropin-releasing hormone (GnRH) secretion. Recently, morphological and microdialysis experiments have suggested that beta-endorphin may exert an inhibitory influence on NO release in the preoptic area of rat hypothalamus. The present study determines if the mu opioid receptor mRNA is expressed in neuronal NO synthase (nNOS)-immunopositive neurons and if this expression varies among the regions of the basal forebrain being examined. We found, through the use of immunohistochemical and in situ hybridization techniques, that the mu opioid receptor mRNA is expressed in a representative subpopulation of nNOS-immunoreactive neurons in the rat preoptic area. Interestingly, the mu opioid receptor mRNA/nNOS-immunoreactive coexpression is predominant in the rostral and median preoptic area, containing most of GnRH cell bodies. These results strongly suggest that beta-endorphin, via an action through mu opioid receptors, may directly participate in the regulation of NO production in the preoptic area. Our results strengthen the hypothesis that beta-endorphin may participate in GnRH neuronal modulation at the cell body level by regulating NO release from the interneurons of the preoptic area that express nNOS.
Collapse
Affiliation(s)
- S Bouret
- INSERM Unite 422, IFR 22, Laboratoire de Neuroendocrinologie et Physiopathologie Neuronale, place de Verdun, Lille, France
| | | | | | | | | | | | | |
Collapse
|
541
|
Abstract
Kappa opioid agonists inhibit dopamine release from mesolimbic dopaminergic neurons and attenuate some behavioral effects of cocaine in rodents. Evidence that kappa opioid agonists may act as functional antagonists of cocaine led us to examine their interactions with cocaine's abuse-related effects in rhesus monkeys. In cocaine self-administration studies, four arylacetamides (U50,488, enadoline, (-) spiradoline and PD117302) and four benzomorphans (ethylketocyclazocine [EKC], bremazocine, Mr2033 and cyclazozine) each were administered as continuous infusions over 10 days. EKC, Mr2033, bremazocine, U50,488 and enadoline produced significant dose-dependent and sustained decreases in cocaine self-administration and also decreased food-maintained responding at some doses. Emesis and sedation were occasionally observed during the first two days of kappa agonist treatment, but tolerance developed rapidly to these effects. Cyclazocine, PD117302 and spiradoline did not significantly alter cocaine self-administration. The behavioral effects of EKC and U50,488 were antagonized by both the kappa opioid antagonist nor-binaltorphimine and the non-selective opioid antagonist naloxone. In general, compounds with mixed activity at both kappa and mu opioid receptors (e.g. EKC, Mr2033) decreased cocaine self-administration more consistently and with fewer or less severe undesirable side effects than more selective kappa agonists (e.g. U50,488, spiradoline). Although several kappa agonists decreased cocaine self-administration, EKC and U50,488 did not consistently block the discriminative stimulus effects of cocaine in monkeys trained to discriminate cocaine from saline. The extent to which kappa agonist-induced decreases in cocaine self-administration reflect an antagonism of cocaine's abuse-related effect remains to be determined.
Collapse
Affiliation(s)
- N K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478-9106, USA
| | | |
Collapse
|
542
|
Abstract
The phase of the circadian pacemaker in hamsters can be shifted by the application of certain non-photic stimuli late in the subjective day. A projection from the intergeniculate leaflet of the thalamus to the circadian pacemaker in the suprachiasmatic nucleus is believed to mediate some types of non-photic phase-shifting stimuli. In hamsters, this projection is immunoreactive to both Neuropeptide Y and enkephalin. Previous work in other laboratories has shown that Neuropeptide Y administration is capable of phase shifting circadian rhythms without the application of light. The present study was undertaken to determine if enkephalinergic compounds likewise have the ability to non-photically phase shift hamster activity rhythms. Hamsters were maintained under conditions of constant darkness and circadian wheel running activity was recorded. Agonists and antagonists selective for kappa, mu, and delta opioid receptors were systemically applied without light to hamsters at circadian times 8 and 10 to determine if they were able to elicit phase shifts in wheel running activity rhythms. Of the compounds tested, only the delta opioid agonist BW373U86 significantly affected circadian phase. BW373U86 phase advanced hamster wheel running activity rhythms by approximately 45 min, although total activity levels following drug application were not significantly affected. Changes in the amount of wheel running activity were detected after administration of some mu and kappa opioids, although the circadian phase was not altered. These results indicate that enkephalin-mimetic delta opioid agonists are capable of producing non-photic phase shifts in hamster activity rhythms, and that opioids can independently affect circadian phase and activity levels in hamsters.
Collapse
MESH Headings
- Animals
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Darkness
- Male
- Mesocricetus
- Motor Activity/drug effects
- Motor Activity/physiology
- Narcotics/pharmacology
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- M Byku
- Department of Biology, Dowling College, Oakdale, NY 11769, USA
| | | |
Collapse
|
543
|
Fuentealba JA, Forray MI, Gysling K. Chronic morphine treatment and withdrawal increase extracellular levels of norepinephrine in the rat bed nucleus of the stria terminalis. J Neurochem 2000; 75:741-8. [PMID: 10899950 DOI: 10.1046/j.1471-4159.2000.0750741.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular levels of norepinephrine (NE) and glutamate (Glu) in the ventral bed nucleus of the stria terminalis (vBNST) of saline- and chronic morphine-treated rats, with or without withdrawal, were studied by means of the in vivo microdialysis technique in anesthetized rats. In addition, the tissue concentration of NE was studied at different rostrocaudal levels of the vBNST. Chronic morphine treatment significantly increased extracellular levels of NE, but not Glu, in vBNST. At 48 h after naloxone-induced morphine withdrawal there was a further significant increase in the extracellular levels of NE, but not Glu, in vBNST. The presence of UK 14304, an alpha(2)-adrenergic agonist, induced a significant decrease in NE extracellular levels in all experimental groups. In contrast, UK 14304 induced a significant decrease in Glu extracellular levels only in saline-treated rats. The results also show that the vBNST presents a rostrocaudal gradient of NE and contains 9.4% of total brain NE. The increase in NE extracellular levels in vBNST induced by chronic morphine treatment and the further increase in NE levels 48 h after naloxone-induced morphine withdrawal suggest that NE in vBNST may be involved in the pharmacological effects of chronic morphine and withdrawal.
Collapse
Affiliation(s)
- J A Fuentealba
- Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | | | | |
Collapse
|
544
|
Calvo CF, Cesselin F, Gelman M, Glowinski J. Identification of an opioid peptide secreted by rat embryonic mixed brain cells as a promoter of macrophage migration. Eur J Neurosci 2000; 12:2676-84. [PMID: 10971611 DOI: 10.1046/j.1460-9568.2000.00145.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conditioned media from embryonic mixed cells from the rat brain were used in a chemotaxis assay to look for potential chemotactic activity which could account for the infiltration of the developing central nervous system (CNS) by macrophage precursors. The most potent chemotactic activity was found in the conditioned medium from E17 mixed brain cells (E17-CM). Based upon checkerboard analysis, this activity was shown to be chemotactic rather than chemokinetic. This chemoattraction was not restricted to brain macrophages (BM) because it was as pronounced on bone marrow-derived macrophages. The implication of a peptide compound in this activity was suggested by its resistance to heat as well as acid treatments, and by its sensitivity to aminopeptidase M digestion. In agreement with the opioid nature of the peptide, not only naloxone, but also the delta opioid receptor antagonist ICI-174 reduced the migration of BM in response to E17-CM by 60%. This migratory activity was no longer effective when pertussis toxin-treated BM were used. When the chemotactic effects of selective opioid agonists were compared to that of E17-CM, DPDPE, the delta agonist, was the most efficient in attracting BM. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that delta as well as other known opioid receptors were expressed in both BM and E17 mixed brain cells. Finally, a Met-enkephalin-like reactivity was found by RIA in the E17-CM. Altogether, these observations suggest that a delta-like opioid peptide released from embryonic mixed brain cells could be responsible for the infiltration of the developing CNS by macrophages precursors.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Brain/cytology
- Brain/embryology
- Cells, Cultured
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Culture Media, Conditioned/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Gene Expression Regulation, Developmental
- Macrophages/cytology
- Microglia/cytology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligonucleotide Probes
- Oligopeptides/pharmacology
- Opioid Peptides/analysis
- Opioid Peptides/metabolism
- RNA, Messenger/analysis
- Rats
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Stem Cells/cytology
Collapse
Affiliation(s)
- C F Calvo
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France.
| | | | | | | |
Collapse
|
545
|
Rosin A, van der Ploeg I, Georgieva J. Basal and cocaine-induced opioid receptor gene expression in the rat CNS analyzed by competitive reverse transcription PCR. Brain Res 2000; 872:102-9. [PMID: 10924681 DOI: 10.1016/s0006-8993(00)02481-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The basal mRNA levels of kappa and mu opioid receptors, as well as their regulation after 'binge' cocaine administration, were determined with competitive reverse transcription polymerase chain reaction (RT-PCR) in brain regions of male Sprague-Dawley rats. The procedure proved to be a reliable method to quantify the relative opioid receptor gene expression. The highest basal mRNA levels for the kappa opioid receptor were found in the nucleus accumbens and hypothalamus, whereas the highest basal mRNA expression for the mu opioid receptor was observed in the hypothalamus. Rats were separately treated with 'binge' (three hourly injections) cocaine HCl (45 mg/kg/day i.p.) or saline (1 ml/kg i.p.) for 2 days. A significant down-regulation of the kappa opioid receptor mRNA was detected in the nucleus accumbens. The mu opioid receptor mRNA was not affected. The data suggest a selective effect on kappa receptor expression in the nucleus accumbens as a consequence of 'binge' cocaine use.
Collapse
MESH Headings
- Animals
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Cocaine/pharmacology
- Down-Regulation/drug effects
- Gene Expression/drug effects
- Hypothalamus/metabolism
- Male
- Nucleus Accumbens/metabolism
- Organ Specificity
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- A Rosin
- Department of Clinical Neuroscience, Experimental Drug Addiction Research Section, Karolinska Institutet, CMM L8: 01, S-171 76, Stockholm, Sweden.
| | | | | |
Collapse
|
546
|
Glass MJ, Billington CJ, Levine AS. Naltrexone administered to central nucleus of amygdala or PVN: neural dissociation of diet and energy. Am J Physiol Regul Integr Comp Physiol 2000; 279:R86-92. [PMID: 10896868 DOI: 10.1152/ajpregu.2000.279.1.r86] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that opioids may affect food consumption through mechanisms as diverse as reward or energy metabolism. However, these hypotheses are derived from studies employing peripheral or, more rarely, intracerebroventricular administration of drugs. Opioid receptors have a wide distribution in the central nervous system and include a number of regions implicated in food intake such as the hypothalamic paraventricular nucleus (PVN) and the central nucleus of the amygdala (ACe). It is not known whether local opioid receptor blockade in either of these regions will produce similar effects on food intake. To examine this issue, a chronic cannula was aimed at either the PVN or ACe of rats that were fed a choice of a high-fat and high-carbohydrate diet, which allows for the measurement of both preference and total energy consumption. Naltrexone influenced preferred and nonpreferred food consumption, depending on the site of administration. Consumption of both preferred and nonpreferred diets was suppressed after PVN naltrexone administration, whereas only preferred diet intake was reduced after ACe injection of naltrexone. The present evidence indicates that direct stimulation of different brain regions with naltrexone may be associated with diverse effects on diet selection, which may be accounted for by manipulation of specific functional neural circuitry.
Collapse
Affiliation(s)
- M J Glass
- Minnesota Obesity Center, Departments of Psychiatry, Psychology, and Medicine, Veterans Affairs Medical Center and the University of Minnesota, Minneapolis, Minnesota, 55417, USA
| | | | | |
Collapse
|
547
|
Aicher SA, Goldberg A, Sharma S, Pickel VM. mu-opioid receptors are present in vagal afferents and their dendritic targets in the medial nucleus tractus solitarius. J Comp Neurol 2000; 422:181-90. [PMID: 10842226 DOI: 10.1002/(sici)1096-9861(20000626)422:2<181::aid-cne3>3.0.co;2-g] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ligands of the mu-opiate receptor (MOR) are known to influence many functions that involve vagal afferent input to the nucleus tractus solitarius (NTS), including cardiopulmonary responses, gastrointestinal activity, and cortical arousal. The current study sought to determine whether a cellular substrate exists for direct modulation of vagal afferents and/or their neuronal targets in the NTS by ligands of the MOR. Anterograde tracing of vagal afferents arising from the nodose ganglion was achieved with biotinylated dextran amine (BDA), and the MOR was detected by using antipeptide MOR antiserum. The medial subdivision of the intermediate NTS was examined by electron microscopy for the presence of peroxidase-labeled, BDA-containing vagal afferents and immunogold MOR labeling. MOR was present in both presynaptic axon terminals and at postsynaptic sites, primarily dendrites. In dendrites, MOR immunogold particles usually were located along extrasynaptic portions of the plasma membrane. Of 173 observed BDA-labeled vagal afferent axon terminals, 33% contained immunogold labeling for MOR within the axon terminal. Many of these BDA-labeled terminals formed asymmetric, excitatory-type synapses with dendrites, some of which contained MOR immunogold labeling. MORs were present in 19% of the dendrites contacted by BDA-labeled terminals but were present rarely in both the vagal afferent and its dendritic target. Together, these results suggest that MOR ligands modulate either the presynaptic release from or the postsynaptic responses to largely separate populations of vagal afferents in the intermediate NTS. These results provide a cellular substrate for direct actions of MOR ligands on primary visceral afferents and their second-order neuronal targets in NTS.
Collapse
Affiliation(s)
- S A Aicher
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
548
|
Peciña S, Berridge KC. Opioid site in nucleus accumbens shell mediates eating and hedonic 'liking' for food: map based on microinjection Fos plumes. Brain Res 2000; 863:71-86. [PMID: 10773195 DOI: 10.1016/s0006-8993(00)02102-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microinjection of opioid agonists, such as morphine, into the nucleus accumbens shell produces increases in eating behavior (i.e. 'wanting' for food). This study (1) reports direct evidence that activation of accumbens opioid receptors in rats also augments food 'liking', or the hedonic impact of taste, and (2) identified a neural site that definitely contains receptors capable of increasing food intake. Morphine microinjections (0.5 microgram) into accumbens shell, which caused rats to increase eating, were found also to cause selective increases in positive hedonic patterns of behavioral affective reaction elicited by oral sucrose, using the 'taste reactivity' test of hedonic palatability. This positive shift indicated that morphine microinjections enhanced the hedonic impact of food palatability. The accumbens site mediating morphine-induced increases in food 'wanting' and 'liking' was identified using a novel method based on local expression of Fos induced directly by drug microinjections. The plume-shaped region of drug-induced increase in Fos immunoreactivity immediately surrounding a morphine microinjection site (Fos plume) was objectively mapped. A point-sampling procedure was used to measure the shape and size of 'positive' plumes of Fos expression triggered by microinjections of morphine at locations that caused increases in eating behavior. This revealed a functionally 'positive' neural region, containing receptors directly activated by behaviorally-effective drug microinjections. A subtraction mapping procedure was then used to eliminate all surrounding regions containing any 'negative' Fos plumes that failed to increase food intake. The subtraction produced a conservative map of the positive site, by eliminating regions that gave mixed effects, and leaving only a positive region that must contain receptors capable of mediating increases in food intake. The resulting mapped 'opioid eating site' was contained primarily within the medial caudal subregion of the nucleus accumbens shell, and did not substantially penetrate either into the accumbens core or into other subregions of the shell. Several other structures outside the nucleus accumbens (such as rostral ventral pallidum), immediately medial and adjacent to the shell, also appeared to be included in the functional site. Opioid receptors within this site thus are capable of mediating morphine-induced increases in eating, in part by enhancing the hedonic reward properties of food.
Collapse
Affiliation(s)
- S Peciña
- Department of Psychology, University of Michigan, 525 E. University, Ann Arbor, MI, USA.
| | | |
Collapse
|
549
|
Abstract
Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.
Collapse
Affiliation(s)
- P C Chang
- Division of Neurobiology, Department Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
550
|
Abbadie C, Pan YX, Pasternak GW. Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol 2000; 419:244-56. [PMID: 10723002 DOI: 10.1002/(sici)1096-9861(20000403)419:2<244::aid-cne8>3.0.co;2-r] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study examined immunohistochemically the regional distribution of the mu opioid receptor splice variant MOR-1C by using a rabbit antisera generated against the C-terminal peptide sequences and compared it with MOR-1. Overall, the distribution of MOR-1C-like immunoreactivity (-LI) differed from MOR-1-LI. Both MOR-1C-LI and MOR-1-LI were prominent in a few central nervous system regions, including the lateral parabrachial nucleus, the periaqueductal gray, and laminae I-II of the spinal trigeminal nuclei and the spinal cord. In the striatum, hippocampal formation, presubiculum and parasubiculum, amygdaloid nuclei, thalamic nuclei, locus coeruleus, and nucleus ambiguous MOR-1-LI predominated, whereas MOR-1C-LI was absent or sparse. Conversely, MOR-1C-LI exceeded MOR-1-LI in the lateral septum, the deep laminae of the spinal cord, and most hypothalamic nuclei such as the median eminence, periventricular, suprachiasmatic, supraoptic, arcuate, paraventricular, ventromedial, and dorsomedial nuclei. Double-labeling studies showed colocalization of the two receptors in neurons of the lateral septum, but not in the median eminence or in the arcuate nucleus, even though both MOR-1 isoforms were expressed. Because both MOR-1 and MOR-1C are derived from the same gene, these differences in regional distribution represent region-specific mRNA processing. The regional distributions reported in this study involve the epitope seen by the combinations of exons 7, 8, and 9. However, if other MOR-1 variants containing exons 7, 8, and 9 exist, the antisera would not distinguish between them and MOR-1C.
Collapse
Affiliation(s)
- C Abbadie
- The Cotzias Laboratory of Neuro-Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|