501
|
Murayama G, Chiba A, Kuga T, Makiyama A, Yamaji K, Tamura N, Miyake S. Inhibition of mTOR suppresses IFNα production and the STING pathway in monocytes from systemic lupus erythematosus patients. Rheumatology (Oxford) 2021; 59:2992-3002. [PMID: 32160289 DOI: 10.1093/rheumatology/keaa060] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Increased IFNα is important in the pathogenesis of SLE. Plasmacytoid dendritic cells are considered the main producer of IFNα upon Toll-like receptor pathway activation. However, which cells produce IFNα following stimulation with cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) in SLE remains unknown. We investigated the IFNα producing capacity of myeloid cells under cGAS-STING pathway stimulation. METHODS IFNα levels in peripheral blood mononuclear cells from SLE patients and healthy controls stimulated with 2'3'c-GAMP, a stimulator of cGAS-STING, were measured by intracellular cytokine staining and flow cytometry. STING expression and its co-localization with TBK1 were examined by flow cytometry or confocal microscopy. The effects of in vitro exposure to IFNα on IFNα production and STING expression, and in vitro rapamycin treatment on IFNα production and STING, pTBK1 and IRF3 expression were examined. RESULTS IFNα was produced by monocytes, conventional dendritic cells and plasmacytoid dendritic cells upon cGAS-STING pathway activation. The frequency of IFNα-producing monocytes positively correlated with SLE disease activity. STING expression and its co-localization with TBK1 were increased in lupus monocytes. Prior exposure to IFNα enhanced the IFNα-producing capacity of monocytes. Inhibition of the mechanistic target of the rapamycin (mTOR) pathway suppressed IFNα production from monocytes and downregulated enhanced STING expression and its downstream molecules. CONCLUSION Enhanced IFNα from lupus monocytes induced by augmented STING pathway activation is associated with SLE pathogenesis. Suppression of the mTOR pathway downregulated the enhanced STING expression and the subsequent IFNα production by monocytes.
Collapse
Affiliation(s)
- Goh Murayama
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayako Makiyama
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
502
|
Smith JA. STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation? Front Immunol 2021; 11:611347. [PMID: 33552072 PMCID: PMC7858662 DOI: 10.3389/fimmu.2020.611347] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The anti-viral pattern recognition receptor STING and its partnering cytosolic DNA sensor cGAS have been increasingly recognized to respond to self DNA in multiple pathologic settings including cancer and autoimmune disease. Endogenous DNA sources that trigger STING include damaged nuclear DNA in micronuclei and mitochondrial DNA (mtDNA). STING resides in the endoplasmic reticulum (ER), and particularly in the ER-mitochondria associated membranes. This unique location renders STING well poised to respond to intracellular organelle stress. Whereas the pathways linking mtDNA and STING have been addressed recently, the mechanisms governing ER stress and STING interaction remain more opaque. The ER and mitochondria share a close anatomic and functional relationship, with mutual production of, and inter-organelle communication via calcium and reactive oxygen species (ROS). This interdependent relationship has potential to both generate the essential ligands for STING activation and to regulate its activity. Herein, we review the interactions between STING and mitochondria, STING and ER, ER and mitochondria (vis-à-vis calcium and ROS), and the evidence for 3-way communication.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
503
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
504
|
Melki I, Devilliers H, Gitiaux C, Bondet V, Duffy D, Charuel JL, Miyara M, Bokov P, Kheniche A, Kwon T, Authier FJ, Allenbach Y, Belot A, Bodemer C, Bourrat E, Dumaine C, Fabien N, Faye A, Frémond ML, Hadchouel A, Kitabayashi N, Lepelley A, Martin-Niclos MJ, Mudumba S, Musset L, Quartier P, Rice GI, Seabra L, Uettwiller F, Uggenti C, Viel S, Rodero MP, Crow YJ, Bader-Meunier B. Anti-MDA5 juvenile idiopathic inflammatory myopathy: a specific subgroup defined by differentially enhanced interferon-α signalling. Rheumatology (Oxford) 2021; 59:1927-1937. [PMID: 31755959 DOI: 10.1093/rheumatology/kez525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES JDM and juvenile overlap myositis represent heterogeneous subtypes of juvenile idiopathic inflammatory myopathy (JIIM). Chronic evolution can occur in up to 60% of cases, and morbidity/mortality is substantial. We aimed to describe the clinical, biological, histological and type I IFN status in JIIM associated with anti-melanoma differentiation-associated protein 5 (anti-MDA5) autoantibodies at presentation (group 1) in comparison with other JIIM (group 2). METHODS This was a retrospective and prospective study of patients with JIIM ascertained from three French paediatric rheumatology reference centres between 2013 and 2019. Muscle biopsies were reviewed. Type I interferon pathway activity was assessed by dosage of IFNα serum protein and the expression of IFN-stimulated genes. RESULTS Sixty-four patients were included, 13 in group 1 (54% JDM and 46% juvenile overlap myositis) and 51 in group 2 (76% JDM and 24% juvenile overlap myositis). Group 1 patients demonstrated more arthritis, skin ulcerations, lupus features and interstitial lung disease, and a milder muscular involvement. Serum IFNα levels were higher in group 1 than 2, and decreased after treatment or improvement in both groups. Outcome was similar in both groups. Unconventional treatment (more than two lines) was required in order to achieve remission, especially when skin ulceration was reported. CONCLUSION This study indicates a higher frequency of arthritis, skin ulcerations and interstitial lung disease, but milder muscular involvement, in JIIM with positive anti-MDA5 autoantibodies compared with other JIIM. Our data support an important role of systemic IFNα in disease pathology, particularly in the anti-MDA5 auto-antibody-positive subgroup. In severe and refractory forms of JIIM, IFNα may represent a therapeutic target.
Collapse
Affiliation(s)
- Isabelle Melki
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris.,General Paediatrics, Infectious Disease and Internal Medicine Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Robert Debré, AP-HP, Paris.,Paediatric Hematology-Immunology and Rheumatology Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Necker-Enfants Malades, AP-HP, Paris
| | - Hervé Devilliers
- Centre Hospitalier Universitaire de Dijon, Hôpital François-Mitterrand, Service de Médecine Interne 2 et Centre d'Investigation Clinique, Inserm CIC 1432, Dijon
| | - Cyril Gitiaux
- Reference Centre for Neuromuscular Diseases, Necker-Enfants Malades Hospital, AP-HP.5, Paris.,Department of Paediatric Neurophysiology, Necker-Enfants Malades Hospital, AP-HP.5, Paris University, Paris.,INSERM U955-Team 10 'Biology of the Neuromuscular System', Paris Est-Creteil University, Creteil
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris.,INSERM U1223, Paris
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris.,INSERM U1223, Paris
| | - Jean-Luc Charuel
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris
| | - Makoto Miyara
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris
| | - Plamen Bokov
- Paediatric Physiology Department, Hôpital Robert Debré, AP-HP, Paris.,Université Paris Diderot, Paris
| | - Ahmed Kheniche
- Paediatric Radiology Department, Hôpital Robert Debré, AP-HP, Paris
| | - Theresa Kwon
- Nephrology Department, Hôpital Robert Debré, AP-HP, Paris
| | - François Jérôme Authier
- INSERM U955-Team 10 'Biology of the Neuromuscular System', Paris Est-Creteil University, Creteil.,Reference Centre for Neuromuscular Diseases, Henri Mondor University Hospital, Paris
| | - Yves Allenbach
- Département de médecine Interne et Immunologie Clinique, Centre de Référence Maladies Neuro-Musculaires, DHUi2B, AP-HP, GH Pitié-Salpêtrière, Paris.,Centre de Recherche en Myologie, UMRS 974 UPMC - INSERM, Paris
| | - Alexandre Belot
- Service de néphrologie, rhumatologie et dermatologie pédiatriques, Reference centre for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Filière des maladies autoimmunes et autoinflammatoires rares (FAI2R), Hôpital Femme Mère-Enfant, hospices civils de Lyon, Lyon.,Université de Lyon, Bron cedex, France.,Inserm U1111, Lyon
| | - Christine Bodemer
- National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC).,Department of Dermatology, Necker-Enfants Malades Hospital, APHP5, Paris.,Imagine Institute, Inserm U 1163, Paris University, Paris
| | - Emmanuelle Bourrat
- General Paediatrics, Infectious Disease and Internal Medicine Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Robert Debré, AP-HP, Paris
| | - Cécile Dumaine
- General Paediatrics, Infectious Disease and Internal Medicine Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Robert Debré, AP-HP, Paris
| | - Nicole Fabien
- Université de Lyon, Bron cedex, France.,Department of Immunology, Reference centre for Rheumatic, AutoImmune and Systemic diseases in children (RAISE) Filière des maladies autoimmunes et autoinflammatoires rares (FAI2R), Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon
| | - Albert Faye
- General Paediatrics, Infectious Disease and Internal Medicine Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Robert Debré, AP-HP, Paris.,Université Paris Diderot, Paris
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris.,Paediatric Hematology-Immunology and Rheumatology Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Necker-Enfants Malades, AP-HP, Paris
| | - Alice Hadchouel
- Paris University, Paris.,Paediatric Pulmonology, University Hospital Necker-Enfants Malades, AP-HP, Paris, France
| | - Naoki Kitabayashi
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris
| | - Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris
| | | | | | - Lucile Musset
- Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris
| | - Pierre Quartier
- Paediatric Hematology-Immunology and Rheumatology Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Necker-Enfants Malades, AP-HP, Paris.,Imagine Institute, Inserm U 1163, Paris University, Paris
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris
| | - Florence Uettwiller
- Paediatric Hematology-Immunology and Rheumatology Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Necker-Enfants Malades, AP-HP, Paris.,Transversal Unit of Allergology and Rheumatology, CHRU Tours, Tours, France
| | - Carolina Uggenti
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sebastien Viel
- Université de Lyon, Bron cedex, France.,Inserm U1111, Lyon.,Department of Immunology, Reference centre for Rheumatic, AutoImmune and Systemic diseases in children (RAISE) Filière des maladies autoimmunes et autoinflammatoires rares (FAI2R), Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon
| | - Mathieu P Rodero
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris.,Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Brigitte Bader-Meunier
- Paediatric Hematology-Immunology and Rheumatology Department, Reference center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Necker-Enfants Malades, AP-HP, Paris.,Imagine Institute, Inserm U 1163, Paris University, Paris
| |
Collapse
|
505
|
Vashi N, Bakhoum SF. The Evolution of STING Signaling and Its Involvement in Cancer. Trends Biochem Sci 2021; 46:446-460. [PMID: 33461879 DOI: 10.1016/j.tibs.2020.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been primarily characterized as an inflammatory mechanism in higher eukaryotes in response to cytosolic double-stranded DNA (dsDNA). Since its initial discovery, detailed mechanisms delineating the dynamic subcellular localization of its different components and downstream signaling have been uncovered, leading to attempts to harness its proinflammatory properties for therapeutic benefit in cancer. Emerging evidence, however, indicates that a crucial primordial function of STING is to promote autophagy, and that downstream interferon (IFN) signaling emerged recently in its evolutionary history. Furthermore, studies suggest that this pathway is a crucial regulator of cellular metabolism that potentially couples inflammation to nutrient availability. We focus on the evolutionarily conserved functions of STING, and we discuss how a broader understanding of this pathway can help us to better appreciate its potential role in cancer and harness it for therapeutic benefit.
Collapse
Affiliation(s)
- Nimi Vashi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
506
|
Gao P, Ding N, Lv J, Ramzan MN, Wen Q. α-Cyperone inhibitory effects on tumor-derived DNA trigger microglia by STING pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113246. [PMID: 32781257 DOI: 10.1016/j.jep.2020.113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperus rotundus L. (Cyperaceae) is a widespread herbal in China and widely used in Traditional Chinese Medicine for multiple effects such as anti-arthritic, anti-genotoxic, anti-mutagenic, anti-bacterial effects, and analgesic. α-Cyperone is an active compound in Cyperus rotundus and has analgesic effects, but the exact molecular mechanisms require further investigations. MATERIALS AND METHODS Tumor-derived DNA isolated from Lewis cell lines was transfected into microglia, and analyzed for stimulator of interferon genes (STING) effects. The downstream protein, such as interferon regulatory factor 3 (IRF3) and p65 nuclear factor-κB (NF-κB) were treated with STING siRNA and 5,6-dimethyllxanthenone-4-acetic acid (DMXAA) in microglia. The α-Cyperone effect on microglia was also investigated. RESULTS Tumor-derived DNA activate microglia by upregulation of STING and downstream proteins. STING siRNA was reduced to its downstream expression and neuroinflammation inhibition was caused by tumor-derived DNA. However, DMXAA reversed the STING siRNA effect and increased neuroinflammation. α-Cyperone takes inhibitory effects on tumor-derived DNA that trigger microglia by STING pathway. CONCLUSIONS α-Cyperone inhibition by tumor-derived DNA activated microglial to neuroinflammation in STING signaling pathway.
Collapse
Affiliation(s)
- Peng Gao
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Ning Ding
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jiaxin Lv
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Qingping Wen
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Department of Anesthesiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
507
|
Savigny F, Schricke C, Lacerda-Queiroz N, Meda M, Nascimento M, Huot-Marchand S, Da Gama Monteiro F, Ryffel B, Gombault A, Le Bert M, Couillin I, Riteau N. Protective Role of the Nucleic Acid Sensor STING in Pulmonary Fibrosis. Front Immunol 2021; 11:588799. [PMID: 33488589 PMCID: PMC7820752 DOI: 10.3389/fimmu.2020.588799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of interstitial lung disease for which current treatments display limited efficacy. IPF is largely driven by host-derived danger signals released upon recurrent local tissue damage. Here we explored the roles of self-DNA and stimulator of interferon genes (STING), a protein belonging to an intracellular DNA sensing pathway that leads to type I and/or type III interferon (IFN) production upon activation. Using a mouse model of IPF, we report that STING deficiency leads to exacerbated pulmonary fibrosis with increased collagen deposition in the lungs and excessive remodeling factors expression. We further show that STING-mediated protection does not rely on type I IFN signaling nor on IL-17A or TGF-β modulation but is associated with dysregulated neutrophils. Together, our data support an unprecedented immunoregulatory function of STING in lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), CNRS Orleans (UMR7355) and University of Orleans, Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), CNRS Orleans (UMR7355) and University of Orleans, Orleans, France
| |
Collapse
|
508
|
Alghamdi MA, Mulla J, Saheb Sharif-Askari N, Guzmán-Vega FJ, Arold ST, Abd-Alwahed M, Alharbi N, Kashour T, Halwani R. A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Front Immunol 2021; 11:599564. [PMID: 33488593 PMCID: PMC7820697 DOI: 10.3389/fimmu.2020.599564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
STING-associated vasculopathy of infantile-onset (SAVI) is one of the newly identified types of interferonopathies. SAVI is caused by heterozygous gain-of-function mutations in the STING1. We herein report for the first time a homozygous variant in the STING1 gene in two siblings that resulted in constitutive activation of STING gene and the SAVI phenotype. Exome sequencing revealed a novel homozygous NM_198282.3: c.841C>T; p.(Arg281Trp) variant in exon 7 of the STING1 gene. The variant segregated in the family to be homozygous in all affected and either heterozygous or wild type in all healthy. Computational structural analysis of the mutants revealed changes in the STING protein structure/function. Elevated serum beta-interferon levels were observed in the patients compared to the control family members. Treatment with Janus kinase inhibitor (JAK-I) Ruxolitinib suppressed the inflammatory process, decreased beta-interferon levels, and stopped the progression of the disease.
Collapse
Affiliation(s)
- Malak Ali Alghamdi
- Department of Pediatrics, Medical Genetic Division, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jaazeel Mulla
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Francisco J Guzmán-Vega
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mervat Abd-Alwahed
- College of Medicine Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Nasser Alharbi
- Department of Pediatrics, Pulmonology Division, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tarek Kashour
- Cardiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Clinical Sciences, Sharjah Institute for Medical Research (SIMR), College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
509
|
Lodi L, Melki I, Bondet V, Seabra L, Rice GI, Carter E, Lepelley A, Martin-Niclós MJ, Al Adba B, Bader-Meunier B, Barth M, Blauwblomme T, Bodemer C, Boespflug-Tanguy O, Dale RC, Desguerre I, Ducrocq C, Dulieu F, Dumaine C, Ellul P, Hadchouel A, Hentgen V, Hié M, Hully M, Jeziorski E, Lévy R, Mochel F, Orcesi S, Passemard S, Pouletty M, Quartier P, Renaldo F, Seidl R, Shetty J, Neven B, Blanche S, Duffy D, Crow YJ, Frémond ML. Differential Expression of Interferon-Alpha Protein Provides Clues to Tissue Specificity Across Type I Interferonopathies. J Clin Immunol 2021; 41:603-609. [PMID: 33411153 DOI: 10.1007/s10875-020-00952-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France.,Department of Health Sciences, University of Florence - Meyer Children's University Hospital, Florence, Italy
| | - Isabelle Melki
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France.,General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France.,Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Vincent Bondet
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Luis Seabra
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Gillian I Rice
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Edwin Carter
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Alice Lepelley
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Maria José Martin-Niclós
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Buthaina Al Adba
- Department of Paediatric Rheumatology, Sidra Medicine, Doha, Qatar
| | - Brigitte Bader-Meunier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Magalie Barth
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France
| | - Thomas Blauwblomme
- Paediatric Neurosurgery Unit, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Christine Bodemer
- Paediatric Dermatology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Odile Boespflug-Tanguy
- Paediatric Neurology Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Russel C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Isabelle Desguerre
- Paediatric Neurology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Camille Ducrocq
- General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Fabienne Dulieu
- Paediatrics Department, Nice Hospitals, CHU LENVAL, Nice, France
| | - Cécile Dumaine
- General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Pierre Ellul
- Department of Child and Adolescent Psychiatry, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France.,INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Alice Hadchouel
- Paediatric Pulmonology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | | | - Miguel Hié
- French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Marie Hully
- Paediatric Neurology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Eric Jeziorski
- Paediatrics Department, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Romain Lévy
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Fanny Mochel
- National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France.,Institut du Cerveau et de la Moelle épinière, INSERM U 1127, Sorbonne Université, Paris, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sandrine Passemard
- Paediatric Neurology Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Marie Pouletty
- General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Pierre Quartier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Florence Renaldo
- Paediatric Neurology Department, Trousseau Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Rainer Seidl
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jay Shetty
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh, UK
| | - Bénédicte Neven
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Stéphane Blanche
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Yanick J Crow
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France. .,Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France. .,Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France.
| |
Collapse
|
510
|
Zhang S, Song J, Yang Y, Miao H, Yang L, Liu Y, Zhang X, Liu Y, Wang T. Type I interferonopathies with novel compound heterozygous TREX1 mutations in two siblings with different symptoms responded to tofacitinib. Pediatr Rheumatol Online J 2021; 19:1. [PMID: 33407657 PMCID: PMC7789551 DOI: 10.1186/s12969-020-00490-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Type I interferonopathies are a group of rare autoimmune diseases characterised by excessive activation of type I interferon that leads to disturbances in immune function. Three prime repair exonuclease 1 (TREX1) is an important exonuclease and plays an important role in DNA damage repair. TREX1 mutations are associated with many type I interferonopathies. Studies have been published on the effectiveness of tofacitinib in the treatment of type I interferonopathies. The aim of this study is to identify the pathogenic variation in a Chinese family with type I interferonopathies and to observe the therapeutic effects of tofacitinib. METHODS A Chinese family with two members with type I interferonopathies was investigated. Whole exome sequencing and Sanger sequencing were applied for mutation screening using peripheral blood DNA of the patient and her family members. Sequencing results were analysed using bioinformatics software tools including VarCards and PolyPhen-2. Close clinical follow-up and observation were used to record changes in the disease before and after treatment with tofacitinib. RESULTS Compound heterozygous variants of TREX1 were observed in the patient's genome. One was a missense variant (NM_016381; c.C227T; p.Ala76Val) from the patient's father, and the other was a frameshift variant (NM_016381; c.458dupA; p.Gln153Glnfs*3) from the patient's mother. One of the proband's elder brothers with similar skin lesions also carried these two variants. This brother of the proband had more serious cutaneous involvement with the comorbidity of cerebral palsy. These TREX1 variants have not been reported in previous studies and are predicted to be highly pathogenic. The proband was given tofacitinib that led to a marked improvement. CONCLUSIONS We identified two novel complex heterozygous variants in the TREX1 gene, which may underlie the molecular pathogenesis of the type I interferonopathies observed in members of this family. Tofacitinib could be an alternative treatment for this disease.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Jiaxing Song
- grid.506261.60000 0001 0706 7839Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China
| | - Yuyan Yang
- grid.506261.60000 0001 0706 7839Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Huilei Miao
- grid.506261.60000 0001 0706 7839Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Xue Zhang
- grid.506261.60000 0001 0706 7839Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China
| | - Yaping Liu
- Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
511
|
Mukai K, Ogawa E, Uematsu R, Kuchitsu Y, Kiku F, Uemura T, Waguri S, Suzuki T, Dohmae N, Arai H, Shum AK, Taguchi T. Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nat Commun 2021; 12:61. [PMID: 33397928 PMCID: PMC7782846 DOI: 10.1038/s41467-020-20234-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Coat protein complex I (COP-I) mediates the retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER). Mutation of the COPA gene, encoding one of the COP-I subunits (α-COP), causes an immune dysregulatory disease known as COPA syndrome. The molecular mechanism by which the impaired retrograde transport results in autoinflammation remains poorly understood. Here we report that STING, an innate immunity protein, is a cargo of the retrograde membrane transport. In the presence of the disease-causative α-COP variants, STING cannot be retrieved back to the ER from the Golgi. The forced Golgi residency of STING results in the cGAS-independent and palmitoylation-dependent activation of the STING downstream signaling pathway. Surf4, a protein that circulates between the ER/ ER-Golgi intermediate compartment/ Golgi, binds STING and α-COP, and mediates the retrograde transport of STING to the ER. The STING/Surf4/α-COP complex is disrupted in the presence of the disease-causative α-COP variant. We also find that the STING ligand cGAMP impairs the formation of the STING/Surf4/α-COP complex. Our results suggest a homeostatic regulation of STING at the resting state by retrograde membrane traffic and provide insights into the pathogenesis of COPA syndrome. COPA regulates Golgi to ER transport, and mutations lead to autoinflammation and disease through poorly understood mechanisms. Here, the authors show that disease-causing COPA variants prevent STING transport from the Golgi to the ER, leading to cGAS-independent activation of the STING pathway.
Collapse
Affiliation(s)
- Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Emari Ogawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Rei Uematsu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Fumika Kiku
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Anthony K Shum
- Department of Medicine, Division of Pulmonary and Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
512
|
Abstract
The type I interferonopathies comprise a heterogenous group of monogenic diseases associated with a constitutive activation of type I interferon signaling.The elucidation of the genetic causes of this group of diseases revealed an alteration of nucleic acid processing and signaling.ADAR1 is among the genes found mutated in patients with this type of disorders.This enzyme catalyzes the hydrolytic deamination of adenosines in inosines within a double-stranded RNA target (RNA editing of A to I). This RNA modification is widespread in human cells and deregulated in a variety of human diseases, ranging from cancers to neurological abnormalities.In this review, we briefly summarize the knowledge about the RNA editing alterations occurring in patients with mutations in ADAR1 gene and how these alterations might cause the inappropriate IFN activation.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
513
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
514
|
Anjani G, Jindal AK, Prithvi A, Kaur A, Rawat A, Sharma M, Yuan B, Chinn IK, Singh S. Deforming Polyarthritis in a North Indian Family-Clinical Expansion of STING-Associated Vasculopathy with Onset in Infancy (SAVI). J Clin Immunol 2021; 41:209-211. [PMID: 32974768 DOI: 10.1007/s10875-020-00872-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India.
| | - Ashwini Prithvi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and research, Chandigarh, India
| |
Collapse
|
515
|
Zeng J, Hao J, Zhou W, Zhou Z, Miao H. A Novel Mutation c.841C>T in COPA Syndrome of an 11-Year-Old Boy: A Case Report and Short Literature Review. Front Pediatr 2021; 9:773112. [PMID: 34900872 PMCID: PMC8654191 DOI: 10.3389/fped.2021.773112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
COPA syndrome is a rare autosomal dominant disorder with auto-immune and auto-inflammatory abnormalities. This disease is caused by mutations of COPα, a protein that functions in the retrograde transport from the Golgi to the ER. Here we report the first COPA case of an 11-year-old boy with c.841C>T, p.R281W mutation. The arginine at position 281 was located in a highly evolutionary-conserved region. Immunosuppressive drugs and corticosteroids might not improve the long-term outcome of COPA patients. For patients with pulmonary disease, polyarthritis and/or kidney disorder, and suspected of COPA, genetic analysis should be conducted promptly for early diagnosis.
Collapse
Affiliation(s)
- Jingxia Zeng
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Hao
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoqun Zhou
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Miao
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
516
|
Wang Y, Wang F, Zhang X. STING-associated vasculopathy with onset in infancy: a familial case series report and literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:176. [PMID: 33569478 PMCID: PMC7867893 DOI: 10.21037/atm-20-6198] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stimulator of interferon genes (STING1) is a key intermediary in activating the type I IFN response. STING-associated vasculopathy with onset in infancy (SAVI) is a very rare autoinflammatory disease that is caused by heterozygous gain-of-function mutations in STING1. SAVI typically manifests as neonatal-onset systemic inflammation, interstitial lung disease (ILD), and severe cutaneous vasculopathy located in acral regions, including fingers, toes, ears, and nose. Severity of ILD and recurrent pulmonary infections are crucial for the prognosis. Therapeutic options for SAVI are quite limited, and JAK inhibitors are considered to be a promising treatment according to several recent case reports. We report on a familial case series of SAVI with the R281Q mutation in the STING1 gene with predominant ILD manifestations, absence of cutaneous lesions, and poor response to ruxolitinib. Moreover, we reviewed all the case reports of SAVI in English published in the PubMed database. The atypical phenotype of the current cases adds to the growing list of inflammatory syndromes associated with SAVI. The literature analysis suggests that the severity and natural courses of the disease seem to be independent of the mutation type. Although JAK inhibitors may be a promising treatment, the therapeutic effect for different phenotypes and disease statuses of SAVI warrants further investigation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fan Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaolei Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Capital medical university, Beijing, China.,Peking University Health Science Center, Beijing, China
| |
Collapse
|
517
|
Bryant AJ, Pham A, Gogoi H, Mitchell CR, Pais F, Jin L. The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulm Circ 2021; 11:2045894021996574. [PMID: 33738095 PMCID: PMC7934053 DOI: 10.1177/2045894021996574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
For as long as nucleic acids have been utilized to vertically and horizontally transfer genetic material, living organisms have had to develop methods of recognizing cytosolic DNA as either pathogenic (microbial invasion) or physiologic (mitosis and cellular proliferation). Derangement in key signaling molecules involved in these pathways of DNA sensing result in a family of diseases labeled interferonopathies. An interferonopathy, characterized by constitutive expression of type I interferons, ultimately manifests as severe autoimmune disease at a young age. Afflicted patients present with a constellation of immune-mediated conditions, including primary lung manifestations such as pulmonary fibrosis and pulmonary hypertension. The latter condition is especially interesting in light of the known role that DNA damage plays in a variety of types of inherited and induced pulmonary hypertension, with free DNA detection elevated in the circulation of affected individuals. While little is known regarding the role of cytosolic DNA sensing in development of pulmonary vascular disease, exciting new research in the related fields of immunology and oncology potentially sheds light on future areas of fruitful exploration. As such, the goal of this review is to summarize the state of the field of nucleic acid sensing, extrapolating common shared pathways that parallel our knowledge of pulmonary hypertension, in a molecular and cell-specific manner. Principles of DNA sensing related to known pulmonary injury inducing stimuli are also evaluated, in addition to potential therapeutic targets. Finally, future directions in pulmonary hypertension research and treatments will be briefly discussed.
Collapse
Affiliation(s)
- Andrew J. Bryant
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Ann Pham
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Himanshu Gogoi
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Carly R. Mitchell
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Faye Pais
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Lei Jin
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| |
Collapse
|
518
|
Cazzato S, Omenetti A, Ravaglia C, Poletti V. Lung involvement in monogenic interferonopathies. Eur Respir Rev 2020; 29:200001. [PMID: 33328278 PMCID: PMC9489100 DOI: 10.1183/16000617.0001-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Monogenic type I interferonopathies are inherited heterogeneous disorders characterised by early onset of systemic and organ specific inflammation, associated with constitutive activation of type I interferons (IFNs). In the last few years, several clinical reports identified the lung as one of the key target organs of IFN-mediated inflammation. The major pulmonary patterns described comprise children's interstitial lung diseases (including diffuse alveolar haemorrhages) and pulmonary arterial hypertension but diagnosis may be challenging. Respiratory symptoms may be either mild or absent at disease onset and variably associated with systemic or organ specific inflammation. In addition, associated extrapulmonary clinical features may precede lung function impairment by years, and patients may display severe/endstage lung involvement, although this may be clinically hidden during the long-term disease course. Conversely, a few cases of atypical severe lung involvement at onset have been reported without clinically manifested extrapulmonary signs. Hence, a multidisciplinary approach involving pulmonologists, paediatricians and rheumatologists should always be considered when a monogenic interferonopathy is suspected. Pulmonologists should also be aware of the main pattern of presentation to allow prompt diagnosis and a targeted therapeutic strategy. In this regard, promising therapeutic strategies rely on Janus kinase-1/2 (JAK-1/2) inhibitors blocking the type I IFN-mediated intracellular cascade.
Collapse
Affiliation(s)
- Salvatore Cazzato
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Alessia Omenetti
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Dept of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
519
|
de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, Calvo KR, Marrero B, Moir S, Oler AJ, Deng Z, Montealegre Sanchez GA, Ahmed A, Allenspach E, Arabshahi B, Behrens E, Benseler S, Bezrodnik L, Bout-Tabaku S, Brescia AC, Brown D, Burnham JM, Caldirola MS, Carrasco R, Chan AY, Cimaz R, Dancey P, Dare J, DeGuzman M, Dimitriades V, Ferguson I, Ferguson P, Finn L, Gattorno M, Grom AA, Hanson EP, Hashkes PJ, Hedrich CM, Herzog R, Horneff G, Jerath R, Kessler E, Kim H, Kingsbury DJ, Laxer RM, Lee PY, Lee-Kirsch MA, Lewandowski L, Li S, Lilleby V, Mammadova V, Moorthy LN, Nasrullayeva G, O'Neil KM, Onel K, Ozen S, Pan N, Pillet P, Piotto DG, Punaro MG, Reiff A, Reinhardt A, Rider LG, Rivas-Chacon R, Ronis T, Rösen-Wolff A, Roth J, Ruth NM, Rygg M, Schmeling H, Schulert G, Scott C, Seminario G, Shulman A, Sivaraman V, Son MB, Stepanovskiy Y, Stringer E, Taber S, Terreri MT, Tifft C, Torgerson T, Tosi L, Van Royen-Kerkhof A, Wampler Muskardin T, Canna SW, Goldbach-Mansky R. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest 2020; 130:1669-1682. [PMID: 31874111 DOI: 10.1172/jci129301] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDUndifferentiated systemic autoinflammatory diseases (USAIDs) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify diseases with available targeted treatments.METHODSSixty-six consecutively referred USAID patients underwent underwent screening for the presence of an interferon signature using a standardized type-I IFN-response-gene score (IRG-S), cytokine profiling, and genetic evaluation by next-generation sequencing.RESULTSThirty-six USAID patients (55%) had elevated IRG-S. Neutrophilic panniculitis (40% vs. 0%), basal ganglia calcifications (46% vs. 0%), interstitial lung disease (47% vs. 5%), and myositis (60% vs. 10%) were more prevalent in patients with elevated IRG-S. Moderate IRG-S elevation and highly elevated serum IL-18 distinguished 8 patients with pulmonary alveolar proteinosis (PAP) and recurrent macrophage activation syndrome (MAS). Among patients with panniculitis and progressive cytopenias, 2 patients were compound heterozygous for potentially novel LRBA mutations, 4 patients harbored potentially novel splice variants in IKBKG (which encodes NF-κB essential modulator [NEMO]), and 6 patients had de novo frameshift mutations in SAMD9L. Of additional 12 patients with elevated IRG-S and CANDLE-, SAVI- or Aicardi-Goutières syndrome-like (AGS-like) phenotypes, 5 patients carried mutations in either SAMHD1, TREX1, PSMB8, or PSMG2. Two patients had anti-MDA5 autoantibody-positive juvenile dermatomyositis, and 7 could not be classified. Patients with LRBA, IKBKG, and SAMD9L mutations showed a pattern of IRG elevation that suggests prominent NF-κB activation different from the canonical interferonopathies CANDLE, SAVI, and AGS.CONCLUSIONSIn patients with elevated IRG-S, we identified characteristic clinical features and 3 additional autoinflammatory diseases: IL-18-mediated PAP and recurrent MAS (IL-18PAP-MAS), NEMO deleted exon 5-autoinflammatory syndrome (NEMO-NDAS), and SAMD9L-associated autoinflammatory disease (SAMD9L-SAAD). The IRG-S expands the diagnostic armamentarium in evaluating USAIDs and points to different pathways regulating IRG expression.TRIAL REGISTRATIONClinicalTrials.gov NCT02974595.FUNDINGThe Intramural Research Program of the NIH, NIAID, NIAMS, and the Clinical Center.
Collapse
Affiliation(s)
- Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), NIAID/NIH, Bethesda, Maryland, USA
| | - Yangfeng Hou
- Department of Rheumatology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Stephen Brooks
- Biomining and Discovery Section, NIAMS/NIH, Bethesda, Maryland, USA
| | - Louise Malle
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angelique Biancotto
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, Massachusetts, USA
| | - Yan Huang
- Translational Autoinflammatory Diseases Section (TADS), NIAID/NIH, Bethesda, Maryland, USA
| | - Katherine R Calvo
- Department of Laboratory Medicine (DLM), Clinical Center/NIH, Bethesda, Maryland, USA
| | | | | | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID/NIH, Bethesda, Maryland, USA
| | - Zuoming Deng
- Biomining and Discovery Section, NIAMS/NIH, Bethesda, Maryland, USA
| | | | - Amina Ahmed
- The Autoinflammatory Diseases Consortium.,Levine Children's Hospital, Charlotte, North Carolina, USA
| | - Eric Allenspach
- The Autoinflammatory Diseases Consortium.,Divisions of Immunology & Rheumatology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, USA
| | - Bita Arabshahi
- The Autoinflammatory Diseases Consortium.,Virginia Commonwealth University & Pediatric Specialists of Virginia, Fairfax, Virginia, USA
| | - Edward Behrens
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susanne Benseler
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Pediatric Rheumatology Section, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Liliana Bezrodnik
- The Autoinflammatory Diseases Consortium.,Immunology Unit, Pediatric Hospital R. Gutierrez, Buenos Aires, Argentina
| | - Sharon Bout-Tabaku
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Medicine, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - AnneMarie C Brescia
- The Autoinflammatory Diseases Consortium.,Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Diane Brown
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Los Angeles & USC, Los Angeles, California, USA
| | - Jon M Burnham
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Soledad Caldirola
- The Autoinflammatory Diseases Consortium.,Immunology Unit, Pediatric Hospital R. Gutierrez, Buenos Aires, Argentina
| | - Ruy Carrasco
- The Autoinflammatory Diseases Consortium.,Pediatric Rheumatology, Dell Children's Medical Center of Central Texas, Austin, Texas, USA
| | - Alice Y Chan
- The Autoinflammatory Diseases Consortium.,Divisions of Pediatric AIBMT & Rheumatology, UCSF, San Francisco, California, USA
| | - Rolando Cimaz
- The Autoinflammatory Diseases Consortium.,Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Paul Dancey
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Janeway Children's Hospital & Rehabilitation Centre, Saint John's, Newfoundland and Labrador, Canada
| | - Jason Dare
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Marietta DeGuzman
- The Autoinflammatory Diseases Consortium.,Department of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Dimitriades
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Allergy, Immunology & Rheumatology, UC Davis Health, Sacramento, California, USA
| | - Ian Ferguson
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics/Pediatric Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Polly Ferguson
- The Autoinflammatory Diseases Consortium.,Pediatrics Department, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laura Finn
- The Autoinflammatory Diseases Consortium.,Pathology Department, University of Washington and Seattle Children's Hospital, Seattle, Washington, USA
| | - Marco Gattorno
- The Autoinflammatory Diseases Consortium.,Center for Autoinflammatory Diseases and Immunedeficiencies, IRCCS Giannina Gaslini, Genoa, Italy
| | - Alexei A Grom
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Eric P Hanson
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics Indiana University School of Medicine and Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Philip J Hashkes
- The Autoinflammatory Diseases Consortium.,Pediatric Rheumatology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Christian M Hedrich
- The Autoinflammatory Diseases Consortium.,Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool & Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Ronit Herzog
- The Autoinflammatory Diseases Consortium.,Department of Otolaryngology, Division of Allergy and Immunology, New York University, New York, New York, USA
| | - Gerd Horneff
- The Autoinflammatory Diseases Consortium.,Asklepios Klinik Sankt, Augustin GmbH, St. Augustin, Germany and Department of Pediatric and Adolescents Medicine, University of Cologne, Cologne, Germany
| | - Rita Jerath
- The Autoinflammatory Diseases Consortium.,Augusta University Medical Center, Augusta, Georgia, USA
| | - Elizabeth Kessler
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Mercy, Kansas City and University of Missouri, Kansas City, Missouri, USA
| | - Hanna Kim
- The Autoinflammatory Diseases Consortium.,Pediatric Translational Research Branch, NIAMS/NIH, Bethesda, Maryland, USA
| | - Daniel J Kingsbury
- The Autoinflammatory Diseases Consortium.,Randall Children's Hospital at Legacy Emanuel, Portland, Oregon, USA
| | - Ronald M Laxer
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pui Y Lee
- The Autoinflammatory Diseases Consortium.,Division of Allergy, Immunology and Rheumatology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Min Ae Lee-Kirsch
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Laura Lewandowski
- The Autoinflammatory Diseases Consortium.,Systemic Autoimmunity Branch, NIAMS/NIH, Bethesda, Maryland, USA
| | - Suzanne Li
- The Autoinflammatory Diseases Consortium.,Hackensack University Medical Center, Hackensack Meridian School of Medicine at Seton Hall University, Hackensack, New Jersey, USA
| | - Vibke Lilleby
- The Autoinflammatory Diseases Consortium.,Department of Rheumatology, Pediatric Section, Oslo University Hospital, Oslo, Norway
| | - Vafa Mammadova
- The Autoinflammatory Diseases Consortium.,Azerbaijan Medical University, Baku, Azerbaijan
| | - Lakshmi N Moorthy
- The Autoinflammatory Diseases Consortium.,Rutgers - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Gulnara Nasrullayeva
- The Autoinflammatory Diseases Consortium.,Azerbaijan Medical University, Baku, Azerbaijan
| | - Kathleen M O'Neil
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics Indiana University School of Medicine and Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Karen Onel
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Weill Cornell Medicine & Hospital for Special Surgery, New York, New York, USA
| | - Seza Ozen
- The Autoinflammatory Diseases Consortium.,Hacettepe University, Department of Pediatrics, Ankara, Turkey
| | - Nancy Pan
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Weill Cornell Medicine & Hospital for Special Surgery, New York, New York, USA
| | - Pascal Pillet
- The Autoinflammatory Diseases Consortium.,Children Hospital Pellegrin-Enfants, Bordeaux, France
| | - Daniela Gp Piotto
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marilynn G Punaro
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas Reiff
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Los Angeles, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Adam Reinhardt
- The Autoinflammatory Diseases Consortium.,University of Nebraska Medical Center/Children's Hospital and Medical Center, Omaha, Nebraska, USA
| | - Lisa G Rider
- The Autoinflammatory Diseases Consortium.,Environmental Autoimmunity Group, NIEHS/NIH, Bethesda, Maryland, USA
| | - Rafael Rivas-Chacon
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Rheumatology, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Tova Ronis
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Children's National Health System, Washington, DC, USA
| | - Angela Rösen-Wolff
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Roth
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Dermatology and Rheumatology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Natasha Mckerran Ruth
- The Autoinflammatory Diseases Consortium.,Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marite Rygg
- The Autoinflammatory Diseases Consortium.,Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, and Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
| | - Heinrike Schmeling
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Pediatric Rheumatology Section, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Grant Schulert
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christiaan Scott
- The Autoinflammatory Diseases Consortium.,University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Gisella Seminario
- The Autoinflammatory Diseases Consortium.,Immunology Unit, Pediatric Hospital R. Gutierrez, Buenos Aires, Argentina
| | - Andrew Shulman
- The Autoinflammatory Diseases Consortium.,Pediatric Rheumatology, Children's Hospital of Orange County, UC Irvine, Irvine, California, USA
| | - Vidya Sivaraman
- The Autoinflammatory Diseases Consortium.,Section of Rheumatology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mary Beth Son
- The Autoinflammatory Diseases Consortium.,Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yuriy Stepanovskiy
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Elizabeth Stringer
- The Autoinflammatory Diseases Consortium.,IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Taber
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
| | - Maria Teresa Terreri
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Cynthia Tifft
- The Autoinflammatory Diseases Consortium.,Undiagnosed Diseases Program, NHGRI/NIH, Bethesda, Maryland, USA
| | - Troy Torgerson
- The Autoinflammatory Diseases Consortium.,Divisions of Immunology & Rheumatology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, USA
| | - Laura Tosi
- The Autoinflammatory Diseases Consortium.,Bone Health Program, Children's National Health System, Washington, DC, USA
| | - Annet Van Royen-Kerkhof
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital Utrecht, Utrecht, Netherlands
| | - Theresa Wampler Muskardin
- The Autoinflammatory Diseases Consortium.,New York University School of Medicine, New York, New York, USA
| | - Scott W Canna
- Children's Hospital Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
520
|
Neelakantan S, Oemar B, Johnson K, Rath N, Salganik M, Berman G, Pelletier K, Cox L, Page K, Messing D, Tarabar S. Safety, Tolerability, and Pharmacokinetics of PF-06823859, an Anti-Interferon β Monoclonal Antibody: A Randomized, Phase I, Single- and Multiple-Ascending-Dose Study. Clin Pharmacol Drug Dev 2020; 10:307-316. [PMID: 33352008 DOI: 10.1002/cpdd.887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022]
Abstract
This double-blind, randomized, placebo-controlled, dose-ascending, first-in-human study (NCT02766621) assessed the safety, tolerability, and pharmacokinetics (PK) of PF-06823859, an anti-interferon β monoclonal antibody. Healthy subjects were randomized to single ascending doses (SADs) of intravenous PF-06823859 30, 100, 300, 900, or 2000 mg or placebo; to multiple ascending doses (MADs) of subcutaneous PF-06823859 100 or 300 mg or placebo (once every 2 weeks for a total of 3 doses); or to MAD of intravenous PF-06823859 600 mg or placebo (once every 3 weeks or once every 4 weeks for a total of 2 doses). The incidence, severity, and causal relationship of adverse events (AEs) were assessed, along with immunogenicity and PK. In total, 62 subjects were randomized to treatment (SAD, n = 35; MAD, n = 27). There were 76 treatment-emergent all-causality AEs in the SAD (PF-06823859: n = 25; placebo: n = 4) and MAD (PF-06823859: n = 40; placebo: n = 7) cohorts. In the SAD cohorts, all treatment-emergent all-causality AEs were mild in severity; 4 AEs of moderate severity were identified in the MAD cohorts. No dose-limiting AEs, serious AEs, treatment-related discontinuations, dose reductions, or deaths occurred. PF-06823859 exposure increased dose-proportionally, with half-life values ranging between 23 and 35 days. The estimated subcutaneous bioavailability was 43% to 44%. Immunogenicity incidence rates were low (antidrug antibodies, 12.5%; neutralizing antibodies, 2.1%). No immunogenically related clinical responses of concern were observed. In conclusion, PF-06823859 demonstrated an acceptable safety, tolerability, and PK profile that supports clinical development for treating disorders associated with increased interferon β levels, such as dermatomyositis or systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Barry Oemar
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Kristen Johnson
- Center for Therapeutic Innovation, Pfizer Inc, New York, New York, USA
| | | | - Mikhail Salganik
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | | | | | - Lori Cox
- Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Karen Page
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Dean Messing
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Sanela Tarabar
- Pfizer Clinical Research Unit, New Haven, Connecticut, USA
| |
Collapse
|
521
|
Bonaventura A, Vecchié A, Mauro AG, Brucato AL, Imazio M, Abbate A. An update on the pathophysiology of acute and recurrent pericarditis. Panminerva Med 2020; 63:249-260. [PMID: 33337127 DOI: 10.23736/s0031-0808.20.04205-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pericarditis is an inflammatory disease of the pericardium. Progress has been done in recent years in the understanding of its pathophysiology. In particular, pre-clinical and clinical studies have contributed to increasing our knowledge on the role of interleukin (IL)-1 and NLRP3 (NACHT, leucine- rich repeat, and pyrin domain- containing protein 3) inflammasome. Based on current evidence, pericarditis should be considered as an inflammatory reaction to various stimuli, including chemical/physical, infectious, or ischemic ones, with a viral infection being a common etiology. Interaction of pathogens or irritants with toll-like receptor (TLRs) and stimulation of IL-1 receptor by IL-1α and IL-1β lead to an increased transcription of pro-inflammatory genes, including those needed for NLRP3 inflammasome assembly. This pathway is confirmed indirectly by the beneficial effect of colchicine (an indirect NLRP3 inflammasome inhibitor) and IL-1 blockers in patients with recurrent pericarditis. More recently, a direct evidence of the NLRP3 inflammasome within the inflamed pericardium has been provided as well. It may, however, occur that selfantigens on the surface of mesothelial cells or microbial peptides may stimulate autoreactive T cells along with B cells producing anti-heart antibodies, although less evidence is available on this. Some uncertainties still remain about the role of neutrophils, neutrophil extracellular traps (NETs), and pericardial interstitial cells in recurrent and constrictive pericarditis. Unraveling these aspects might have a direct impact on the development of novel targeted therapies, especially considering the increasing number of drugs targeting NETs.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA - .,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy - .,Internal Medicine Unit, Department of Medicine and Surgery, University of Insubria-Ospedale Di Circolo di Varese, ASST Dei Sette Laghi, Varese, Italy -
| | - Alessandra Vecchié
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA.,Internal Medicine Unit, Department of Medicine and Surgery, University of Insubria-Ospedale Di Circolo di Varese, ASST Dei Sette Laghi, Varese, Italy
| | - Adolfo G Mauro
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA
| | - Antonio L Brucato
- Department of Biomedical and Clinical Sciences, Fatebenefratelli Hospital, Università di Milano, Milan, Italy
| | - Massimo Imazio
- University Cardiology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA
| |
Collapse
|
522
|
Lawton A, Machta J, Semple T, Gupta A. Pulmonary manifestations of systemic vasculitis in childhood. Breathe (Sheff) 2020; 16:200211. [PMID: 33447293 PMCID: PMC7792777 DOI: 10.1183/20734735.0211-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The systemic vasculitides are a heterogenous group of rare conditions with an incompletely understood aetiology. Any of the systemic vasculitides may cause respiratory disease, but some conditions are more likely to affect the pulmonary system, often through pulmonary infarction and diffuse alveolar haemorrhage. These conditions are often difficult to diagnose due to their rarity and significant clinical overlap with common respiratory conditions. Prompt diagnosis and management can significantly reduce morbidity and mortality. The systemic vasculitides are often difficult to diagnose due to their rarity and significant clinical overlap with common respiratory conditions. Prompt diagnosis and management can reduce associated morbidity and mortality.https://bit.ly/36M5tTB
Collapse
Affiliation(s)
- Adam Lawton
- Dept of Paediatrics, Royal London Hospital, London, UK
| | - Joseph Machta
- Royal Free London NHS Foundation Trust, Dept of Paediatrics, London, UK
| | - Thomas Semple
- Royal Brompton Hospital, Dept of Radiology, London, UK
| | - Atul Gupta
- Dept of Paediatric Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK.,Institute for Women's and Children's Health, King's College London, London, UK
| |
Collapse
|
523
|
Liu Y, Lu X, Qin N, Qiao Y, Xing S, Liu W, Feng F, Liu Z, Sun H. STING, a promising target for small molecular immune modulator: A review. Eur J Med Chem 2020; 211:113113. [PMID: 33360799 DOI: 10.1016/j.ejmech.2020.113113] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in human innate immune system, which is gradually concerned following the emerging immunotherapy. Activated STING induces the production of type I interferons (IFNs) and proinflammatory cytokines through STING-TBK1-IRF3/NF-κB pathway, which could be applied into the treatment of infection, inflammation, and tumorigenesis. Here, we provided a detailed summary of STING from its structure, function and regulation. Especially, we illustrated the canonical or noncanonical cyclic dinucleotides (CDNs) and synthetic small molecules for STING activation or inhibition and their efficacy in related diseases. Importantly, we particularly emphasized the discovery, development and modification of STING agonist or antagonist, attempting to enlighten reader's mind for enriching small molecular modulator of STING. In addition, we summarized biological evaluation methods for the assessment of small molecules activity.
Collapse
Affiliation(s)
- Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Nan Qin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuting Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|
524
|
McCann LJ, Hedrich CM. Is it time to re-think juvenile-onset Rheumatic and Musculoskeletal Diseases? - First steps towards individualised treatments to meet agreed targets. Clin Immunol 2020; 223:108647. [PMID: 33310069 DOI: 10.1016/j.clim.2020.108647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liza J McCann
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK; Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Christian M Hedrich
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK; Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK.
| |
Collapse
|
525
|
Balka KR, De Nardo D. Molecular and spatial mechanisms governing STING signalling. FEBS J 2020; 288:5504-5529. [PMID: 33237620 DOI: 10.1111/febs.15640] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Detection of microbial nucleic acids via innate immune receptors is critical for establishing host defence against pathogens. The DNA-sensing cGAS-STING pathway has gained increasing attention in the last decade as a key pathway for combating viral and bacterial infections. cGAS-STING activation primarily promotes the secretion of antiviral type I IFNs via the key transcription factor, IRF3. In addition, cGAS-STING signalling also elicits proinflammatory cytokines through NF-κB activity. Activation of IRF3 and NF-κB is mediated by the chief signalling receptor protein STING. Interestingly, STING undergoes significant trafficking events across multiple subcellular locations, which regulates both the activation of downstream signalling pathways, as well as appropriate termination of the responses. Studies to date have provided a comprehensive view of the regulation and role of the IRF3-IFN pathway downstream of STING. However, many aspects of STING signalling remain relatively poorly defined. This review will explore the current understanding of the mechanisms through which STING elicits inflammatory and antimicrobial responses, focusing on the precise signalling and intracellular trafficking events that occur. We will also discuss exciting and emerging concepts in the field, including the importance of IFN-independent STING responses for host defence and during STING-related disease.
Collapse
Affiliation(s)
- Katherine R Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
526
|
Sun X, Liu T, Zhao J, Xia H, Xie J, Guo Y, Zhong L, Li M, Yang Q, Peng C, Rouvet I, Belot A, Shu HB, Feng P, Zhang J. DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nat Commun 2020; 11:6182. [PMID: 33273464 PMCID: PMC7712783 DOI: 10.1038/s41467-020-19941-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Upon sensing cytosolic DNA, the enzyme cGAS induces innate immune responses that underpin anti-microbial defenses and certain autoimmune diseases. Missense mutations of PRKDC encoding the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) are associated with autoimmune diseases, yet how DNA-PK deficiency leads to increased immune responses remains poorly understood. In this study, we report that DNA-PK phosphorylates cGAS and suppresses its enzymatic activity. DNA-PK deficiency reduces cGAS phosphorylation and promotes antiviral innate immune responses, thereby potently restricting viral replication. Moreover, cells isolated from DNA-PKcs-deficient mice or patients carrying PRKDC missense mutations exhibit an inflammatory gene expression signature. This study provides a rational explanation for the autoimmunity of patients with missense mutations of PRKDC, and suggests that cGAS-mediated immune signaling is a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Xiaona Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ting Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Hansong Xia
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jun Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yu Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Li Zhong
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Mi Li
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qing Yang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Cheng Peng
- Department of Burns and Plastic Surgery, 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Isabelle Rouvet
- Hospices Civils de Lyon, Centre de Biotechnologie Cellulaire et Biothèque, Bron, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France
- Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France
| | - Hong-Bing Shu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| | - Junjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
527
|
Berthelot JM, Lioté F, Maugars Y, Sibilia J. Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STING? Front Immunol 2020; 11:607069. [PMID: 33335532 PMCID: PMC7736628 DOI: 10.3389/fimmu.2020.607069] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.
Collapse
Affiliation(s)
| | - Frédéric Lioté
- Rheumatology Department & Inserm UMR 1132 (centre Viggo Petersen), Hôpital Lariboisière, Université de Paris, Paris, France
| | - Yves Maugars
- Rheumatology Department, Nantes University Hospital, Nantes, France
| | - Jean Sibilia
- Service de rhumatologie, Hopitaux Universitaires de Strasbourg, RESO: Centre de Reference des Maladies Autoimmunes Systemiques Rares Est Sud-Ouest, Strasbourg, France
- INSERM UMR_S1109, Universite de Strasbourg, Strasbourg, France
| |
Collapse
|
528
|
Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, Rajabinejad M, Jafari-Shakib R, Hasani B, Rafiei A. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res 2020; 290:198197. [PMID: 33069815 PMCID: PMC7561578 DOI: 10.1016/j.virusres.2020.198197] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-2019 (COVID-19) which caused by severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), is a pandemic threat to global public health. It has a wide spectrum of clinical manifestations from mild to critical illness, the most serious of which is the complications of acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection appears mild in infants and children, however, in adults, it can lead to serious consequences. In this review, we highlighted the differences between the immune responses of the lung in children and adults, immune dysregulation and their possible role in clinical manifestations in COVID-19. There is a reduction in population of immunocompetent cells during aging and subsequently induced ineffective inflammation in the faces of some infections. Dysregulation in the immune system can lead to an unappropriated local and systemic immune responses and subsequently the rapid spread of the virus, leading to severe COVID-19 disease. Therefore, recognizing the differences in the immune responses of various hosts as well as to improve the immune system disorder should always be part of research and treatment protocols.
Collapse
Affiliation(s)
- S Tahaghoghi-Hajghorbani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - P Zafari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - E Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - M Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - R Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - B Hasani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - A Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
529
|
Turnier JL, Kahlenberg JM. The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 205:2941-2950. [PMID: 33229366 DOI: 10.4049/jimmunol.2000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
IFNs are well known as mediators of the antimicrobial response but also serve as important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An increasingly critical role for IFNs in evolution of skin inflammation in these patients has been recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with increased baseline IFN production priming for inflammatory cell activation, immune response amplification, and development of skin lesions. The IFN response differs by cell type and host factors and may be modified by other inflammatory pathway activation specific to individual diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin and systemic disease pathogenesis is key to development of new therapeutics and improved patient outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Turnier
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
530
|
Berthelot JM, Drouet L, Lioté F. Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? Emerg Microbes Infect 2020; 9:1514-1522. [PMID: 32574107 PMCID: PMC7473058 DOI: 10.1080/22221751.2020.1785336] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
We previously made the hypothesis that STING contributes to COVID-19. The present review detail new arguments for over-activation of STING pathways in COVID-19, following the description of hyper-coagulability and Kawasaki-like diseases in children. Indeed, Kawasaki disease is induced by overreaction of innate cells following exposition to various viruses, including herpes viruses which trigger STING. It predisposes to diffuse vasculitis and aneurysms, whereas STING is over-expressed in arterial aneurisms. The redness at the inoculation site of bacillus Calmette-Guérin, a specific feature of Kawasaki disease, is reproduced by activation of the STING pathway, which is inhibited upstream by aspirin, intravenous immunoglobulins, and Vitamin-D. SARS-CoV2 binding to ACE2 can lead to excessive angiotensin II signaling, which activates the STING pathway in mice. Over-activation of the STING-pathway promotes hyper-coagulability through release of interferon-β and tissue factor by monocytes-macrophages. Aspirin and dipyridamole, besides their anti-platelet activity, also reduce tissue factor procoagulant activity, and aspirin inhibits the STING pathway upstream of STING. Aspirin and dipyridamole may be used, in combination with drugs blocking downstream the activation of the STING pathway, like inhibitors of IL-6R and JAK/STAT pathways. The risk of bleeding should be low as bleeding has not been reported in severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Ludovic Drouet
- CREATIF (centre de référence et d'éducation aux antithrombotiques d'Île-de-France)
- Service de cardiologie, hôpital Lariboisière, Paris, France
| | - Frédéric Lioté
- Rheumatology Department, centre Viggo Petersen, Paris, France
- Hôpital Lariboisière, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
531
|
Du H, Xu T, Cui M. cGAS-STING signaling in cancer immunity and immunotherapy. Biomed Pharmacother 2020; 133:110972. [PMID: 33254021 DOI: 10.1016/j.biopha.2020.110972] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that the innate immune cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway may play an important role in antitumor immunity. Additionally, the cGAS-STING pathway promotes the senescence of cancer cells, induces apoptosis of cancer cells, and increases the protective effect of cytotoxic T cells and natural killer cell-mediated cytotoxicity. We believe that the combination of the cGAS-STING signaling pathway with other therapeutic methods provides a new perspective from which to overcome obstacles in the application of this review. Further, we highlight the antitumor mechanism of the cGAS-STING signaling pathway and the latest advances in monotherapy and combination therapy with related agonists.
Collapse
Affiliation(s)
- Huashan Du
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin, 130041, People's Republic of China.
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin, 130041, People's Republic of China.
| | - Manhua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin, 130041, People's Republic of China.
| |
Collapse
|
532
|
Functional Asplenia and Specific Polysaccharide Antibody Deficiency in a Girl with SAVI. J Clin Immunol 2020; 41:495-497. [PMID: 33230617 DOI: 10.1007/s10875-020-00929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
|
533
|
Place DE, Kanneganti TD. The innate immune system and cell death in autoinflammatory and autoimmune disease. Curr Opin Immunol 2020; 67:95-105. [PMID: 33242752 DOI: 10.1016/j.coi.2020.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
The innate immune system, the first line of defense against pathogens and host tissue damage, initiates pro-inflammatory responses which, when dysregulated, promote inflammation to drive a broad range of autoimmune diseases. Immunomodulatory therapies have been developed to successfully treat several autoimmune diseases, but still many others lack effective treatments. Here, we explore recent advances in how the innate immune system contributes to autoinflammation, from the innate immune sensors that initiate immune responses to how this system regulates the activation of programmed cell death pathways including pyroptosis, apoptosis, necroptosis, and PANoptosis, which involves machinery from the pyroptotic, apoptotic, and necroptotic pathways. Recent advances in our understanding of innate immunity raise important considerations for developing new inflammatory disease treatments that target innate immune signaling and programmed cell death pathways.
Collapse
Affiliation(s)
- David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
534
|
Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among 21 Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:803-818.e11. [PMID: 33217613 DOI: 10.1016/j.jaip.2020.11.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gain-of-function mutations in STING1 underlie a type I interferonopathy termed SAVI (STING-associated vasculopathy with onset in infancy). This severe disease is variably characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease (ILD). OBJECTIVE To describe a cohort of patients with SAVI. METHODS Assessment of clinical, radiological and immunological data from 21 patients (17 families) was carried out. RESULTS Patients carried heterozygous substitutions in STING1 previously described in SAVI, mainly the p.V155M. Most were symptomatic from infancy, but late onset in adulthood occurred in 1 patient. Systemic inflammation, skin vasculopathy, and ILD were observed in 19, 18, and 21 patients, respectively. Extensive tissue loss occurred in 4 patients. Severity of ILD was highly variable with insidious progression up to end-stage respiratory failure reached at teenage in 6 patients. Lung imaging revealed early fibrotic lesions. Failure to thrive was almost constant, with severe growth failure seen in 4 patients. Seven patients presented polyarthritis, and the phenotype in 1 infant mimicked a combined immunodeficiency. Extended features reminiscent of other interferonopathies were also found, including intracranial calcification, glaucoma and glomerular nephropathy. Increased expression of interferon-stimulated genes and interferon α protein was constant. Autoantibodies were frequently found, in particular rheumatoid factor. Most patients presented with a T-cell defect, with low counts of memory CD8+ cells and impaired T-cell proliferation in response to antigens. Long-term follow-up described in 8 children confirmed the clinical benefit of ruxolitinib in SAVI where the treatment was started early in the disease course, underlying the need for early diagnosis. Tolerance was reasonably good. CONCLUSION The largest worldwide cohort of SAVI patients yet described, illustrates the core features of the disease and extends the clinical and immunological phenotype to include overlap with other monogenic interferonopathies.
Collapse
|
535
|
Abstract
Monogenic autoinflammatory diseases present with systemic inflammation with the involvement of multiple organs. With the help of modern molecular genetic techniques a large number of diseases with previously unknown pathomechanisms have been described in recent years. This knowledge can be utilized to group autoinflammatory diseases according to the signalling pathways involved and thus provide a better understanding of these entities.
Collapse
|
536
|
Deng Z, Chong Z, Law CS, Mukai K, Ho FO, Martinu T, Backes BJ, Eckalbar WL, Taguchi T, Shum AK. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J Exp Med 2020; 217:e20201045. [PMID: 32725126 PMCID: PMC7596814 DOI: 10.1084/jem.20201045] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Pathogenic COPA variants cause a Mendelian syndrome of immune dysregulation with elevated type I interferon signaling. COPA is a subunit of coat protein complex I (COPI) that mediates Golgi to ER transport. Missense mutations of the COPA WD40 domain impair binding and sorting of proteins targeted for ER retrieval, but how this causes disease remains unknown. Given the importance of COPA in Golgi-ER transport, we speculated that type I interferon signaling in COPA syndrome involves missorting of STING. We show that a defect in COPI transport causes ligand-independent activation of STING. Furthermore, SURF4 is an adapter molecule that facilitates COPA-mediated retrieval of STING at the Golgi. Activated STING stimulates type I interferon-driven inflammation in CopaE241K/+ mice that is rescued in STING-deficient animals. Our results demonstrate that COPA maintains immune homeostasis by regulating STING transport at the Golgi. In addition, activated STING contributes to immune dysregulation in COPA syndrome and may be a new molecular target in treating the disease.
Collapse
Affiliation(s)
- Zimu Deng
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Zhenlu Chong
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Christopher S. Law
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Frances O. Ho
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Tereza Martinu
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J. Backes
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Anthony K. Shum
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
537
|
Abstract
Two studies published in this issue of JEM, by Lepelley et al. (https://doi.org/10.1084/jem.20200600) and Deng et al. (https://doi.org/10.1084/jem.20201045), and two additional manuscripts by Mukai et al. (https://doi.org/10.1101/2020.05.20.107664 Preprint v1) and Steiner et al. (https://doi.org/10.1101/2020.07.09.194399 Preprint v1) demonstrate that COPA syndrome-associated high interferon titers are linked to mutations in COPA preventing STING's retrieval from the Golgi back to the ER and thereby causing chronic immune activation.
Collapse
Affiliation(s)
- Sophie Rivara
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|
538
|
Abstract
Two studies published in this issue of JEM, by Lepelley et al. (https://doi.org/10.1084/jem.20200600) and Deng et al. (https://doi.org/10.1084/jem.20201045), and two additional manuscripts by Mukai et al. (https://doi.org/10.1101/2020.05.20.107664 Preprint v1) and Steiner et al. (https://doi.org/10.1101/2020.07.09.194399 Preprint v1) demonstrate that COPA syndrome-associated high interferon titers are linked to mutations in COPA preventing STING's retrieval from the Golgi back to the ER and thereby causing chronic immune activation.
Collapse
Affiliation(s)
- Sophie Rivara
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|
539
|
Lepelley A, Martin-Niclós MJ, Le Bihan M, Marsh JA, Uggenti C, Rice GI, Bondet V, Duffy D, Hertzog J, Rehwinkel J, Amselem S, Boulisfane-El Khalifi S, Brennan M, Carter E, Chatenoud L, Chhun S, Coulomb l’Hermine A, Depp M, Legendre M, Mackenzie KJ, Marey J, McDougall C, McKenzie KJ, Molina TJ, Neven B, Seabra L, Thumerelle C, Wislez M, Nathan N, Manel N, Crow YJ, Frémond ML. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J Exp Med 2020; 217:e20200600. [PMID: 32725128 PMCID: PMC7596811 DOI: 10.1084/jem.20200600] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Heterozygous missense mutations in coatomer protein subunit α, COPA, cause a syndrome overlapping clinically with type I IFN-mediated disease due to gain-of-function in STING, a key adaptor of IFN signaling. Recently, increased levels of IFN-stimulated genes (ISGs) were described in COPA syndrome. However, the link between COPA mutations and IFN signaling is unknown. We observed elevated levels of ISGs and IFN-α in blood of symptomatic COPA patients. In vitro, both overexpression of mutant COPA and silencing of COPA induced STING-dependent IFN signaling. We detected an interaction between COPA and STING, and mutant COPA was associated with an accumulation of ER-resident STING at the Golgi. Given the known role of the coatomer protein complex I, we speculate that loss of COPA function leads to enhanced type I IFN signaling due to a failure of Golgi-to-ER STING retrieval. These data highlight the importance of the ER-Golgi axis in the control of autoinflammation and inform therapeutic strategies in COPA syndrome.
Collapse
Affiliation(s)
- Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| | | | - Melvin Le Bihan
- Immunity and Cancer Department, Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Joseph A. Marsh
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Carolina Uggenti
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Jonny Hertzog
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Serge Amselem
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale/UMRS_933, Trousseau University Hospital, Paris, France
- Genetics Department, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Siham Boulisfane-El Khalifi
- Emergency, Infectious Disease and Pediatric Rheumatology Department, Centre Hospitalier Régional Universitaire Lille, University of Lille, Lille, France
| | - Mary Brennan
- Department of Paediatric Rheumatology, Royal Hospital for Sick Children, Edinburgh, UK
| | - Edwin Carter
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lucienne Chatenoud
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Laboratory of Immunology, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut Necker-Enfants Malades, Centre National de la Recherche Scientifique UMR8253, Institut National de la Santé et de la Recherche Médicale UMR1151, Team Immunoregulation and Immunopathology, Paris, France
| | - Stéphanie Chhun
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Laboratory of Immunology, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut Necker-Enfants Malades, Centre National de la Recherche Scientifique UMR8253, Institut National de la Santé et de la Recherche Médicale UMR1151, Team Immunoregulation and Immunopathology, Paris, France
| | - Aurore Coulomb l’Hermine
- Pathology Department, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Marine Depp
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale/UMRS_933, Trousseau University Hospital, Paris, France
- Genetics Department, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Karen J. Mackenzie
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jonathan Marey
- Pneumology Department, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Catherine McDougall
- Department of Paediatric Respiratory Medicine, Royal Hospital for Sick Children, Edinburgh, UK
| | - Kathryn J. McKenzie
- Paediatric Pathology Department, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Thierry Jo Molina
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Pathology Department, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Bénédicte Neven
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR 1163, Laboratory of Immunogenetics of Paediatric Autoimmunity, Imagine Institute, Paris, France
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| | - Caroline Thumerelle
- Pediatric Pneumology Department, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire Lille, Lille, France
| | - Marie Wislez
- Pneumology Department, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Cordeliers Research Center, Université Paris Descartes, Université de Paris, UMRS1138 Inflammation, Complement and Cancer Team, Paris, France
| | - Nadia Nathan
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale/UMRS_933, Trousseau University Hospital, Paris, France
- Pediatric Pulmonology Department and Reference Center for Rare Lung Disease RespiRare, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Yanick J. Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| |
Collapse
|
540
|
Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020; 202:193-209. [PMID: 32978971 PMCID: PMC7537271 DOI: 10.1111/cei.13523] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immune sensing of viral molecular patterns is essential for development of antiviral responses. Like many viruses, SARS-CoV-2 has evolved strategies to circumvent innate immune detection, including low cytosine-phosphate-guanosine (CpG) levels in the genome, glycosylation to shield essential elements including the receptor-binding domain, RNA shielding and generation of viral proteins that actively impede anti-viral interferon responses. Together these strategies allow widespread infection and increased viral load. Despite the efforts of immune subversion, SARS-CoV-2 infection activates innate immune pathways inducing a robust type I/III interferon response, production of proinflammatory cytokines and recruitment of neutrophils and myeloid cells. This may induce hyperinflammation or, alternatively, effectively recruit adaptive immune responses that help clear the infection and prevent reinfection. The dysregulation of the renin-angiotensin system due to down-regulation of angiotensin-converting enzyme 2, the receptor for SARS-CoV-2, together with the activation of type I/III interferon response, and inflammasome response converge to promote free radical production and oxidative stress. This exacerbates tissue damage in the respiratory system, but also leads to widespread activation of coagulation pathways leading to thrombosis. Here, we review the current knowledge of the role of the innate immune response following SARS-CoV-2 infection, much of which is based on the knowledge from SARS-CoV and other coronaviruses. Understanding how the virus subverts the initial immune response and how an aberrant innate immune response contributes to the respiratory and vascular damage in COVID-19 may help to explain factors that contribute to the variety of clinical manifestations and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- S. Amor
- Pathology DepartmentVUMC, Amsterdam UMCAmsterdamthe Netherlands
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | | | - D. Baker
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| |
Collapse
|
541
|
Liu K, Lan Y, Li X, Li M, Cui L, Luo H, Luo L. Development of small molecule inhibitors/agonists targeting STING for disease. Biomed Pharmacother 2020; 132:110945. [PMID: 33254439 DOI: 10.1016/j.biopha.2020.110945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) -stimulator of interferon genes (STING) signaling pathway is the primary immune response pathway in the cytoplasm. Pharmacological regulation of the STING pathway has good characteristics in both structure and function, which plays a significant role in the immunotherapy of autoimmune diseases, autoinflammatory diseases, and cancer. In this review, we summarized the activation of STING signaling pathway, the STING-related diseases, the development principle and the latest progress of inhibitors and agonists targeting STING. Our review demonstrates that STING signal pathway is a promising drug target, providing effective clues and correct guidance for the discovery of novel small molecule inhibitors/agonists that targeted STING for cancer, autoimmune, and inflammatory diseases.
Collapse
Affiliation(s)
- Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Yongqi Lan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoling Li
- Animal Experiment Center of Guangdong Medical University, Zhanjiang, 524023, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
542
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
543
|
Latour-Álvarez I, Torrelo A. Cutaneous clues to diagnose autoinflammatory diseases. GIORN ITAL DERMAT V 2020; 155:551-566. [PMID: 33070568 DOI: 10.23736/s0392-0488.20.06652-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoinflammatory diseases (AIDs) are a group of disorders characterized by recurrent episodes of systemic inflammation. Suspecting the diagnosis can be difficult and many of the clinical manifestations are common to different diseases. Although most of the cutaneous manifestations are non-specific, it is important to know them because sometimes they can lead to the diagnosis. The purpose of this review was to synthesize the main cutaneous lesions of autoinflammatory diseases to aid in their diagnosis.
Collapse
Affiliation(s)
| | - Antonio Torrelo
- Department of Dermatology, Niño Jesús University Hospital, Madrid, Spain -
| |
Collapse
|
544
|
Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy. J Clin Med 2020; 9:E3323. [PMID: 33081170 PMCID: PMC7602874 DOI: 10.3390/jcm9103323] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer therapy. However, they have been effective in only a small subset of patients and a principal mechanism underlying immune-refractoriness is a 'cold' tumour microenvironment, that is, lack of a T-cell-rich, spontaneously inflamed phenotype. As such, there is a demand to develop strategies to transform the tumour milieu of non-responsive patients to one supporting T-cell-based inflammation. The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway is a fundamental regulator of innate immune sensing of cancer, with potential to enhance tumour rejection through the induction of a pro-inflammatory response dominated by Type I interferons. Recognition of these positive immune-modulatory properties has rapidly elevated the STING pathway as a putative target for immunotherapy, leading to a myriad of preclinical and clinical studies assessing natural and synthetic cyclic dinucleotides and non-nucleotidyl STING agonists. Despite pre-clinical evidence of efficacy, clinical translation has resulted into disappointingly modest efficacy. Poor pharmacokinetic and physiochemical properties of cyclic dinucleotides are key barriers to the development of STING agonists, most of which require intra-tumoral dosing. Development of systemically administered non-nucleotidyl STING agonists, or conjugation with liposomes, polymers and hydrogels may overcome pharmacokinetic limitations and improve drug delivery. In this review, we summarise the body of evidence supporting a synergistic role of STING agonists with currently approved ICI therapies and discuss whether, despite the numerous obstacles encountered to date, the clinical development of STING agonist as novel anti-cancer therapeutics may still hold the promise of broadening the reach of cancer immunotherapy.
Collapse
Affiliation(s)
- Leila Motedayen Aval
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W120HS, UK; (L.M.A.); (R.S.)
| | - James E. Pease
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK;
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W120HS, UK; (L.M.A.); (R.S.)
| | - David J. Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W120HS, UK; (L.M.A.); (R.S.)
| |
Collapse
|
545
|
Martín-Nalda A, Fortuny C, Rey L, Bunney TD, Alsina L, Esteve-Solé A, Bull D, Anton MC, Basagaña M, Casals F, Deyá A, García-Prat M, Gimeno R, Juan M, Martinez-Banaclocha H, Martinez-Garcia JJ, Mensa-Vilaró A, Rabionet R, Martin-Begue N, Rudilla F, Yagüe J, Estivill X, García-Patos V, Pujol RM, Soler-Palacín P, Katan M, Pelegrín P, Colobran R, Vicente A, Arostegui JI. Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. J Clin Immunol 2020; 40:987-1000. [PMID: 32671674 PMCID: PMC7505877 DOI: 10.1007/s10875-020-00794-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 01/28/2023]
Abstract
Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.
Collapse
Affiliation(s)
- Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Claudia Fortuny
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Pediatrics, Hospital Sant Joan de Deu, Esplugues, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Lourdes Rey
- Department of Pediatrics, Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laia Alsina
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Ana Esteve-Solé
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Daniel Bull
- ARUK Drug Discovery Institute, University College London, London, UK
| | - Maria Carmen Anton
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - María Basagaña
- Allergy Section, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Casals
- Genomics Core Facility, Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Angela Deyá
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Ramon Gimeno
- Department of Immunology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Manel Juan
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Helios Martinez-Banaclocha
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Juan J Martinez-Garcia
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Anna Mensa-Vilaró
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRJSD, CIBERER, Barcelona, Spain
| | - Nieves Martin-Begue
- Department of Pediatric Ophthalmology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francesc Rudilla
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Estivill
- Quantitative Genomic Medicine Laboratories (qGenomics), Esplugues del Llobregat, Barcelona, Catalonia, Spain
| | - Vicente García-Patos
- Department of Pediatric Dermatology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Matilda Katan
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Asun Vicente
- Department of Pediatric Dermatology, Hospital Sant Joan de Deu, Esplugues, Spain
| | - Juan I Arostegui
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
546
|
Tian M, Liu W, Zhang Q, Huang Y, Li W, Wang W, Zhao P, Huang S, Song Y, Shereen MA, Qin M, Liu Y, Wu K, Wu J. MYSM1 Represses Innate Immunity and Autoimmunity through Suppressing the cGAS-STING Pathway. Cell Rep 2020; 33:108297. [PMID: 33086059 DOI: 10.1016/j.celrep.2020.108297] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation. MYSM1 subsequently interacts with STING and cleaves STING K63-linked ubiquitination to suppress cGAS-STING signaling. Notably, Mysm1-deficient mice exhibit a hyper-inflammatory response, acute tissue damage, and high mortality upon virus infection. Moreover, in the PBMCs of patients with systemic lupus erythematosus (SLE), MYSM1 production decreases, while type I interferons and pro-inflammatory cytokine expressions increase. Importantly, MYSM1 treatment represses the production of IFNs and pro-inflammatory cytokines in the PBMCs of SLE patients. Thus, MYSM1 is a critical repressor of innate immunity and autoimmunity and is thus a potential therapeutic agent for infectious, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenbiao Wang
- Guangzhou Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Peiyi Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shanyu Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunting Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengying Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Guangzhou Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
547
|
Tang CHA, Lee AC, Chang S, Xu Q, Shao A, Lo Y, Spalek WT, Pinilla-Ibarz JA, Del Valle JR, Hu CCA. STING regulates BCR signaling in normal and malignant B cells. Cell Mol Immunol 2020; 18:1016-1031. [PMID: 32999453 PMCID: PMC8115116 DOI: 10.1038/s41423-020-00552-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
STING is an endoplasmic reticulum (ER)-resident protein critical for sensing cytoplasmic DNA and promoting the production of type I interferons; however, the role of STING in B cell receptor (BCR) signaling remains unclear. We generated STING V154M knock-in mice and showed that B cells carrying constitutively activated STING specifically degraded membrane-bound IgM, Igα, and Igβ via SEL1L/HRD1-mediated ER-associated degradation (ERAD). B cells with activated STING were thus less capable of responding to BCR activation by phosphorylating Igα and Syk than those without activated STING. When immunized with T-independent antigens, STING V154M mice produced significantly fewer antigen-specific plasma cells and antibodies than immunized wild-type (WT) mice. We further generated B cell-specific STINGKO mice and showed that STINGKO B cells indeed responded to activation by transducing stronger BCR signals than their STING-proficient counterparts. When B cell-specific STINGKO mice were T-independently immunized, they produced significantly more antigen-specific plasma cells and antibodies than immunized STINGWT mice. Since both human and mouse IGHV-unmutated malignant chronic lymphocytic leukemia (CLL) cells downregulated the expression of STING, we explored whether STING downregulation could contribute to the well-established robust BCR signaling phenotype in malignant CLL cells. We generated a STING-deficient CLL mouse model and showed that STING-deficient CLL cells were indeed more responsive to BCR activation than their STING-proficient counterparts. These results revealed a novel B cell-intrinsic role of STING in negatively regulating BCR signaling in both normal and malignant B cells.
Collapse
Affiliation(s)
| | - Avery C Lee
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Shiun Chang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Qin Xu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Andong Shao
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Yun Lo
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Walker T Spalek
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Javier A Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | |
Collapse
|
548
|
Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol 2020; 11:2064. [PMID: 33133062 PMCID: PMC7550420 DOI: 10.3389/fimmu.2020.02064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
To effectively defend against microbial pathogens, the host cells mount antiviral innate immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal endogenous DNAs, the DNA sensor cGAS synthesizes 2',3'-cGAMP that induces STING (stimulator of interferon genes) undergoing conformational changes, cellular trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal role in preventing microbial pathogen infection by sensing DNAs during pathogen invasion. This review is dedicated to the recent advances in the dynamic regulations of STING activation, intracellular trafficking, and post-translational modifications (PTMs) by the host and microbial proteins.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| |
Collapse
|
549
|
Staels F, Betrains A, Doubel P, Willemsen M, Cleemput V, Vanderschueren S, Corveleyn A, Meyts I, Sprangers B, Crow YJ, Humblet-Baron S, Liston A, Schrijvers R. Adult-Onset ANCA-Associated Vasculitis in SAVI: Extension of the Phenotypic Spectrum, Case Report and Review of the Literature. Front Immunol 2020; 11:575219. [PMID: 33133092 PMCID: PMC7550674 DOI: 10.3389/fimmu.2020.575219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 01/30/2023] Open
Abstract
STING-associated vasculopathy with onset in infancy (SAVI) is an autosomal dominant disorder due to gain-of-function mutations in STING1, also known as TMEM173, encoding for STING. It was reported as a vasculopathy of infancy. However, since its description a wider spectrum of associated manifestations and disease-onset has been observed. We report a kindred with a heterozygous STING mutation (p.V155M) in which the 19-year-old proband suffered from isolated adult-onset ANCA-associated vasculitis. His father suffered from childhood-onset pulmonary fibrosis and renal failure attributed to ANCA-associated vasculitis, and died at the age of 30 years due to respiratory failure. In addition, an overview of the phenotypic spectrum of SAVI is provided highlighting (a) a high phenotypic variability with in some cases isolated manifestations, (b) the potential of adult-onset disease, and (c) a novel manifestation with ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, KU Leuven, Leuven, Belgium
| | - Albrecht Betrains
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Peter Doubel
- Department of Nephrology, AZ Groeninge, Kortrijk, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Vincent Cleemput
- Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Steven Vanderschueren
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Yanick J Crow
- Centre for Genomic Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Laboratory of Neurogenetics and Neuroinflammation, Université de Paris, Paris, France
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
550
|
STING-Mediated Autophagy Is Protective against H 2O 2-Induced Cell Death. Int J Mol Sci 2020; 21:ijms21197059. [PMID: 32992769 PMCID: PMC7582849 DOI: 10.3390/ijms21197059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Stimulator of interferon genes (STING)-mediated type-I interferon signaling is a well characterized instigator of the innate immune response following bacterial or viral infections in the periphery. Emerging evidence has recently linked STING to various neuropathological conditions, however, both protective and deleterious effects of the pathway have been reported. Elevated oxidative stress, such as neuroinflammation, is a feature of a number of neuropathologies, therefore, this study investigated the role of the STING pathway in cell death induced by elevated oxidative stress. Here, we report that the H2O2-induced activation of the STING pathway is protective against cell death in wildtype (WT) MEFSV40 cells as compared to STING−/− MEF SV40 cells. This protective effect of STING can be attributed, in part, to an increase in autophagy flux with an increased LC3II/I ratio identified in H2O2-treated WT cells as compared to STING−/− cells. STING−/− cells also exhibited impaired autophagic flux as indicated by p62, LC3-II and LAMP2 accumulation following H2O2 treatment, suggestive of an impairment at the autophagosome-lysosomal fusion step. This indicates a previously unrecognized role for STING in maintaining efficient autophagy flux and protecting against H2O2-induced cell death. This finding supports a multifaceted role for the STING pathway in the underlying cellular mechanisms contributing to the pathogenesis of neurological disorders.
Collapse
|