551
|
Jin J, Li GJ, Davis J, Zhu D, Wang Y, Pan C, Zhang J. Identification of Novel Proteins Associated with Both α-Synuclein and DJ-1. Mol Cell Proteomics 2007; 6:845-59. [PMID: 16854843 DOI: 10.1074/mcp.m600182-mcp200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms leading to neurodegeneration in Parkinson disease (PD) remain elusive, although many lines of evidence have indicated that alpha-synuclein and DJ-1, two critical proteins in PD pathogenesis, interact with each other functionally. The investigation on whether alpha-synuclein directly interacts with DJ-1 has been controversial. In the current study, we analyzed proteins associated with alpha-synuclein and/or DJ-1 with a robust proteomics technique called stable isotope labeling by amino acids in cell culture (SILAC) in dopaminergic MES cells exposed to rotenone versus controls. We identified 324 and 306 proteins in the alpha-synuclein- and DJ-1-associated protein complexes, respectively. Among alpha-synuclein-associated proteins, 141 proteins displayed significant changes in the relative abundance (increase or decrease) after rotenone treatment; among DJ-1-associated proteins, 119 proteins displayed significant changes in the relative abundance after rotenone treatment. Although no direct interaction was observed between alpha-synuclein and DJ-1, whether analyzed by affinity purification followed by mass spectrometry or subsequent direct co-immunoprecipitation, 144 proteins were seen in association with both alpha-synuclein and DJ-1. Of those, 114 proteins displayed significant changes in the relative abundance in the complexes associated with alpha-synuclein, DJ-1, or both after rotenone treatment. A subset of these proteins (mortalin, nucleolin, grp94, calnexin, and clathrin) was further validated for their association with both alpha-synuclein and DJ-1 using confocal microscopy, Western blot, and/or immunoprecipitation. Thus, we not only confirmed that there was no direct interaction between alpha-synuclein and DJ-1 but also, for the first time, report these five novel proteins to be associating with both alpha-synuclein and DJ-1. Further characterization of these docking proteins will likely shed more light on the mechanisms by which DJ-1 modulates the function of alpha-synuclein, and vice versa, in the setting of PD.
Collapse
Affiliation(s)
- Jinghua Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | | | | | | | | | | | | |
Collapse
|
552
|
Okada T, You L, Giancotti FG. Shedding light on Merlin's wizardry. Trends Cell Biol 2007; 17:222-9. [PMID: 17442573 DOI: 10.1016/j.tcb.2007.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/14/2007] [Accepted: 03/23/2007] [Indexed: 12/21/2022]
Abstract
Inactivation of the tumor suppressor Merlin, encoded by the NF2 (Neurofibromatosis type 2) gene, contributes to malignant conversion in many cell types. Merlin is an Ezrin-Radixin-Moesin protein and localizes underneath the plasma membrane at cell-cell junctions and other actin-rich sites. Recent studies indicate that Merlin mediates contact inhibition of proliferation by blocking recruitment of Rac to the plasma membrane. In mitogen-stimulated cells, p21-activated kinase phosphorylates Ser518 in the C-terminus of Merlin, inactivating the growth suppressive function of the protein. Furthermore, the myosin phosphatase MYPT1-PP1delta, has been identified as a direct activator of Merlin and its inhibition has been linked to malignant transformation. Finally, studies in the fruit fly Drosophila melanogaster have revealed that Merlin functions together with the band 4.1 protein Expanded to promote [corrected] the endocytosis of many signaling receptors, limiting [corrected] their accumulation at the plasma membrane, and to activate [corrected] the Hippo signaling pathway. Here, we review these recent findings and their relevance to the tumor suppressor function of Merlin.
Collapse
Affiliation(s)
- Tomoyo Okada
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
553
|
Claudinon J, Monier MN, Lamaze C. Interfering with interferon receptor sorting and trafficking: impact on signaling. Biochimie 2007; 89:735-43. [PMID: 17493737 DOI: 10.1016/j.biochi.2007.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
Interferons (IFNs) and their receptors (IFN-Rs) play fundamental roles in a multitude of biological functions. Many articles and reviews emphasize that the JAK/STAT machinery is obligatory for relay of the information transmitted by IFNs after binding to their cognate receptors at the plasma membrane. In contrast, very few studies have addressed the endocytosis and the intracellular trafficking of IFN-Rs, the immediate step following IFN binding. However, recent findings have shed light on the importance of IFN-R sorting and trafficking in the control of IFN signaling. Thus, IFN-Rs can be included in the growing family of signaling receptors for which regulation of biological activity critically involves endocytosis and trafficking.
Collapse
Affiliation(s)
- Julie Claudinon
- Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
554
|
Abstract
Cloned 20 years ago, stem cell antigen-1 (Sca-1) is used extensively to enrich for murine hematopoietic stem cells. The realization that many different stem cell types share conserved biochemical pathways has led to a flood of recent research using Sca-1 as a candidate marker in the search for tissue-resident and cancer stem cells. Although surprisingly little is still known about its biochemical function, the generation and analysis of knockout mice has begun to shed light on the functions of Sca-1 in stem and progenitor cells, demonstrating that it is more than a convenient marker for stem cell biologists. This review summarizes the plethora of recent findings utilizing Sca-1 as a parenchymal stem cell marker and detailing its functional role in stem and progenitor cells and also attempts to explain the lingering mysteries surrounding its biochemical function and human ortholog. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Christina Holmes
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada
| | | |
Collapse
|
555
|
Abstract
One of the challenges of modern biology is to understand how cells within a developing organism generate, integrate, and respond to dynamic informational cues. Based on over two decades of intensive research, many parts and subroutines of the responsible signal transduction networks have been identified and functionally characterized. From this work, it has become evident that a complicated interplay between signaling pathways, involving extensive feedback regulation and multiple levels of cross-talk, underlies even the "simplest" developmental decision. Thus a signaling pathway can no longer be thought of as a rigid linear process, but rather must be considered a dynamic, self-interacting, and self-adjusting network. The Epidermal Growth Factor Receptor tyrosine kinase signaling pathway provides a prime vantage point from which to explore emerging principles in developmental signal transduction.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
556
|
Hara T, Honda K, Shitashige M, Ono M, Matsuyama H, Naito K, Hirohashi S, Yamada T. Mass Spectrometry Analysis of the Native Protein Complex Containing Actinin-4 in Prostate Cancer Cells. Mol Cell Proteomics 2007; 6:479-91. [PMID: 17151021 DOI: 10.1074/mcp.m600129-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actinin-4 was originally identified as an actin-binding protein associated with cell motility and cancer invasion and metastasis. However, actinin-4 forms complexes with a large number of different partner proteins and is speculated to have several distinct functions depending on its partner. The level of actinin-4 expression was found to be significantly lower in prostate cancer cells than in non-cancerous basal cells, and restoration of actinin-4 expression inhibited cell proliferation by prostate cancer cell line 22RV1. Immunoprecipitation and mass spectrometry analysis revealed that actinin-4 forms native complexes with several partner proteins in 22RV1 cells, including with beta/gamma-actin, calmodulin, the clathrin heavy chain, non-muscular myosin heavy chain, heterogeneous nuclear ribonucleoprotein A1, and Ras-GTPase-activating protein SH3 domain-binding protein. Clathrin is a coat protein that covers the internalized membrane pit that forms during early endocytosis. We found that other clathrin-related and unrelated cargo proteins, including dynamin, adaptin-delta, beta subunit of neuronal adaptin-like protein, and p47A, also interact with actinin-4. Immunofluorescence microscopy revealed that dynamin and clathrin co-localized with actinin-4 at the sites of membrane ruffling, and transfection of actinin-4 cDNA facilitated the transport of transferrin into perinuclear endosomes. Endocytosis terminates signaling evoked by cell surface receptors and regulates the recycling of receptors and ligands. We identified a panel of proteins whose expression and/or subcellular localization was regulated by actinin-4 by performing organelle fractionation and ICAT-LC-MS/MS. The decreased expression of actinin-4 protein in prostate cancer cells may cause aberrations in the intracellular trafficking of various cell surface molecules and contribute to carcinogenesis.
Collapse
Affiliation(s)
- Tomohiko Hara
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
557
|
Santos SCR, Miguel C, Domingues I, Calado A, Zhu Z, Wu Y, Dias S. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing. Exp Cell Res 2007; 313:1561-74. [PMID: 17382929 DOI: 10.1016/j.yexcr.2007.02.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 09/20/2006] [Accepted: 02/05/2007] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF+KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Susana Constantino Rosa Santos
- Angiogenesis Laboratory, Centro de Investigação em Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil-CROL, SA, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
558
|
Ma X, Wang Q, Jiang Y, Xiao Z, Fang X, Chen YG. Lateral diffusion of TGF-beta type I receptor studied by single-molecule imaging. Biochem Biophys Res Commun 2007; 356:67-71. [PMID: 17346672 DOI: 10.1016/j.bbrc.2007.02.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
In this report, we investigated the lateral diffusion of transforming growth factor beta (TGF-beta) type I receptor (TbetaRI) in living cells by imaging and tracking individual green fluorescent protein tagged TbetaRI on the cell membrane. We found that when co-expressed with TGF-beta type II receptor (TbetaRII), the mobility of TbetaRI decreased significantly after TGF-beta1 stimulation. However, in the cells that had been depleted of cholesterol with Nystatin or methyl-beta-cyclodextrin, the diffusion rate of TbetaRI was not changed by TGF-beta1 treatment. Our observations suggest that membrane lipid-rafts provide an environment that facilitates the association of TbetaRI and TbetaRII for cell signaling.
Collapse
Affiliation(s)
- Xinyong Ma
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
559
|
Tanos BE, Pendergast AM. Abi-1 forms an epidermal growth factor-inducible complex with Cbl: role in receptor endocytosis. Cell Signal 2007; 19:1602-9. [PMID: 17395426 PMCID: PMC2703420 DOI: 10.1016/j.cellsig.2007.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 01/14/2023]
Abstract
The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.
Collapse
Affiliation(s)
| | - Ann Marie Pendergast
- To whom correspondence should be addressed: Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, NC, 27710, USA. Phone: (919) 681-8086, Fax: (919) 681-7148, E-mail:
| |
Collapse
|
560
|
de Souza N, Vallier LG, Fares H, Greenwald I. SEL-2, theC. elegansneurobeachin/LRBA homolog, is a negative regulator oflin-12/Notchactivity and affects endosomal traffic in polarized epithelial cells. Development 2007; 134:691-702. [PMID: 17215302 DOI: 10.1242/dev.02767] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vulval precursor cells (VPCs) of Caenorhabditis elegans are polarized epithelial cells that adopt a precise pattern of fates through regulated activity of basolateral LET-23/EGF receptor and apical LIN-12/Notch. During VPC patterning, there is reciprocal modulation of endocytosis and trafficking of both LET-23 and LIN-12. We identified sel-2 as a negative regulator of lin-12/Notch activity in the VPCs, and found that SEL-2 is the homolog of two closely related human proteins, neurobeachin(also known as BCL8B) and LPS-responsive, beige-like anchor protein (LRBA). SEL-2, neurobeachin and LRBA belong to a distinct subfamily of BEACH-WD40 domain-containing proteins. Loss of sel-2 activity leads to basolateral mislocalization and increased accumulation of LIN-12 in VPCs in which LET-23 is not active, and to impaired downregulation of basolateral LET-23 in VPCs in which LIN-12 is active. Downregulation of apical LIN-12 in the VPC in which LET-23 is active is not affected. In addition, in sel-2 mutants, the polarized cells of the intestinal epithelium display an aberrant accumulation of the lipophilic dye FM4-64 when the dye is presented to the basolateral surface. Our observations indicate that SEL-2/neurobeachin/LRBA is involved in endosomal traffic and may be involved in efficient delivery of cell surface proteins to the lysosome. Our results also suggest that sel-2 activity may contribute to the appropriate steady-state level of LIN-12 or to trafficking events that affect receptor activation.
Collapse
Affiliation(s)
- Natalie de Souza
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, 701 W. 168th Street, Hammer Health Sciences, New York, NY 10032, USA
| | | | | | | |
Collapse
|
561
|
Wake H, Watanabe M, Moorhouse AJ, Kanematsu T, Horibe S, Matsukawa N, Asai K, Ojika K, Hirata M, Nabekura J. Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. J Neurosci 2007; 27:1642-50. [PMID: 17301172 PMCID: PMC6673731 DOI: 10.1523/jneurosci.3104-06.2007] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 01/26/2023] Open
Abstract
The K+ Cl- cotransporter KCC2 plays an important role in chloride homeostasis and in neuronal responses mediated by ionotropic GABA and glycine receptors. The expression levels of KCC2 in neurons determine whether neurotransmitter responses are inhibitory or excitatory. KCC2 expression is decreased in developing neurons, as well as in response to various models of neuronal injury and epilepsy. We investigated whether there is also direct modulation of KCC2 activity by changes in phosphorylation during such neuronal stressors. We examined tyrosine phosphorylation of KCC2 in rat hippocampal neurons under different conditions of in vitro neuronal stress and the functional consequences of changes in tyrosine phosphorylation. Oxidative stress (H2O2) and the induction of seizure activity (BDNF) and hyperexcitability (0 Mg2+) resulted in a rapid dephosphorylation of KCC2 that preceded the decreases in KCC2 protein or mRNA expression. Dephosphorylation of KCC2 is correlated with a reduction of transport activity and a decrease in [Cl-]i, as well as a reduction in KCC2 surface expression. Manipulation of KCC2 tyrosine phosphorylation resulted in altered neuronal viability in response to in vitro oxidative stress. During continued neuronal stress, a second phase of functional KCC2 downregulation occurs that corresponds to decreases in KCC2 protein expression levels. We propose that neuronal stress induces a rapid loss of tyrosine phosphorylation of KCC2 that results in translocation of the protein and functional loss of transport activity. Additional understanding of the mechanisms involved may provide means for manipulating the extent of irreversible injury resulting from different neuronal stressors.
Collapse
Affiliation(s)
- Hiroaki Wake
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Miho Watanabe
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
| | - Andrew J. Moorhouse
- Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Takashi Kanematsu
- Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoko Horibe
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Hayama 240-0193, Japan, and
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kiyofumi Asai
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kosei Ojika
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masato Hirata
- Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Hayama 240-0193, Japan, and
- Core Research for the Evolutionary Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| |
Collapse
|
562
|
Bari M, Spagnuolo P, Fezza F, Oddi S, Pasquariello N, Finazzi-Agrò A, Maccarrone M. Effect of lipid rafts on Cb2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:4971-80. [PMID: 17015679 DOI: 10.4049/jimmunol.177.8.4971] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we have shown that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding of anandamide (AEA) to type-1 cannabinoid receptors (CB1R), followed by CB1R-dependent signaling via adenylate cyclase and p42/p44 MAPK activity. In the present study, we investigated whether type-2 cannabinoid receptors (CB2R), widely expressed in immune cells, also are modulated by MCD. We show that treatment of human DAUDI leukemia cells with MCD does not affect AEA binding to CB2R, and that receptor activation triggers similar [35S]guanosine-5'-O-(3-thiotriphosphate) binding in MCD-treated and control cells, similar adenylate cyclase and MAPK activity, and similar MAPK-dependent protection against apoptosis. The other AEA-binding receptor transient receptor potential channel vanilloid receptor subunit 1, the AEA synthetase N-acyl-phosphatidylethanolamine-phospholipase D, and the AEA hydrolase fatty acid amide hydrolase were not affected by MCD, whereas the AEA membrane transporter was inhibited (approximately 55%) compared with controls. Furthermore, neither diacylglycerol lipase nor monoacylglycerol lipase, which respectively synthesize and degrade 2-arachidonoylglycerol, were affected by MCD in DAUDI or C6 cells, whereas the transport of 2-arachidonoylglycerol was reduced to approximately 50%. Instead, membrane cholesterol enrichment almost doubled the uptake of AEA and 2-arachidonoylglycerol in both cell types. Finally, transfection experiments with human U937 immune cells, and the use of primary cells expressing CB1R or CB2R, ruled out that the cellular environment could account per se for the different modulation of CB receptor subtypes by MCD. In conclusion, the present data demonstrate that lipid rafts control CB1R, but not CB2R, and endocannabinoid transport in immune and neuronal cells.
Collapse
Affiliation(s)
- Monica Bari
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
563
|
Abstract
Bluetongue virus (BTV) is a member of the Orbivirus genus within the Reoviridae family. Like those of other members of the family, BTV particles are nonenveloped and contain two distinct capsids, namely, an outer capsid and an inner capsid or core. The two outer capsid proteins, VP2 and VP5, are involved in BTV entry into cells and in the delivery of the transcriptionally active core to the target cell cytoplasm. However, very little is known about the precise mechanism of BTV entry. In this report, using RNA interference, we demonstrate that inhibition of the clathrin-dependent endocytic pathway correlates with reduced BTV internalization and subsequent replication. Furthermore, by using the ATPase inhibitor bafilomycin A1, we show that exposure of the virus to acidic pH is required for productive infection. Moreover, microscopic analysis of cells incubated with BTV indicated that the virus is internalized into early endosomes, where separation of the outer capsid and inner core occurs. Together, our data indicate that BTV undergoes low-pH-induced penetration in early endosomes following clathrin-mediated endocytosis from the plasma membrane, supporting a stepwise model for BTV entry and penetration.
Collapse
Affiliation(s)
- Mario Forzan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 7HT, United Kingdom
| | | | | |
Collapse
|
564
|
Satow R, Kurisaki A, Chan TC, Hamazaki TS, Asashima M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev Cell 2007; 11:763-74. [PMID: 17141153 DOI: 10.1016/j.devcel.2006.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/20/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate multiple biological processes, including cellular proliferation, adhesion, differentiation, and early development. In Xenopus development, inhibition of the BMP pathway is essential for neural induction. Here, we report that dullard, a gene involved in neural development, functions as a negative regulator of BMP signaling. We show that Dullard promotes the ubiquitin-mediated proteosomal degradation of BMP receptors (BMPRs). Dullard preferentially complexes with the BMP type II receptor (BMPRII) and partially colocalizes with the caveolin-1-positive compartment, suggesting that Dullard promotes BMPR degradation via the lipid raft-caveolar pathway. Dullard also associates with BMP type I receptors and represses the BMP-dependent phosphorylation of the BMP type I receptor. The phosphatase activity of Dullard is essential for the degradation of BMP receptors and neural induction in Xenopus. Together, these observations suggest that Dullard is an essential inhibitor of BMP receptor activation during Xenopus neuralization.
Collapse
Affiliation(s)
- Reiko Satow
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | | | | | |
Collapse
|
565
|
Marhaba R, Freyschmidt-Paul P, Zöller M. In vivo CD44-CD49d complex formation in autoimmune disease has consequences on T cell activation and apoptosis resistance. Eur J Immunol 2007; 36:3017-32. [PMID: 17039568 DOI: 10.1002/eji.200636158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD44 is involved in leukocyte migration and activation and has recently been reported to contribute to leukocyte extravasation by associating with CD49d. We explored whether similar changes in CD44 activity are seen in vivo using murine alopecia areata (AA) as a chronic, organ-related autoimmune disease model system. Expression of the activated, hyaluronan-binding form of CD44, and of CD49d, was elevated in draining lymph node cells (LNC) of AA-affected mice as compared to control mice. LNC of AA mice displayed increased motility, proliferative activity and apoptosis resistance, which were equally well inhibited by anti-CD44 and anti-CD49d. The latter is the sequelae of the association between CD44 and CD49d that is seen in activated lymphocytes. Significantly, due to CD44-CD49d complex formation, CD44 gains access to focal adhesion kinase and CD49d gains access to CD44-associated lck and ezrin, such that downstream kinases become activated via CD44 or CD49d engagement. Thus, by their association, CD44 and CD49d mutually avail themselves of the partner's signaling pathways and the ligand binding of each one triggers signaling pathways of both. This strongly influences the lymphocytes' activation state and function.
Collapse
Affiliation(s)
- Rachid Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg, Germany.
| | | | | |
Collapse
|
566
|
Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 2007; 52:445-59. [PMID: 17088211 PMCID: PMC1784006 DOI: 10.1016/j.neuron.2006.08.033] [Citation(s) in RCA: 598] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 04/13/2006] [Accepted: 08/18/2006] [Indexed: 11/15/2022]
Abstract
Arc/Arg3.1 is an immediate-early gene whose mRNA is rapidly transcribed and targeted to dendrites of neurons as they engage in information processing and storage. Moreover, Arc/Arg3.1 is known to be required for durable forms of synaptic plasticity and learning. Despite these intriguing links to plasticity, Arc/Arg3.1's molecular function remains enigmatic. Here, we demonstrate that Arc/Arg3.1 protein interacts with dynamin and specific isoforms of endophilin to enhance receptor endocytosis. Arc/Arg3.1 selectively modulates trafficking of AMPA-type glutamate receptors (AMPARs) in neurons by accelerating endocytosis and reducing surface expression. The Arc/Arg3.1-endocytosis pathway appears to regulate basal AMPAR levels since Arc/Arg3.1 KO neurons exhibit markedly reduced endocytosis and increased steady-state surface levels. These findings reveal a novel molecular pathway that is regulated by Arc/Arg3.1 and likely contributes to late-phase synaptic plasticity and memory consolidation.
Collapse
Affiliation(s)
- Shoaib Chowdhury
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason D. Shepherd
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroyuki Okuno
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory Lyford
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald S. Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892 USA
| | - Niels Plath
- Molecular Neurobiology, Dept. of Biology-Chemistry-Pharmacy, Freie Universität Berlin, 14195 Berlin
| | - Dietmar Kuhl
- Molecular Neurobiology, Dept. of Biology-Chemistry-Pharmacy, Freie Universität Berlin, 14195 Berlin
| | - Richard L. Huganir
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F. Worley
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
567
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
568
|
Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2006; 8:128-40. [PMID: 17195035 DOI: 10.1038/nrn2059] [Citation(s) in RCA: 637] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipid rafts are specialized structures on the plasma membrane that have an altered lipid composition as well as links to the cytoskeleton. It has been proposed that these structures are membrane domains in which neurotransmitter signalling might occur through a clustering of receptors and components of receptor-activated signalling cascades. The localization of these proteins in lipid rafts, which is affected by the cytoskeleton, also influences the potency and efficacy of neurotransmitter receptors and transporters. The effect of lipid rafts on neurotransmitter signalling has also been implicated in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- John A Allen
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
569
|
Fischer JA, Eun SH, Doolan BT. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu Rev Cell Dev Biol 2006; 22:181-206. [PMID: 16776558 DOI: 10.1146/annurev.cellbio.22.010605.093205] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocytosis and endosome trafficking regulate cell signaling in unexpected ways. Here we review the contribution that Drosophila research has made to this exciting field. In addition to attenuating signaling, endocytosis shapes morphogen gradients, activates ligands, and regulates spatially receptor activation within a single cell. Moreover, some receptors signal from within endosomes, and the ability of a specific type of endosome to form controls the ability of cells to signal. Experiments in Drosophila reveal that through regulation of a variety of cell signaling pathways, endocytosis controls cell patterning and cell fate.
Collapse
Affiliation(s)
- Janice A Fischer
- Institute for Cellular and Molecular Biology, Section of Molecular Cell and Development, University of Texas, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
570
|
Moncalián G, Cárdenes N, Deribe YL, Spínola-Amilibia M, Dikic I, Bravo J. Atypical Polyproline Recognition by the CMS N-terminal Src Homology 3 Domain. J Biol Chem 2006; 281:38845-53. [PMID: 17020880 DOI: 10.1074/jbc.m606411200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CIN85/CMS (human homologs of mouse SH3KBP1/CD2AP) family of endocytic adaptor proteins has the ability to engage multiple effectors and couple cargo trafficking with the cytoskeleton. CIN85 and CMS (Cas ligand with multiple Src homology 3 (SH3) domains) facilitate the formation of large multiprotein complexes required for an efficient internalization of cell surface receptors. It has recently been shown that c-Cbl/Cbl-b could mediate the formation of a ternary complex between one c-Cbl/Cbl-b molecule and two SH3 domains of CIN85, important for the ability of Cbl to promote epidermal growth factor receptor down-regulation. To further investigate whether multimerization is conserved within the family of adaptor proteins, we have solved the crystal structures of the CMS N-terminal SH3 domain-forming complexes with Cbl-b- and CD2-derived peptides. Together with biochemical evidence, the structures support the notion that, despite clear differences in the interaction surface, both Cbl-b and CD2 can mediate multimerization of N-terminal CMS SH3 domains. Detailed analyses on the interacting surfaces also provide the basis for a differential Cbl-b molecular recognition of CMS and CIN85.
Collapse
Affiliation(s)
- Gabriel Moncalián
- Signal Transduction Group, Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
571
|
Veldhoen S, Laufer SD, Trampe A, Restle T. Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res 2006; 34:6561-73. [PMID: 17135188 PMCID: PMC1747183 DOI: 10.1093/nar/gkl941] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have evolved as promising new tools to deliver nucleic acids into cells. So far, the majority of these delivery systems require a covalent linkage between carrier and cargo. To exploit the higher flexibility of a non-covalent strategy, we focused on the characterisation of a novel carrier peptide termed MPGα, which spontaneously forms complexes with nucleic acids. Using a luciferase-targeted small interfering RNA (siRNA) as cargo, we optimised the conditions for MPGα-mediated transfection of mammalian cells. In this system, reporter gene activity could be inhibited up to 90% with an IC50 value in the sub-nanomolar range. As a key issue, we addressed the cellular uptake mechanism of MPGα/siRNA complexes applying various approaches. First, transfection of HeLa cells with MPGα/siRNA complexes in the presence of several inhibitors of endocytosis showed a significant reduction of the RNA interference (RNAi) effect. Second, confocal laser microscopy revealed a punctual intracellular pattern rather than a diffuse distribution of fluorescently labelled RNA-cargo. These data provide strong evidence of an endocytotic pathway contributing significantly to the uptake of MPGα/siRNA complexes. Finally, we quantified the intracellular number of siRNA molecules after MPGα-mediated transfection. The amount of siRNA required to induce half maximal RNAi was 10 000 molecules per cell. Together, the combination of methods provided allows for a detailed side by side quantitative analysis of cargo internalisation and related biological effects. Thus, the overall efficiency of a given delivery technique as well as the mechanism of uptake can be assessed.
Collapse
Affiliation(s)
| | | | | | - Tobias Restle
- To whom correspondence should be addressed. Tel: +49 451 500 2745; Fax: +49 451 500 2729;
| |
Collapse
|
572
|
Gabriely G, Kama R, Gerst JE. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol Cell Biol 2006; 27:526-40. [PMID: 17101773 PMCID: PMC1800808 DOI: 10.1128/mcb.00577-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although COPI function on the early secretory pathway in eukaryotes is well established, earlier studies also proposed a nonconventional role for this coat complex in endocytosis in mammalian cells. Here we present results that suggest an involvement for specific COPI subunits in the late steps of endosomal protein sorting in Saccharomyces cerevisiae. First, we found that carboxypeptidase Y (CPY) was partially missorted to the cell surface in certain mutants of the COPIB subcomplex (COPIb; Sec27, Sec28, and possibly Sec33), which indicates an impairment in endosomal transport. Second, integral membrane proteins destined for the vacuolar lumen (i.e., carboxypeptidase S [CPS1]; Fur4, Ste2, and Ste3) accumulated at an aberrant late endosomal compartment in these mutants. The observed phenotypes for COPIb mutants resemble those of class E vacuolar protein sorting (vps) mutants that are impaired in multivesicular body (MVB) protein sorting and biogenesis. Third, we observed physical interactions and colocalization between COPIb subunits and an MVB-associated protein, Vps27. Together, our findings suggest that certain COPI subunits could have a direct role in vacuolar protein sorting to the MVB compartment.
Collapse
Affiliation(s)
- Galina Gabriely
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
573
|
Döring M, Loos A, Schrader N, Pfander B, Bauerfeind R. Nerve growth factor-induced phosphorylation of amphiphysin-1 by casein kinase 2 regulates clathrin-amphiphysin interactions. J Neurochem 2006; 98:2013-22. [PMID: 16945112 DOI: 10.1111/j.1471-4159.2006.04037.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphysins interact directly with clathrin and have a function in clathrin-mediated synaptic vesicle recycling and clathrin-mediated endocytosis. The neuronal isoform amphiphysin-1 is a serine/threonine phosphoprotein that is dephosphorylated upon stimulation of synaptic vesicle endocytosis. Rephosphorylation was stimulated by nerve growth factor. We analysed the regulation of amphiphysin-clathrin interactions by phosphorylation. The N-terminal domain of clathrin bound to unphosphorylated amphiphysin-1, but not to the phosphorylated protein. A search for possible phosphorylation sites revealed two casein kinase 2 consensus motifs in close proximity to the clathrin binding sites in amphiphysin-1 and -2. We mutagenized these residues (T350 and T387) to glutamate, mimicking a constitutive phosphorylation. The double mutant showed a strong reduction in clathrin binding. The assumption that casein kinase 2 phosphorylates amphiphysin-1 at T350 and T387 was corroborated by experiments showing that: (i) casein kinase 2 phosphorylated these residues directly in vitro, (ii) when expressed in HeLa cells, the glutamate mutant showed reduced phosphorylation, and (iii) casein kinase 2 inhibitors blocked nerve growth factor-induced phosphorylation of endogenous amphiphysin-1 in PC12 cells. These observations are consistent with the hypothesis that, upon activation by nerve growth factor, casein kinase 2 phosphorylates amphiphysin-1 and thereby regulates the endocytosis of clathrin-coated vesicles via the interaction between clathrin and amphiphysin.
Collapse
Affiliation(s)
- Markus Döring
- Department of Cell Biology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
574
|
Woo CH, Kim TH, Choi JA, Ryu HC, Lee JE, You HJ, Bae YS, Kim JH. Inhibition of receptor internalization attenuates the TNFalpha-induced ROS generation in non-phagocytic cells. Biochem Biophys Res Commun 2006; 351:972-8. [PMID: 17097052 DOI: 10.1016/j.bbrc.2006.10.154] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) are important regulatory molecules implicated in the signaling cascade triggered by tumor necrosis factor (TNF)alpha, although the events through which TNFalpha induces ROS generation are not well characterized. Here, we report that TNFalpha-induced ROS production was blocked by pretreatment with internalization inhibitor monodansyl cadaverine (MDC). Similarly, a transient expression of a GTP-binding and hydrolysis-defective dynamin mutant (dynamin(K44A)) that had been shown to be defective in internalization significantly attenuated the TNFalpha-induced intracellular ROS production. Importantly, the inhibition of receptor internalization suppressed TNFalpha signaling to mitogen-activated protein kinases (MAPKs) stimulation. Together, our results suggest that receptor internalization is somehow necessary for the TNFalpha-induced ROS generation and subsequent intracellular downstream signaling in non-phagocytes.
Collapse
Affiliation(s)
- Chang-Hoon Woo
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
575
|
Christensen U, Holm J, Hansen SI. Stopped-Flow Kinetic Studies of the Interaction of Bovine Folate Binding Protein (FBP) and Folate. Biosci Rep 2006; 26:291-9. [PMID: 17029005 DOI: 10.1007/s10540-006-9023-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The kinetics of the interaction of bovine folate binding protein and folate at pH 7.4 and 5.0 were followed by measuring the changes of the intrinsic protein fluorescence intensity using the stopped-flow technique, which enables the study of reactions from the millisecond time-range. Our results immediately reject a simple one-step binding model, which requires a linear dependence of the observed rate constant on the concentration of the ligand. Thus, we are able to conclude that at pH 5.0 the interaction occurs in two steps and at pH 7.4 in three steps. Changes of fluorescence spectra at equilibrium were used to estimate the overall binding constants. Comparative studies on the binding of folate to human albumin are also reported.
Collapse
Affiliation(s)
- Ulla Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, DK-2100, Denmark.
| | | | | |
Collapse
|
576
|
Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 2006; 80:9465-80. [PMID: 16973552 PMCID: PMC1617254 DOI: 10.1128/jvi.01049-06] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The budding of many enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), requires some of the same cellular machinery as vesicle formation at the multivesicular body (MVB). In Saccharomyces cerevisiae, the ESCRT-II complex performs a central role in MVB protein sorting and vesicle formation, as it is recruited by the upstream ESCRT-I complex and nucleates assembly of the downstream ESCRT-III complex. Here, we report that the three subunits of human ESCRT-II, EAP20, EAP30, and EAP45, have a number of properties in common with their yeast orthologs. Specifically, EAP45 bound ubiquitin via its N-terminal GRAM-like ubiquitin-binding in EAP45 (GLUE) domain, both EAP45 and EAP30 bound the C-terminal domain of TSG101/ESCRT-I, and EAP20 bound the N-terminal half of CHMP6/ESCRT-III. Consistent with its expected role in MVB vesicle formation, (i) human ESCRT-II localized to endosomal membranes in a VPS4-dependent fashion and (ii) depletion of EAP20/ESCRT-II and CHMP6/ESCRT-III inhibited lysosomal targeting and downregulation of the epidermal growth factor receptor, albeit to a lesser extent than depletion of TSG101/ESCRT-I. Nevertheless, HIV-1 release and infectivity were not reduced by efficient small interfering RNA depletion of EAP20/ESCRT-II or CHMP6/ESCRT-III. These observations indicate that there are probably multiple pathways for protein sorting/MVB vesicle formation in human cells and that HIV-1 does not utilize an ESCRT-II-dependent pathway to leave the cell.
Collapse
Affiliation(s)
- Charles Langelier
- Department of Biochemistry, 15 N. Medical Drive East, Room 4100, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Yamamoto H, Komekado H, Kikuchi A. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 2006; 11:213-23. [PMID: 16890161 DOI: 10.1016/j.devcel.2006.07.003] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 06/18/2006] [Accepted: 07/12/2006] [Indexed: 01/12/2023]
Abstract
beta-catenin-mediated Wnt signaling is critical in animal development and tumor progression. The single-span transmembrane Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6), interacts with Axin to promote the Wnt-dependent accumulation of beta-catenin. However, the molecular mechanism of receptor internalization and its impact on signaling are unclear. Here, we present evidence that LRP6 is internalized with caveolin and that the components of this endocytic pathway are required not only for Wnt-3a-induced internalization of LRP6 but also for accumulation of beta-catenin. Overall, our data suggest that Wnt-3a triggers the interaction of LRP6 with caveolin and promotes recruitment of Axin to LRP6 phosphorylated by glycogen synthase kinase-3beta and that caveolin thereby inhibits the binding of beta-catenin to Axin. Thus, caveolin plays critical roles in inducing the internalization of LRP6 and activating the Wnt/beta-catenin pathway. We also discuss the idea that distinct endocytic pathways correlate with the specificity of Wnt signaling events.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
578
|
Sturge J, Wienke D, Isacke CM. Endosomes generate localized Rho-ROCK-MLC2-based contractile signals via Endo180 to promote adhesion disassembly. ACTA ACUST UNITED AC 2006; 175:337-47. [PMID: 17043135 PMCID: PMC2064574 DOI: 10.1083/jcb.200602125] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regulated assembly and disassembly of focal adhesions and adherens junctions contributes to cell motility and tumor invasion. Pivotal in this process is phosphorylation of myosin light chain-2 (MLC2) by Rho kinase (ROCK) downstream of Rho activation, which generates the contractile force necessary to drive disassembly of epithelial cell–cell junctions and cell–matrix adhesions at the rear of migrating cells. How Rho–ROCK–MLC2 activation occurs at these distinct cellular locations is not known, but the emerging concept that endocytic dynamics can coordinate key intracellular signaling events provides vital clues. We report that endosomes containing the promigratory receptor Endo180 (CD280) can generate Rho–ROCK–MLC2–based contractile signals. Moreover, we provide evidence for a cellular mechanism in which Endo180-containing endosomes are spatially localized to facilitate their contractile signals directly at sites of adhesion turnover. We propose migration driven by Endo180 as a model for the spatial regulation of contractility and adhesion dynamics by endosomes.
Collapse
Affiliation(s)
- Justin Sturge
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, England, UK
| | | | | |
Collapse
|
579
|
Ohsawa Y, Hagiwara H, Nakatani M, Yasue A, Moriyama K, Murakami T, Tsuchida K, Noji S, Sunada Y. Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest 2006; 116:2924-34. [PMID: 17039257 PMCID: PMC1592547 DOI: 10.1172/jci28520] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/11/2006] [Indexed: 12/30/2022] Open
Abstract
Caveolin-3, the muscle-specific isoform of caveolins, plays important roles in signal transduction. Dominant-negative mutations of the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy 1C (LGMD1C) with loss of caveolin-3. However, identification of the precise molecular mechanism leading to muscular atrophy in caveolin-3-deficient muscle has remained elusive. Myostatin, a member of the muscle-specific TGF-beta superfamily, negatively regulates skeletal muscle volume. Here we report that caveolin-3 inhibited myostatin signaling by suppressing activation of its type I receptor; this was followed by hypophosphorylation of an intracellular effector, Mad homolog 2 (Smad2), and decreased downstream transcriptional activity. Loss of caveolin-3 in P104L mutant caveolin-3 transgenic mice caused muscular atrophy with increase in phosphorylated Smad2 (p-Smad2) as well as p21 (also known as Cdkn1a), a myostatin target gene. Introduction of the myostatin prodomain, an inhibitor of myostatin, by genetic crossing or intraperitoneal administration of the soluble type II myostatin receptor, another inhibitor, ameliorated muscular atrophy of the mutant caveolin-3 transgenic mice with suppression of p-Smad2 and p21 levels. These findings suggest that caveolin-3 normally suppresses the myostatin-mediated signal, thereby preventing muscular atrophy, and that hyperactivation of myostatin signaling participates in the pathogenesis of muscular atrophy in a mouse model of LGMD1C. Myostatin inhibition may be a promising therapy for LGMD1C patients.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Hiroki Hagiwara
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Masashi Nakatani
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Akihiro Yasue
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Keiji Moriyama
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Tatsufumi Murakami
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Kunihiro Tsuchida
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Sumihare Noji
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| | - Yoshihide Sunada
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan.
Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Department of Orthodontics, Faculty of Dentistry, and
Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
580
|
Sansom DM, Walker LSK. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006; 212:131-48. [PMID: 16903911 DOI: 10.1111/j.0105-2896.2006.00419.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The profound influence of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T-cell immunity has been known for over a decade, yet the precise roles played by these molecules still continue to emerge. Initially viewed as molecules that provide cell-intrinsic costimulatory and inhibitory signals, recent evidence suggests that both CD28 and CTLA-4 are also important in the homeostasis and function of a population of suppressive cells, termed regulatory T cells (Tregs). Here we review the main features of the CD28 and CTLA-4 system and examine how these impact upon Treg biology.
Collapse
Affiliation(s)
- David M Sansom
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, UK.
| | | |
Collapse
|
581
|
Chen ML, Ge Z, Fox JG, Schauer DB. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect Immun 2006; 74:6581-9. [PMID: 17015453 PMCID: PMC1698078 DOI: 10.1128/iai.00958-06] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human enterocolitis and is associated with postinfectious complications, including irritable bowel syndrome and Guillain-Barré syndrome. However, the pathogenesis of C. jejuni infection remains poorly understood. Paracellular pathways in intestinal epithelial cells are gated by intercellular junctions (tight junctions and adherens junctions), providing a functional barrier between luminal microbes and host immune cells in the lamina propria. Here we describe alterations in tight junctions in intestinal epithelial monolayers following C. jejuni infection. Apical infection of polarized T84 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TER). Immunofluorescence microscopy revealed a redistribution of the tight junctional transmembrane protein occludin from an intercellular to an intracellular location. Subcellular fractionation using equilibrium sucrose density gradients demonstrated decreased hyperphosphorylated occludin in lipid rafts, Triton X-100-soluble fractions, and the Triton X-100-insoluble pellet following apical infection. Apical infection with C. jejuni also caused rapid activation of NF-kappaB and AP-1, phosphorylation of extracellular signal-regulated kinase, Jun N-terminal protein kinase, and p38 mitogen-activated protein kinases, and basolateral secretion of the CXC chemokine interleukin-8 (IL-8). Basolateral infection with C. jejuni caused a more rapid decrease in TER, comparable redistribution of tight-junction proteins, and secretion of more IL-8 than that seen with apical infection. These results suggest that compromised barrier function and increased chemokine expression contribute to the pathogenesis of C. jejuni-induced enterocolitis.
Collapse
Affiliation(s)
- Ming L Chen
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg. 56-787, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
582
|
Puthenveedu MA, von Zastrow M. Cargo Regulates Clathrin-Coated Pit Dynamics. Cell 2006; 127:113-24. [PMID: 17018281 DOI: 10.1016/j.cell.2006.08.035] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/02/2006] [Accepted: 08/01/2006] [Indexed: 11/15/2022]
Abstract
Clathrin-coated pits (CCPs) are generally considered a uniform population of endocytic machines containing mixed constitutive and regulated membrane cargo. Contrary to this view, we show that regulated endocytosis of G protein-coupled receptors (GPCRs) occurs preferentially through a subset of CCPs. Significantly, GPCR-containing CCPs are also functionally distinct, as their surface residence time is regulated locally by GPCR cargo via PDZ-dependent linkage to the actin cytoskeleton. Such cargo-regulated CCPs show delayed recruitment of dynamin and can undergo an abortive event in which clathrin coats separate from the plasma membrane without concomitant receptor endocytosis. Segregation of cargo into CCP subsets, combined with cargo-dependent control of CCP dynamics, suggests a simple kinetic mechanism to generate functional specialization early in the endocytic pathway and reduce competition between diverse endocytic cargo.
Collapse
Affiliation(s)
- Manojkumar A Puthenveedu
- Department of Psychiatry, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
583
|
Sato T, Pallavi P, Golebiewska U, McLaughlin S, Smith SO. Structure of the Membrane Reconstituted Transmembrane−Juxtamembrane Peptide EGFR(622−660) and Its Interaction with Ca2+/Calmodulin†. Biochemistry 2006; 45:12704-14. [PMID: 17042488 DOI: 10.1021/bi061264m] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmembrane (TM) and juxtamembrane (JM) regions of the epidermal growth factor receptor (EGFR) couple ligand binding in the extracellular domain to activation of the kinase domain. Solid-state NMR and polarized FTIR measurements of peptides corresponding to the TM plus JM regions of EGFR (residues 622-660) reconstituted in model phospholipid membranes are presented to address the role of the short cytoplasmic JM sequence (residues 645-660) in regulating EGFR activity. We show that the TM domain is helical with a transition to non-helical structure at the TM-JM boundary. Fluorescence measurements indicate that the JM region of EGFR(622-660) binds to the membrane surface and that binding can be reversed by the addition of the complex of Ca2+ and calmodulin. Together these data support models suggesting the cytoplasmic JM region of EGFR plays an active role in regulating receptor activity.
Collapse
Affiliation(s)
- Takeshi Sato
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
584
|
Otero C, Groettrup M, Legler DF. Opposite fate of endocytosed CCR7 and its ligands: recycling versus degradation. THE JOURNAL OF IMMUNOLOGY 2006; 177:2314-23. [PMID: 16887992 DOI: 10.4049/jimmunol.177.4.2314] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 play a crucial role for the homing of lymphocytes and dendritic cells to secondary lymphoid tissues. Nevertheless, how CCR7 senses the gradient of chemokines and how migration is terminated are poorly understood. In this study, we demonstrate that CCR7(-GFP) is endocytosed into early endosomes containing transferrin receptor upon CCL19 binding, but less upon CCL21 triggering. Internalization of CCR7 was independent of lipid rafts but relied on dynamin and Eps15 and was inhibited by hypertonic sucrose, suggesting clathrin-dependent endocytosis. After chemokine removal, internalized CCR7 recycled back to the plasma membrane and was able to mediate migration again. In contrast, internalized CCL19 was sorted to lysosomes for degradation, showing opposite fate for endocytosed CCR7 and its ligand.
Collapse
Affiliation(s)
- Carolina Otero
- Biotechnology Institute Thurgau, University of Konstanz, Konstanzerstrasse 19, CH-8274 Tägerwilen, Switzerland
| | | | | |
Collapse
|
585
|
Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. ACTA ACUST UNITED AC 2006; 174:459-71. [PMID: 16880274 PMCID: PMC2064241 DOI: 10.1083/jcb.200508170] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ligand-receptor complexes are internalized by a variety of endocytic mechanisms. Some are initiated within clathrin-coated membranes, whereas others involve lipid microdomains of the plasma membrane. In neurons, where alternative targeting to short- or long-range trafficking routes underpins the differential processing of synaptic vesicle components and neurotrophin receptors, the mechanism giving access to the axonal retrograde pathway remains unknown. To investigate this sorting process, we examined the internalization of a tetanus neurotoxin fragment (TeNT HC), which shares axonal carriers with neurotrophins and their receptors. Previous studies have shown that the TeNT HC receptor, which comprises polysialogangliosides, resides in lipid microdomains. We demonstrate that TeNT HC internalization also relies on a specialized clathrin-mediated pathway, which is independent of synaptic vesicle recycling. Moreover, unlike transferrin uptake, this AP-2-dependent process is independent of epsin1. These findings identify a pathway for TeNT, beginning with the binding to a lipid raft component (GD1b) and followed by dissociation from GD1b as the toxin internalizes via a clathrin-mediated mechanism using a specific subset of adaptor proteins.
Collapse
Affiliation(s)
- Katrin Deinhardt
- Molecular Neuropathobiology Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | | | | | | | | |
Collapse
|
586
|
Abstract
The transforming growth factorbeta (TGFbeta) superfamily regulates a broad spectrum of biological responses throughout embryonic development and adult life, including cell proliferation and differentiation, epithelial-to-mesenchymal transition, apoptosis, and angiogenesis. TGFbeta members initiate signaling by bringing together a complex of serine/threonine kinase receptors that transmit signals through intracellular Smad proteins. Genetic alterations in numerous components of the TGFbeta signaling pathway have been associated with several human cancers. In addition, tight regulation of TGFbeta signaling is pivotal to the maintenance of homeostasis and the prevention of carcinogenesis. The ubiquitin/proteosome system is one mechanism by which cells regulate the expression and activity of effectors of the TGFbeta signaling cascade. Mounting evidence also suggests that disruption of the ubiquitin-dependent degradation of components of the TGFbeta pathway leads to the development and progression of cancer. Therefore, understanding how these two pathways intertwine will contribute to the advancement of our knowledge of cancer development.
Collapse
Affiliation(s)
- Luisa Izzi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
587
|
Mitsushima M, Ueda K, Kioka N. Vinexin β regulates the phosphorylation of epidermal growth factor receptor on the cell surface. Genes Cells 2006; 11:971-82. [PMID: 16923119 DOI: 10.1111/j.1365-2443.2006.00995.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal growth factor (EGF) regulates various cellular events, including proliferation, differentiation, migration and oncogenesis. In this study, we found that exogenous expression of vinexin beta enhanced the phosphorylation of 180-kDa proteins in an EGF-dependent manner in Cos-7 cells. Western blot analysis using phospho-specific antibodies against EGFR identified EGFR as a phosphorylated 180-kDa protein. Vinexin beta did not stimulate the phosphorylation of EGFR but suppressed the dephosphorylation, resulting in a sustained phosphorylation. Mutational analyses revealed that both the first and third SH3 domains were required for a sustained phosphorylation of EGFR. Small interfering RNA-mediated knockdown of vinexin beta reduced the phosphorylation of EGFR on the cell surface in HeLa cells. The sustained phosphorylation of EGFR induced by vinexin beta was completely abolished by adding the EGFR-specific inhibitor AG1478 even after EGF stimulation, suggesting that the kinase activity of EGFR is required for the sustained phosphorylation induced by vinexin beta. We also found that E3 ubiquitin ligase c-Cbl is a binding partner of vinexin beta through the third SH3 domain. Expression of wild-type vinexin beta but not a mutant containing a mutation in the third SH3 domain decreased the cytosolic pool of c-Cbl and increased the amount of membrane-associated c-Cbl. Furthermore, over-expression of c-Cbl suppressed the sustained phosphorylation of EGFR induced by vinexin beta. These results suggest that vinexin beta plays a role in maintaining the phosphorylation of EGFR on the plasma membrane through the regulation of c-Cbl.
Collapse
Affiliation(s)
- Masaru Mitsushima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
588
|
Younglai EV, Wu Y, Foster WG, Lobb DK, Price TM. Binding of progesterone to cell surfaces of human granulosa-lutein cells. J Steroid Biochem Mol Biol 2006; 101:61-7. [PMID: 16905308 DOI: 10.1016/j.jsbmb.2006.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Progesterone is produced by granulosa cells under the influence of luteinizing hormone. Nuclear progesterone receptors have been found in rat granulosa cells. Human granulosa-lutein cells rapidly respond to progesterone with an increase in intracellular calcium suggesting the existence of a nongenomic mechanism. This study was conducted to determine whether binding of progesterone to granulosa cells could occur at the membrane. Granulosa cells were obtained from an in vitro fertilization program and examined immunohistochemically with an antiserum to membrane progesterone receptors. Approximately 14-70% of freshly harvested or cultured granulosa cells of six patients showed a positive reaction to the antiserum, limited to the cell membrane. Western blot analysis of homogenates of granulosa cells and a granulosa cell tumour confirmed the presence of progesterone receptors A, B and C and low amounts of a putative membrane receptor. These results demonstrate that the plasma membranes of human granulosa cells possess binding components for progesterone which may be involved in its nongenomic mechanism of action.
Collapse
Affiliation(s)
- Edward V Younglai
- Department of Obstetrics & Gynecology, Reproductive Biology Division, McMaster University, Health Sciences Centre, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5.
| | | | | | | | | |
Collapse
|
589
|
Dawson JC, Legg JA, Machesky LM. Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol 2006; 16:493-8. [PMID: 16949824 DOI: 10.1016/j.tcb.2006.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/21/2006] [Indexed: 01/07/2023]
Abstract
Endocytosis is an important way for cells to take up liquids and particles from their environment. It requires membrane bending to be coupled with membrane fission, and the actin cytoskeleton has an active role in membrane remodelling. Here, we review recent research into the function of Bin-Amphiphysin-Rvs (BAR) domain proteins, which can sense membrane curvature and recruit actin to membranes. BAR proteins interact with the endocytic and cytoskeletal machinery, including the GTPase dynamin (which mediates vesicle fission), N-WASP (an Arp2/3 complex regulator) and synaptojanin (a phosphoinositide phosphatase). We describe three classes of BAR domains, BAR, N-BAR and F-BAR, providing examples of each discussing and how they function in linking membranes to the actin cytoskeleton in endocytosis.
Collapse
Affiliation(s)
- John C Dawson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
590
|
Wilsie LC, Gonzales AM, Orlando RA. Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway. Lipids Health Dis 2006; 5:23. [PMID: 16945147 PMCID: PMC1592478 DOI: 10.1186/1476-511x-5-23] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/31/2006] [Indexed: 01/20/2023] Open
Abstract
Background Triacylglyerol-rich very low density lipoprotein (VLDL) particles are the primary carriers of fatty acids in the circulation and as such serve as a rich energy source for peripheral tissues. Receptor-mediated uptake of these particles is dependent upon prior association with apolipoprotein E (apoE-VLDL) and is brought about by cell surface heparan sulfate proteoglycans (HSPG) in some cell types and by the low density lipoprotein receptor-related protein (LRP) in others. Although LRP's role in apoE-VLDL uptake has been well studied, the identity of the HSPG family member that mediates apoE-VLDL uptake has not been established. We investigated if syndecan-1 (Syn-1), a transmembrane cell surface HSPG, is able to mediate the internalization of apoE-VLDL and examined the relationship between Syn-1 and LRP toward apoE-VLDL uptake. For this study, we used a human fibroblast cell line (GM00701) that expresses large amounts of LRP, but possesses no LDL receptor activity to eliminate its contributions toward apoE-VLDL uptake. Results Although LRP in these cells is fully active as established by substantial α2macroglobulin binding and internalization, uptake of apoE-VLDL is absent. Expression of human Syn-1 cDNA restored apoE-VLDL binding and uptake by these cells. Competition for this uptake with an LRP ligand-binding antagonist had little or no effect, whereas co-incubation with heparin abolished apoE-VLDL internalization. Depleting Syn-1 expressing cells of K+, to block clathrin-mediated endocytosis, showed no inhibition of Syn-1 internalization of apoE-VLDL. By contrast, treatment of cells with nystatin to inhibit lipid raft function, prevented the uptake of apoE-VLDL by Syn-1. Conclusion These data demonstrate that Syn-1 is able to mediate apoE-VLDL uptake in human fibroblasts with little or no contribution from LRP and that the endocytic path taken by Syn-1 is clathrin-independent and relies upon lipid raft function. These data are consistent with previous studies demonstrating Syn-1 association with lipid raft domains.
Collapse
Affiliation(s)
- Larissa C Wilsie
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, MSC08 4670 1 University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Amanda M Gonzales
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, MSC08 4670 1 University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Robert A Orlando
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, MSC08 4670 1 University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
591
|
Maitra S, Kulikauskas RM, Gavilan H, Fehon RG. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol 2006; 16:702-9. [PMID: 16581517 DOI: 10.1016/j.cub.2006.02.063] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/31/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The precise coordination of signals that control proliferation is a key feature of growth regulation in developing tissues . While much has been learned about the basic components of signal transduction pathways, less is known about how receptor localization, compartmentalization, and trafficking affect signaling in developing tissues. Here we examine the mechanism by which the Drosophila Neurofibromatosis 2 (NF2) tumor suppressor ortholog Merlin (Mer) and the related tumor suppressor expanded (ex) regulate proliferation and differentiation in imaginal epithelia. Merlin and Expanded are members of the FERM (Four-point one, Ezrin, Radixin, Moesin) domain superfamily, which consists of membrane-associated cytoplasmic proteins that interact with transmembrane proteins and may function as adapters that link to protein complexes and/or the cytoskeleton . We demonstrate that Merlin and Expanded function to regulate the steady-state levels of signaling and adhesion receptors and that loss of these proteins can cause hyperactivation of associated signaling pathways. In addition, pulse-chase labeling of Notch in living tissues indicates that receptor levels are upregulated at the plasma membrane in Mer; ex double mutant cells due to a defect in receptor clearance from the cell surface. We propose that these proteins control proliferation by regulating the abundance, localization, and turnover of cell-surface receptors and that misregulation of these processes may be a key component of tumorigenesis.
Collapse
Affiliation(s)
- Sushmita Maitra
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
592
|
Santarius M, Lee C, Anderson R. Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem J 2006; 398:1-13. [PMID: 16856876 PMCID: PMC1525017 DOI: 10.1042/bj20060565] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of PIPK (phosphatidylinositol phosphate kinase) and PtdIns(4,5)P2 signalling by small G-proteins and their effectors is key to many biological functions. Through selective recruitment and activation of different PIPK isoforms, small G-proteins such as Rho, Rac and Cdc42 modulate actin dynamics and cytoskeleton-dependent cellular events in response to extracellular signalling. These activities affect a number of processes, including endocytosis, bacterial penetration into host cells and cytolytic granule-mediated targeted cell killing. Small G-proteins and their modulators are also regulated by phosphoinositides through translocation and conformational changes. Arf family small G-proteins act at multiple sites as regulators of membrane trafficking and actin cytoskeletal remodelling, and regulate a feedback loop comprising phospholipase D, phosphatidic acid, PIPKs and PtdIns(4,5)P2, contributing to enhancement of PtdIns(4,5)P2-mediated cellular events and receptor signalling. Na+, Kir (inwardly rectifying K+), Ca2+ and TRP (transient receptor potential) ion channels are regulated by small G-proteins and membrane pools of PtdIns(4,5)P2. Yeast phosphatidylinositol 4-phosphate 5-kinases Mss4 and Its3 are involved in resistance against disturbance of sphingolipid biosynthesis and maintenance of cell integrity through the synthesis of PtdIns(4,5)P2 and downstream signalling through the Rom2/Rho2 and Rgf1/Rho pathways. Here, we review models for regulated intracellular targeting of PIPKs by small G-proteins and other modulators in response to extracellular signalling. We also describe the spatial and temporal cross-regulation of PIPKs and small G-proteins that is critical for a number of cellular functions.
Collapse
Affiliation(s)
- Megan Santarius
- *Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, U.S.A
| | - Chang Ho Lee
- †Department of Pharmacology, College of Medicine, Hanyang University, 17 Hengdang-dong, Seongdong-ku, Seoul, 133-791, South Korea
- To whom correspondence should be addressed (email )
| | - Richard A. Anderson
- *Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, U.S.A
- ‡Department of Pharmacology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, U.S.A
| |
Collapse
|
593
|
Mundell SJ, Luo J, Benovic JL, Conley PB, Poole AW. Distinct clathrin-coated pits sort different G protein-coupled receptor cargo. Traffic 2006; 7:1420-31. [PMID: 16899088 DOI: 10.1111/j.1600-0854.2006.00469.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Upon activation, many G protein-coupled receptors (GPCRs) internalize by clathrin-mediated endocytosis and are subsequently sorted to undergo recycling or lysosomal degradation. Here we observe that sorting can take place much earlier than previously thought, by entry of different GPCRs into distinct populations of clathrin-coated pit (CCP). These distinct populations were revealed by analysis of two purinergic GPCRs, P2Y(1) and P2Y(12), which enter two populations of CCPs in a mutually exclusive manner. The mechanisms underlying early GPCR sorting involve differential kinase-dependent processes because internalization of P2Y(12) is mediated by GPCR kinases (GRKs) and arrestin, whereas P2Y(1) internalization is GRK- and arrestin-independent but requires protein kinase C. Importantly, the beta(2) adrenoceptor which also internalizes in a GRK-dependent manner also traffics exclusively to P2Y(12)-containing CCPs. Our data therefore reveal distinct populations of CCPs that sort GPCR cargo at the plasma membrane using different kinase-dependent mechanisms.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Arrestin/metabolism
- Cell Line
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Clathrin/metabolism
- Coated Pits, Cell-Membrane/metabolism
- Endocytosis/physiology
- Humans
- Protein Kinases/genetics
- Protein Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y12
Collapse
Affiliation(s)
- Stuart J Mundell
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|
594
|
Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. ACTA ACUST UNITED AC 2006; 174:593-604. [PMID: 16893970 PMCID: PMC2064264 DOI: 10.1083/jcb.200602080] [Citation(s) in RCA: 423] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–γ, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments.
Collapse
Affiliation(s)
- Maria Grazia Lampugnani
- IFOM, Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, University of Milan, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
595
|
Droguett R, Cabello-Verrugio C, Riquelme C, Brandan E. Extracellular proteoglycans modify TGF-β bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol 2006; 25:332-41. [PMID: 16766169 DOI: 10.1016/j.matbio.2006.04.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 12/22/2022]
Abstract
The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Satellite cells constitute the main source of muscle precursor cells for growth and repair. After skeletal muscle injury, cell-derived signals induce their re-entry into the cell cycle and their migration into the damaged zone, where they proliferate and differentiate into mature myofibers. The surrounding extracellular matrix (ECM) together with inhibitory growth factors, such as transforming growth factor-beta (TGF-beta), also likely play an important role in growth control and muscle differentiation. Decorin, biglycan and betaglycan are proteoglycans that bind TGF-beta during skeletal muscle differentiation. In this paper, we show that the binding of TGF-beta to the receptors TGF-betaRI and-betaRII diminished in a satellite cell-derived cell line during differentiation, in spite of an increase expression of both receptors. In contrast, during the differentiation of decorin-null myoblasts (Dcn null), which lack decorin expression, the binding of TGF-beta to TGF-betaRI and -betaRII increased concomitantly with receptors levels. Both the addition and re-expression of decorin, in these myoblasts, diminished the binding of TGF-beta to its transducing receptors. Similar results were obtained when biglycan was added or over-expressed in Dcn null myoblasts. The binding of TGF-beta to TGF-betaRIII, alternatively known as betaglycan, was also augmented in Dcn null myoblasts and diminished by decorin, biglycan and betaglycan. These results suggest that decorin, biglycan and betaglycan compete for the binding of TGF-beta to its transducing receptors. Transfection studies with the TGF-beta-dependent promoter of the plasminogen activator inhibitor-1, coupled with luciferase, revealed that the addition of each proteoglycan diminished TGF-beta-dependent activity, for both TGF-beta1 and -beta2. The modulation of TGF-beta signaling by ECM proteoglycans diminishing the bio-availability of TGF-beta for its transducing receptors appears to be a feasible mechanism for the attenuation of this inhibitory growth factor during skeletal muscle formation.
Collapse
Affiliation(s)
- Rebeca Droguett
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
596
|
Fattakhova G, Masilamani M, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. The high-affinity immunoglobulin-E receptor (FcepsilonRI) is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic 2006; 7:673-85. [PMID: 16637889 DOI: 10.1111/j.1600-0854.2006.00423.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aggregation of the high-affinity immunoglobulin E (IgE) receptor (FcepsilonRI), expressed on mast cells and basophils, initiates the immediate hypersensitivity reaction. Aggregated FcepsilonRI has been reported to rapidly migrate to lipid rafts in RBL-2H3 cells. We confirmed that aggregated FcepsilonRI is found in the lipid raft fractions of cellular lysates. Furthermore, we show that the cross-linked FcepsilonRI remains associated with detergent-resistant structures upon internalization. Previous morphological studies have reported that aggregated FepsiloncRI is endocytosed via clathrin-coated pits, which in general are not lipid raft associated. To address this apparent discrepancy, we employed siRNA to suppress expression of components of the clathrin-mediated internalization machinery, namely, clathrin heavy chain, and the AP-2 (alpha-adaptin or mu2-subunit). Transferrin receptor (TfR) is endocytosed by a clathrin-mediated process and, as expected, each transfected siRNA caused a two to threefold elevation of TfR surface expression and almost completely inhibited its endocytosis. In contrast, there was no effect on surface expression levels of FcepsilonRI nor on the endocytosis of the dinitrophenyl-human serum albumin (DNP-HSA)/IgE/FcepsilonRI complex. On the contrary, internalization of DNP-HSA/IgE/FcepsilonRI was inhibited by overexpression of a dominant-negative dynamin mutant. We conclude that internalization of cross-linked FcRI does not require the AP-2/clathrin complex but is dynamin-dependent and may be lipid raft mediated.
Collapse
Affiliation(s)
- Gul'nar Fattakhova
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
597
|
Kärpänen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, Tamagnone L, Alitalo K. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 2006; 20:1462-72. [PMID: 16816121 DOI: 10.1096/fj.05-5646com] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lymphatic vascular development is regulated by vascular endothelial growth factor receptor-3 (VEGFR-3), which is activated by its ligands VEGF-C and VEGF-D. Neuropilin-2 (NP2), known to be involved in neuronal development, has also been implicated to play a role in lymphangiogenesis. We aimed to elucidate the mechanism by which NP2 is involved in lymphatic endothelial cell signaling. By in vitro binding studies we found that both VEGF-C and VEGF-D interact with NP2, VEGF-C in a heparin-independent and VEGF-D in a heparin-dependent manner. We also mapped the domains of VEGF-C and NP2 required for their binding. The functional importance of the interaction of NP2 with the lymphangiogenic growth factors was demonstrated by cointernalization of NP2 along with VEGFR-3 in endocytic vesicles of lymphatic endothelial cells upon stimulation with VEGF-C or VEGF-D. NP2 also interacted with VEGFR-3 in coprecipitation studies. Our results show that NP2 is directly involved in an active signaling complex with the key regulators of lymphangiogenesis and thus suggest a mechanism by which NP2 functions in the development of the lymphatic vasculature.
Collapse
Affiliation(s)
- Terhi Kärpänen
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum Helsinki, P.O.B. 63, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
598
|
Lu Y, Yang J, Sega E. Issues related to targeted delivery of proteins and peptides. AAPS JOURNAL 2006; 8:E466-78. [PMID: 17025264 PMCID: PMC2761053 DOI: 10.1208/aapsj080355] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While modern genomic and proteomic technology enables rapid screening of novel proteins and peptides as potential drug candidates, design of delivery systems for these biologics remains challenging especially to achieve site-specific pharmacological actions. This article discusses the issues associated with targeted delivery of protein and peptide drugs at physiochemical, physiological, and intracellular levels with a special focus on cancer therapy.
Collapse
Affiliation(s)
- Yingjuan Lu
- Endocyte, Inc, 3000 Kent Avenue, Suite A1-100, West Lafayette, IN 47906, USA.
| | | | | |
Collapse
|
599
|
Kelemen LE. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 2006; 119:243-50. [PMID: 16453285 DOI: 10.1002/ijc.21712] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Folate receptor alpha (FRalpha) is a membrane-bound protein with high affinity for binding and transporting physiologic levels of folate into cells. Folate is a basic component of cell metabolism and DNA synthesis and repair, and rapidly dividing cancer cells have an increased requirement for folate to maintain DNA synthesis, an observation supported by the widespread use of antifolates in cancer chemotherapy. FRalpha levels are high in specific malignant tumors of epithelial origin compared to normal cells, and are positively associated with tumor stage and grade, raising questions of its role in tumor etiology and progression. It has been suggested that FRalpha might confer a growth advantage to the tumor by modulating folate uptake from serum or by generating regulatory signals. Indeed, cell culture studies show that expression of the FRalpha gene, FOLR1, is regulated by extracellular folate depletion, increased homocysteine accumulation, steroid hormone concentrations, interaction with specific transcription factors and cytosolic proteins, and possibly genetic mutations. Whether FRalpha in tumors decreases in vivo among individuals who are folate sufficient, or whether the tumor's machinery sustains FRalpha levels to meet the increased folate demands of the tumor, has not been studied. Consequently, the significance of carrying a FRalpha-positive tumor in the era of folic acid fortification and widespread vitamin supplement use in countries such as Canada and the United States is unknown. Epidemiologic and clinical studies using human tumor specimens are lacking and increasingly needed to understand the role of environmental and genetic influences on FOLR1 expression in tumor etiology and progression. This review summarizes the literature on the complex nature of FOLR1 gene regulation and expression, and suggests future research directions.
Collapse
Affiliation(s)
- Linda E Kelemen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
600
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|