551
|
EV, Microvesicles/MicroRNAs and Stem Cells in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:123-135. [PMID: 29754178 DOI: 10.1007/978-3-319-74470-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of extracellular vesicles (EV) in carcinogenesis has become the focus of much research. These microscopic messengers have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissues, EVs are able to generate a pro-tumor environment that is essential for tumorigenesis. These small nanovesicles are an ideal candidate for a non-invasive indicator of pathogenesis and/or disease progression as they can display individualized nucleic acid, protein, and lipid expression profiles that are often reflective of disease state, and can be easily detected in bodily fluids, even after extended cryo-storage. Furthermore, the ability of EVs to securely transport signaling molecules and localize to distant tissues suggests these particles may greatly improve the delivery of therapeutic treatments, particularly in cancer. In this chapter, we discuss the role of EV in the identification of new diagnostic and prognostic cancer biomarkers, as well as the development of novel EV-based cancer therapies.
Collapse
|
552
|
Nana-Sinkam SP, Acunzo M, Croce CM, Wang K. Extracellular Vesicle Biology in the Pathogenesis of Lung Disease. Am J Respir Crit Care Med 2017; 196:1510-1518. [PMID: 28678586 PMCID: PMC5754438 DOI: 10.1164/rccm.201612-2457pp] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Serge P. Nana-Sinkam
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Mario Acunzo
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio; and
| | - Kai Wang
- Institutes for Systems Biology, Seattle, Washington
| |
Collapse
|
553
|
Chen J, Hu C, Pan P. Extracellular Vesicle MicroRNA Transfer in Lung Diseases. Front Physiol 2017; 8:1028. [PMID: 29311962 PMCID: PMC5732924 DOI: 10.3389/fphys.2017.01028] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that ate involved in the transcriptional and post-transcriptional regulation of gene expression. Recently, miRNAs were demonstrated to be effectively delivered to a target cell or tissue from a host cell via extracellular vesicles (EVs). These EVs can be detected in blood, urine, exhaled breath condensates, bronchoalveolar lavage fluid (BALF), and other fluids. miRNAs are generated by donor cells and then packaged into EVs and delivered with intact functionality. After being delivered to the target cells, they regulate the translation of their target genes and the function of the target cells. Thus, EV transported miRNAs have become a new method for intercellular communication. EV miRNA transfer is well-documented in various pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary hypertension, and acute lung injury (ALI). In this review, we summarize the novel findings of EV miRNA transfer, focusing on the roles of miR-210, miR-200, miR-17, miR-146a, miR-155, and other miRNAs that are transported from primary human bronchial epithelial cells (HBECs), BALF, mesenchymal stem cells, and dendritic cells.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Chengping Hu
- Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, Key Site of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
554
|
Wahlund CJE, Güclüler G, Hiltbrunner S, Veerman RE, Näslund TI, Gabrielsson S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci Rep 2017; 7:17095. [PMID: 29213052 PMCID: PMC5719080 DOI: 10.1038/s41598-017-16609-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EV), including exosomes and microvesicles (MV), represent a rapidly expanding field of research with diagnostic and therapeutic applications. Although many aspects of EV function remain to be revealed and broad investigations are warranted, most published findings focus on only one vesicle category or a non-separated mix of EVs. In this paper, we investigated both MVs and exosomes from Ovalbumin (OVA)-pulsed dendritic cells for their immunostimulatory potential side-by-side in vivo. Only exosomes induced antigen-specific CD8+ T-cells, and were more efficient than MVs in eliciting antigen-specific IgG production. Further, mainly exosome-primed mouse splenocytes showed significant ex vivo interferon gamma production in response to antigen restimulation. Exosomes carried high levels of OVA, while OVA in MVs was barely detectable, which could explain the more potent antigen-specific response induced by exosomes. Moreover, exosomes induced increased germinal center B cell proportions, whereas MVs had no such effect. Immunisation with both vesicle types combined showed neither inhibitory nor synergistic effects. We conclude that DC-derived MVs and exosomes differ in their capacity to incorporate antigen and induce immune responses. The results are of importance for understanding the role of EVs in vivo, and for future design of vesicle-based immunotherapies and vaccines.
Collapse
Affiliation(s)
- Casper J E Wahlund
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet KS L2:04, SE-17176, Stockholm, Sweden
| | - Gözde Güclüler
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet KS L2:04, SE-17176, Stockholm, Sweden
| | - Stefanie Hiltbrunner
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet KS L2:04, SE-17176, Stockholm, Sweden
| | - Rosanne E Veerman
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet KS L2:04, SE-17176, Stockholm, Sweden
| | - Tanja I Näslund
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet KS L2:04, SE-17176, Stockholm, Sweden
| | - Susanne Gabrielsson
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet KS L2:04, SE-17176, Stockholm, Sweden.
| |
Collapse
|
555
|
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1400370. [PMID: 29209467 PMCID: PMC5706476 DOI: 10.1080/20013078.2017.1400370] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
Collapse
Affiliation(s)
- Chuan Wen
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation.,Division of Hematology, Children's Medical Center, The Second Xiangya Hospital, Central South University/Institute of Pediatrics, Central South University, Changsha, Hunan, PR China
| | - Robert C Seeger
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Muller Fabbri
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Larry Wang
- Department of Pathology, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S Wayne
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| | - Ambrose Y Jong
- Department of Pediatrics, Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation
| |
Collapse
|
556
|
You L, Mao L, Wei J, Jin S, Yang C, Liu H, Zhu L, Qian W. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J Hematol Oncol 2017; 10:165. [PMID: 29058602 PMCID: PMC5651564 DOI: 10.1186/s13045-017-0534-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
T cells recognize antigen fragments from proteolytic products that are presented to them in the form of peptides on major histocompatibility complex (MHC) molecules, which is crucial for the T cell to identify infected or transformed cells. Autophagy, a process that delivers cytoplasmic constituents for lysosomal degradation, has been observed to provide a substantial source of intra- and extracellular antigens for MHC presentation to T cells, which will impact the tumor-specific immune response. Meanwhile, extracellular components are transported to cytoplasm for the degradation/secretion process by the endo-/exosomal pathway and are thus involved in multiple physiological and pathological processes, including immune responses. Autophagy and endo-/exosomal pathways are intertwined in a highly intricate manner and both are closely involved in antigen processing for MHC presentation; thus, we propose that they may coordinate in antigen processing and presentation in anticancer T cell immune responses. In this article, we discuss the molecular and functional crosstalk between autophagy and endo-/exosomal pathways and their contributions to antigen processing for MHC presentation in anticancer T cell immune responses.
Collapse
Affiliation(s)
- Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shenhe Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Chunmei Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Hui Liu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China. .,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
557
|
Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim Biophys Acta Rev Cancer 2017; 1868:538-563. [PMID: 29054476 DOI: 10.1016/j.bbcan.2017.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) have emerged as important players of cancer initiation and progression through cell-cell communication. They have been recognized as critical mediators of extracellular communications, which promote transformation, growth invasion, and drug-resistance of cancer cells. Interestingly, the secretion and uptake of EVs are regulated in a more controlled manner than previously anticipated. EVs are classified into three groups, (i) exosomes, (ii) microvesicles (MVs), and (iii) apoptotic bodies (ABs), based on their sizes and origins, and novel technologies to isolate and distinguish these EVs are evolving. The biologically functional molecules harbored in these EVs, including nucleic acids, lipids, and proteins, have been shown to induce key signaling pathways in both tumor and tumor microenvironment (TME) cells for exacerbating tumor development. While tumor cell-derived EVs are capable of reprogramming stromal cells to generate a proper tumor cell niche, stromal-derived EVs profoundly affect the growth, resistance, and stem cell properties of tumor cells. This review summarizes and discusses these reciprocal communications through EVs in different types of cancers. Further understanding of the pathophysiological roles of different EVs in tumor progression is expected to lead to the discovery of novel biomarkers in liquid biopsy and development of tumor specific therapeutics. This review will also discuss the translational aspects of EVs and therapeutic opportunities of utilizing EVs in different cancer types.
Collapse
Affiliation(s)
- Kerui Wu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Fei Xing
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Shih-Ying Wu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kounosuke Watabe
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
558
|
Tkach M, Kowal J, Zucchetti AE, Enserink L, Jouve M, Lankar D, Saitakis M, Martin-Jaular L, Théry C. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J 2017; 36:3012-3028. [PMID: 28923825 PMCID: PMC5641679 DOI: 10.15252/embj.201696003] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC-peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T-cell activation in vitro When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN-γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN-γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.
Collapse
Affiliation(s)
- Mercedes Tkach
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Joanna Kowal
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | | | - Lotte Enserink
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Mabel Jouve
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Danielle Lankar
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Michael Saitakis
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | | | - Clotilde Théry
- Institut Curie, PSL Research University INSERM U932, Paris, France
| |
Collapse
|
559
|
Willis GR, Kourembanas S, Mitsialis SA. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front Cardiovasc Med 2017; 4:63. [PMID: 29062835 PMCID: PMC5640880 DOI: 10.3389/fcvm.2017.00063] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Exosomes are defined as submicron (30-150 nm), lipid bilayer-enclosed extracellular vesicles (EVs), specifically generated by the late endosomal compartment through fusion of multivesicular bodies with the plasma membrane. Produced by almost all cells, exosomes were originally considered to represent just a mechanism for jettisoning unwanted cellular moieties. Although this may be a major function in most cells, evolution has recruited the endosomal membrane-sorting pathway to duties beyond mere garbage disposal, one of the most notable examples being its cooption by retroviruses for the generation of Trojan virions. It is, therefore, tempting to speculate that certain cell types have evolved an exosome subclass active in intracellular communication. We term this EV subclass "signalosomes" and define them as exosomes that are produced by the "signaling" cells upon specific physiological or environmental cues and harbor cargo capable of modulating the programming of recipient cells. Our recent studies have established that signalosomes released by mesenchymal stem/stromal cells (MSCs) represent the main vector of MSC immunomodulation and therapeutic action in animal models of lung disease. The efficacy of MSC-exosome treatments in a number of preclinical models of cardiovascular and pulmonary disease supports the promise of application of exosome-based therapeutics across a wide range of pathologies within the near future. However, the full realization of exosome therapeutic potential has been hampered by the absence of standardization in EV isolation, and procedures for purification of signalosomes from the main exosome population. This is mainly due to immature methodologies for exosome isolation and characterization and our incomplete understanding of the specific characteristics and molecular composition of signalosomes. In addition, difficulties in defining metrics for potency of exosome preparations and the challenges of industrial scale-up and good manufacturing practice compliance have complicated smooth and timely transition to clinical development. In this manuscript, we focus on cell culture conditions, exosome harvesting, dosage, and exosome potency, providing some empirical guidance and perspectives on the challenges in bringing exosome-based therapies to clinic.
Collapse
Affiliation(s)
- Gareth R Willis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
560
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
561
|
Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017; 4:78. [PMID: 29057250 DOI: 10.21037/sci.2017.09.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Four out of the ten leading causes of morbidity and mortality worldwide are lung diseases. Despite advances in comprehending the pathophysiological mechanisms involved in these disorders, for several respiratory diseases, there is still no effective treatment able to stop their natural history or reverse the morphological and functional damage they cause. In this context, recent research has supported a potential role of cell therapy for lung diseases and critical illness. The anti-inflammatory, antifibrotic, and microbicidal effects of stem cells are mainly attributed to their secretome, which contains proteins, lipids, microRNAs, and mRNAs. These are secreted in the conditioned medium and are also present in extracellular vesicles (EVs). This review will provide a detailed discussion of the role of EVs produced by mesenchymal stromal cells in preclinical experimental models of pulmonary disorders and critical illness, as well as in ongoing clinical trials.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
562
|
Abstract
During the past decade, extracellular vesicles (EVs), which include apoptotic bodies, microvesicles, and exosomes, have emerged as important players in cell-to-cell communication in normal physiology and pathological conditions. EVs encapsulate and convey various bioactive molecules that are further transmitted to neighboring or more distant cells, where they induce various signaling cascades. The message delivered to the target cells is dependent on EV composition, which, in turn, is determined by the cell of origin and the surrounding microenvironment during EV biogenesis. Among their multifaceted role in the modulation of biological responses, the involvement of EVs in vascular development, growth, and maturation has been widely documented and their potential therapeutic application in regenerative medicine or angiogenesis-related diseases is drawing increasing interest. EVs derived from various cell types have the potential to deliver complex information to endothelial cells and to induce either pro- or antiangiogenic signaling. As dynamic systems, in response to changes in the microenvironment, EVs adapt their cargo composition to fine-tune the process of blood vessel formation. This article reviews the current knowledge on the role of microvesicles and exosomes from various cellular origins in angiogenesis, with a particular emphasis on the underlying mechanisms, and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- Dilyana Todorova
- From the Aix-Marseille Univ, INSERM, VRCM, UMR_S 1076, Marseille, France (D.T., S.S., R.L., F.S., F.D.-G.); APHM, CHU de la Conception, Service d'Hématologie, Marseille, France (R.L., F.D.-G.); and APHM, CHU de la Conception, Laboratoire de Culture et Thérapie Cellulaire, INSERM, UMR_S 1076, CBT1409, Marseille, France (F.S.)
| | - Stéphanie Simoncini
- From the Aix-Marseille Univ, INSERM, VRCM, UMR_S 1076, Marseille, France (D.T., S.S., R.L., F.S., F.D.-G.); APHM, CHU de la Conception, Service d'Hématologie, Marseille, France (R.L., F.D.-G.); and APHM, CHU de la Conception, Laboratoire de Culture et Thérapie Cellulaire, INSERM, UMR_S 1076, CBT1409, Marseille, France (F.S.)
| | - Romaric Lacroix
- From the Aix-Marseille Univ, INSERM, VRCM, UMR_S 1076, Marseille, France (D.T., S.S., R.L., F.S., F.D.-G.); APHM, CHU de la Conception, Service d'Hématologie, Marseille, France (R.L., F.D.-G.); and APHM, CHU de la Conception, Laboratoire de Culture et Thérapie Cellulaire, INSERM, UMR_S 1076, CBT1409, Marseille, France (F.S.)
| | - Florence Sabatier
- From the Aix-Marseille Univ, INSERM, VRCM, UMR_S 1076, Marseille, France (D.T., S.S., R.L., F.S., F.D.-G.); APHM, CHU de la Conception, Service d'Hématologie, Marseille, France (R.L., F.D.-G.); and APHM, CHU de la Conception, Laboratoire de Culture et Thérapie Cellulaire, INSERM, UMR_S 1076, CBT1409, Marseille, France (F.S.).
| | - Françoise Dignat-George
- From the Aix-Marseille Univ, INSERM, VRCM, UMR_S 1076, Marseille, France (D.T., S.S., R.L., F.S., F.D.-G.); APHM, CHU de la Conception, Service d'Hématologie, Marseille, France (R.L., F.D.-G.); and APHM, CHU de la Conception, Laboratoire de Culture et Thérapie Cellulaire, INSERM, UMR_S 1076, CBT1409, Marseille, France (F.S.)
| |
Collapse
|
563
|
Exosomes in cancer: Use them or target them? Semin Cell Dev Biol 2017; 78:13-21. [PMID: 28803894 DOI: 10.1016/j.semcdb.2017.08.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small extracellular vesicles with a significant role in most processes associated with cancer. On one hand, exosomes role in the different hallmarks of cancer has been widely described, highlighting the urge to understand the potential to target communication mediated by exosomes as a novel therapeutic approach in cancer. On the other hand, exosomes stability in circulation and tumor-targeting capacity shows their applicability in the delivery of anti-cancer molecules. This review will discuss the dual applicability of exosomes in cancer focusing on their usage for therapy improvement, or their targeting to block their supportive role in tumor progression and response to therapy. We highlight the current developments and the strategies used to enhance the potential of exosomes to become clinical partners in the treatment of cancer.
Collapse
|
564
|
McBride JD, Rodriguez-Menocal L, Badiavas EV. Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes. J Invest Dermatol 2017; 137:1622-1629. [PMID: 28648952 DOI: 10.1016/j.jid.2017.04.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) are ubiquitous in human tissues, circulation, and body fluids. Of these vesicles, exosomes are of growing interest among investigators across multiple fields, including dermatology. The characteristics of exosomes, their associated cargo (nucleic acids, proteins, and lipids), and downstream functions are vastly different, depending on the cell origin. Here, we review concepts in extracellular vesicle biology, with a focus on exosomes, highlighting recent studies in the field of dermatology. Furthermore, we highlight emerging technical issues associated with isolating and measuring exosomes. Extracellular vesicles, including exosomes, have immediate potential for serving as biomarkers and therapeutics in dermatology over the next decade.
Collapse
Affiliation(s)
- Jeffrey D McBride
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; Interdisciplinary Stem Cell Institute, Miami, Florida, USA
| | - Luis Rodriguez-Menocal
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; Interdisciplinary Stem Cell Institute, Miami, Florida, USA
| | - Evangelos V Badiavas
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; Interdisciplinary Stem Cell Institute, Miami, Florida, USA.
| |
Collapse
|
565
|
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. Int J Mol Sci 2017; 18:ijms18061190. [PMID: 28587212 PMCID: PMC5486013 DOI: 10.3390/ijms18061190] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.
Collapse
|
566
|
Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2017; 17:1025-36. [PMID: 27540992 DOI: 10.1038/ni.3518] [Citation(s) in RCA: 820] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022]
Abstract
Alteration in the expression of cell-surface proteins is a common consequence of malignant transformation. Natural killer (NK) cells use an array of germline-encoded activating and inhibitory receptors that scan for altered protein-expression patterns, but tumor evasion of detection by the immune system is now recognized as one of the hallmarks of cancer. NK cells display rapid and potent immunity to metastasis or hematological cancers, and major efforts are now being undertaken to fully exploit NK cell anti-tumor properties in the clinic. Diverse approaches encompass the development of large-scale NK cell-expansion protocols for adoptive transfer, the establishment of a microenvironment favorable to NK cell activity, the redirection of NK cell activity against tumor cells and the release of inhibitory signals that limit NK cell function. In this Review we detail recent advances in NK cell-based immunotherapies and discuss the advantages and limitations of these strategies.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, University of Queensland, Herston, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, University of Queensland, Herston, Australia
| |
Collapse
|
567
|
Abstract
Development of "immune-based targeted therapy" in oncology has limited experience with signal pathway modulation. However, as we have become better versed in understanding immune function related to anticancer response, "hints" of specific targets associated with sensitivity and resistance have been identified with targeted immune therapy. This brief review summarizes the relationship of several targeted immune therapeutics and activity associated clinical responsiveness.
Collapse
Affiliation(s)
| | - John Nemunaitis
- Gradalis, Inc., Dallas, TX, USA.,Mary Crowley Cancer Research Center, Dallas, TX, USA
| |
Collapse
|
568
|
Wu L, Leng D, Cun D, Foged C, Yang M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J Control Release 2017; 260:78-91. [PMID: 28527735 DOI: 10.1016/j.jconrel.2017.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Abstract
Lung cancer is a complex disease caused by a multitude of genetic and environmental factors. The progression of lung cancer involves dynamic changes in the genome and a complex network of interactions between cancer cells with multiple, distinct cell types that form tumors. Combination therapy using different pharmaceuticals has been proven highly effective due to the ability to affect multiple cellular pathways involved in the disease progression. However, the currently used drug combination designs are primarily based on empirical clinical studies, and little attention has been given to dosage regimens, i.e. how administration routes, onsets, and durations of the combinations influence the therapeutic outcome. This is partly because combination therapy is challenged by distinct physicochemical properties and in vivo pharmacokinetics/pharmacodynamics of the individual pharmaceuticals, including small molecule drugs and biopharmaceuticals, which make the optimization of dosing and administration schedule challenging. This article reviews the recent advances in the design and development of combinations of pharmaceuticals for the treatment of lung cancer. Focus is primarily on rationales for the selection of specific combination therapies for lung cancer treatment, and state of the art of delivery technologies and dosage regimens for the combinations, tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Donglei Leng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
569
|
Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017; 6:e1328341. [PMID: 28811970 DOI: 10.1080/2162402x.2017.1328341] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Monica Vara Perez
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
570
|
Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology 2017; 69:801-814. [PMID: 28466428 DOI: 10.1007/s10616-017-0095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.
Collapse
|
571
|
Tian H, Li W. Dendritic cell-derived exosomes for cancer immunotherapy: hope and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:221. [PMID: 28603736 DOI: 10.21037/atm.2017.02.23] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Tian
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.,Everglades Biopharma, Miami, FL, USA
| | - Wei Li
- Everglades Biopharma, Miami, FL, USA.,Bascom Palmer Eye Institute, Department of Ophthalmology, Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
572
|
Syn NL, Wang L, Chow EKH, Lim CT, Goh BC. Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges. Trends Biotechnol 2017; 35:665-676. [PMID: 28365132 DOI: 10.1016/j.tibtech.2017.03.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
Exosomes (versatile, cell-derived nanovesicles naturally endowed with exquisite target-homing specificity and the ability to surmount in vivo biological barriers) hold substantial promise for developing exciting approaches in drug delivery and cancer immunotherapy. Specifically, bioengineered exosomes are being successfully deployed to deliver potent tumoricidal drugs (siRNAs and chemotherapeutic compounds) preferentially to cancer cells, while a new generation of exosome-based therapeutic cancer vaccines has produced enticing results in early-phase clinical trials. Here, we review the state-of-the-art technologies and protocols, and discuss the prospects and challenges for the clinical development of this emerging class of therapeutics.
Collapse
Affiliation(s)
- Nicholas L Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Chwee Teck Lim
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology-Oncology, National University Cancer Institute, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Developmental Therapeutics Unit, National University Cancer Institute, Singapore
| |
Collapse
|
573
|
Exosomes: a new horizon in lung cancer. Drug Discov Today 2017; 22:927-936. [PMID: 28288782 DOI: 10.1016/j.drudis.2017.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Circulating exosomes are the major mediators of cell-cell communication. They have been found in various body fluids of healthy individuals and patients with malignancies as cargos of several molecules including miRNAs. Several studies have underlined the role of exosome miRNAs in different tumor types, including lung cancer, suggesting their potential use as biomarkers and therapeutic agents. An overview of the biology and function of exosomes and exosome miRNAs as indicators of diagnosis and treatment response in lung cancer is presented. In addition, preliminary data on exosomes as potential therapeutic agents are reported.
Collapse
|
574
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
575
|
Jiang W, von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, Kim BYS. Designing nanomedicine for immuno-oncology. Nat Biomed Eng 2017. [DOI: 10.1038/s41551-017-0029] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
576
|
The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clin Transl Oncol 2017; 19:921-930. [DOI: 10.1007/s12094-017-1625-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/28/2017] [Indexed: 12/30/2022]
|
577
|
Cordonnier M, Chanteloup G, Isambert N, Seigneuric R, Fumoleau P, Garrido C, Gobbo J. Exosomes in cancer theranostic: Diamonds in the rough. Cell Adh Migr 2017; 11:151-163. [PMID: 28166442 DOI: 10.1080/19336918.2016.1250999] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' content can modify the physiological state of recipient cells. Tumor derived exosomes by interacting with other cells of the tumor microenvironment modulate tumor progression, angiogenic switch, metastasis, and immune escape. Targeting tumor-derived exosomes might be an interesting approach in cancer therapy. Furthermore, because a key issue to improve cancer patients' outcome relies on earlier cancer diagnosis (metastases, as opposed to the primary tumor, are responsible for most cancer deaths) exosomes have been put forward as promising biomarker candidates for cancer diagnosis and prognosis. This review summarizes the roles of exosomes in cancer and clinical interest, focusing on the importance of exosomal heat shock proteins (HSP). The challenges of clinical translation of HSP-exosomes as therapeutic targets and biomarkers for early cancer detection are also discussed.
Collapse
Affiliation(s)
- Marine Cordonnier
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Gaëtan Chanteloup
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Nicolas Isambert
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| | - Renaud Seigneuric
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Pierre Fumoleau
- c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| | - Carmen Garrido
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France.,d Equipe Labellisée par la Ligue Nationale Contre le Cancer , Paris , France
| | - Jessica Gobbo
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| |
Collapse
|
578
|
dos Anjos Pultz B, Andrés Cordero da Luz F, Socorro Faria S, Peixoto Ferreira de Souza L, Cristina Brígido Tavares P, Alonso Goulart V, Fontes W, Ricardo Goulart L, José Barbosa Silva M. The multifaceted role of extracellular vesicles in metastasis: Priming the soil for seeding. Int J Cancer 2017; 140:2397-2407. [DOI: 10.1002/ijc.30595] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Brunna dos Anjos Pultz
- Laboratory of Tumor Biomarkers and Osteoimmunology; Institute of Biomedical Sciences, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| | - Felipe Andrés Cordero da Luz
- Laboratory of Tumor Biomarkers and Osteoimmunology; Institute of Biomedical Sciences, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| | - Sara Socorro Faria
- Laboratory of Tumor Biomarkers and Osteoimmunology; Institute of Biomedical Sciences, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| | - Leandro Peixoto Ferreira de Souza
- Laboratory of Tumor Biomarkers and Osteoimmunology; Institute of Biomedical Sciences, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| | - Paula Cristina Brígido Tavares
- Laboratory of Nanobiotechnology; Institute of Genetics and Biochemistry, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| | - Vivian Alonso Goulart
- Laboratory of Nanobiotechnology; Institute of Genetics and Biochemistry, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology; University of Brasilia; Brasilia Federal District Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology; Institute of Genetics and Biochemistry, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
- Department of Medical Microbiology and Immunology; University of California-Davis; Davis CA
| | - Marcelo José Barbosa Silva
- Laboratory of Tumor Biomarkers and Osteoimmunology; Institute of Biomedical Sciences, Federal University of Uberlandia; Uberlândia Minas Gerais Brazil
| |
Collapse
|
579
|
Morelli AE, Bracamonte-Baran W, Burlingham WJ. Donor-derived exosomes: the trick behind the semidirect pathway of allorecognition. Curr Opin Organ Transplant 2017; 22:46-54. [PMID: 27898464 PMCID: PMC5407007 DOI: 10.1097/mot.0000000000000372] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The passenger leukocyte hypothesis predicts that after transplantation, donor antigen-presenting cells (APCs) from the graft present donor MHC molecules to directly alloreactive T cells in lymphoid organs. However, in certain transplantation models, recent evidence contradicts this long-standing concept. New findings demonstrate that host, instead of donor, APCs play a prominent role in allosensitization against donor MHC molecules via the semidirect pathway. A similar mechanism operates in development of T-cell split tolerance to noninherited maternal antigens. RECENT FINDINGS Following fully mismatch skin or heart transplantation in mice, no or extremely few donor migrating APCs (i.e. conventional dendritic cells) are detected in the draining lymphoid organs. Instead, recipient dendritic cells that have captured donor extracellular vesicles (i.e. exosomes) carrying donor MHC molecules and APC costimulatory signals present donor MHC molecules to directly alloreactive T cells. This semidirect pathway can also give rise to a form of 'split' tolerance during chronic alloantigen exposure, as indirectly alloreactive T helper cells and directly alloreactive T-cell effectors are differentially impacted by host dendritic cells 'cross-dressed' with extracellular vesicles/exosomes derived from maternal microchimerism. SUMMARY Acquisition by recipient APCs of donor exosomes (and likely other extracellular vesicles) released by passenger leukocytes or the graft explains the potent T-cell allosensitization against donor MHC molecules, in the absence or presence of few passenger leukocytes in lymphoid organs. It also provides the basic mechanism and in-vivo relevance of the elusive semidirect pathway. Its degree of coordination with the allopeptide - specific, indirect pathway of T-cell help may determine whether semidirect allopresentation results in a sustained, effective, acute rejection response, or rather, in abortive acute rejection and 'split' tolerance.
Collapse
Affiliation(s)
- Adrian E Morelli
- aT.E. Starzl Transplantation Institute, Department of Surgery and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania bDivision of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, Maryland cDivision of Transplantation, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
580
|
Wang J, Zheng Y, Zhao M. Exosome-Based Cancer Therapy: Implication for Targeting Cancer Stem Cells. Front Pharmacol 2017; 7:533. [PMID: 28127287 PMCID: PMC5226951 DOI: 10.3389/fphar.2016.00533] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
Drug resistance, difficulty in specific targeting and self-renewal properties of cancer stem cells (CSCs) all contribute to cancer treatment failure and relapse. CSCs have been suggested as both the seeds of the primary cancer, and the roots of chemo- and radio-therapy resistance. The ability to precisely deliver drugs to target CSCs is an urgent need for cancer therapy, with nanotechnology-based drug delivery system being one of the most promising tools to achieve this in the clinic. Exosomes are cell-derived natural nanometric vesicles that are widely distributed in body fluids and involved in multiple disease processes, including tumorigenesis. Exosome-based nanometric vehicles have a number of advantages: they are non-toxic, non-immunogenic, and can be engineered to have robust delivery capacity and targeting specificity. This enables exosomes as a powerful nanocarrier to deliver anti-cancer drugs and genes for CSC targeting therapy. Here, we will introduce the current explorations of exosome-based delivery system in cancer therapy, with particular focus on several exosomal engineering approaches that have improved their efficiency and specificity for CSC targeting.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen UniversityGuangzhou, China
| | - Yongjiang Zheng
- Department of Hematology, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Meng Zhao
- Department of Hematology, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen UniversityGuangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|
581
|
Stranford DM, Leonard JN. Delivery of Biomolecules via Extracellular Vesicles. ADVANCES IN GENETICS 2017; 98:155-175. [DOI: 10.1016/bs.adgen.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
582
|
Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, Li L. The Emerging Roles of Extracellular Vesicles As Communication Vehicles within the Tumor Microenvironment and Beyond. Front Endocrinol (Lausanne) 2017; 8:194. [PMID: 28848498 PMCID: PMC5550719 DOI: 10.3389/fendo.2017.00194] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Tumors evolve in complex and dynamic microenvironments that they rely on for sustained growth, invasion, and metastasis. Within this space, tumor cells and non-malignant cells are in frequent communication. One specific mode of communication that has gained recent attention is the release of extracellular vesicles (EVs). EVs are lipid bilayer-bound vehicles that are released from the cell membrane and carry nucleic acids, proteins, and lipids to neighboring or distant cells. EVs have been demonstrated to influence a multitude of processes that aid in tumor progression including cellular proliferation, angiogenesis, migration, invasion, metastasis, immunoediting, and drug resistance. The ubiquitous involvement of EVs on cancer progression makes them very suitable targets for novel therapeutics. Furthermore, they are being studied as specific markers for cancer diagnostics, prognosis, and even as chemotherapy drug-delivery systems. This review focuses on the most recent advances in EV knowledge, some current and potential problems with their use, and some proposed solutions to consider for the future.
Collapse
Affiliation(s)
- Ryan Sullivan
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Grace Maresh
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Xin Zhang
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
| | - John Hooper
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - David Margolin
- Department of Colon and Rectal Surgery, Ochsner Clinic Foundation, New Orleans, LA, United States
- Ochsner Clinical School, School of Medicine, University Queensland, New Orleans, LA, United States
| | - Li Li
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
- Ochsner Clinical School, School of Medicine, University Queensland, New Orleans, LA, United States
- *Correspondence: Li Li,
| |
Collapse
|
583
|
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 2016; 30:836-848. [PMID: 27960084 PMCID: PMC5157696 DOI: 10.1016/j.ccell.2016.10.009] [Citation(s) in RCA: 1456] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/05/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are critical mediators of intercellular communication between tumor cells and stromal cells in local and distant microenvironments. Accordingly, EVs play an essential role in both primary tumor growth and metastatic evolution. EVs orchestrate multiple systemic pathophysiological processes, such as coagulation, vascular leakiness, and reprogramming of stromal recipient cells to support pre-metastatic niche formation and subsequent metastasis. Clinically, EVs may be biomarkers and novel therapeutic targets for cancer progression, particularly for predicting and preventing future metastatic development.
Collapse
Affiliation(s)
- Annette Becker
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Basant Kumar Thakur
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Pediatric Clinic III, University Clinic of Essen, Hufelandstrasse-55, Essen 45147, Germany
| | - Joshua Mitchell Weiss
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Han Sang Kim
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Yonsei Cancer Center, Division of Medical Oncology, Departments of Internal Medicine, and Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hector Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
584
|
Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, Ochiya T. Extracellular Vesicles in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2016; 17:ijms17111801. [PMID: 27801806 PMCID: PMC5133802 DOI: 10.3390/ijms17111801] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by the progression of irreversible airflow limitation and is a leading cause of morbidity and mortality worldwide. Although several crucial mechanisms of COPD pathogenesis have been studied, the precise mechanism remains unknown. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are released from almost all cell types and are recognized as novel cell–cell communication tools. They have been shown to carry and transfer a wide variety of molecules, such as microRNAs, messenger RNAs, and proteins, which are involved in physiological functions and the pathology of various diseases. Recently, EVs have attracted considerable attention in pulmonary research. In this review, we summarize the recent findings of EV-mediated COPD pathogenesis. We also discuss the potential clinical usefulness of EVs as biomarkers and therapeutic agents for the treatment of COPD.
Collapse
Affiliation(s)
- Tsukasa Kadota
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Yu Fujita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Jun Araya
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Kazuyoshi Kuwano
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| |
Collapse
|
585
|
Wang Z, Chen JQ, Liu JL, Tian L. Exosomes in tumor microenvironment: novel transporters and biomarkers. J Transl Med 2016; 14:297. [PMID: 27756426 PMCID: PMC5070309 DOI: 10.1186/s12967-016-1056-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment (TME) plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Exosome is an important part of TME. Exosomes are small vesicles formed in vesicular bodies with a diameter of 30-100 nm and a classic "cup" or "dish" morphology. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donor cell to recipient cells. Exosomes secreted from tumor cells are called tumor-derived (TD) exosomes. There is emerging evidence that TD exosomes can construct a fertile environment to support tumor proliferation, angiogenesis, invasion and premetastatic niche preparation. TD exosomes also may facilitate tumor growth and metastasis by inhibiting immune surveillance and by increasing chemoresistance via removal of chemotherapeutic drugs. Therefore, TD-exosomes might be potential targets for therapeutic interventions via their modification or removal. For example, exosomes can serve as specific delivery vehicles to tumors of drugs, small molecules, or agents of prevention and gene therapy. Furthermore, the biomarkers detected in exosomes of biological fluids imply a potential for exosomes in the early detection and diagnosis, prediction of therapeutic efficacy, and determining prognosis of cancer. Although exosomes may serve as cancer biomarkers and aid in the treatment of cancer, we have a long way to go before we can further enhance the anti-tumor therapy of exosomes and develop exosome-based cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region China
| | - Jin-lu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region China
| | - Lei Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region China
| |
Collapse
|
586
|
Shenoda BB, Ajit SK. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells. Clin Med Insights Pathol 2016; 9:1-8. [PMID: 27660518 PMCID: PMC5024790 DOI: 10.4137/cpath.s39925] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.
Collapse
Affiliation(s)
- Botros B Shenoda
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K Ajit
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
587
|
Daßler-Plenker J, Reiners KS, van den Boorn JG, Hansen HP, Putschli B, Barnert S, Schuberth-Wagner C, Schubert R, Tüting T, Hallek M, Schlee M, Hartmann G, Pogge von Strandmann E, Coch C. RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncoimmunology 2016; 5:e1219827. [PMID: 27853642 PMCID: PMC5087302 DOI: 10.1080/2162402x.2016.1219827] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate-RNA (3pRNA) triggers antitumor immunity predominantly via NK cell activation and direct apoptosis induction in tumor cells. However, how NK cells are mobilized to attack the tumor cells remains elusive. Here, we show that RIG-I activation induced the secretion of extracellular vesicles (EVs) from melanoma cells, which by themselves revealed antitumor activity in vitro and in vivo. RIG-I-induced EVs from melanoma cells exhibited an increased expression of the NKp30-ligand (BAG6, BAT3) on their surface triggering NK cell-mediated lysis of melanoma cells via activation of the cytotoxicity NK cell-receptor NKp30. Moreover, systemic administration of RIG-I-induced melanoma-EVs showed a potent antitumor activity in a melanoma mouse model in vivo. In conclusion, our data establish a new RIG-I-dependent pathway leading to NK cell-mediated tumor cell killing.
Collapse
Affiliation(s)
- Juliane Daßler-Plenker
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Katrin S Reiners
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne , Cologne, Germany
| | - Jasper G van den Boorn
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Hinrich P Hansen
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne , Cologne, Germany
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Sabine Barnert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University , Freiburg, Germany
| | | | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University , Freiburg, Germany
| | - Thomas Tüting
- Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| | - Michael Hallek
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne , Cologne, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| | - Elke Pogge von Strandmann
- Clinic I for Internal Medicine, Innate immunity Group, University of Cologne, Cologne, Germany; Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology, and Immunology, Philipps University, Hans-Meerwein-Strasse 3, Marburg, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn , Bonn, Germany
| |
Collapse
|
588
|
CBP/p300 acetyltransferases regulate the expression of NKG2D ligands on tumor cells. Oncogene 2016; 36:933-941. [PMID: 27477692 PMCID: PMC5318661 DOI: 10.1038/onc.2016.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/12/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
Tumor surveillance of natural killer (NK) cells is mediated by the cytotoxicity receptor natural-killer group 2 member D (NKG2D). Ligands for NKG2D are generally not expressed on healthy cells, but induced on the surface of malignant cells. To date, NKG2D ligand (NKG2D-L) induction was mainly described to depend on the activation of the DNA damage response, although the molecular mechanisms that regulate NKG2D-L expression remain largely unknown. Here, we show that the acetyltransferases CBP (CREB-binding protein) and p300 play a crucial role in the regulation of NKG2D-L on tumor cells. Loss of CBP/p300 decreased the basal cell surface expression of human ligands and reduced the upregulation of MICA/B and ULBP2 in response to histone deacetylase inhibitors or DNA damage. Furthermore, CBP/P300 deficiency abrogated the sensitivity of stressed cells to NK cell-mediated killing. CBP/p300 were also identified as major regulators of mouse NKG2D ligand RAE-1 in vitro and in vivo using the Eμ-Myc lymphoma model. Mechanistically, we observed an enhanced activation of the CBP/p300 binding transcription factor CREB (cAMP response element-binding protein) correlating to the NKG2D-L upregulation. Moreover, increased binding of CREB and CBP/p300 to NKG2D-L promoters and elevated histone acetylation were detectable. This study provides strong evidence for a major role of CBP and p300 in orchestrating NKG2D-L induction and consequently immunosurveillance of tumors in mice and humans. These findings might help to develop novel immunotherapeutic approaches against cancer.
Collapse
|
589
|
Maji S, Yan IK, Parasramka M, Mohankumar S, Matsuda A, Patel T. In vitrotoxicology studies of extracellular vesicles. J Appl Toxicol 2016; 37:310-318. [DOI: 10.1002/jat.3362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sayantan Maji
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Irene K. Yan
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Mansi Parasramka
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Swathi Mohankumar
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Akiko Matsuda
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| | - Tushar Patel
- Department of Transplantation and Department of Cancer Biology; Mayo Clinic; Jacksonville FL USA
| |
Collapse
|
590
|
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol Res 2016; 111:487-500. [PMID: 27394168 DOI: 10.1016/j.phrs.2016.07.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
Abstract
Exosomes are naturally secreted nanovesicles that have recently aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. These 30-100nm sized vesicles are released from the cells into the extracellular space and ultimately into biofluids in a tightly regulated way. Their molecular composition reflects their cells of origin, may confer specific cell or tissue tropism and underlines their biological activity. Exosomes and other extracellular vesicles (EVs) carry specific sets of proteins, nucleic acids (DNA, mRNA and regulatory RNAs), lipids and metabolites that represent an appealing source of novel noninvasive markers through biofluid biopsies. Exosome-shuttled molecules maintain their biological activity and are capable of modulating and reprogramming recipient cells. This multi-faceted nature of exosomes hold great promise for improving cancer treatment featuring them as novel diagnostic sensors as well as therapeutic effectors and drug delivery vectors. Natural biological activity including the therapeutic payload and targeting behavior of EVs can be tuned via genetic and chemical engineering. In this review we describe the properties that EVs share with conventional synthetic nanoparticles, including size, liposome-like membrane bilayer with customizable surface, and multifunctional capacity. We also highlight unique characteristics of EVs, which possibly allow them to circumvent some limitations of synthetic nanoparticle systems and facilitate clinical translation. The latter are in particular correlated with their innate stability, ability to cross biological barriers, efficiently deliver bioactive cargos or evade immune recognition. Furthermore, we discuss the potential roles for EVs in diagnostics and theranostics, and highlight the challenges that still need to be overcome before EVs can be applied to routine clinical practice.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natasa Zarovni
- HansaBioMed OU Tallinn, Estonia and Exosomics Siena S.p.A, Siena, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
591
|
Fais S, O'Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, Carvalho J, Cordeiro da Silva A, Del Portillo H, El Andaloussi S, Ficko Trček T, Furlan R, Hendrix A, Gursel I, Kralj-Iglic V, Kaeffer B, Kosanovic M, Lekka ME, Lipps G, Logozzi M, Marcilla A, Sammar M, Llorente A, Nazarenko I, Oliveira C, Pocsfalvi G, Rajendran L, Raposo G, Rohde E, Siljander P, van Niel G, Vasconcelos MH, Yáñez-Mó M, Yliperttula ML, Zarovni N, Zavec AB, Giebel B. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS NANO 2016; 10:3886-99. [PMID: 26978483 DOI: 10.1021/acsnano.5b08015] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.
Collapse
Affiliation(s)
- Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS) , 00161 Rome, Italy
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin 2, Ireland
| | - Francesc E Borras
- IVECAT-Group, Germans Trias i Pujol Research Institute (IGTP), and Nephrology Service, Germans Trias i Pujol University Hospital , Campus Can Ruti, 08916 Badalona, Spain
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University , 1085 Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin , 8 Turin, Italy
| | - Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo , and Euro-Mediterranean Institute of Science and Technology, 90133 Palermo, Italy
| | | | - Anabela Cordeiro da Silva
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
- Institute for Molecular and Cell Biology , Rua Campo Alegre, 4150-180 Porto, Portugal
| | - Hernando Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic de Universitat de Barcelona , 08036 Barcelona, Spain
- ICREA at Institut d'Investigació Germans Trias i Pujol (IGTP) , 08916 Badalona, Spain
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet , 17177 Stockholm, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford OX13QX, United Kingdom
| | - Tanja Ficko Trček
- Sandoz Biopharmaceuticals-Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital , 9000 Gent, Belgium
| | - Ihsan Gursel
- Science Faculty, Molecular Biology and Genetics Department, THORLAB- Therapeutic Oligonucleotide Research Lab, Bilkent University , 06800 Bilkent, Turkey
| | - Veronika Kralj-Iglic
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana , 1000 Ljubljana, Slovenia
| | | | - Maja Kosanovic
- Department of Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy, INEP, Univeristy of Belgrade , 11000 Belgrade, Serbia
| | - Marilena E Lekka
- Chemistry Department, University of Ioannina , 45110 Ioannina, Greece
| | - Georg Lipps
- University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Mariantonia Logozzi
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS) , 00161 Rome, Italy
| | | | - Marei Sammar
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel 2161002, Israel
| | - Alicia Llorente
- Dept. of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital , 0379 Oslo, Norway
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control, Medical Center University of Freiburg , 79106 Freiburg am Breisgau, Germany
| | - Carla Oliveira
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto , 4200-319 Porto, Portugal
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, University of Zurich , 8006 Zurich, Switzerland
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, and Centre National de la Recherche Scientifique, UMR144, 75231 Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU) , 5020 Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), 5020 Salzburg, Austria
| | | | - Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, and Centre National de la Recherche Scientifique, UMR144, 75231 Paris, France
| | - M Helena Vasconcelos
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Sta Cristina, IIS-IP, Departamento Biología Molecular/CBM-SO, UAM, 28009 Madrid, Spain
| | | | | | - Apolonija Bedina Zavec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen , 45147 Essen, Germany
| |
Collapse
|
592
|
Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 2016; 126:1139-43. [PMID: 27035805 DOI: 10.1172/jci87316] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intercellular signaling via extracellular vesicles (EVs) is an underappreciated modality of cell-cell crosstalk that enables cells to convey packages of complex instructions to specific recipient cells. EVs transmit these instructions through their cargoes of multiple proteins, nucleic acids, and specialized lipids, which are derived from their cells of origin and allow for combinatorial effects upon recipient cells. This Review series brings together the recent progress in our understanding of EV signaling in physiological and pathophysiological conditions, highlighting how certain EVs, particularly exosomes, can promote or regulate infections, host immune responses, development, and various diseases - notably cancer. Given the diverse nature of EVs and their abilities to profoundly modulate host cells, this series puts particular emphasis on the clinical applications of EVs as therapeutics and as diagnostic biomarkers.
Collapse
|
593
|
Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 2016; 126:1224-32. [PMID: 27035813 DOI: 10.1172/jci81137] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DC-derived exosomes (Dex) are nanometer-sized membrane vesicles that are secreted by the sentinel antigen-presenting cells of the immune system: DCs. Like DCs, the molecular composition of Dex includes surface expression of functional MHC-peptide complexes, costimulatory molecules, and other components that interact with immune cells. Dex have the potential to facilitate immune cell-dependent tumor rejection and have distinct advantages over cell-based immunotherapies involving DCs. Accordingly, Dex-based phase I and II clinical trials have been conducted in advanced malignancies, showing the feasibility and safety of the approach, as well as the propensity of these nanovesicles to mediate T and NK cell-based immune responses in patients. This Review will evaluate the interactions of Dex with immune cells, their clinical progress, and the future of Dex immunotherapy for cancer.
Collapse
|
594
|
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BWM, Wauben M, Andaloussi SE, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4:30087. [PMID: 26725829 PMCID: PMC4698466 DOI: 10.3402/jev.v4.30087] [Citation(s) in RCA: 1051] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Collapse
Affiliation(s)
- Thomas Lener
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US23 Inserm, Villejuif, France
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
| | - Devasis Chatterjee
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Felipe A Court
- Department of Physiology, Faculty of Biology, Pontificia-Universidad Católica de Chile, Santiago, Chile
| | - Hernando A Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Juan M Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ursula Felderhoff-Mueser
- Department of Paediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boris W Kramer
- Experimental Perinatology/Neonatology, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - Sandra Laner-Plamberger
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Saara Laitinen
- Research and Cell Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Tommaso Leonardi
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Magdalena J Lorenowicz
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Casey A Maguire
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio Marcilla
- Dpto. Biología Celular y Parasitologia, Facultat de Farmacia, Universitat de Valencia, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shona Pedersen
- Centre for Cardiovascular Research, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Quesenberry
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Ilona G Reischl
- BASG - Bundesamt für Sicherheit im Gesundheitswesen - Federal Office for Safety in Health Care, AGES - Agentur für Gesundheit und Ernährungssicherheit - Austrian Agency for Health and Food Safety, Institut Überwachung - Institute Surveillance, Wien, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ralf Sanzenbacher
- Ralf Sanzenbacher, Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ineke Slaper-Cortenbach
- Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marca Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clotilde Théry
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
- INSERM U932, Institut Curie, Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria;
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| |
Collapse
|
595
|
Pogge von Strandmann E, Shatnyeva O, Hansen HP. NKp30 and its ligands: emerging players in tumor immune evasion from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:314. [PMID: 26697474 DOI: 10.3978/j.issn.2305-5839.2015.09.08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Olga Shatnyeva
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|