601
|
Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S, He M, Waizenegger W, Gasser E, Schnabl B, Atkins AR, Yu RT, Knight R, Liddle C, Downes M, Evans RM. FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell 2019; 176:1098-1112.e18. [PMID: 30794774 PMCID: PMC6701863 DOI: 10.1016/j.cell.2019.01.036] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-β-muricholic acid (T-βMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Ting Fu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead NSW 2145, Australia
| | - Eiji Yoshihara
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Fritz Cayabyab
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Qiyun Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Tong Zhang
- Waitt Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sihao Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingxiao He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wanda Waizenegger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bernd Schnabl
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
602
|
Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. J Virol 2019; 93:JVI.01738-18. [PMID: 30541833 DOI: 10.1128/jvi.01738-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.
Collapse
|
603
|
Akhmedov VA, Gaus OV. Role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. TERAPEVT ARKH 2019; 91:143-148. [DOI: 10.26442/00403660.2019.02.000051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article provides an overview of modern views on the role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. The general questions of the pathogenesis of the syndrome of excessive bacterial growth in the intestine, the participation of opportunistic microflora, the deficit of representatives of normal microflora, changes in the species composition of bile acids in the pathogenesis of nonalcoholic fatty liver disease are considered.
Collapse
|
604
|
Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Sci Bull (Beijing) 2019; 64:180-188. [PMID: 32288967 PMCID: PMC7104969 DOI: 10.1016/j.scib.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 01/20/2023]
Abstract
Influenza is a persistent threat to human health and there is a continuing requirement for updating anti-influenza strategies. Initiated by observations of different endoplasmic reticulum (ER) responses of host to seasonal H1N1 and highly pathogenic avian influenza (HPAI) A H5N1 infections, we identified an alternative antiviral role of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor, both in vitro and in vivo. Rather than modulating ER stress in host cells, TUDCA abolished the proton conductivity of viral M2 by disrupting its oligomeric states, which induces inefficient viral infection. We also showed that M2 penetrated cells, whose intracellular uptake depended on its proton channel activity, an effect observed in both TUDCA and M2 inhibitor amantadine. The identification and application of TUDCA as an inhibitor of M2 proton channel will expand our understanding of IAV biology and complement current anti-IAV arsenals.
Collapse
|
605
|
Chang SH, Song NJ, Choi JH, Yun UJ, Park KW. Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes Rev 2019; 20:241-251. [PMID: 30450758 DOI: 10.1111/obr.12796] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The growing focus on brown adipocytes has spurred an interest in their potential benefits for metabolic diseases. Brown and beige (or brite) adipocytes express high levels of uncoupling protein 1 (Ucp1) to dissipate heat instead of generating ATP. Ucp1 induction by stimuli including cold, exercise, and diet increases nonshivering thermogenesis, leading to increased energy expenditure and prevention of obesity. Recently, studies in adipocytes have indicated the existence of functional Ucp1-independent thermogenic regulators. Furthermore, substrate cycling involving creatine metabolites, cold-induced N-acyl amino acids, and oxidized lipids in white adipocytes can increase energy expenditure in the absence of Ucp1. These studies emphasize the need for a better understanding of the mechanisms governing energy expenditure in adipocytes and their potential applications in the prevention of human obesity and metabolic diseases.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jin Hee Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
606
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
607
|
de Siqueira Cardinelli C, Torrinhas RS, Sala P, Pudenzi MA, Fernando F Angolini C, Marques da Silva M, Machado NM, Ravacci G, Eberlin MN, Waitzberg DL. Fecal bile acid profile after Roux-en-Y gastric bypass and its association with the remission of type 2 diabetes in obese women: A preliminary study. Clin Nutr 2019; 38:2906-2912. [PMID: 30799193 DOI: 10.1016/j.clnu.2018.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the influence of Roux-en-Y gastric by-pass (RYGB) on fecal bile acid (BA) profile and its relationship with postoperative remission of type 2 diabetes (T2D). METHODS Fecal samples were collected 3 and 12 months after RYGB from diabetic obese women who were responsive (n = 12) and non-responsive (n = 8) to postoperative remission of T2D. Fecal BA profile was accessed by liquid chromatography coupled to tandem mass spectrometry in a targeted approach. RESULTS Relative to pre-operative levels, a total of 10 fecal BA profiles decreased after RYGB (ANOVA, p ≤ 0.05) with significant fold-changes for glycochenodeoxycholic, glycocholic, taurocholic, and taurochenodeoxycholic acids at 3-months postoperatively, and for glycochenodeoxycholic, glycocholic and taurocholic acids at 12 months postoperatively (Benjamini-Hochberg, p ≤ 0.05). Postoperative changes in fecal BA were different between responsive and non-responsive women, with a significant reduction in more sub-fractions of BA in responsive women than in non-responsive women, and a marked difference in the temporal behavior of cholic acid (CA) and chenodeoxycholic acid (CDCA), thus reflecting changes in CA/CDCA ratio, and tauroursodeoxycolic (TUDCA) levels between these responsiveness groups (ANOVA, p ≤ 0.05). CONCLUSION RYGB induces a marked reduction in the concentration of fecal BA, which is heterogeneous according to T2D responsiveness.
Collapse
Affiliation(s)
- Camila de Siqueira Cardinelli
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil.
| | - Raquel Susana Torrinhas
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Priscila Sala
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Marcos Albieri Pudenzi
- ThoMSon Mass Spectrometry Laboratory, State University of Campinas (UNICAMP), São Paulo, Brazil
| | | | - Mariane Marques da Silva
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Natasha Mendonça Machado
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Graziela Ravacci
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Dan L Waitzberg
- Laboratory of Nutrition and Surgery Metabolic of the Digestive Tract, Metanutri - Lim 35, Department of Gastroenterology, University of São Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
608
|
Hu MM, He WR, Gao P, Yang Q, He K, Cao LB, Li S, Feng YQ, Shu HB. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res 2019; 29:193-205. [PMID: 30651583 DOI: 10.1038/s41422-018-0136-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
The mechanisms on metabolic regulation of immune responses are still elusive. We show here that viral infection induces immediate-early NF-κB activation independent of viral nucleic acid-triggered signaling, which triggers a rapid transcriptional induction of bile acid (BA) transporter and rate-limiting biosynthesis enzymes as well as accumulation of intracellular BAs in divergent cell types. The accumulated intracellular BAs activate SRC kinase via the TGR5-GRK-β-arrestin axis, which mediates tyrosine phosphorylation of multiple antiviral signaling components including RIG-I, VISA/MAVS, MITA/STING, TBK1 and IRF3. The tyrosine phosphorylation of these components by SRC conditions for efficient innate antiviral immune response. Consistently, TGR5 deficiency impairs innate antiviral immunity, whereas BAs exhibit potent antiviral activity in wild-type but not TGR5-deficient cells and mice. Our findings reveal an intrinsic and universal role of intracellular BA metabolism in innate antiviral immunity.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China. .,State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China.
| | - Wen-Rui He
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Peng Gao
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qing Yang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ke He
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Li-Bo Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
609
|
Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne) 2019; 10:204. [PMID: 31001203 PMCID: PMC6454151 DOI: 10.3389/fendo.2019.00204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized.
Collapse
|
610
|
Xue Y, Ma C, Hanna I, Pan G. Intestinal Transporter-Associated Drug Absorption and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:361-405. [DOI: 10.1007/978-981-13-7647-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
611
|
Cariello M, Piglionica M, Gadaleta RM, Moschetta A. The Enterokine Fibroblast Growth Factor 15/19 in Bile Acid Metabolism. Handb Exp Pharmacol 2019; 256:73-93. [PMID: 31123830 DOI: 10.1007/164_2019_235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21, and FGF23, play a key role in whole-body homeostasis. In particular, FGF19 is a postprandial hormone regulating glucose homeostasis, glycogen and protein synthesis, and primary bile acid (BA) metabolism. In the ileum, BA-dependent farnesoid X receptor (FXR) activation induces the production of FGF19, which reaches the liver through the portal system where it represses the expression of CYP7A1, the rate-limiting enzyme of hepatic de novo BAs synthesis. Dysregulation of BA levels associated with alteration in FGF19 level has been depicted in different pathological conditions of the gut-liver axis. Furthermore, FGF19 exploits strong anti-cholestatic and anti-fibrotic activities in the liver. However, native FGF19 seems to retain peculiar hepatic pro-tumorigenic actions. Recently engineered FGF19 analogues have been recently synthetized, with fully retained BA regulatory activity but without intrinsic pro-tumoral action, thus opening bona fide novel pharmacological strategy for the treatment of gut-liver axis diseases.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | | | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.
- National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
612
|
Grabherr F, Grander C, Effenberger M, Adolph TE, Tilg H. Gut Dysfunction and Non-alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2019; 10:611. [PMID: 31555219 PMCID: PMC6742694 DOI: 10.3389/fendo.2019.00611] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the leading liver diseases worldwide. NAFLD is characterized by hepatic steatosis and may progress to an inflammatory condition termed non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. It became evident in the last years that NAFLD pathophysiology is complex and involves diverse immunological and metabolic pathways. An association between intestinal signals (e.g., derived from the gut microbiota) and the development of obesity and its metabolic consequences such as NAFLD are increasingly recognized. Pre-clinical studies have shown that germ-free mice are protected against obesity and hepatic steatosis. Several human studies from the past years have demonstrated that NAFLD contains a disease-specific gut microbiome signature. Controlled studies propose that certain bacteria with rather pro-inflammatory features such as Proteobacteria or Escherichia coli are dominantly present in these patients. In contrast, rather protective bacteria such as Faecalibacterium prausnitzii are decreased in NAFLD patients. Furthermore, various bacterial metabolites and microbiota-generated secondary bile acids are involved in NAFLD-associated metabolic dysfunction. Although these findings are exciting, research currently lack evidence that interference at the level of the gut microbiome is beneficial for these diseases. Further preclinical and clinical studies are needed to advance this aspect of NAFLD research and to support the notion that the intestinal microbiota is indeed of major relevance in this disorder.
Collapse
|
613
|
Li Y, Xie Z, Gao T, Li L, Chen Y, Xiao D, Liu W, Zou B, Lu B, Tian X, Han B, Guo Y, Zhang S, Lin L, Wang M, Li P, Liao Q. A holistic view of gallic acid-induced attenuation in colitis based on microbiome-metabolomics analysis. Food Funct 2019; 10:4046-4061. [DOI: 10.1039/c9fo00213h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GA enema can treat UC by influencing microbiota-mediated metabolism.
Collapse
|
614
|
Huang ZF, Zhang ML, Zhang S, Wang YH, Jiang XW. Structural characterization of polysaccharides from Cordyceps militaris and their hypolipidemic effects in high fat diet fed mice. RSC Adv 2018; 8:41012-41022. [PMID: 35557892 PMCID: PMC9091693 DOI: 10.1039/c8ra09068h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Cordyceps militaris is a crude dietary therapeutic mushroom with high nutritional and medicinal values. Mushroom-derived polysaccharides have been found to possess antihyperglycemic and antihyperlipidemic activities. This study aimed to partially clarify the structural characterization and comparatively evaluate hypolipidemic potentials of intracellular- (IPCM) and extracellular polysaccharides of C. militaris (EPCM) in high fat diet fed mice. Results indicated that IPCM-2 is α-pyran polysaccharide with an average molecular weight of 32.5 kDa, was mainly composed of mannose, glucose and galactose with mass percentages of 51.94%, 10.54%, and 37.25%, respectively. EPCM-2 is an α-pyran polysaccharide with an average molecular weight of 20 kDa that is mainly composed of mannose, glucose and galactose with mass percentages of 44.51%, 18.33%, and 35.38%, respectively. In in vivo study, EPCM-1 treatment (100 mg kg-1 d-1) showed potential effects on improving serum lipid profiles of hyperlipidemic mice, reflected by decreasing serum total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C) levels by 20.05%, 45.45% and 52.63%, respectively, while IPCM-1 treatment (100 mg kg-1 d-1) remarkably decreased TC, TG and LDL-C levels by 20.74%, 47.93%, and 38.25%, respectively. In addition, EPCM-1 ameliorated hyperlipidemia possibly through upregulating the expression of serum lipoprotein lipase (LPL) and down-regulating the expression of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), as determined by enzyme-linked immunosorbent assay (ELISA) method, while IPCM-1 remarkably upregulated the expression of serum LPL. This study confirms polysaccharides from C. militaris could be explored as functional foods or natural medicines for preventing hyperlipidemia.
Collapse
Affiliation(s)
- Zhen-Feng Huang
- School of Life Science, South China Normal University No. 55 West of Zhongshan Avenue Guangzhou Guangdong China
| | - Ming-Long Zhang
- School of Life Science, South China Normal University No. 55 West of Zhongshan Avenue Guangzhou Guangdong China
| | - Song Zhang
- School of Life Science, South China Normal University No. 55 West of Zhongshan Avenue Guangzhou Guangdong China
| | - Ya-Hui Wang
- School of Life Science, South China Normal University No. 55 West of Zhongshan Avenue Guangzhou Guangdong China
| | - Xue-Wen Jiang
- School of Life Science, South China Normal University No. 55 West of Zhongshan Avenue Guangzhou Guangdong China
| |
Collapse
|
615
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
616
|
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, Carbone F, Wieckowski MR, Wang DQH, Portincasa P. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol 2018; 160:34-45. [PMID: 30508523 DOI: 10.1016/j.bcp.2018.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by the excessive accumulation of triglycerides in hepatocytes. NAFLD is the most frequent chronic liver disease in developed countries, and is often associated with metabolic disorders such as obesity and type 2 diabetes. NAFLD definition encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL), to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD, therefore, represents a global public health issue. Mitochondrial dysfunction occurs in NAFLD, and contributes to the progression to the necro-inflammatory and fibrotic form (NASH). Disrupted mitochondrial function is associated with a decrease in the energy levels and impaired redox balance, and negatively affects cell survival by altering overall metabolism and subcellular trafficking. Such events reduce the tolerance of hepatocytes towards damaging hits, and favour the injurious effects of extra-cellular factors. Here, we discuss the role of mitochondria in NAFLD and focus on potential therapeutic approaches aimed at preserving mitochondrial function.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Liliana P Montezinho
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 Viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | | | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
617
|
Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, Maguin E, Rhimi M. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 2018; 60:323-332. [PMID: 30487175 PMCID: PMC6358303 DOI: 10.1194/jlr.r088989] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, the gut microbiota has emerged as a crucial factor that influences cholesterol metabolism. Ever since, significant interest has been shown in investigating these host-microbiome interactions to uncover microbiome-mediated functions on cholesterol and bile acid (BA) metabolism. Indeed, changes in gut microbiota composition and, hence, its derived metabolites have been previously reported to subsequently impact the metabolic processes and have been linked to several diseases. In this context, associations between a disrupted gut microbiome, impaired BA metabolism, and cholesterol dysregulation have been highlighted. Extensive advances in metagenomic and metabolomic studies in this field have allowed us to further our understanding of the role of intestinal bacteria in metabolic health and disease. However, only a few have provided mechanistic insights into their impact on cholesterol metabolism. Identifying the myriad functions and interactions of these bacteria to maintain cholesterol homeostasis remain an important challenge in such a field of research. In this review, we discuss the impact of gut microbiota on cholesterol metabolism, its association with disease settings, and the potential of modulating gut microbiota as a promising therapeutic target to lower hypercholesterolemia.
Collapse
Affiliation(s)
- Aicha Kriaa
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mélanie Bourgin
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Aline Potiron
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Héla Mkaouar
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Amin Jablaoui
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Philippe Gérard
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Emmanuelle Maguin
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Moez Rhimi
- UMR 1319 Micalis, INRA, Microbiota Interaction with Human and Animal Team (MIHA), AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
618
|
Han B, Lin CCJ, Hu G, Wang MC. 'Inside Out'- a dialogue between mitochondria and bacteria. FEBS J 2018; 286:630-641. [PMID: 30390412 DOI: 10.1111/febs.14692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating metabolism and longevity. A body of recent evidences reveals that the gut microbiome can also exert significant effects on these activities in the host. Here, by summarizing the currently known mechanisms underlying these regulations, and by comparing mitochondrial fission-fusion dynamics with bacterial interactions such as quorum sensing, we hypothesize that the microbiome impacts the host by communicating with their intracellular relatives, mitochondria. We highlight recent discoveries supporting this model, and these new findings reveal that metabolite molecules derived from bacteria can fine-tune mitochondrial dynamics in intestinal cells and hence influence host metabolic fitness and longevity. This perspective mode of chemical communication between bacteria and mitochondria may help us understand complex and dynamic environment-microbiome-host interactions regarding their vital impacts on health and diseases.
Collapse
Affiliation(s)
- Bing Han
- Children's Hospital, Fudan University, Minhang, Shanghai, China.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Chun Janet Lin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Guo Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
619
|
Enright EF, Govindarajan K, Darrer R, MacSharry J, Joyce SA, Gahan CGM. Gut Microbiota-Mediated Bile Acid Transformations Alter the Cellular Response to Multidrug Resistant Transporter Substrates in Vitro: Focus on P-glycoprotein. Mol Pharm 2018; 15:5711-5727. [PMID: 30388019 DOI: 10.1021/acs.molpharmaceut.8b00875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pharmacokinetic research at the host-microbe interface has been primarily directed toward effects on drug metabolism, with fewer investigations considering the absorption process. We previously demonstrated that the transcriptional expression of genes encoding intestinal transporters involved in lipid translocation are altered in germ-free and conventionalized mice possessing distinct bile acid signatures. It was consequently hypothesized that microbial bile acid metabolism, which is the deconjugation and dehydroxylation of the bile acid steroid nucleus by gut bacteria, may impact upon drug transporter expression and/or activity and potentially alter drug disposition. Using a panel of three human intestinal cell lines (Caco-2, T84, and HT-29) that differ in basal transporter expression level, bile acid conjugation-, and hydroxylation-status was shown to influence the transcription of genes encoding several major influx and efflux transporter proteins. We further investigated if these effects on transporter mRNA would translate to altered drug disposition and activity. The results demonstrated that the conjugation and hydroxylation status of the bile acid steroid nucleus can influence the cellular response to multidrug resistance (MDR) substrates, a finding that did not directly correlate with directionality of gene or protein expression. In particular, we noted that the cytotoxicity of cyclosporine A was significantly augmented in the presence of the unconjugated bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) in P-gp positive cell lines, as compared to their taurine/glycine-conjugated counterparts, implicating P-gp in the molecular response. Overall this work identifies a novel mechanism by which gut microbial metabolites may influence drug accumulation and suggests a potential role for the microbial bile acid-deconjugating enzyme bile salt hydrolase (BSH) in ameliorating multidrug resistance through the generation of bile acid species with the capacity to access and inhibit P-gp ATPase. The physicochemical property of nonionization is suggested to underpin the preferential ability of unconjugated bile acids to attenuate the efflux of P-gp substrates and to sensitize tumorigenic cells to cytotoxic therapeutics in vitro. This work provides new impetus to investigate whether perturbation of the gut microbiota, and thereby the bile acid component of the intestinal metabolome, could alter drug pharmacokinetics in vivo. These findings may additionally contribute to the development of less toxic P-gp modulators, which could overcome MDR.
Collapse
Affiliation(s)
- Elaine F Enright
- School of Pharmacy , ‡APC Microbiome Ireland , §School of Biochemistry and Cell Biology , ∥School of Microbiology , ⊥School of Medicine , University College Cork , Cork , Ireland
| | | | | | | | | | - Cormac G M Gahan
- School of Pharmacy , ‡APC Microbiome Ireland , §School of Biochemistry and Cell Biology , ∥School of Microbiology , ⊥School of Medicine , University College Cork , Cork , Ireland
| |
Collapse
|
620
|
Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018; 24:1919-1929. [PMID: 30397356 DOI: 10.1038/s41591-018-0222-4] [Citation(s) in RCA: 636] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
The anti-hyperglycemic effect of metformin is believed to be caused by its direct action on signaling processes in hepatocytes, leading to lower hepatic gluconeogenesis. Recently, metformin was reported to alter the gut microbiota community in humans, suggesting that the hyperglycemia-lowering action of the drug could be the result of modulating the population of gut microbiota. However, the critical microbial signaling metabolites and the host targets associated with the metabolic benefits of metformin remained elusive. Here, we performed metagenomic and metabolomic analysis of samples from individuals with newly diagnosed type 2 diabetes (T2D) naively treated with metformin for 3 d, which revealed that Bacteroides fragilis was decreased and the bile acid glycoursodeoxycholic acid (GUDCA) was increased in the gut. These changes were accompanied by inhibition of intestinal farnesoid X receptor (FXR) signaling. We further found that high-fat-diet (HFD)-fed mice colonized with B. fragilis were predisposed to more severe glucose intolerance, and the metabolic benefits of metformin treatment on glucose intolerance were abrogated. GUDCA was further identified as an intestinal FXR antagonist that improved various metabolic endpoints in mice with established obesity. Thus, we conclude that metformin acts in part through a B. fragilis-GUDCA-intestinal FXR axis to improve metabolic dysfunction, including hyperglycemia.
Collapse
|
621
|
Sedgeman LR, Beysen C, Allen RM, Ramirez Solano MA, Turner SM, Vickers KC. Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2018; 315:G810-G823. [PMID: 30160993 PMCID: PMC6415711 DOI: 10.1152/ajpgi.00238.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose-lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNAs (miRNAs) as regulators of metabolic disease and to investigate the link between the cholesterol and glucose-lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker diabetic fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared with vehicle controls. Inhibition of miR-182 in vivo attenuated colesevelam-mediated improvements to glycemic control in db/db mice. Hepatic expression of mediator complex subunit 1 (MED1), a nuclear receptor coactivator, was significantly decreased with colesevelam treatments in db/db mice, and MED1 was experimentally validated to be a direct target of miR-96/182/183 in humans and mice. In summary, these results support that colesevelam likely improves glycemic control through hepatic miR-182-5p, a mechanism that directly links cholesterol and glucose metabolism. NEW & NOTEWORTHY Colesevelam lowers systemic glucose levels in Zucker diabetic fatty rats and db/db mice and increases hepatic levels of the sterol response element binding protein 2-responsive microRNA cluster miR-96/182/183. Inhibition of miR-182 in vivo reverses the glucose-lowering effects of colesevelam in db/db mice. Mediator complex subunit 1 (MED1) is a novel, direct target of the miR-96/182/183 cluster in mice and humans.
Collapse
Affiliation(s)
- Leslie R. Sedgeman
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | - Ryan M. Allen
- 3Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Kasey C. Vickers
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee,3Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
622
|
Kamimura S, Wakayama S, Kuwayama H, Tanabe Y, Kishigami S, Wakayama T. Generation of two-cell cloned embryos from mouse faecal cell. Sci Rep 2018; 8:14922. [PMID: 30297864 PMCID: PMC6175847 DOI: 10.1038/s41598-018-33304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Cloning animals using nuclear transfer (NT) provides the opportunity to preserve endangered species. However, there are risks associated with the collection of donor cells from a body, which may cause accidental death of the animal. Here, we tried to collect faeces-derived cells and examined the usability of those nuclei as a donor for NT. A relatively large number of cells could be collected from GFP-Tg mouse faeces by this method. After NT, only 4.2% of the reconstructed oocytes formed pseudo-pronucleus. This rate increased up to 25% when GFP and Hoechst were used as a marker to select better cells. However, the reconstructed oocytes/embryos showed several abnormalities, such as shrunken nuclear membranes and abnormal distribution of tubulin, and none of them developed beyond one-cell stage embryos. These developmental failures were caused by not only toxic substances derived from faeces but also intrinsic DNA damage of donor cell nuclei. However, when the serial NT was performed, some of the cloned embryos could develop to the two-cell stage. This method may remove toxic substances and enhance DNA repair in the oocyte cytoplasm. Thus, these results indicate that faeces cells might be useful for the conservation of endangered species when technical improvements are achieved.
Collapse
Affiliation(s)
- Satoshi Kamimura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan. .,Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, 263-8555, Japan.
| | - Sayaka Wakayama
- Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Hiroki Kuwayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Yoshiaki Tanabe
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan.,Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan. .,Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan.
| |
Collapse
|
623
|
Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals (Basel) 2018; 11:ph11040098. [PMID: 30301142 PMCID: PMC6315993 DOI: 10.3390/ph11040098] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.
Collapse
|
624
|
Bustos AY, Font de Valdez G, Fadda S, Taranto MP. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 2018; 112:250-262. [DOI: 10.1016/j.foodres.2018.06.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
|
625
|
Zhang F, Xi L, Duan Y, Qin H, Wei M, Wu Y, Li B, Zhou Y, Wu X. The ileum-liver Farnesoid X Receptor signaling axis mediates the compensatory mechanism of 17α-ethynylestradiol-induced cholestasis via increasing hepatic biosynthesis of chenodeoxycholic acids in rats. Eur J Pharm Sci 2018; 123:404-415. [DOI: 10.1016/j.ejps.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/19/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
626
|
Xiong F, Wu SG, Zhang J, Jakovlić I, Li WX, Zou H, Li M, Wang GT. Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Front Microbiol 2018; 9:2209. [PMID: 30279683 PMCID: PMC6154720 DOI: 10.3389/fmicb.2018.02209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023] Open
Abstract
Lipid metabolism can influence host’s health. There is increasing evidence for interplay between two key regulating factors in lipid metabolism: bile acids (BAs) and gut microbiota. However, very little is known about how types of different diet-supplemented bile salts (BS) influence this interaction in vivo. We sought to explore these relationships using grass carp (Ctenopharyngodon idellus), which often suffers functional disorder of liver and gallbladder. We studied fluctuations of BAs in the gall and changes of microbial communities in the gut in response to seven different diets: five different BS, chelating BS agent, and control. The BS comprised two primary BS [sodium taurochololate (TCAS) and sodium taurochenodeoxycholate (TCDCAS)], sodium tauroursodeoxycholate (TUDCAS), and two secondary BS [sodium taurodeoxycholate (TDCAS) and sodium taurolithocholate (TLCAS)]. Supplementation of primary BS caused a more significant fluctuation of biliary BAs than secondary BS, and TCAS caused a more prominent increase than TCDCAS and TUDCAS. For the gut microbiota, primary BS tended to increase their diversity and induce community succession, secondary BS resulted in a higher firmicutes/bacteroidetes ratio, while TUDCAS had no significant effects. Changes of the gut microbiota triggered by different types of BS caused alteration in BAs biotransformation. Two-obesity-associated families, Lachnospiraceae and Ruminococcaceae were positively correlated with biliary cholic acid (CA), taurochenodeoxycholic acid (TCDCA), and deoxycholic acid (DCA). As both primary and secondary BS resulted in increased synthesis of toxic secondary Bas by the gut microbiota, future studies should pay closer attention to gut microbiota when considering BA treatment.
Collapse
Affiliation(s)
- Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan-Gong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
627
|
Antimicrobial promotion of pig growth is associated with tissue-specific remodeling of bile acid signature and signaling. Sci Rep 2018; 8:13671. [PMID: 30209339 PMCID: PMC6135865 DOI: 10.1038/s41598-018-32107-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
The spread of bacterial resistance to antimicrobials (AMA) have intensified efforts to discontinue the non-therapeutic use of AMA in animal production. Finding alternatives to AMA, however, is currently encumbered by the obscure mechanism that underlies their growth-promoting action. In this report, we demonstrate that combinations of antibiotics and zinc oxide at doses commonly used for stimulating growth or preventing post-weaning enteritis in pigs converge in promoting microbial production of bile acids (BA) in the intestine. This leads to tissue-specific modifications in the proportion of BA, thereby amplifying BA signaling in intestine, liver, and white adipose tissue (WAT). Activation of BA-regulated pathways ultimately reinforces the intestinal protection against bacterial infection and pathological secretion of fluids and electrolytes, attenuates inflammation in colon and WAT, alters protein and lipid metabolism in liver, and increases the circulating levels of the hormone FGF19. Conceivably, these alterations could spare nutrients for growth and improve the metabolic efficiency of AMA-treated animals. This work provides evidence that BA act as signaling molecules that mediate host physiological, metabolic, and immune responses to the AMA-induced alterations in gut microbial metabolism, eventually permitting the growth-promoting action of AMA. Consequently, BA emerge as a promising target for developing efficacious alternatives to AMA.
Collapse
|
628
|
Staats S, Rimbach G, Kuenstner A, Graspeuntner S, Rupp J, Busch H, Sina C, Ipharraguerre IR, Wagner AE. Lithocholic Acid Improves the Survival of Drosophila Melanogaster. Mol Nutr Food Res 2018; 62:e1800424. [PMID: 30051966 DOI: 10.1002/mnfr.201800424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Indexed: 12/12/2022]
Abstract
SCOPE Primary bile acids are produced in the liver, whereas secondary bile acids, such as lithocholic acid (LCA), are generated by gut bacteria from primary bile acids that escape the ileal absorption. Besides their well-known function as detergents in lipid digestion, bile acids are important signaling molecules mediating effects on the host's metabolism. METHODS AND RESULTS Fruit flies (Drosophila melanogaster) are supplemented with 50 μmol L-1 LCA either for 30 days or throughout their lifetime. LCA supplementation results in a significant induction of the mean (+12 days), median (+10 days), and maximum lifespan (+ 11 days) in comparison to untreated control flies. This lifespan extension is accompanied by an induction of spargel (srl), the fly homolog of mammalian PPAR-γ co-activator 1α (PGC1α). In wild-type flies, the administration of antibiotics abrogates both the LCA-mediated lifespan induction as well as the upregulation of srl. CONCLUSION It is shown that the secondary bile acid LCA significantly induces the mean, the median, and the maximum survival in D. melanogaster. Our data suggest that besides an upregulation of the PGC1α-homolog srl, unidentified alterations in the structure or metabolism of the gut microbiota contribute to the longevity effect mediated by LCA.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, 24118, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, 24118, Kiel, Germany
| | - Axel Kuenstner
- Group for Medical Systems Biology, Lübeck Instiute of Experimental Dermatology, University of Lübeck, 23538, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538, Lübeck, Germany
| | - Hauke Busch
- Group for Medical Systems Biology, Lübeck Instiute of Experimental Dermatology, University of Lübeck, 23538, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, 23538, Lübeck, Germany
| | | | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, 23538, Lübeck, Germany
| |
Collapse
|
629
|
Adolph TE, Grander C, Moschen AR, Tilg H. Liver–Microbiome Axis in Health and Disease. Trends Immunol 2018; 39:712-723. [DOI: 10.1016/j.it.2018.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
|
630
|
Al-Dury S, Marschall HU. Ileal Bile Acid Transporter Inhibition for the Treatment of Chronic Constipation, Cholestatic Pruritus, and NASH. Front Pharmacol 2018; 9:931. [PMID: 30186169 PMCID: PMC6111463 DOI: 10.3389/fphar.2018.00931] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids are synthesized from cholesterol in the liver, excreted with bile into the duodenum, almost completely taken up again in the distal ileum and finally returned to the liver with portal blood in a process termed enterohepatic circulation. Bile acid synthesis, excretion, and reuptake are tightly regulated. The apical sodium-dependent bile acid transporter [ASBT; also known as ileal bile acid transporter (IBAT) and SLC10A2] is pivotal for the almost complete reabsorption of conjugated bile acids in the ileum. Dysfunctional IBAT may be the cause of bile acid diarrhea. Pharmacological IBAT inhibition results in an increased bile acid load in the colon and subsequently a lower bile acid pool, which is associated with improved liver histology in animal models of cholestatic liver disease and non-alcoholic steatohepatitis (NASH). In humans, IBAT inhibitors have been tested in clinical trials with widely different indications: in patients with idiopathic chronic constipation, an increased number of bowel movements was observed. In adult and pediatric cholestatic liver diseases with pruritus, various IBAT inhibitors showed potential to improve itching. Adverse events of IBAT inhibitors, based on their mode of action, are abdominal pain and diarrhea which might patients to withdraw from study medications. So far, no data are available of a study of IBAT inhibitors in patients with NASH. In this review we summarize the preclinical and most recent clinical studies with various IBAT inhibitors and discuss the difficulties that should be addressed in future studies.
Collapse
Affiliation(s)
- Samer Al-Dury
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
631
|
Chen M, Li ZX, Wang Q, Xiang HB. Altered Expression of Differential Genes in Thoracic Spinal Cord Involved in Experimental Cholestatic Itch Mouse Model. Curr Med Sci 2018; 38:679-683. [PMID: 30128878 DOI: 10.1007/s11596-018-1930-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/10/2018] [Indexed: 12/29/2022]
Abstract
The spinal origin of cholestatic itch in experimental obstructive jaundice mouse model remains poorly understood. In this study, the jaundice model was established by bile duct ligation (BDL) in mice, and differential gene expression patterns were analyzed in the lower thoracic spinal cord involved in cholestatic pruritus after BDL operation using high-throughput RNA sequencing. At 21st day after BDL, the expression levels of ENSRNOG00000060523, ENSRNOG00000058405 and ENSRNOG00000055193 mRNA were significantly up-regulated, and those of ENSRNOG00000042197, ENSRNOG00000008478, ENSRNOGOOOOOO19607, ENSRNOG00000020647, ENSRNOG00000046289, Gemin8, Serpina3n and Trim63 mRNA were significantly down-regulated in BDL group. The RNAseq data of selected mRNAs were validated by RT-qPCR. The expression levels of ENSRNOG00000042197, ENSRNOG00000008478, ENSRNOGOOOOOO 19607, ENSRNOG00000020647, ENSRNOG00000046289 and Serpina3n mRNA were significantly down-regulated in BDL group. This study suggested that cholestatic pruritus in experimental obstructive jaundice mouse model is related with in the changes of gene expression profiles in spinal cord.
Collapse
Affiliation(s)
- Ming Chen
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, 430060, China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
632
|
Wang G, Liu Q, Guo L, Zeng H, Ding C, Zhang W, Xu D, Wang X, Qiu J, Dong Q, Fan Z, Zhang Q, Pan J. Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Front Microbiol 2018; 9:1874. [PMID: 30158912 PMCID: PMC6104187 DOI: 10.3389/fmicb.2018.01874] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
Alcohol abuse is a major public health crisis. Relative evidences supported that the gut microbiota (GM) played an important role in central nervous system (CNS) function, and the composition of them had changed after alcohol drinking. We sought to explore the changes of GM in alcohol dependence. In our study, the GM of mice with alcohol administration was detected through analyzed 16S rRNA gene sequencing and the fecal metabolites were analyzed by LC-MS. The microbial diversity was significantly higher in the alcohol administration group, the abundance of phylum Firmicutes and its class Clostridiales were elevated, meanwhile the abundance of Lachnospiraceae, Alistipes, and Odoribacter showed significant differences among the three groups. Based on LC-MS results, bile acid, secondary bile acid, serotonin and taurine level had varying degrees of changes in alcohol model. From paraffin sections, tissue damage was observed in liver and colon. These findings provide direct evidence that alcohol intake affects the composition of GM, enable a better understanding of the function of GM in the microbiota-gut-brain (MGB) axis, and give a new thought for alcohol addiction treatment.
Collapse
Affiliation(s)
- Guanhao Wang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liang Guo
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haijuan Zeng
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengchao Ding
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wentong Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongpo Xu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingxuan Qiu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai, China
| | - Qi Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jing Pan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
633
|
Bile acids and FXR in functional gastrointestinal disorders. Dig Liver Dis 2018; 50:795-803. [PMID: 29908754 DOI: 10.1016/j.dld.2018.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Functional gastrointestinal disorders (FGIDs), such as irritable bowel syndrome (IBS) and chronic constipation (CC), are commonly diagnosed conditions in clinical practice which create a substantial global burden. Since the farnesoid X receptor (FXR) and bile acids (BAs) are responsible for maintaining homeostasis in the GI tract, any disturbances in the expression of FXR or the composition of BAs may contribute to the development of the GI symptoms. Alterations in the mechanism of action of FXR directly affect the BAs pool and account for increased intestinal permeability and changes in abundance and diversity of gut microbiota leading to intestinal dysmotility. Current review focuses on the correlation between the FXR, BAs and the composition of gut microbiota and its influence on the occurrence of GI symptoms in FGIDs.
Collapse
|
634
|
Chen C, Cui Q, Zhang X, Luo X, Liu Y, Zuo J, Peng Y. Long non-coding RNAs regulation in adipogenesis and lipid metabolism: Emerging insights in obesity. Cell Signal 2018; 51:47-58. [PMID: 30071290 DOI: 10.1016/j.cellsig.2018.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022]
Abstract
Obesity is a widespread health problem that brings about various adipose tissue dysfunctions. The balance of energy storage and energy expenditure is critical for normal fat accumulation and lipid metabolism. Therefore, understanding the molecular basis of adipogenesis and thermogenesis is essential to maintain adipose development and lipid homeostasis. Increasing evidence demonstrated that lncRNAs (long non-coding RNAs), a class of non-protein coding RNAs of >200 nucleotides in length, are identified as key regulators in obesity-related biological processes through diverse regulatory mechanisms. In this review, we concentrate on recent and relevant studies on the roles of lncRNAs in regulation of white adipogenesis, brown adipocyte differentiation and lipid metabolism. In addition, the diagnostic and therapeutic potential of lncRNAs is highlighted, and that will make recommendations for the future application of lncRNAs in the treatment of obesity.
Collapse
Affiliation(s)
- Chen Chen
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China.
| | - Qingming Cui
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Xing Zhang
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Xuan Luo
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Yingying Liu
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Jianbo Zuo
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China.
| |
Collapse
|
635
|
Palermo A, Forsberg EM, Warth B, Aisporna AE, Billings E, Kuang E, Benton HP, Berry D, Siuzdak G. Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS NANO 2018; 12:6938-6948. [PMID: 29966083 DOI: 10.1021/acsnano.8b02376] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanostructure imaging mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) is a nanoparticle assisted laser desorption/ionization approach that requires low laser energy and has demonstrated high sensitivity. Here we describe NIMS with f-AuNPs for the comprehensive analysis of metabolites in biological tissues. F-AuNPs assist in desorption/ionization by laser-induced release of the fluorocarbon chains with minimal background noise. Since the energy barrier required to release the fluorocarbons from the AuNPs is minimal, the energy of the laser is maintained in the low μJ/pulse range, thus limiting metabolite in-source fragmentation. Electron microscopy analysis of tissue samples after f-AuNP NIMS shows a distinct "raising" of the surface as compared to matrix assisted laser desorption ionization ablation, indicative of a gentle desorption mechanism aiding in the generation of intact molecular ions. Moreover, the use of perfluorohexane to distribute the f-AuNPs on the tissue creates a hydrophobic environment minimizing metabolite solubilization and spatial dislocation. The transfer of the energy from the incident laser to the analytes through the release of the fluorocarbon chains similarly enhances the desorption/ionization of metabolites of different chemical nature, resulting in heterogeneous metabolome coverage. We performed the approach in a comparative study of the colon of mice exposed to three different diets. F-AuNP NIMS allows the direct detection of carbohydrates, lipids, bile acids, sulfur metabolites, amino acids, nucleotide precursors as well as other small molecules of varied biological origins. Ultimately, the diversified molecular coverage obtained provides a broad picture of a tissue's metabolic organization.
Collapse
Affiliation(s)
- Amelia Palermo
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Erica M Forsberg
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Vienna Metabolomics Center (VIME) , University of Vienna , Währingerstraße 38 , 1090 Vienna , Austria
| | - Aries E Aisporna
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Elizabeth Billings
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ellen Kuang
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - H Paul Benton
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Gary Siuzdak
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
- Department of Chemistry, Molecular and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
636
|
Song WS, Park HM, Ha JM, Shin SG, Park HG, Kim J, Zhang T, Ahn DH, Kim SM, Yang YH, Jeong JH, Theberge AB, Kim BG, Lee JK, Kim YG. Discovery of glycocholic acid and taurochenodeoxycholic acid as phenotypic biomarkers in cholangiocarcinoma. Sci Rep 2018; 8:11088. [PMID: 30038332 PMCID: PMC6056462 DOI: 10.1038/s41598-018-29445-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although several biomarkers can be used to distinguish cholangiocarcinoma (CCA) from healthy controls, differentiating the disease from benign biliary disease (BBD) or pancreatic cancer (PC) is a challenge. CCA biomarkers are associated with low specificity or have not been validated in relation to the biological effects of CCA. In this study, we quantitatively analyzed 15 biliary bile acids in CCA (n = 30), BBD (n = 57) and PC (n = 17) patients and discovered glycocholic acid (GCA) and taurochenodeoxycholic acid (TCDCA) as specific CCA biomarkers. Firstly, we showed that the average concentration of total biliary bile acids in CCA patients was quantitatively less than in other patient groups. In addition, the average composition ratio of primary bile acids and conjugated bile acids in CCA patients was the highest in all patient groups. The average composition ratio of GCA (35.6%) in CCA patients was significantly higher than in other patient groups. Conversely, the average composition ratio of TCDCA (13.8%) in CCA patients was significantly lower in all patient groups. To verify the biological effects of GCA and TCDCA, we analyzed the gene expression of bile acid receptors associated with the development of CCA in a CCA cell line. The gene expression of transmembrane G protein coupled receptor (TGR5) and sphingosine 1-phosphate receptor 2 (S1PR2) in CCA cells treated with GCA was 8.6-fold and 3.4-fold higher compared with control (untreated with bile acids), respectively. Gene expression of TGR5 and S1PR2 in TCDCA-treated cells was not significantly different from the control. Taken together, our study identified GCA and TCDCA as phenotype-specific biomarkers for CCA.
Collapse
Affiliation(s)
- Won-Suk Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Hae-Min Park
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois, 60208, United States
| | - Jung Min Ha
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul, 0635, Korea
| | - Sung Gyu Shin
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Han-Gyu Park
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Tianzi Zhang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, United States
| | - Da-Hee Ahn
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Sung-Min Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, United States
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul, 0635, Korea.
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Korea.
| |
Collapse
|
637
|
Understanding the Impact of Dietary Cholesterol on Chronic Metabolic Diseases through Studies in Rodent Models. Nutrients 2018; 10:nu10070939. [PMID: 30037080 PMCID: PMC6073247 DOI: 10.3390/nu10070939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
The development of certain chronic metabolic diseases has been attributed to elevated levels of dietary cholesterol. However, decades of research in animal models and humans have demonstrated a high complexity with respect to the impact of dietary cholesterol on the progression of these diseases. Thus, recent investigations in non-alcoholic fatty liver disease (NAFLD) point to dietary cholesterol as a key factor for the activation of inflammatory pathways underlying the transition from NAFLD to non-alcoholic steatohepatitis (NASH) and to hepatic carcinoma. Dietary cholesterol was initially thought to be the key factor for cardiovascular disease development, but its impact on the disease depends partly on the capacity to modulate plasmatic circulating low-density lipoprotein (LDL) cholesterol levels. These studies evidence a complex relationship between these chronic metabolic diseases and dietary cholesterol, which, in certain conditions, might promote metabolic complications. In this review, we summarize rodent studies that evaluate the impact of dietary cholesterol on these two prevalent chronic diseases and their relevance to human pathology.
Collapse
|
638
|
Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat Commun 2018; 9:2590. [PMID: 29968724 PMCID: PMC6030054 DOI: 10.1038/s41467-018-04697-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Farnesoid-X-Receptor (FXR) plays a central role in maintaining bile acid (BA) homeostasis by transcriptional control of numerous enterohepatic genes, including intestinal FGF19, a hormone that strongly represses hepatic BA synthesis. How activation of the FGF19 receptor at the membrane is transmitted to the nucleus for transcriptional regulation of BA levels and whether FGF19 signaling posttranslationally modulates FXR function remain largely unknown. Here we show that FXR is phosphorylated at Y67 by non-receptor tyrosine kinase, Src, in response to postprandial FGF19, which is critical for its nuclear localization and transcriptional regulation of BA levels. Liver-specific expression of phospho-defective Y67F-FXR or Src downregulation in mice results in impaired homeostatic responses to acute BA feeding, and exacerbates cholestatic pathologies upon drug-induced hepatobiliary insults. Also, the hepatic FGF19-Src-FXR pathway is defective in primary biliary cirrhosis (PBC) patients. This study identifies Src-mediated FXR phosphorylation as a potential therapeutic target and biomarker for BA-related enterohepatic diseases. FXR plays an important role in bile acid homeostasis by transcriptionally modulating several enterohepatic genes, including intestinal FGF19, that repress hepatic bile acid synthesis. Here the authors show that postprandial FGF19 regulates FXR transcriptional activity via its action on the tyrosine kinase Src, which phosphorylates FXR.
Collapse
|
639
|
Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, Turner B, Poe A, Albaugh VL, McGuinness O, Hackett TA, Grueter BA, Abumrad NN, Flynn CR, Galli A. Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol 2018; 16:e2006682. [PMID: 30048457 PMCID: PMC6061973 DOI: 10.1371/journal.pbio.2006682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/21/2018] [Indexed: 01/22/2023] Open
Abstract
The gut-to-brain axis exhibits significant control over motivated behavior. However, mechanisms supporting this communication are poorly understood. We reveal that a gut-based bariatric surgery chronically elevates systemic bile acids and attenuates cocaine-induced elevations in accumbal dopamine. Notably, this surgery reduces reward-related behavior and psychomotor sensitization to cocaine. Utilizing a knockout mouse model, we have determined that a main mediator of these post-operative effects is the Takeda G protein-coupled bile acid receptor (TGR5). Viral restoration of TGR5 in the nucleus accumbens of TGR5 knockout animals is sufficient to restore cocaine reward, centrally localizing this TGR5-mediated modulation. These findings define TGR5 and bile acid signaling as pharmacological targets for the treatment of cocaine abuse and reveal a novel mechanism of gut-to-brain communication.
Collapse
Affiliation(s)
- India A. Reddy
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Nicholas K. Smith
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kevin Erreger
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dipanwita Ghose
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christine Saunders
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Daniel J. Foster
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brandon Turner
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amanda Poe
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Vance L. Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Owen McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
640
|
Di Ciaula A, Garruti G, Wang DQH, Portincasa P. Cholecystectomy and risk of metabolic syndrome. Eur J Intern Med 2018; 53:3-11. [PMID: 29706426 PMCID: PMC8118133 DOI: 10.1016/j.ejim.2018.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023]
Abstract
The gallbladder physiologically concentrates and stores bile during fasting and provides rhythmic bile secretion both during fasting and in the postprandial phase to solubilize dietary lipids and fat-soluble vitamins. Bile acids (BAs), major lipid components of bile, play a key role as signaling molecules in modulating gene expression related to cholesterol, BA, glucose and energy metabolism. Cholecystectomy is the most commonly performed surgical procedure worldwide in patients who develop symptoms and/or complications of cholelithiasis of any type. Cholecystectomy per se, however, might cause abnormal metabolic consequences, i.e., alterations in glucose, insulin (and insulin-resistance), lipid and lipoprotein levels, liver steatosis and the metabolic syndrome. Mechanisms are likely mediated by the abnormal transintestinal flow of BAs, producing metabolic signaling that acts without gallbladder rhythmic function and involves the BAs/farnesoid X receptor (FXR) and the BA/G protein-coupled BA receptor 1 (GPBAR-1) axes in the liver, intestine, brown adipose tissue and muscle. Alterations of intestinal microbiota leading to distorted homeostatic processes are also possible. According to this view, cholecystectomy, via BA-induced changes in the enterohepatic circulation, is a risk factor for the metabolic abnormalities and becomes another “fellow traveler” with, or another risk factor for the metabolic syndrome.
Collapse
Affiliation(s)
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro" Medical School, Piazza G. Cesare 11, 70124 Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
641
|
Obesity-Related Asthma: Immune Regulation and Potential Targeted Therapies. J Immunol Res 2018; 2018:1943497. [PMID: 30050954 PMCID: PMC6046139 DOI: 10.1155/2018/1943497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/24/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity, one of the most severe public health problems of the 21st century, is a common metabolic syndrome due to excess body fat. The incidence and severity of obesity-related asthma have undergone a dramatic increase. Because obesity-related asthma is poorly controlled using conventional therapies, alternative and complementary therapies are urgently needed. Lipid metabolism may be abnormal in obesity-related asthma, and immune modulation therapies need to be investigated. Herein, we describe the immune regulators of lipid metabolism in obesity as well as the interplay of obesity and asthma. These lay the foundations for targeted therapies in terms of direct and indirect immune regulators of lipid metabolism, which ultimately help provide effective control of obesity-related asthma with a feasible treatment strategy.
Collapse
|
642
|
Zhu P, Zhang J, Chen Y, Yin S, Su M, Xie G, Brouwer KLR, Liu C, Lan K, Jia W. Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. Anal Bioanal Chem 2018; 410:5287-5300. [PMID: 29907951 DOI: 10.1007/s00216-018-1183-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/20/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023]
Abstract
Host-gut microbiota metabolic interactions are closely associated with health and disease. A manifestation of such co-metabolism is the vast structural diversity of bile acids (BAs) involving both oxidative stereochemistry and conjugation. Herein, we describe the development and validation of a LC-MS-based method for the analysis of human C24 BA metabolome in serum and urine. The method has high throughput covering the discrimination of oxidative stereochemistry of unconjugated species in a 15-min analytical cycle. The validated quantitative performance provided an indirect way to ascertain the conjugation patterns of BAs via enzyme-digestion protocols that incorporated the enzymes, sulfatase, β-glucuronidase, and choloylglycine hydrolase. Application of the method has led to the detection of at least 70 unconjugated BAs including 27 known species and 43 newly found species in the post-prandial serum and urine samples from 7 nonalcoholic steatohepatitis patients and 13 healthy volunteers. Newly identified unconjugated BAs included 3α, 12β-dihydroxy-5β-cholan-24-oic acid, 12α-hydroxy-3-oxo-5β-cholan-24-oic acid, and 3α, 7α, 12β-trihydroxy-5β-cholan-24-oic acid. High-definition negative fragment spectra of the other major unknown species were acquired to facilitate future identification endeavors. An extensive conjugation pattern is the major reason for the "invisibility" of the newly found BAs to other common analytical methods. Metabolomic analysis of the total unconjugated BA profile in combination with analysis of their conjugation patterns and urinary excretion tendencies have provided substantial insights into the interconnected roles of host and gut microbiota in maintaining BA homeostasis. It was proposed that the urinary total BA profile may serve as an ideal footprint for the functional status of the host-gut microbial BA co-metabolism. In summary, this work provided a powerful tool for human C24 BA metabolome analysis that bridges the gap between GC-MS techniques in the past age and LC-MS techniques currently prevailing in biomedical researches. Further applications of the present method in clinical, translational research, and other biomedical explorations will continue to boost the construction of a host-gut microbial co-metabolism network of BAs and thus facilitate the decryption of BA-mediated host-gut microbiota crosstalk in health and diseases. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Pingping Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yujie Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shanshan Yin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Mingming Su
- Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96801, USA
| | - Guoxiang Xie
- Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96801, USA
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. .,Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, 610000, China.
| | - Wei Jia
- Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96801, USA.
| |
Collapse
|
643
|
Wang P, Sachar M, Guo GL, Shehu AI, Lu J, Zhong XB, Ma X. Liver metabolomics in a mouse model of erythropoietic protoporphyria. Biochem Pharmacol 2018; 154:474-481. [PMID: 29906468 DOI: 10.1016/j.bcp.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/11/2018] [Indexed: 01/05/2023]
Abstract
Erythropoietic protoporphyria (EPP) is a genetic disease that results from the defective mutation in the gene encoding ferrochelatase (FECH), the enzyme that converts protoporphyrin IX (PPIX) to heme. Liver injury and even liver failure can occur in EPP patients because of PPIX accumulation in the liver. The current study profiled the liver metabolome in an EPP mouse model caused by a Fech mutation (Fech-mut). As expected, we observed the accumulation of PPIX in the liver of Fech-mut mice. In addition, our metabolomic analysis revealed the accumulation of bile acids and ceramide (Cer) in the liver of Fech-mut mice. High levels of bile acids and Cer are toxic to the liver. Furthermore, we found that the major phosphatidylcholines (PC) in the liver and the ratio of total PC to PPIX in the bile were decreased in Fech-mut mice compared to wild type mice. A decrease of the ratio of PC to PPIX in the bile can potentiate the accumulation of PPIX in the liver because PC increases PPIX solubility and excretion. These metabolomic findings suggest that the accumulation of PPIX, together with the disruption of the homeostasis of bile acids, Cer, and PC, contributes to EPP-associated liver injury.
Collapse
Affiliation(s)
- Pengcheng Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Madhav Sachar
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Amina I Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
644
|
Roychowdhury S, Selvakumar PC, Cresci GAM. The Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease. Med Sci (Basel) 2018; 6:E47. [PMID: 29874807 PMCID: PMC6024579 DOI: 10.3390/medsci6020047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with prevalence increasing in parallel with the rising incidence in obesity. Believed to be a "multiple-hit" disease, several factors contribute to NAFLD initiation and progression. Of these, the gut microbiome is gaining interest as a significant factor in NAFLD prevalence. In this paper, we provide an in-depth review of the progression of NAFLD, discussing the mechanistic modes of hepatocyte injury and the potential role for manipulation of the gut microbiome as a therapeutic strategy in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation & Immunity, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | - Gail A M Cresci
- Department of Inflammation & Immunity, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
- Department of Pediatric Gastroenterology, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
- Director for Nutrition Research Center for Human Nutrition, M17, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
645
|
Gavaldà-Navarro A, Pastor JJ, Mereu A, Villarroya F, Ipharraguerre IR. Developmental regulation of the intestinal FGF19 system in domestic pigs. Am J Physiol Gastrointest Liver Physiol 2018; 314:G647-G654. [PMID: 29446652 DOI: 10.1152/ajpgi.00312.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibroblast growth factor-19 (FGF19) is an emerging endocrine factor involved in the regulation of bile acid homeostasis and energy metabolism in rodents and humans. In pigs, however, the FGF19 system remains largely unexplored. This study was designed to investigate the developmental regulation of the FGF19 system in domestic pigs. Samples of intestinal sections, liver, and plasma were collected from 24 pigs ( n = 6) at four developmental stages (birth, preweaning, postweaning, and adulthood). In the intestine, expression of the farnesoid X receptor (FXR) and FGF19 showed a congruent time- and region-dependent regulation, beginning soon after birth to achieve maximal expression in ileum during adulthood. The same temporal pattern was followed by the circulating concentration of FGF19, and these changes were accompanied by a time-related increase in the ileal proportion of bile acids that potently activate FXR. Conversely, genes belonging to the FGF19 signaling machinery achieved maximal expression in the small intestine at birth to decrease sharply afterward. In the liver, gene expression of FGF19 receptors and enzymes involved in bile acid biosynthesis paralleled after-birth changes in plasma concentration of this enterokine and attained a maximum during postweaning when plasma FGF19 was the lowest. Although detectable at birth, the hepatic expression of genes belonging to the bile acid-FXR-FGF19 pathway was low before the onset of enteral feeding. In summary, the porcine FGF19 system is present from birth, operative before the onset of enteral feeding, and regulated in a temporal and section-specific manner. NEW & NOTEWORTHY Fibroblast growth factor-19 (FGF19) is an emerging endocrine factor. The domestic pig is a translational model of value in biomedical research. We show for the first time that in pigs the intestinal FGF19 system is present from birth, operative before the onset of enteral feeding, and regulated in a temporal and section-specific manner. This work identifies pigs as a suitable model for investigating the implications of FGF19 signaling within and beyond the gut-liver axis.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedecine, University of Barcelona , Barcelona , Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Barcelona , Spain
| | | | | | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedecine, University of Barcelona , Barcelona , Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Barcelona , Spain
| | - Ignacio R Ipharraguerre
- Lucta S. A., Montornès del Vallès, Spain.,Institute of Human Nutrition and Food Science, University of Kiel , Kiel , Germany
| |
Collapse
|
646
|
Jin C, Luo T, Fu Z, Jin Y. Chronic exposure of mice to low doses of imazalil induces hepatotoxicity at the physiological, biochemical, and transcriptomic levels. ENVIRONMENTAL TOXICOLOGY 2018; 33:650-658. [PMID: 29451352 DOI: 10.1002/tox.22550] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Imazalil (IMZ), which is a widely used fungicide, can accumulate in the body and threaten an animal's health. However, this fungicide has adverse effects on aquatic organisms and ultimately affects human health when it leaches into the environment. Our research tried to determine that if IMZ might cause liver damage and its potential to cause-related diseases. In this study, male adult C57BL/6 mice were exposed to 0.1, 0.5, or 2.5 mg/kg body weight IMZ in drinking water for 15 weeks. Then, we evaluated the liver damage at the physiological, biochemical, and transcriptome levels in mice after chronic IMZ exposure. We observed serious ballooning degeneration of hepatocytes in the IMZ-treated groups. And IMZ induced oxidative stress and caused the disorders of bile acid metabolism in mice. In addition, the transcriptome data showed that IMZ has substantial influence on several pathways, including metabolic pathways for drug metabolism, RNA transport, and bile secretion. We further confirmed that the mRNA expression of the key genes involved in oxidative stress and bile acid metabolism were changed of mice exposed to IMZ. Our data suggested that chronic IMZ exposure could induce hepatotoxicity in mice at the physiological, biochemical, and transcriptome levels.
Collapse
Affiliation(s)
- Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
647
|
Abstract
PURPOSE OF REVIEW Noncoding RNAs have emerged as important regulators of cellular and systemic lipid metabolism. In particular, the enigmatic class of long noncoding RNAs have been shown to play multifaceted roles in controlling transcriptional and posttranscriptional gene regulation. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in the regulation of lipid metabolism during health and disease. RECENT FINDINGS Despite comprising the majority of the transcriptionally active regions of the human genome, lncRNA functions remain poorly understood, with fewer than 1% of human lncRNAs functionally characterized. Broadly defined as nonprotein coding transcripts greater than 200 nucleotides in length, lncRNAs execute their functions by forming RNA-DNA, RNA-protein, and RNA-RNA interactions that regulate gene expression through diverse mechanisms, including epigenetic remodeling of chromatin, transcriptional activation or repression, posttranscriptional regulation of mRNA, and modulation of protein activity. It is now recognized that in lipid metabolism, just as in other areas of biology, lncRNAs operate to regulate the expression of individual genes and gene networks at multiple different levels. SUMMARY The complexity revealed by recent studies showing how lncRNAs can alter systemic and cell-type-specific cholesterol and triglyceride metabolism make it clear that we have entered a new frontier for discovery that is both daunting and exciting.
Collapse
Affiliation(s)
- Coen van Solingen
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
648
|
Papazyan R, Liu X, Liu J, Dong B, Plummer EM, Lewis RD, Roth JD, Young MA. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. J Lipid Res 2018; 59:982-993. [PMID: 29559521 PMCID: PMC5983391 DOI: 10.1194/jlr.m081935] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Indexed: 12/15/2022] Open
Abstract
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
Collapse
Affiliation(s)
| | - Xueqing Liu
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | | | | | | | - Mark A Young
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121.
| |
Collapse
|
649
|
Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 2018; 38:1323-1335. [DOI: 10.1002/jat.3644] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Rhishikesh Thakare
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - A. David Rodrigues
- Pharmacokinetics, Pharmacodynamics & Metabolism, Medicine Design, Pfizer Inc.; Groton CT 06340 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| |
Collapse
|
650
|
Deoxycholic Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Exacerbates DSS-Induced Colitis through Promoting Cathepsin B Release. J Immunol Res 2018; 2018:2481418. [PMID: 29854830 PMCID: PMC5966668 DOI: 10.1155/2018/2481418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
We recently have proved that excessive fecal DCA caused by high-fat diet may serve as an endogenous danger-associated molecular pattern to activate NLRP3 inflammasome and thus contributes to the development of inflammatory bowel disease (IBD). Moreover, the effect of DCA on inflammasome activation is mainly mediated through bile acid receptor sphingosine-1-phosphate receptor 2 (S1PR2); however, the intermediate process remains unclear. Here, we sought to explore the detailed molecular mechanism involved and examine the effect of S1PR2 blockage in a colitis mouse model. In this study, we found that DCA could dose dependently upregulate S1PR2 expression. Meanwhile, DCA-induced NLRP3 inflammasome activation is at least partially achieved through stimulating extracellular regulated protein kinases (ERK) signaling pathway downstream of S1PR2 followed by promoting of lysosomal cathepsin B release. DCA enema significantly aggravated DSS-induced colitis in mice and S1PR2 inhibitor as well as inflammasome inhibition by cathepsin B antagonist substantially reducing the mature IL-1β production and alleviated colonic inflammation superimposed by DCA. Therefore, our findings suggest that S1PR2/ERK1/2/cathepsin B signaling plays a critical role in triggering inflammasome activation by DCA and S1PR2 may represent a new potential therapeutic target for the management of intestinal inflammation in individuals on a high-fat diet.
Collapse
|