601
|
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2001; 16:653-99. [PMID: 11031250 DOI: 10.1146/annurev.cellbio.16.1.653] [Citation(s) in RCA: 1000] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Collapse
Affiliation(s)
- C Grandori
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | |
Collapse
|
602
|
Abstract
Much of the advancement in mouse models for cancer during the past 2 decades can be attributed to our increasing capacity to specifically modify the mouse germ line. The first generations of oncomice and tumor-suppressor gene knockouts are now being succeeded by regulatable or conditional mouse tumor models, which can be utilized more effectively to establish correlations between distinct genetic lesions and specific tumor characteristics and to design and improve therapeutic intervention strategies. In this review we try to give the reader a flavor of how the latest reagents can be utilized.
Collapse
Affiliation(s)
- R Meuwissen
- Division of Molecular Genetics and Center of Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | | | | |
Collapse
|
603
|
Fang Y, Hu M, Liu K. Kinetics of tumorigenic vascular endothelial growth factor signalling and its significance in human hepatocellular carcinoma cells. Biomed Pharmacother 2001; 55:102-10. [PMID: 11293813 DOI: 10.1016/s0753-3322(00)00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ras-VEGF-concerned angiogenesis is correlated with oncogene maintenance, tumorigenesis, metastasis and resistance to anti-cancer therapies; however, this association is not clearly elucidated by serum VEGF, due to VEGF signalling in blood cells themselves. The present study aimed to elucidate tumorigenic VEGF signalling in eight human HCC cell types and reveal the kinetics of tumorigenic VEGF signalling in three time intervals, thereby discovering the relationships of VEGF-concerned angiogenesis signalling with the extent of the human HCC cell growth, metastasis and resistance to anti-cancer drugs, by using the poorly metastatic SMMC7721, 7402/D+ (doxorubicin-resistance) and 7402/D- (doxorubicin-withdrawal), the highly metastatic MHCC1 non-transfected human HCC cell lines, and the highly metastatic A3-1, F8, F11 and E3 human HCC cell lines transfected with expressing green fluorescence protein into the phenotype of MHCC1 cells, and quantitative 'sandwich' ELISA analyses. The unique results indicated attributes and objective laws as follows. Human HCC cell growth requires time-dependent tumorigenic VEGF signalling; levels of VEGF signalling are positively correlated with each cell phenotype itself; and levels of VEGF signalling are inversely correlated with the possibility of metastasis and drug resistance. The contrast data first reveal important clues for exploring dual metastatic mechanisms via tumor cell-generated non-endothelium vasculogenesis and VEGF-endothelium-attached angiogenesis that may be essential for developing novel strategies aimed at VEGF-concerned signal networks in ischemic/metastatic diseases and transgenic models.
Collapse
Affiliation(s)
- Y Fang
- Department of Anesthesiology and Experimental Research Center, Zhong Shan Hospital, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
604
|
Abstract
Melanoma is the most common fatal malignancy among young adults, and its incidence and mortality continue to increase at an alarming rate. Epidemiologic studies have clearly demonstrated roles for genetic predisposition and sun exposure in melanoma development. In the past few years, substantial information has been added to the body of evidence suggesting that inherited and somatic genetic events contribute to the pathogenesis of melanoma. This review focuses on recent advances in the understanding of the genetic events, particularly aberration of cell cycle control and transcriptional control mechanisms, implicated in the pathogenesis of melanoma.
Collapse
Affiliation(s)
- S Halachmi
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02218, USA
| | | |
Collapse
|
605
|
Wang D, Richmond A. Nuclear factor-kappa B activation by the CXC chemokine melanoma growth-stimulatory activity/growth-regulated protein involves the MEKK1/p38 mitogen-activated protein kinase pathway. J Biol Chem 2001; 276:3650-9. [PMID: 11062239 PMCID: PMC2676351 DOI: 10.1074/jbc.m006115200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanoma growth stimulatory activity/growth-regulated protein (MGSA/GRO), a CXC chemokine, plays an important role in inflammation, wound healing, growth regulation, angiogenesis, and tumorigenesis. Constitutive expression of MGSA/GROalpha in melanoma tumors is associated with constitutive nuclear factor (NF)-kappaB activity. We show here that either exogenous addition or continuous expression of MGSA/GROalpha in immortalized melanocytes enhances NF-kappaB activation, as well as mitogen-activated protein (MAP) kinase kinase kinase (MEKK) 1, MAP kinase kinase (MEK) 3/6, and p38 MAP kinase activation. Expression of dominant negative M-Ras (S27N), dominant negative MEKK1 (K432M), or specific chemical inhibitors for p38 MAP kinase (SB202190 and SB203580) block MGSA/GROalpha-induced NF-kappaB transactivation, demonstrating that Ras, MEKK1, and p38 are involved in the signal pathways of MGSA/GROalpha activation of NF-kappaB. Expression of dominant active Ras or dominant active MEKK1 alone can also stimulate NF-kappaB activation. The expression of dominant negative MEKK1 inhibits the Ras-induced NF-kappaB activation, suggesting that MEKK1 is a downstream target of Ras. Moreover, MGSA/GROalpha induction of NF-kappaB is independent of the MEK1/ERK cascade, because MGSA/GROalpha failed to increase ERK and ELK activation, and specific chemical inhibitors for MEK1 (PD98059) had no effect on MGSA/GROalpha-enhanced NF-kappaB activation. These data demonstrate that NF-kappaB activation is required for MGSA/GROalpha-induced melanocyte transformation through a Ras/MEKK1/p38 cascade in melanocytes.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ann Richmond
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232. Tel.: 615-343-7777; Fax: 615-343-4539; E-mail:
| |
Collapse
|
606
|
Cascinu S, Graziano F, Valentini M, Catalano V, Giordani P, Staccioli MP, Rossi C, Baldelli AM, Grianti C, Muretto P, Catalano G. Vascular endothelial growth factor expression, S-phase fraction and thymidylate synthase quantitation in node-positive colon cancer: relationships with tumor recurrence and resistance to adjuvant chemotherapy. Ann Oncol 2001; 12:239-44. [PMID: 11300331 DOI: 10.1023/a:1008339408300] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The behaviour of colorectal carcinomas may depend on molecular properties of tumors. In node-positive colon cancer, we assessed the S-phase fraction (SPF) index, the vascular endothelial growth factor (VEGF) expression and the TS levels. The combined analysis of SPF/VEGF was studied for predictivity of recurrent disease, the TS quantitation was related to the efficacy of fluorouracil-based adjuvant chemotherapy. PATIENTS AND METHODS Consecutive patients with surgically-resected, node-positive colon cancer were studied. Flow cytometry for the SPF and immunohistochemistries for the TS and the VEGF expression were carried out on the primary tumor. Recurrences had to be proven by biopsy or surgery, and they were categorized as early, if occurred within 12 months after surgery, or late if occured 13 months or more. RESULTS Of 150 evaluable patients, 100 had received fluorouracil-based adjuvant chemotherapy and 50 control patients were untreated. The combined analysis of the VEGF and the SPF showed a strong association between the two markers; 48 patients (32%) had high SPF/VEGF positive tumors and 69 patients (46%) had low SPF/VEGF negative tumors (P < 0.0001). The majority of disease-free patients (73.4%) showed VEGF negative/low SPF tumors (P < 0.0001). Early recurrences occurred more frequently in patients with VEGF positive/high SPF tumors (P < 0.001). In the 100 patients treated with adjuvant chemotherapy, 86% of relapsed patients had TS overexpressing tumors and 69% of disease-free patients had TS negative tumors (P < 0.001). Also, early recurrences occurred more frequently in TS overexpressing tumors (P < 0.0001). CONCLUSIONS Evidence is supported that node-positive colon cancer constitutes a heterogenous disease. Patients with VEGF positive/high SPF tumors showed an unfavourable outcome compared to patients with VEGF negative/low SPF tumors. The efficacy of fluorouracil-based adjuvant chemotherapy may depend on the TS status.
Collapse
Affiliation(s)
- S Cascinu
- Medical Oncology, Hospital of Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
607
|
Abstract
Glioblastoma multiforme is the most malignant of the primary brain tumours and is almost always fatal. The treatment strategies for this disease have not changed appreciably for many years and most are based on a limited understanding of the biology of the disease. However, in the past decade, characteristic genetic alterations have been identified in gliomas that might underlie the initiation or progression of the disease. Recent modelling experiments in mice are helping to delineate the molecular aetiology of this disease and are providing systems to identify and test novel and rational therapeutic strategies.
Collapse
Affiliation(s)
- E C Holland
- Departments of Neurosurgery, Neurology and Cell Biology, Memorial Sloan Kettering Cancer Center, 1,275 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
608
|
Abstract
Mutations in gliomas, for the most part, fall into two main categories. The first category of mutations affects genes that produce proteins which activate signal transduction pathways downstream of tyrosine kinase receptors; the second category disrupts the pathways leading to cell cycle arrest. Cell cycle arrest pathways normally maintain cells in the G1 phase of the cell cycle, preventing inappropriate proliferation. The role of disregulation of these pathways in tumor formation is currently the focus of many investigations. Studies carried out with astrocytes and other cell types indicate that these pathways may also function in maintenance of appropriate chromosome number and differentiated phenotype, and in acquisition of senescence. Genetically defined mouse models of gliomagenesis have been helpful in increasing our understanding of how cell cycle arrest pathways cooperate with alterations in signal transduction pathways to provoke tumor formation in many cell types, including glial cells. Various strategies for experimental cell cycle arrest disruption show minimal or no formation of gliomas. In contrast, gliomas are generated with a number of strategies that enhance signal transduction downstream of tyrosine kinase receptors. Experimental disruption of the cell cycle arrest pathways is required for gliomagenesis in some of these models, but not in others. Furthermore in some cases, although not required for gliomagenesis, disruption of the cell cycle arrest pathways appears to enhance glioma formation. The results of these mouse model experiments imply a potentially complex role for cell cycle arrest disruption in human gliomagenesis.
Collapse
Affiliation(s)
- E C Holland
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
609
|
D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, Cardiff RD, Chodosh LA. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 2001; 7:235-9. [PMID: 11175856 DOI: 10.1038/84691] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the process of mammary tumorigenesis requires multiple genetic events, it is unclear to what extent carcinogenesis proceeds through preferred secondary pathways following a specific initiating oncogenic event. Similarly, the extent to which established mammary tumors remain dependent on individual mutations for maintenance of the transformed state is unknown. Here we use the tetracycline regulatory system to conditionally express the human c-MYC oncogene in the mammary epithelium of transgenic mice. MYC encodes a transcription factor implicated in multiple human cancers. In particular, amplification and overexpression of c-MYC in human breast cancers is associated with poor prognosis, although the genetic mechanisms by which c-MYC promotes tumor progression are poorly understood. We show that deregulated c-MYC expression in this inducible system results in the formation of invasive mammary adenocarcinomas, many of which fully regress following c-MYC deinduction. Approximately half of these tumors harbor spontaneous activating point mutations in the ras family of proto-oncogenes with a strong preference for Kras2 compared with Hras1. Nearly all tumors lacking activating ras mutations fully regressed following c-MYC deinduction, whereas tumors bearing ras mutations did not, suggesting that secondary mutations in ras contribute to tumor progression. These findings demonstrate that c-MYC-induced mammary tumorigenesis proceeds through a preferred secondary oncogenic pathway involving Kras2.
Collapse
Affiliation(s)
- C M D'Cruz
- Department of Molecular & Cellular Engineering, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
610
|
Hulit J, Di Vizio D, Pestell RG. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis. Breast Cancer Res 2001; 3:209-12. [PMID: 11434870 PMCID: PMC138683 DOI: 10.1186/bcr297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Revised: 04/11/2001] [Accepted: 04/23/2001] [Indexed: 12/29/2022] Open
Abstract
Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway.
Collapse
Affiliation(s)
- James Hulit
- The Albert Einstein Comprehensive Cancer Center, Division of Hormone-Responsive Cancers, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dolores Di Vizio
- The Albert Einstein Comprehensive Cancer Center, Division of Hormone-Responsive Cancers, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Richard G Pestell
- The Albert Einstein Comprehensive Cancer Center, Division of Hormone-Responsive Cancers, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
611
|
Abstract
Drug resistance, to date, has primarily been attributed to increased drug export or detoxification mechanisms. Despite correlations between drug export and drug resistance, it is increasingly apparent that such mechanisms cannot fully account for chemoresistance in neoplasia. It is now widely accepted that chemotherapeutic drugs kill tumour cells by inducing apoptosis, a genetically regulated cell death programme. Evidence is emerging that the exploitation of survival pathways, which may have contributed to disease development in the first instance, may also be important in the development of the chemoresistance. This review discusses the components of and associations between multiple signalling cascades and their possible contribution to the development of neoplasia and the chemoresistant phenotype.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland
| | | |
Collapse
|
612
|
Heumann R, Goemans C, Bartsch D, Lingenhöhl K, Waldmeier PC, Hengerer B, Allegrini PR, Schellander K, Wagner EF, Arendt T, Kamdem RH, Obst-Pernberg K, Narz F, Wahle P, Berns H. Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J Cell Biol 2000; 151:1537-48. [PMID: 11134081 PMCID: PMC2150671 DOI: 10.1083/jcb.151.7.1537] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ras is a universal eukaryotic intracellular protein integrating extracellular signals from multiple receptor types. To investigate its role in the adult central nervous system, constitutively activated V12-Ha-Ras was expressed selectively in neurons of transgenic mice via a synapsin promoter. Ras-transgene protein expression increased postnatally, reaching a four- to fivefold elevation at day 40 and persisting at this level, thereafter. Neuronal Ras was constitutively active and a corresponding activating phosphorylation of mitogen-activated kinase was observed, but there were no changes in the activity of phosphoinositide 3-kinase, the phosphorylation of its target kinase Akt/PKB, or expression of the anti-apoptotic proteins Bcl-2 or Bcl-X(L). Neuronal Ras activation did not alter the total number of neurons, but induced cell soma hypertrophy, which resulted in a 14.5% increase of total brain volume. Choline acetyltransferase and tyrosine hydroxylase activities were increased, as well as neuropeptide Y expression. Degeneration of motorneurons was completely prevented after facial nerve lesion in Ras-transgenic mice. Furthermore, neurotoxin-induced degeneration of dopaminergic substantia nigra neurons and their striatal projections was greatly attenuated. Thus, the Ras signaling pathway mimics neurotrophic effects and triggers neuroprotective mechanisms in adult mice. Neuronal Ras activation might become a tool to stabilize donor neurons for neural transplantation and to protect neuronal populations in neurodegenerative diseases.
Collapse
Affiliation(s)
- R Heumann
- Ruhr-University of Bochum, Molecular Neurobiochemistry, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
613
|
Reuveni H, Geiger T, Geiger B, Levitzki A. Reversal of the Ras-induced transformed phenotype by HR12, a novel ras farnesylation inhibitor, is mediated by the Mek/Erk pathway. J Cell Biol 2000; 151:1179-92. [PMID: 11121434 PMCID: PMC2190591 DOI: 10.1083/jcb.151.6.1179] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used the selective farnesylation inhibitor HR12 [cysteine-N(methyl)valine-N(cyclohexyl) glycine-methionine-O-methyl-ester] to study the role of oncogenic Ras in cytoskeletal reorganization in Ha-ras(V12)-transformed Rat1 cells (Rat1/ras). Application of HR12 resulted in complete restoration of the cytoskeleton and associated cell adhesions disrupted by oncogenic Ras. This included an increase in the number and size of focal adhesions, accompanied by massive stress fiber formation and enhanced tyrosine phosphorylation. Furthermore, HR12 induced assembly of adherens junctions and dramatically elevated the level of the junctional components, cadherin and beta-catenin. HR12 was unable to restore the nontransformed phenotype in cells expressing farnesylation-independent, myristylated Ras. Examination of the main Ras-regulated signaling pathways revealed that HR12 induced a dose- and time-dependent decline in Erk1&2 activation (t(1/2) approximately 6 h), which correlated with the accumulation of nonfarnesylated oncogenic-Ras. Inhibition of the Mek/Erk pathway in Rat1/ras cells, using the Mek inhibitor, PD98059, resulted in complete cytoskeletal recovery, indistinguishable from that induced by HR12. Moreover, a constitutively active Mek mimicked the effect of ras transformation in Rat1 cells, and prevented HR12-induced cytoskeletal effects in Rat1/ras cells. No such effects were observed after treatment of Rat1/ras cells with the phosphatidylinositol 3-kinase inhibitor LY294002. These findings establish the Mek/Erk pathway as the dominant pathway involved in conferring the cytoskeletal and junctional manifestations of the Ras-induced transformed phenotype.
Collapse
Affiliation(s)
- Hadas Reuveni
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tamar Geiger
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
614
|
Abstract
Small-molecule inhibitors of several intracellular signaling proteins, mostly protein kinases, show tremendous selectivity and potency. The complexity and redundancy of signaling pathways presents opportunities for therapeutic selectivity and some clinical results are remarkable. New strategies are being developed to interfere with previously intractable targets, such as protein-protein interactions.
Collapse
Affiliation(s)
- F McCormick
- Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA.
| |
Collapse
|
615
|
Zhang YA, Nemunaitis J, Scanlon KJ, Tong AW. Anti-tumorigenic effect of a K-ras ribozyme against human lung cancer cell line heterotransplants in nude mice. Gene Ther 2000; 7:2041-50. [PMID: 11175317 DOI: 10.1038/sj.gt.3301331] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Approximately 15-30% of human non-small cell lung cancers (NSCLC) carry K-ras mutations, among which point mutations at codon 12 are the most common. This study characterizes the anti-tumor effect of an anti-K-ras ribozyme adenoviral vector (KRbz-ADV; replication-deficient, E1-deleted Ad5 backbone) against NSCLC lines that express the relevant mutation (K-ras codon 12 GGT --> GTT; H441 and H1725). KRbz-ADV significantly inhibited tumor cell growth (38-94% reduction by 3H-thymidine uptake) in a time- and dose-dependent manner, but produced minimal growth inhibition on normal epithelial cells, or NSCLC H1650 cells that lack the relevant mutation. The in vivo anti-tumorigenic effect of KRbz-ADV treatment was characterized with cell line xenografts in nu/nu mice. Pre-treatment with KRbz-ADV (10 or 20 p.f.u. per cell) completely abrogated subcutaneous engraftment of H441 (n = 13) or H1725 cells (n = 8), as compared with a 100% tumor take and progressive tumor growth in animals that received untreated tumor cells, or control vector (luciferase-adenovirus/Luc-ADV)-treated tumor cells. Pre-treatment with a mutant anti-K-ras ribozyme adenoviral vector (mutKRbz-ADV), which has the same specificity as KRbz but lacks ribozyme catalytic activity, did not produce an anti-tumorigenic effect. The in vivo effect of KRbz-ADV treatment was further examined by initiating injections (2 x 10(9) p.f.u.) at 7 days after tumor induction. Pre-existing tumor growth was reduced by 39% by a single intratumoral injection. Repeat injections (three or five KRbz-ADV-intratumoral injections at 2 x 10(9) p.f.u. every other day) resulted in complete tumor regression in five of seven mice. In contrast, single or multiple injections of control vector Luc-ADV did not significantly alter tumor xenograft outcome. Ribozyme expression was confirmed in H441 cells that demonstrated reduced growth after KRbz-ADV treatment. Reduced growth corresponded to significantly lowered levels of K-ras mRNA, as defined by RT-PCR (51% of untreated level, n = 3) and RNase protection assay (56% of untreated level, n = 4) analyses. Further, 37.5% of KRbz-ADV-treated cells underwent apoptosis, as compared with 11.7%, and 19.0% in untreated and Luc-ADV-treated cultures, respectively. A significantly higher proportion of KRbz-ADV-treated H441 cells (58.2%) underwent apoptosis when maintained under anchor-independent conditions that simulate in vivo tumorigenesis ('anoikis'). This is the first report that demonstrates that KRbz-ADV can effectively inhibit in vivo tumorigenesis, and produces regression of pre-existing human lung tumor xenografts having the relevant K-ras mutation.
Collapse
Affiliation(s)
- Y A Zhang
- Mary C Crowley Cancer Research Program, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | | | | | | |
Collapse
|
616
|
Prendergast GC, Oliff A. Farnesyltransferase inhibitors: antineoplastic properties, mechanisms of action, and clinical prospects. Semin Cancer Biol 2000; 10:443-52. [PMID: 11170866 DOI: 10.1006/scbi.2000.0335] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Farnesyltransferase (FTase) inhibitors are among the current wave of molecularly targeted anti-cancer agents being used to attack malignancy in a rational manner. A large body of preclinical data indicates that FTase inhibitors block cancer cell proliferation through both cytostatic and cytotoxic effects. Interestingly, FTase inhibitors have rather limited effects on normal cell function, suggesting that they may target unique aspects of cancer cell pathophysiology. The development of FTase inhibitors was predicated on the discovery that the Ras oncoproteins must be post-translationally modified to transform cells. However, recent work indicates that the anti-neoplastic effects of FTase inhibitors depend on altering the post-translational modifications of non-Ras proteins as well. In particular, a critical target protein that responds to FTase inhibition by blocking tumor cell growth is RhoB, an endosomal Rho protein that functions in receptor trafficking. In this review, we survey the biological foundations for the clinical development of FTase inhibitors, and consider some of the latest mechanistic studies that reveal how these agents affect cellular physiology.
Collapse
Affiliation(s)
- G C Prendergast
- Department of Cancer Research, Dupont Pharmaceuticals Company, Glenolden Laboratory, Glenolden, PA 19036, USA
| | | |
Collapse
|
617
|
Klafter R, Arbiser JL. Regulation of angiogenesis and tumorigenesis by signal transduction cascades: lessons from benign and malignant endothelial tumors. J Investig Dermatol Symp Proc 2000; 5:79-82. [PMID: 11147680 DOI: 10.1046/j.1087-0024.2000.00007.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oncogenes and tumor suppressor genes are implicated in the regulation of the angiogenic switch. Much of the data accumulated to date uses NIH 3T3 cells, which are deficient in the tumor suppressor gene p16, as models for these studies. We have used a novel system, derived by sequential introduction of a temperature-sensitive SV40 large T antigen and oncogenic H-ras, to study the angiogenic switch. The results from our studies differ from those using NIH3T3 cells, but have been confirmed by multiple other groups. The data from all of these studies suggest that there is synergy between inactivation of the p53 tumor suppressor gene and activation of the phosphoinositol-3-kinase pathway (PI-3-K), as well as synergy between inactivation of the p16 tumor suppressor gene and activation of the MAP kinase pathway. These findings suggest that there are predictable behaviors of tumors that may be assessed by the status of p53 or p16 in a biopsy, and that these predictable changes in signal transduction may be useful both prognostically and in the design of rationally based drug therapy of benign and malignant tumors.
Collapse
Affiliation(s)
- R Klafter
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
618
|
Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000; 5:24-33. [PMID: 11147671 DOI: 10.1046/j.1087-0024.2000.00012.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three-dimensional tumor growth is dependent on the perpetual recruitment of host blood vessels to the tumor site. This recruitment process (mainly via angiogenesis) is thought to be triggered, at least in part, by the very same set of genetic alterations (activated oncogenes, inactivated/lost tumor suppressor genes) as those responsible for other aspects of malignant transformation (e.g., aberrant mitogenesis, resistance to apoptosis). Potent oncogenes are able to deregulate expression of both angiogenesis stimulators and inhibitors in cancer cells. For example, mutant ras expression is associated with increased production of vascular endothelial growth factor (VEGF) and downregulation of thrombospondin-1 (TSP-1). Upregulation of VEGF and angiogenesis can also be induced by constitutive activation of other oncogenic proteins (e.g., EGFR, Raf, MEK, PI3K) acting at various levels on the Ras signaling pathway. The mode and the magnitude of such proangiogenic influences can be significantly modified by cell type (fibroblastic or epithelial origin), epigenetic factors (hypoxia, changes in cell density), and/or presence of additional genetic lesions (e.g., preceding loss of p16 or p53 tumor suppressor genes). Activated oncogenes (e.g., ras, src, HER-2) induce co-expression of angiogenic properties concomitantly with several highly selectable traits (increased mitogenesis, resistance to apoptosis), a circumstance that may accelerate selection of the angiogenic phenotype at the cell population level. On the other hand oncogene-induced reduction in growth requirements may also endow tumor cells with a diminished (albeit not abrogated) dependence on (close) proximity to blood vessels, i.e., with reduced vascular dependence. Thus, oncogenes can impact several interconnected aspects of cellular growth, survival, and angiogenesis. Experimental evidence suggests that, in principle, many of these properties (including angiogenesis) can be simultaneously suppressed (and tumor stasis or regression induced) by effective use of the specific oncogene antagonists and signal transduction inhibitors.
Collapse
Affiliation(s)
- J Rak
- Toronto Sunnybrook Regional Cancer Centre, Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
619
|
Abstract
A striking link exists between advanced age and increased incidence of cancer. Here I review how several of the age-related molecular and physiological changes might act in concert to promote cancer, and in particular epithelial carcinogenesis. Experimental data indicate that the aged, cancer-prone phenotype might represent the combined pathogenetic effects of mutation load, epigenetic regulation, telomere dysfunction and altered stromal milieu. Further verification of the role of these effects should in turn lead to the design of effective therapeutics for the treatment and prevention of cancer in the aged.
Collapse
Affiliation(s)
- R A DePinho
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
620
|
Mikheev AM, Mikheev SA, Zhang Y, Aebersold R, Zarbl H. CArG binding factor A (CBF-A) is involved in transcriptional regulation of the rat Ha-ras promoter. Nucleic Acids Res 2000; 28:3762-70. [PMID: 11000268 PMCID: PMC110773 DOI: 10.1093/nar/28.19.3762] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study we identified a positive transcriptional element within the rat Ha-ras promoter previously known as Ha-ras response element (HRE) and identified a trans-acting factor that binds HRE sequences in rat mammary cells. To identify the binding protein we employed sequence specific DNA affinity chromatography. Amino acid sequence analysis of the affinity-purified proteins was performed by tandem mass spectroscopy. The results unexpectedly demonstrated that in rat mammary cells CArG box-binding factor A (CBF-A) is the major protein species that bind specifically to the rat and human HRE sequences with high affinity. The affinity of CBF-A binding to HRE was significantly higher than to the CArG box described as a recognition sequence for CBF-A protein. Transient transfection assays using reporter plasmids verified that mutations within the HRE that disrupt binding of CBF-A also reduced the activity of the rat Ha-ras promoter. Despite the fact that the HRE within the Ha-ras promoter resembles a binding site for Ets transcription factors, we did not detect the binding of Ets-related proteins to the rat HRE in BICR-M1Rk cells. We further demonstrated a correlation between the presence of HRE binding activity and induction of Ha-ras mRNA expression following serum stimulation in the mammary carcinoma cell line. Taken together, our results suggest that CBF-A may play an important role in transcriptional regulation of Ha-ras promoter activity during normal mammary cell growth and carcinogenesis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Base Sequence
- Blotting, Western
- Cell Cycle Proteins
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- DNA/genetics
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter/genetics
- Genes, ras/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Humans
- Mass Spectrometry
- Mimosine/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Repressor Proteins/chemistry
- Repressor Proteins/isolation & purification
- Repressor Proteins/metabolism
- Response Elements/genetics
- Ribonucleoproteins
- Thermodynamics
- Transcription Factors/metabolism
- Transfection
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- A M Mikheev
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C1-015, PO Box 19024, Seattle, WA 98104-2092, USA
| | | | | | | | | |
Collapse
|
621
|
Roelofs H, Mostert MC, Pompe K, Zafarana G, van Oorschot M, van Gurp RJ, Gillis AJ, Stoop H, Beverloo B, Oosterhuis JW, Bokemeyer C, Looijenga LH. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1155-66. [PMID: 11021820 PMCID: PMC1850173 DOI: 10.1016/s0002-9440(10)64631-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been identified with an additional high-level amplification of a restricted region of 12p including the K-RAS proto-oncogene. Here we show that the incidence of these restricted 12p amplifications is approximately 8% in primary TGCTs. Within a single cell formation of i(12p) and restricted 12p amplification is mutually exclusive. The borders of the amplicons cluster in short regions, and the amplicon was never found in the adjacent carcinoma in situ cells. Seminomas with the restricted 12p amplification virtually lacked apoptosis and the tumor cells showed prolonged in vitro survival like seminoma cells with a mutated RAS gene. However, no differences in proliferation index between these different groups of seminomas were found. Although patients with a seminoma containing a homogeneous restricted 12p amplification presented at a significantly younger age than those lacking it, the presence of a restricted 12p amplification/RAS mutation did not predict the stage of the disease at clinical presentation and the treatment response of primary seminomas. In 55 primary and metastatic tumors from 44 different patients who failed cisplatinum-based chemotherapy, the restricted 12p amplification and RAS mutations had the same incidence as in the consecutive series of responding patients. These data support the model that gain of 12p in TGCTs is related to invasive growth. It allows tumor cells, in particular those showing characteristics of early germ cells (ie, the seminoma cells), to survive outside their specific microenvironment. Overexpression of certain genes on 12p probably inhibits apoptosis in these tumor cells. However, the copy numbers of the restricted amplification of 12p and K-RAS mutations do not predict response to therapy and survival of the patients.
Collapse
Affiliation(s)
- H Roelofs
- Pathology/Laboratory for Experimental Patho-Oncology, University Hospital Rotterdam/Daniel, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
622
|
Parrado A, Chomienne C, Padua RA. Retinoic acid receptor alpha (RAralpha) Mutations in Human Leukemia. Leuk Lymphoma 2000; 39:271-82. [PMID: 11342307 DOI: 10.3109/10428190009065826] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The retinoic acid receptor alpha (RARalpha) plays a central role in the biology of the myeloid cellular compartment. Chromosomal translocations involving the RARalpha locus probably represent the malignant initiating events in acute promyelocytic leukemia (APL). Recent studies that identify novel interactions between RARalpha and the nuclear receptor co-activators and co-repressors, new functions of the oncogenic RARalpha fusion proteins and their catabolism in retinoic acid-induced differentiation, and the availability of new transgenic mice models have provided important insights into our understanding of the mechanisms by which mutant forms of RARalpha can be implicated in the development of leukemia. Novel alterations of the RARalpha gene identified in hematopoietic malignant disorders other than APL, such as myelodysplastic syndromes, non-APL acute myeloid leukemias and B-chronic lymphocytic leukemias, suggest that disruption of the RARalpha gene might predispose to myeloid and lymphoid disorders.
Collapse
Affiliation(s)
- A Parrado
- Laboratoire de Biologie Cellulaire Hématopoïétique, Institut d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | |
Collapse
|
623
|
Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J, Trono D. Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol Ther 2000; 2:404-14. [PMID: 11020357 DOI: 10.1006/mthe.2000.0141] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We exploited the ability of lentiviral vectors to govern the stable transduction of cells irrespective of their cycling status to induce the reversible immortalization of human primary cells. First, bicistronic HIV-derived lentiviral vectors expressing GFP- and the HSV1 thymidine kinase and containing the LoxP sequence in their LTR (HLox) were used to transduce HeLa cells. Cre expression led to efficient proviral deletion, and unexcised cells could be eliminated by ganciclovir treatment. A human liver biopsy was then exposed to a combination of HLox vectors that harbored either the SV40 large T (TAg) or the human telomerase (hTERT) DNAs in place of GFP. This led to the isolation of liver sinusoidal endothelial cell (LSEC) clones that exhibited an immortalized phenotype while retaining most of the features of primary hLSEC. Complete growth arrest of these cells was observed in 2 days of Cre expression, and the resulting stationary culture could be kept for at least 2 weeks. Transduction of human adult pancreatic islets with HLox vectors coding for Tag and Bmi-1 also induced the proliferation of insulin-positive cells. These results indicate that lentivectors can be used to mediate the reversible immortalization of primary nondividing cells and should allow for the production of large supplies of a wide variety of human cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- P Salmon
- Department of Genetics and Microbiology, CMU, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
624
|
Affiliation(s)
- M K Tietze
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
625
|
Blankenberg FG, Eckelman WC, Strauss HW, Welch MJ, Alavi A, Anderson C, Bacharach S, Blasberg RG, Graham MM, Weber W. Role of radionuclide imaging in trials of antiangiogenic therapy. Acad Radiol 2000; 7:851-67. [PMID: 11048882 DOI: 10.1016/s1076-6332(00)80633-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- F G Blankenberg
- Department of Radiology, Lucile Packard Children's Hospital, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
626
|
D' Angelo MG, Afanasieva T, Aguzzi A. Angiogenesis in transgenic models of multistep carcinogenesis. J Neurooncol 2000; 50:89-98. [PMID: 11245284 DOI: 10.1023/a:1006418723103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The histopathology and the epidemiology of human cancers, as well as studies of animal models of tumorigenesis, have led to a widely accepted notion that multiple genetic and epigenetic changes have to accumulate for progression to malignancy. Formation of new blood vessels (tumor angiogenesis) has been recognized, in addition to proliferative capabilities and to the ability to down-modulate cell death (apoptosis), as essential for the progressive growth and expansion of solid tumors beyond microscopic sizes of about 1-2 mm in diameter. Mice overexpressing activated forms of oncogenes or carrying targeted mutations in tumor suppressor genes have proven extremely useful for to linking the function of these genes with specific tumor processes; the interbreeding of these mice let us study the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of multi-stage nature of tumorigenesis.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/physiology
- Apoptosis
- Brain/blood supply
- Carcinoma/blood supply
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cocarcinogenesis
- Fibrosarcoma/blood supply
- Fibrosarcoma/genetics
- Fibrosarcoma/pathology
- Growth Substances/physiology
- Humans
- Insulin/genetics
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Animal
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/physiopathology
- Oncogenes
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Rats
- Receptors, Growth Factor/physiology
- Simian virus 40/genetics
- Skin Neoplasms/blood supply
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Transgenes
Collapse
Affiliation(s)
- M G D' Angelo
- Institute of Neuropathology, University Hospital of Zürich, Switzerland
| | | | | |
Collapse
|
627
|
López-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 2000; 19:4611-20. [PMID: 11030150 DOI: 10.1038/sj.onc.1203817] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Like other types of pre-malignant lesions and carcinoma, angiogenesis is associated with high-grade cervical dysplasia and with invasive squamous carcinoma of the cervix. Vascular endothelial cell growth factor (VEGF) is known to be one of the most important inducers of angiogenesis and is upregulated in carcinoma of the cervix. Human Papilloma Virus 16 (HPV-16) has been etiologically linked to human cervical cancer, and the major oncogenic proteins encoded by the viral genome, E6 and E7, are involved in the immortalization of target cells. Because several oncogenes including mutant ras, EGF receptor, ErbB2/Her2, c-myc and v-src upregulate VEGF expression, we asked whether HVP-16 E6 oncoprotein could act in a similar fashion. We found that HPV-16 E6-positive cells generally express high levels of VEGF message. Furthermore, co-expression of the VEGF promoter-Luc (luciferase) reporter gene with E6 in both human keratinocytes and mouse fibroblast showed that E6 oncoprotein upregulates VEGF promoter activity, and does so in a p53 independent manner. An E6 responsive region which comprises four Sp-1 sites, between -194 and -50 bp of the VEGF promoter, is also necessary for constitutive VEGF transcription. Taken together, our results suggest the possibility that the HPV oncoprotein E6 may contribute to tumor angiogenesis by direct stimulation of the VEGF gene.
Collapse
MESH Headings
- Autocrine Communication
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- ErbB Receptors/physiology
- Female
- Genes, p53
- HeLa Cells/metabolism
- HeLa Cells/virology
- Humans
- Keratinocytes/virology
- Lymphokines/genetics
- Lymphokines/metabolism
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Papillomaviridae/genetics
- Papillomaviridae/physiology
- Papillomavirus Infections/pathology
- Papillomavirus Infections/virology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/biosynthesis
- Repressor Proteins
- Transcription, Genetic
- Transcriptional Activation
- Transforming Growth Factor alpha/physiology
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/virology
- Tumor Suppressor Protein p53/physiology
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/virology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Vulvar Neoplasms/metabolism
- Vulvar Neoplasms/pathology
- Vulvar Neoplasms/virology
Collapse
Affiliation(s)
- O López-Ocejo
- Vaccine Division, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | |
Collapse
|
628
|
Wang D, Yang W, Du J, Devalaraja MN, Liang P, Matsumoto K, Tsubakimoto K, Endo T, Richmond A. MGSA/GRO-mediated melanocyte transformation involves induction of Ras expression. Oncogene 2000; 19:4647-59. [PMID: 11030154 PMCID: PMC2667445 DOI: 10.1038/sj.onc.1203820] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The MGSA/GRO protein is endogenously expressed in almost 70% of the melanoma cell lines and tumors, but not in normal melanocytes. We have previously demonstrated that over-expression of human MGSA/GROalpha, beta or gamma in immortalized murine melanocytes (melan-a cells) enables these cells to form tumors in SCID and nude mice. To examine the possibility that the MGSA/GRO effect on melanocyte transformation requires expression of other genes, differential display was performed. One of the mRNA's identified in the screen as overexpressed in MGSA/GRO transformed melan-a clones was the newly described M-Ras or R-Ras3 gene, a member of the Ras gene superfamily. Over-expression of MGSA/GRO upregulates M-Ras expression at both the mRNA and protein levels, and this induction requires an intact glutamine-leucine-arginine (ELR)-motif in the MGSA/GRO protein. Western blot examination of Ras expression revealed that K- and N-Ras proteins are also elevated in MGSA/GRO-expressing melan-a clones, leading to an overall increase in the amount of activated Ras. MGSA/GRO-expressing melan-a clones exhibited enhanced AP-1 activity. The effects of MGSA/GRO on AP-1 activation could be mimicked by over-expression of wild-type M-Ras or a constitutively activated M-Ras mutant in control melan-a cells as monitored by an AP-1-luciferase reporter, while expression of a dominant negative M-Ras blocked AP-1-luciferase activity in MGSA/GRO-transformed melan-a clones. In the in vitro transformation assay, over-expression of M-Ras mimicked the effects of MGSA/GRO by inducing cellular transformation in control melan-a cells, while over-expression of dominant negative M-Ras in MGSA/GROalpha-expressing melan-a-6 cells blocked transformation. These data suggest that MGSA/GRO-mediated transformation requires Ras activation in melanocytes.
Collapse
Affiliation(s)
- D Wang
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
629
|
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. In the past few years, compelling evidence accumulated that dysregulation of apoptosis can lead to embryonal death and is involved in the pathophysiology of various inflammatory and degenerative diseases. Specifically, the occurrence of endothelial cell apoptosis has deleterious effects on the development of the cardiovascular system leading to embryonal death. Moreover, endothelial cell apoptosis counteracts neovascularization in the adult organism. On the basis of these findings, one may consider the regulation of endothelial cell apoptosis as a potential therapeutic target. The induction of endothelial cell apoptosis may limit unwanted neovascularization of tumors. In contrast, the prevention of endothelial cell apoptosis may improve angiogenesis and vasculogenesis in patients with ischemia. The present work critically reviews the existing data that supports a role of endothelial cell apoptosis for vascular growth and remodeling and provides insights into the mechanisms and the potential therapeutic consequences.
Collapse
Affiliation(s)
- S Dimmeler
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Germany.
| | | |
Collapse
|
630
|
Bardeesy N, Wong KK, DePinho RA, Chin L. Animal models of melanoma: recent advances and future prospects. Adv Cancer Res 2000; 79:123-56. [PMID: 10818679 DOI: 10.1016/s0065-230x(00)79004-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Chromosomes, Human, Pair 9/genetics
- Cricetinae
- Cyprinodontiformes
- Disease Progression
- Forecasting
- Genes, p16
- Genes, ras
- Growth Substances/physiology
- Humans
- Loss of Heterozygosity
- Melanocytes/metabolism
- Melanocytes/pathology
- Melanoma, Experimental/epidemiology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mesocricetus
- Mice
- Mice, Transgenic
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Radiation-Induced/epidemiology
- Neoplasms, Radiation-Induced/genetics
- Opossums
- Proteins/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/physiology
- Species Specificity
- Tumor Suppressor Protein p14ARF
Collapse
Affiliation(s)
- N Bardeesy
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | |
Collapse
|
631
|
Wehrli P, Viard I, Bullani R, Tschopp J, French LE. Death receptors in cutaneous biology and disease. J Invest Dermatol 2000; 115:141-8. [PMID: 10951228 DOI: 10.1046/j.1523-1747.2000.00037.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Death receptors are a growing family of transmembrane proteins that can detect the presence of specific extracellular death signals and rapidly trigger cellular destruction by apoptosis. Expression and signaling by death receptors and their respective ligands is a tightly regulated process essential for key physiologic functions in a variety of organs, including the skin. Several death receptors and ligands, Fas and Fas ligand being the most important to date, are expressed in the skin and have proven to be essential in contributing to its functional integrity. Recent evidence has shown that Fas-induced keratinocyte apoptosis in response to ultraviolet light, prevents the accumulation of pro-carcinogenic p53 mutations by deleting ultraviolet-mutated keratinocytes. Further- more, there is strong evidence that dysregulation of Fas expression and/or signaling contributes to the pathogenesis of toxic epidermal necrolysis, acute cutaneous graft versus host disease, contact hypersensitivity and melanoma metastasis. With these new developments, strategies for modulating the function of death receptor signaling pathways have emerged and provided novel therapeutic possibilities. Specific blockade of Fas, for example with intravenous immunoglobulin preparations that contain specific anti-Fas antibodies, has shown great promise in the treatment of toxic epidermal necrolysis and may also be useful in the treatment acute graft versus host disease. Likewise, induction of death signaling by ultraviolet light can lead to hapten-specific tolerance, and gene transfer of Fas ligand to dendritic cells can be used to induce antigen specific tolerance by deleting antigen-specific T cells. Further developments in this field may have important clinical implications in cutaneous disease.
Collapse
Affiliation(s)
- P Wehrli
- Department of Dermatology, Geneva University Medical School, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
632
|
Giehl K, Skripczynski B, Mansard A, Menke A, Gierschik P. Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 2000; 19:2930-42. [PMID: 10871844 DOI: 10.1038/sj.onc.1203612] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human ductal adenocarcinoma of the pancreas frequently carry activating point mutations in the K-ras protooncogene. We have analysed the activity of the Ras-Raf-MEK-MAPK cascade in the human pancreatic carcinoma cell line PANC-1 carrying an activating K-ras mutation. Serum-starved cells and cells grown in medium with serum did not show constitutively activated c-Raf, MEK-1, or p42 MAPK. Stimulation of cells with epidermal growth factor (EGF) or fetal calf serum (FCS) resulted in activation of N-Ras, but not K-Ras, as well as activation of c-Raf, MEK-1, and p42 MAPK. Preincubation of serum-starved cells with MEK-1 inhibitor PD98059 abolished EGF- and FCS-induced MAPK activation, identifying MEK as the upstream activator of MAPK. PANC-1 cells exhibited marked serum-dependence of anchorage-dependent and -independent cell growth as well as cell migration. EGF, alone or in combination with insulin and transferrin, did not induce cell proliferation of serum-starved PANC-1 cells, indicating that activation of MAPK alone was not sufficient to induce cell proliferation. FCS-induced DNA synthesis was inhibited by 40% by the MEK-1 inhibitor. On the other hand, treatment with either FCS or EGF alone resulted in marked, MEK-dependent increase of directed cell migration. Collectively, our results show that the activating K-ras mutation in PANC-1 cells does not result in constitutively increased Raf-MEK-MAPK signaling. Signal transduction via the Ras-Raf-MEK-MAPK cascade is maintained in these cells and is required for growth factor-induced cell proliferation and directed cell migration. Oncogene (2000).
Collapse
Affiliation(s)
- K Giehl
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
633
|
Affiliation(s)
- E C Holland
- Departments of Neurosurgery and Molecular Genetics, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 64, Houston, TX 77030, USA.
| |
Collapse
|
634
|
Kerbel RS, Viloria-Petit A, Klement G, Rak J. 'Accidental' anti-angiogenic drugs. anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 2000; 36:1248-57. [PMID: 10882863 DOI: 10.1016/s0959-8049(00)00092-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A number of drugs currently being tested in clinical trials as possible angiogenesis inhibitors were not originally developed with the intention of suppressing tumour angiogenesis. Thalidomide and interferon alpha are obvious examples of such drugs. This list of 'accidental' angiogenesis inhibitors may include established agents such as conventional cytotoxic chemotherapeutic drugs as well as the new generation of anticancer drugs known as anti-oncoprotein signal transduction inhibitors. With respect to the former, the potential of such drugs to inhibit angiogenesis could be the result of their ability to cause collateral damaging effects on cycling endothelial cells found in newly formed blood vessels, or inhibiting other vital endothelial cell functions necessary for angiogenesis. The antitumour vascular side-effects of chemotherapy may be optimised by administering such drugs continuously on a more frequent (e.g. weekly or even daily) basis at levels well below the maximum tolerated dose (MTD), especially when this is done in combination with newly developed anti-angiogenic drugs such as vascular endothelial cell growth factor (VEGF) receptor blocking antibodies. This strategy may minimise or delay the problems of host toxicity and acquired drug resistance. The possibility of anti-angiogenic effects mediated by signal transduction inhibitors such as ras farnesyltransferase inhibitors (ras FTI's), or drugs which block receptor tyrosine kinases (e.g. ErbB2/neu) such as Herceptin, may be the consequence of such oncogenes inducing or upregulating various pro-angiogenic molecules such as VEGF (vascular endothelial cell growth factor) in tumour cells. Hence, treatment of tumour cells with such drugs can lead to downregulation of tumour cell-associated VEGF expression and this can contribute to an anti-angiogenic effect of the drug in vivo. In addition, some of these drugs may also affect certain 'activated' endothelial cell functions directly so as to block angiogenesis. An awareness of the potential of such conventional or experimental anticancer drugs to affect tumour growth through blockade or suppression of angiogenesis has implications for how anticancer drugs may be used clinically, either alone, or in combination with other drugs to optimally treat cancer.
Collapse
Affiliation(s)
- R S Kerbel
- Sunnybrook and Women's College Health Sciences Centre, Division of Cancer Biology Research, S-218, 2075 Bayview Avenue, Ontario M4N 3M5, Toronto, Canada.
| | | | | | | |
Collapse
|
635
|
Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 2000; 105:1589-94. [PMID: 10841517 PMCID: PMC300858 DOI: 10.1172/jci9621] [Citation(s) in RCA: 524] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclooxygenase-2 (COX-2; Ptgs2) acts as a tumor promoter in rodent models for colorectal cancer, but its precise role in carcinogenesis remains unclear. We evaluated the contribution of host-derived COX-1 and COX-2 in tumor growth using both genetic and pharmacological approaches. Lewis lung carcinoma (LLC) cells grow rapidly as solid tumors when implanted in C57BL/6 mice. We found that tumor growth was markedly attenuated in COX-2(-/-), but not COX-1(-/-) or wild-type mice. Treatment of wild-type C57BL/6 mice bearing LLC tumors with a selective COX-2 inhibitor also reduced tumor growth. A decrease in vascular density was observed in tumors grown in COX-2(-/-) mice when compared with those in wild-type mice. Because COX-2 is expressed in stromal fibroblasts of human and rodent colorectal carcinomas, we evaluated COX-2(-/-) mouse fibroblasts and found a 94% reduction in their ability to produce the proangiogenic factor, VEGF. Additionally, treatment of wild-type mouse fibroblasts with a selective COX-2 inhibitor reduced VEGF production by 92%.
Collapse
Affiliation(s)
- C S Williams
- Department of Medicine, The Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2279, USA
| | | | | | | | | |
Collapse
|
636
|
Shellman YG, Chapman JT, Fujita M, Norris DA, Maxwell IH. Expression of activated N-ras in a primary melanoma cell line counteracts growth inhibition by transforming growth factor-beta. J Invest Dermatol 2000; 114:1200-4. [PMID: 10844567 DOI: 10.1046/j.1523-1747.2000.00988.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One critical factor in melanoma progression is the change from radial growth phase to vertical growth phase. We previously showed a high incidence of ras mutations in progressing but not early human melanomas. We also found that stable expression of activated Ras in a primary human melanoma cell line (WM35) led to enhanced proliferation, anchorage-independent survival, migration and invasion in vitro and enhanced subcutaneous tumor formation in vivo, transforming the melanoma phenotype from the radial growth phase to the vertical growth phase. Inhibitory cytokines, especially transforming growth factor-beta, are important in homeostasis of normal human melanocytes. Proliferation of early melanoma cells can be inhibited by transforming growth factor-beta, whereas more aggressive stages lose this response. Using a transforming growth factor-beta activated luciferase reporter transiently transfected into WM35, WM35N-ras, and WM35H-ras (WM35 transfected with mutant N-ras or H-ras genes), we demonstrated significant decreases (p < 0. 04) in transforming growth factor-beta induced reporter expression in both ras transfected cell lines. Transforming growth factor-beta also induced significant decreases (p < 0.002) in the proportion of WM35 cells in S-phase of the cell cycle; this effect was not observed in WM35N-ras cells. Furthermore, we demonstrated that an important controlling factor in transforming growth factor-beta inhibition of cell cycle progression, the phosphorylation of the Rb protein, was altered in WM35N-ras; transforming growth factor-beta caused a marked relative increase in hypophosphorylated pRb in WM35 cells, but not in WM35N-ras. These data suggest that activated Ras plays an important part in melanoma progression from the radial growth phase to the vertical growth phase by counteracting inhibition by cytokines such as transforming growth factor-beta, thus providing a growth advantage.
Collapse
Affiliation(s)
- Y G Shellman
- Department of Dermatology and University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
637
|
Bader AG, Hartl M, Bister K. Conditional cell transformation by doxycycline-controlled expression of the ASV17 v-jun allele. Virology 2000; 270:98-110. [PMID: 10772983 DOI: 10.1006/viro.2000.0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the molecular basis of oncogenesis induced by the v-jun oncogene of avian sarcoma virus 17 (ASV17), we developed a conditional cell transformation system in which transcription of the ASV17 v-jun allele is controlled by a doxycycline-sensitive transactivator (tTA) or a reverse (doxycycline-dependent) transactivator (rtTA), respectively. Permanent cell lines of quail embryo fibroblasts conditionally transformed by a doxycycline-controlled v-jun allele revert to the normal phenotype within 3 days and lose their ability to grow in soft agar, strictly dependent on the addition or removal of the drug, respectively. The reverted cells are rapidly retransformed on conditional activation of v-jun. While full-level synthesis of v-jun mRNA and v-Jun protein in these cells is established within 2 and 14 h, respectively, after switching to the permissive conditions, the first morphological alterations are observed after 24 h, and as early as 2 days later the morphology has changed entirely from flat cells resembling normal fibroblasts to spindle-shaped fusiform cells showing a typical jun-transformed phenotype. Kinetic expression analysis revealed that transcriptional activation of the direct jun target gene BKJ precisely coincides with the establishment of full-level v-Jun protein synthesis. Furthermore, we have analyzed the expression of a novel candidate v-jun target gene, termed JAC, which shows no sequence homology to known genes. Similar to BKJ, JAC is specifically activated in jun-transformed fibroblasts, and induction of JAC is tightly linked to the conditional expression of oncogenic v-Jun. These results demonstrate the high stringency of the doxycycline-controlled v-jun expression system, and they also indicate that expression of v-jun in these cells is indispensable for enhanced proliferation, cell transformation, and the induction of specific expression patterns of downstream target genes.
Collapse
Affiliation(s)
- A G Bader
- Institute of Biochemistry, University of Innsbruck, Peter-Mayr-Str. 1a, Innsbruck, A-6020, Austria
| | | | | |
Collapse
|
638
|
Tichelaar JW, Lu W, Whitsett JA. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem 2000; 275:11858-64. [PMID: 10766812 DOI: 10.1074/jbc.275.16.11858] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Effects of fibroblast growth factor-7 (FGF-7) on lung morphogenesis, respiratory epithelial cell differentiation, and proliferation were assessed in transgenic mice in which the human FGF-7 cDNA was controlled by a conditional promoter under the direction of regulatory elements from either the human surfactant protein-C (SP-C) or rat Clara cell secretory protein (ccsp) genes. Expression of FGF-7 was induced in respiratory epithelial cells of the fetal lung by administration of doxycycline to the dam. Prenatally, doxycycline induced FGF-7 mRNA in respiratory epithelial cells in both Sp-c and Ccsp transgenic lines, increasing lung size and causing cystadenomatoid malformation. Postnatally, mice bearing both Ccsp-rtta and (Teto)(7)-cmv-fgf-7 transgenes survived, and lung morphology was normal. Induction of FGF-7 expression by doxycycline in the Ccsp-rtta x (Teto)(7)-cmv-fgf-7 mice caused marked epithelial cell proliferation, adenomatous hyperplasia, and pulmonary infiltration with mononuclear cells. Epithelial cell hyperplasia caused by FGF-7 was largely resolved after removal of doxycycline. Surfactant proteins, TTF-1, and aquaporin 5 expression were conditionally induced by doxycycline. The Sp-c-rtta and Ccsp-rtta activator mice provide models in which expression is conditionally controlled in respiratory epithelial cells in the developing and mature lung, altering lung morphogenesis, differentiation, and proliferation.
Collapse
Affiliation(s)
- J W Tichelaar
- Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
639
|
Bossù P, Vanoni M, Wanke V, Cesaroni MP, Tropea F, Melillo G, Asti C, Porzio S, Ruggiero P, Di Cioccio V, Maurizi G, Ciabini A, Alberghina L. A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Oncogene 2000; 19:2147-54. [PMID: 10815806 DOI: 10.1038/sj.onc.1203539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation state depends on the competing action of GTPase Activating Proteins (GAP) and Guanine nucleotide Exchange Factors (GEF). A tryptophan residue (Trp1056 in CDC25Mm-GEF), conserved in all ras-specific GEFs identified so far has been previously shown to be essential for GEF activity. Its substitution with glutamic acid results in a catalytically inactive mutant, which is able to efficiently displace wild-type GEF from p21ras and to originate a stable ras/GEF binary complex due to the reduced affinity of the nucleotide-free ras/GEF complex for the incoming nucleotide. We show here that this 'ras-sequestering property' can be utilized to attenuate ras signal transduction pathways in mouse fibroblasts transformed by oncogenic ras. In fact overexpression of the dominant negative GEFW1056E in stable transfected cells strongly reduces intracellular ras-GTP levels in k-ras transformed fibroblasts. Accordingly, the transfected fibroblasts revert to wild-type phenotype on the basis of morphology, cell cycle and anchorage independent growth. The reversion of the transformed phenotype is accompanied by DNA endoreduplication. The possible use of dominant negative ras-specific GEFs as a tool to down-regulate tumor growth is discussed.
Collapse
Affiliation(s)
- P Bossù
- Centro Ricerche Dompé, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
640
|
Okajima E, Thorgeirsson UP. Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf, and v-myc transformed cells. Biochem Biophys Res Commun 2000; 270:108-11. [PMID: 10733912 DOI: 10.1006/bbrc.2000.2386] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we show that vascular endothelial growth factor (VEGF) mRNA expression is up-regulated in oncogene transformed rat liver epithelial (RLE) cell lines and that the extracellular signal-regulated kinase (ERK) and p38 kinase differentially regulate the oncogene-mediated stimulation of VEGF. The highest level of VEGF mRNA expression was observed in the v-H-ras transformed RLE cell line, followed by the v-raf and v-myc transformed lines. The PD98059 MEK inhibitor was used to block the ERK pathway and SB203580 inhibitor to block the p38 pathway. The parent and the v-H-ras transformed RLE cell lines showed up-regulation of VEGF RNA expression through the ERK pathway and down-regulation of VEGF through the p38 pathway. VEGF was regulated in a comparable manner in a human breast carcinoma cell line. In the v-raf and v-myc transformed RLE lines, positive regulation of VEGF was transduced through the p38 pathway. These findings suggest that (1) oncogenic ras differs from raf and myc in the recruitment of the MAPK signaling pathways for VEGF regulation; (2) that VEGF is regulated in ras transformed and human cancer cell lines in a positive and negative manner by the ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- E Okajima
- Tumor Biology and Carcinogenesis Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
641
|
Abstract
Ras is a crucial regulator of cell growth in eukaryotic cells. Activated Ras can stimulate signal transduction cascades, leading to cell proliferation, differentiation or apoptosis. It is also one of the most commonly mutated genes in both solid tumours and haematologic neoplasias. In leukaemia and tumours, aberrant Ras signalling can be induced directly by Ras mutation or indirectly by altering genes that associate with Ras or its signalling pathways. A requisite for Ras function is localization to the plasma membrane, which is induced by the post-translational modification farnesylation. Molecules that interfere with this Ras modification have been used as antitumour agents. Ras is emerging as a dual regulator of cell functions, playing either positive or negative roles in the control of proliferation or apoptosis. The diversity of Ras-mediated effects may be related in part to the differential involvement of Ras homologues in distinct cellular processes or to the expanding array of Ras effectors.
Collapse
Affiliation(s)
- V Ayllón
- Department of Immunology and Oncology, UAM, Madrid, Spain
| | | |
Collapse
|
642
|
|
643
|
Abstract
The genetic construction of cancer-prone mice, combined with the capacity to control transgene expression in vivo, provides new opportunities to study the role of oncogenes in the maintenance of fully formed tumors. These inducible cancer models provide a means to dissect how specific oncogenic signals influence host-tumor symbiosis, to validate the importance of a given oncogenic lesion in established advanced tumors, and to predict the biological response and adaptations to therapies targeted to that cancer-causing genetic alteration.
Collapse
Affiliation(s)
- L Chin
- Departments of Adult Oncology, Dana Farber Cancer Institute, Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
644
|
Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18:19-39. [PMID: 10661569 DOI: 10.1634/stemcells.18-1-19] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame.
Collapse
Affiliation(s)
- G Romano
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
645
|
Abstract
Over the past two decades, the mouse has established itself as the primary organism in which to investigate the fundamental mechanisms of carcinogenesis and to model human neoplasia. The principal reason underlying such dominance almost certainly arises out of our ever increasing ability to manipulate the murine germline. Over the past 20 years we have moved from a position where animal models arose either spontaneously or were generated through exposure to carcinogen to a position in which it is possible to create and study precise mutations of choice. The most recent advances in inducible and conditional technologies now open the possibility for both temporal and tissue-specific gene manipulation. Each of these technological breakthroughs has facilitated significant steps forward in our understanding of the genetic basis of tumorigenesis. This review will highlight some of the major advances in the production and use of murine models of neoplasia over the last two decades.
Collapse
Affiliation(s)
- A R Clarke
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF10 3US, UK.
| |
Collapse
|
646
|
Abstract
It is now widely accepted that cancer is attributed to the accumulation of genetic alterations in cells. Thus, to understand the molecular mechanisms of cancer metastasis, it is indispensable to identify the genes whose alterations accumulate during cancer progression as well as the genes whose expression is responsible for the acquisition of metastatic potential in cancer cells. Molecular analyses of cancer cells in various stages of progression have revealed that alterations in tumor suppressor genes and oncogenes accumulate during tumor progression and correlate with the clinical aggressiveness of cancer. Comparative analyses of gene expression profiles between metastatic and non-metastatic cells have revealed that various genes are differentially expressed in association with the metastatic potential of cancer cells. A number of genes have been also identified as having functions in inducing or suppressing metastasis in experimental models. However, the association between causative genetic alterations and resulting phenotypic alterations with respect to the metastatic potential of cancer cells is not fully understood. Therefore, elucidation of genotype-phenotype correlation will be required to further understand a complex process of metastasis. Here, I review the progress on molecular studies of tumor progression and metastasis of the past 20 years and discuss the future direction in this field of science.
Collapse
Affiliation(s)
- J Yokota
- Biology Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
647
|
Auvinen P, Tammi R, Parkkinen J, Tammi M, Ågren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:529-36. [PMID: 10666382 PMCID: PMC1850058 DOI: 10.1016/s0002-9440(10)64757-8] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyaluronan (HA) is an extracellular matrix polysaccharide that promotes cell migration through its cell surface receptors and by effecting changes in the physical environment. HA expression is frequently increased in malignant tumors, whereas its association with the invasive potential and patient outcome in breast cancer has not been reported. The localization and signal intensity of HA was analyzed in 143 paraffin-embedded tumor samples of human breast carcinoma using a biotinylated HA-specific probe. In the immediate peritumoral stroma, HA signal was moderately or strongly increased in 39% and 56% of the cases, respectively. Normal ductal epithelium showed no HA, whereas in 57% of the tumors at least some of the carcinoma cells were HA positive. The intensity of the stromal HA signal and the presence of cell-associated HA were both significantly related to poor differentiation of the tumors, axillary lymph node positivity, and short overall survival of the patients. In Cox's multivariate analysis, both the intensity of stromal HA signal alone and that combined with the HA positivity in tumor cells were independent prognostic factors for overall survival. These results suggest that HA is directly involved in the spreading of breast cancer and may offer a potential target for new therapies.
Collapse
|
648
|
Frame S, Balmain A. Integration of positive and negative growth signals during ras pathway activation in vivo. Curr Opin Genet Dev 2000; 10:106-13. [PMID: 10679397 DOI: 10.1016/s0959-437x(99)00052-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Expression of RAS proteins can have either positive or negative effects on cell growth, differentiation and death. New technologies are being developed for the generation of animal models to address the questions of where, when and how much Ras is expressed during tumorigenesis, and how these disparate signals are integrated during multistage carcinogenesis.
Collapse
Affiliation(s)
- S Frame
- Division of Signal Transduction Therapy, Department of Biochemistry, MSI/WTB complex, University of Dundee, Dundee, DD1 5EH, Scotland
| | | |
Collapse
|
649
|
Vassaux G, Lemoine NR. Gene therapy for carcinoma of the breast: Genetic toxins. Breast Cancer Res 2000; 2:22-7. [PMID: 11250689 PMCID: PMC521210 DOI: 10.1186/bcr25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1999] [Revised: 11/25/1999] [Accepted: 11/26/1999] [Indexed: 11/10/2022] Open
Abstract
Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- G Vassaux
- ICRF Molecular Oncology Unit, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
650
|
Birnbaum RA, O'Marcaigh A, Wardak Z, Zhang YY, Dranoff G, Jacks T, Clapp DW, Shannon KM. Nf1 and Gmcsf interact in myeloid leukemogenesis. Mol Cell 2000; 5:189-95. [PMID: 10678181 DOI: 10.1016/s1097-2765(00)80415-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The NF1 tumor suppressor gene encodes neurofibromin, a GTPase-activating protein (GAP) for p21ras (Ras). Children with NF1 are predisposed to juvenile myelomonocytic leukemia (JMML). Some heterozygous Nf1 mutant mice develop a similar myeloproliferative disorder (MPD), and adoptive transfer of Nf1-deficient fetal liver cells consistently induces this MPD. Human JMML and murine Nf1-deficient cells are hypersensitive to granulocyte-macrophage colony-stimulating factor (GM-CSF) in methylcellulose cultures. We generated hematopoietic cells deficient in both Nf1 and Gmcsf to test whether GM-CSF is required to drive excessive proliferation of Nf1-/- cells in vivo. Here we show that GM-CSF play a central role in establishing and maintaining the MPD and that recipients engrafted with Nf1-/- Gmcsf-/- hematopoietic cells are hypersensitive to exogenous GM-CSF.
Collapse
Affiliation(s)
- R A Birnbaum
- Department of Pediatrics, University of California, San Francisco 94143-0519, USA
| | | | | | | | | | | | | | | |
Collapse
|