601
|
Furuyashiki T, Akiyama S, Kitaoka S. Roles of multiple lipid mediators in stress and depression. Int Immunol 2019; 31:579-587. [DOI: 10.1093/intimm/dxz023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 12/28/2022] Open
Abstract
AbstractProlonged or excessive stress may induce emotional and cognitive disturbances, and is a risk factor for mental illnesses. Using rodent chronic stress models of depression, roles of multiple lipid mediators related to inflammation have been revealed in chronic stress-induced emotional alterations. Prostaglandin (PG) E2, an arachidonic acid (AA)-derived lipid mediator, and its receptor subtype EP1 mediate depression-like behavior induced by repeated social defeat stress through attenuating prefrontal dopaminergic activity. Repeated social defeat stress activates microglia through innate immune receptors, and induces PGE2 synthesis through cyclooxygenase-1, a prostaglandin synthase enriched in microglia. PGD2, another AA-derived lipid mediator, has been implicated in depression induced by chronic stress, although either pro-depressive or anti-depressive actions have been reported. Chronic stress up-regulates hippocampal expression of 5-lipoxygenase, hence synthesis of cysteinyl leukotrienes, thereby inducing depression through their receptors. Consistent with beneficial effects of n-3 fatty acids in the diet of depressive patients, resolvins—a novel class of pro-resolving lipid mediators—in the brain attenuate neuroinflammation-associated depression. These findings in animal models of depression offer lipid mediators and related molecules as novel therapeutic targets for treating depression. To translate these findings into clinics, translational biomarkers to visualize lipid mediator profiles in depressive patients need to be established.
Collapse
Affiliation(s)
- Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kusunoki-cho, Kobe, Hyogo, Japan
- Japan Agency for Medical Research and Development (AMED),Otemachi, Tokyo, Japan
| | - Satoshi Akiyama
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kusunoki-cho, Kobe, Hyogo, Japan
- Japan Agency for Medical Research and Development (AMED),Otemachi, Tokyo, Japan
- Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kusunoki-cho, Kobe, Hyogo, Japan
- Japan Agency for Medical Research and Development (AMED),Otemachi, Tokyo, Japan
| |
Collapse
|
602
|
Abstract
Cortisol has many roles not only in mediating the response to stress but also in
the circadian rhythm, and it does so by both genomic and nongenomic cellular and
molecular mechanisms. Yet, it is common to associate cortisol only with stress
and, in particular, with the negative aspects of stress even though we would not
survive without it. This commentary provides a brief overview not only of the
diverse roles of cortisol but also of how to measure it to get meaningful
information in the context of other mediators of stress and adaptation and the
concepts of allostasis and allostatic load and overload. In particular, the
adaptive plasticity of the brain mediated by glucocorticoids and excitatory
amino acids is discussed in relation to misconceptions about what constitutes
brain damage. Thus the confusion with cortisol is that it does too many
important things both positive and negative!
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
603
|
Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci 2019; 12:20. [PMID: 30800054 PMCID: PMC6375857 DOI: 10.3389/fnmol.2019.00020] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways via the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
604
|
Scorza P, Duarte CS, Hipwell AE, Posner J, Ortin A, Canino G, Monk C. Research Review: Intergenerational transmission of disadvantage: epigenetics and parents' childhoods as the first exposure. J Child Psychol Psychiatry 2019; 60:119-132. [PMID: 29473646 PMCID: PMC6107434 DOI: 10.1111/jcpp.12877] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND For decades, economists and sociologists have documented intergenerational transmission of socioeconomic disadvantage, demonstrating that economic, political, and social factors contribute to 'inherited hardship'. Drawing on biological factors, the developmental origins of adult health and disease model posits that fetal exposure to maternal prenatal distress associated with socioeconomic disadvantage compromises offspring's neurodevelopment, affecting short- and long-term physical and mental health, and thereby psychosocial standing and resources. Increasing evidence suggests that mother-to-child influence occurs prenatally, in part via maternal and offspring atypical HPA axis regulation, with negative effects on the maturation of prefrontal and subcortical neural circuits in the offspring. However, even this in utero timeframe may be insufficient to understand biological aspects of the transmission of factors contributing to disadvantage across generations. METHODS We review animal studies and emerging human research indicating that parents' childhood experiences may transfer epigenetic marks that could impact the development of their offspring independently of and in interaction with their offspring's perinatal and early childhood direct exposures to stress stemming from socioeconomic disadvantage and adversity. RESULTS Animal models point to epigenetic mechanisms by which traits that could contribute to disadvantage may be transmitted across generations. However, epigenetic pathways of parental childhood experiences influencing child outcomes in the next generation are only beginning to be studied in humans. With a focus on translational research, we point to design features and methodological considerations for human cohort studies to be able to test the intergenerational transmission hypothesis, and we illustrate this with existing longitudinal studies. CONCLUSIONS Epigenetic intergenerational transmission, if at play in human populations, could have policy implications in terms of reducing the continuation of disadvantage across generations. Further research is needed to address this gap in the understanding of the perpetuation of compromised lives across generations.
Collapse
Affiliation(s)
- Pamela Scorza
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Alison E Hipwell
- Department of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ana Ortin
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Glorisa Canino
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Catherine Monk
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
605
|
Cabeza de Baca T, Albert MA. Psychosocial Stress, the Unpredictability Schema, and Cardiovascular Disease in Women. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2019. [DOI: 10.15212/cvia.2017.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
606
|
Zhang JY, Liu TH, He Y, Pan HQ, Zhang WH, Yin XP, Tian XL, Li BM, Wang XD, Holmes A, Yuan TF, Pan BX. Chronic Stress Remodels Synapses in an Amygdala Circuit-Specific Manner. Biol Psychiatry 2019; 85:189-201. [PMID: 30060908 PMCID: PMC6747699 DOI: 10.1016/j.biopsych.2018.06.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic stress exposure increases the risk of developing various neuropsychiatric illnesses. The behavioral sequelae of stress correlate with dendritic hypertrophy and glutamate-related synaptic remodeling at basolateral amygdala projection neurons (BLA PNs). Yet, though BLA PNs are functionally heterogeneous with diverse corticolimbic targets, it remains unclear whether stress differentially impacts specific output circuits. METHODS Confocal imaging was used to reconstruct the morphology of mouse BLA PNs with the aid of retrograde tracing and biocytin staining. The synaptic activity in these neurons was measured with in vitro electrophysiology, and anxiety-like behavior of the mice was assessed with the elevated plus maze and open field test. RESULTS Chronic restraint stress (CRS) produced dendritic hypertrophy across mouse BLA PNs, regardless of whether they did (BLA→dorsomedial prefrontal cortex [dmPFC]) or did not (BLA↛dmPFC) target dmPFC. However, CRS increased the size of dendritic spine heads and the number of mature, mushroom-shaped spines only in BLA↛dmPFC PNs, sparing neighboring BLA→dmPFC PNs. Moreover, the excitatory glutamatergic transmission was also selectively increased in BLA↛dmPFC PNs, and this effect correlated with CRS-induced increases in anxiety-like behavior. Segregating BLA↛dmPFC PNs based on their targeting of ventral hippocampus (BLA→ventral hippocampus) or nucleus accumbens (BLA→nucleus accumbens) revealed that CRS increased spine density and glutamatergic signaling in BLA→ventral hippocampus PNs in a manner that correlated with anxiety-like behavior. CONCLUSIONS Chronic stress caused BLA PN neuronal remodeling with a previously unrecognized degree of circuit specificity, offering new insight into the pathophysiological basis of depression, anxiety disorders, and other stress-related conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China; Department of Neurology, the 2nd Affiliated Hospital, Nanchang University, Nanchang, China; Human Aging Research Institute, School of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
607
|
Han Y, Han L, Dong MM, Sun QC, Zhang ZF, Ding K, Zhang YD, Mannan A, Xu YF, Ou-Yang CL, Li ZY, Gao C, Cao JL. Preoperative Salivary Cortisol AM/PM Ratio Predicts Early Postoperative Cognitive Dysfunction After Noncardiac Surgery in Elderly Patients. Anesth Analg 2019; 128:349-357. [DOI: 10.1213/ane.0000000000003740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
608
|
Xu B, Zang SC, Li SZ, Guo JR, Wang JF, Wang D, Zhang LP, Yang HM, Lian S. HMGB1-mediated differential response on hippocampal neurotransmitter disorder and neuroinflammation in adolescent male and female mice following cold exposure. Brain Behav Immun 2019; 76:223-235. [PMID: 30476565 DOI: 10.1016/j.bbi.2018.11.313] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022] Open
Abstract
Stress induces many different sex-specific physiological and psychological responses during adolescence. Although the impact of certain brain stressors has been reported in the literature, the influence of cold stress on the mechanisms underlying hippocampal neurotransmitter disorder and neuroinflammation remain unstudied. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures, 3 h per day for 1 week. Serum CORT and blood gas analysis was then used to assess body status. Using western blotting, immunofluorescence and immunohistochemistry we also assessed glial cell number and microglial activation, as well as inflammatory cytokine levels and related protein expression levels. The phenomena of excessive CORT, microglial activation, increased acetylate-HMGB1 levels, NF-κB signaling pathway activation, pro-inflammatory cytokine release, neuronal apoptosis and neurotransmitter disorder were demonstrated in mouse hippocampal tissue following cold exposure. We believe that these phenomena are mediated by the HMGB1/TLR4/NFκB pathway. Finally, the male inflammatory response in hippocampal tissue was more severe and the influence of cold exposure on neurotransmitter was greater in females.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shu-Cheng Zang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Li-Ping Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
609
|
Zimmermann CA, Arloth J, Santarelli S, Löschner A, Weber P, Schmidt MV, Spengler D, Binder EB. Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes. Transl Psychiatry 2019; 9:41. [PMID: 30696808 PMCID: PMC6351530 DOI: 10.1038/s41398-019-0373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/16/2018] [Accepted: 01/01/2019] [Indexed: 01/04/2023] Open
Abstract
Early-life adversity is an important risk factor for major depressive disorder (MDD) and schizophrenia (SCZ) that interacts with genetic factors to confer disease risk through mechanisms that are still insufficiently understood. One downstream effect of early-life adversity is the activation of glucocorticoid receptor (GR)-dependent gene networks that drive acute and long-term adaptive behavioral and cellular responses to stress. We have previously shown that genetic variants that moderate GR-induced gene transcription (GR-response eSNPs) are significantly enriched among risk variants from genome-wide association studies (GWASs) for MDD and SCZ. Here, we show that the 63 transcripts regulated by these disease-associated functional genetic variants form a tight glucocorticoid-responsive co-expression network (termed GCN). We hypothesized that changes in the correlation structure of this GCN may contribute to early-life adversity-associated disease risk. Therefore, we analyzed the effects of different qualities of social support and stress throughout life on GCN formation across distinct brain regions using a translational mouse model. We observed that different qualities of social experience substantially affect GCN structure in a highly brain region-specific manner. GCN changes were predominantly found in two functionally interconnected regions, the ventral hippocampus and the hypothalamus, two brain regions previously shown to be of relevance for the stress response, as well as psychiatric disorders. Overall, our results support the hypothesis that a subset of genetic variants may contribute to risk for MDD and SCZ by altering circuit-level effects of early and adult social experiences on GCN formation and structure.
Collapse
Affiliation(s)
- Christoph A. Zimmermann
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Janine Arloth
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sara Santarelli
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anne Löschner
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Peter Weber
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietmar Spengler
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B. Binder
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany ,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
610
|
REM sleep's unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc Natl Acad Sci U S A 2019; 116:2733-2742. [PMID: 30683720 PMCID: PMC6377491 DOI: 10.1073/pnas.1816456116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sleep disturbances are common in stress-related disorders but the nature of these sleep disturbances and how they relate to changes in the stress hormone corticosterone and changes in gene expression remained unknown. Here we demonstrate that in response to chronic mild stress, rapid–eye-movement sleep (REMS), a sleep state involved in emotion regulation and fear conditioning, changed first and more so than any other measured sleep characteristic. Transcriptomic profiles related to REMS continuity and theta oscillations overlapped with those for corticosterone, as well as with predictors for anhedonia, and were enriched for apoptotic pathways. These data highlight the central role of REMS in response to stress and warrant further investigation into REMS’s involvement in stress-related mental health disorders. One of sleep’s putative functions is mediation of adaptation to waking experiences. Chronic stress is a common waking experience; however, which specific aspect of sleep is most responsive, and how sleep changes relate to behavioral disturbances and molecular correlates remain unknown. We quantified sleep, physical, endocrine, and behavioral variables, as well as the brain and blood transcriptome in mice exposed to 9 weeks of unpredictable chronic mild stress (UCMS). Comparing 46 phenotypic variables revealed that rapid–eye-movement sleep (REMS), corticosterone regulation, and coat state were most responsive to UCMS. REMS theta oscillations were enhanced, whereas delta oscillations in non-REMS were unaffected. Transcripts affected by UCMS in the prefrontal cortex, hippocampus, hypothalamus, and blood were associated with inflammatory and immune responses. A machine-learning approach controlling for unspecific UCMS effects identified transcriptomic predictor sets for REMS parameters that were enriched in 193 pathways, including some involved in stem cells, immune response, and apoptosis and survival. Only three pathways were enriched in predictor sets for non-REMS. Transcriptomic predictor sets for variation in REMS continuity and theta activity shared many pathways with corticosterone regulation, in particular pathways implicated in apoptosis and survival, including mitochondrial apoptotic machinery. Predictor sets for REMS and anhedonia shared pathways involved in oxidative stress, cell proliferation, and apoptosis. These data identify REMS as a core and early element of the response to chronic stress, and identify apoptosis and survival pathways as a putative mechanism by which REMS may mediate the response to stressful waking experiences.
Collapse
|
611
|
Sah A, Sotnikov S, Kharitonova M, Schmuckermair C, Diepold RP, Landgraf R, Whittle N, Singewald N. Epigenetic Mechanisms Within the Cingulate Cortex Regulate Innate Anxiety-Like Behavior. Int J Neuropsychopharmacol 2019; 22:317-328. [PMID: 30668714 PMCID: PMC6441131 DOI: 10.1093/ijnp/pyz004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pathological anxiety originates from a complex interplay of genetic predisposition and environmental factors, acting via epigenetic mechanisms. Epigenetic processes that can counteract detrimental genetic risk towards innate high anxiety are not well characterized. METHODS We used female mouse lines of selectively bred high (HAB)- vs low (LAB)-innate anxiety-related behavior and performed select environmental and pharmacological manipulations to alter anxiety levels as well as brain-specific manipulations and immunohistochemistry to investigate neuronal mechanisms associated with alterations in anxiety-related behavior. RESULTS Inborn hyperanxiety of high anxiety-like phenotypes was effectively reduced by environmental enrichment exposure. c-Fos mapping revealed that hyperanxiety in high anxiety-like phenotypes was associated with blunted challenge-induced neuronal activation in the cingulate-cortex, which was normalized by environmental enrichment. Relating this finding with epigenetic modifications, we found that high anxiety-like phenotypes (compared with low-innate anxiety phenotypes) showed reduced acetylation in the hypoactivated cingulate-cortex neurons following a mild emotional challenge, which again was normalized by environmental enrichment. Paralleling the findings using environmental enrichment, systemic administration of histone-deacetylase-inhibitor MS-275 elicited an anxiolytic-like effect, which was correlated with increased acetylated-histone-3 levels within cingulate-cortex. Finally, as a proof-of-principle, local MS-275 injection into cingulate-cortex rescued enhanced innate anxiety and increased acetylated-histone-3 within the cingulate-cortex, suggesting this epigenetic mark as a biomarker for treatment success. CONCLUSIONS Taken together, the present findings provide the first causal evidence that the attenuation of high innate anxiety-like behavior via environmental/pharmacological manipulations is epigenetically mediated via acetylation changes within the cingulate-cortex. Finally, histone-3 specific histone-deacetylase-inhibitor could be of therapeutic importance in anxiety disorders.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Claudia Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | | | - Nigel Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria,Correspondence: Nicolas Singewald, PhD, Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80–82/III, A-6020 Innsbruck, Austria ()
| |
Collapse
|
612
|
Childhood trauma and insulin resistance in patients suffering from depressive disorders. Exp Neurol 2019; 315:15-20. [PMID: 30639184 DOI: 10.1016/j.expneurol.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Insulin resistance (IR) is a metabolic dysfunction often co-morbid with major depressive disorder (MDD). The paths to development of MDD remain largely unspecified, highlighting a need for identification of risk factors. Here, we tested whether specific subscales of childhood trauma as well as family history of type-2 diabetes (Fam-Hx-Dm2) are risk factors for development of metabolic dysfunction and severity of depressive symptoms. RESEARCH DESIGN AND METHODS We used a sample of 45 adults suffering from MDD that was well-characterized for insulin resistance and sensitivity as assessed by measures of fasting plasma glucose (FPG) plasma insulin (FPI) levels, body mass index (BMI), weight, homeostasis model assessment of insulin sensitivity (HOMA), Matsuda index as well as both glucose and insulin responses to oral glucose challenges. Severity of depressive symptoms was assessed with the Hamilton Depression Rating Scale (HDRS-21). Physical, sexual and emotional abuse as well as physical and emotional neglect were assessed with the Childhood Trauma Questionnaire. First- or second-degree relatives with type-2 diabetes defined fam-Hx-DM2. RESULTS Individuals reporting higher rates of emotional abuse were more likely to have greater IR as showed by elevated FPI levels and HOMA. No association was found with any of the other subscales of childhood trauma (e.g., physical abuse). Similarly, Fam-Hx-DM2 was associated with greater degree of IR as shown by elevated FPI, HOMA, but also FPG, weight and BMI. Moreover, we report a relationship and interaction between Fam-Hx-DM2 and emotional abuse on severity of depressive symptoms. Specifically, emotional abuse and Fam-HX-DM2 predicted severity of depressive symptoms at HDRS-21. Also, severity of depressive symptoms was greater with higher reported rates of emotional abuse but only in patients with negative Fam-Hx-Dm2. Individuals reporting higher emotional abuse and negative Fam-Hx-Dm2 also showed higher FPG levels. Conversely, individuals reporting higher emotional abuse and positive Fam-Hx-Dm2 showed higher FPI levels. This data suggest that Fam-Hx-Dm2 may define two different metabolic endophenotypes. CONCLUSIONS Our findings suggest that Fam-HX-DM2 and emotional abuse represent separate risk factors for developing metabolic dysfunction (i.e.: IR) in patients suffering from MDD, and that the effects of emotional abuse on psychiatric illness may depend upon the personal characteristics, including Fam-Hx-DM2.
Collapse
|
613
|
Sillivan SE, Jones ME, Jamieson S, Rumbaugh G, Miller CA. Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS One 2019; 14:e0209846. [PMID: 30629705 PMCID: PMC6328204 DOI: 10.1371/journal.pone.0209846] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain’s response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain’s stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Courtney A. Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
614
|
Wassouf Z, Hentrich T, Casadei N, Jaumann M, Knipper M, Riess O, Schulze-Hentrich JM. Distinct Stress Response and Altered Striatal Transcriptome in Alpha-Synuclein Overexpressing Mice. Front Neurosci 2019; 12:1033. [PMID: 30686992 PMCID: PMC6336091 DOI: 10.3389/fnins.2018.01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor symptoms and a plethora of non-motor and neuropsychiatric features that accompany the disease from prodromal to advanced stages. While several genetic defects have been identified in familial forms of PD, the predominance of cases are sporadic and result from a complex interplay of genetic and non-genetic factors. Clinical evidence, moreover, indicates a role of environmental stress in PD, supported by analogies between stress-induced pathological consequences and neuronal deterioration observed in PD. From this perspective, we set out to investigate the effects of chronic stress exposure in the context of PD by using a genetic mouse model that overexpresses human wildtype SNCA. Mimicking chronic stress was achieved by adapting a chronic unpredictable mild stress protocol (CUMS) comprising eight different stressors that were applied randomly over a period of eight weeks starting at an age of four months. A distinctive stress response with an impact on anxiety-related behavior was observed upon SNCA overexpression and CUMS exposure. SNCA-overexpressing mice showed prolonged elevation of cortisol metabolites during CUMS exposure, altered anxiety-related traits, and declined motor skills surfacing with advanced age. To relate our phenotypic observations to molecular events, we profiled the striatal and hippocampal transcriptome and used a 2 × 2 factorial design opposing genotype and environment to determine differentially expressed genes. Disturbed striatal gene expression and minor hippocampal gene expression changes were observed in SNCA-overexpressing mice at six months of age. Irrespective of the CUMS-exposure, genes attributed to the terms neuroinflammation, Parkinson's signaling, and plasticity of synapses were altered in the striatum of SNCA-overexpressing mice.
Collapse
Affiliation(s)
- Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
615
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
616
|
Korte-Bouws GAH, Albers E, Voskamp M, Hendriksen H, de Leeuw LR, Güntürkün O, de Roock S, Vastert SJ, Korte SM. Juvenile Arthritis Patients Suffering from Chronic Inflammation Have Increased Activity of Both IDO and GTP-CH1 Pathways But Decreased BH4 Efficacy: Implications for Well-Being, Including Fatigue, Cognitive Impairment, Anxiety, and Depression. Pharmaceuticals (Basel) 2019; 12:E9. [PMID: 30625990 PMCID: PMC6469185 DOI: 10.3390/ph12010009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/27/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) represents joint inflammation with an unknown cause that starts before the age of 16, resulting in stiff and painful joints. In addition, JIA patients often report symptoms of sickness behavior. Recent animal studies suggest that proinflammatory cytokines produce sickness behavior by increasing the activity of indoleamine-2,3-dioxygenase (IDO) and guanosinetriphosphate⁻cyclohydrolase-1 (GTP⁻CH1). Here, it is hypothesized that inflammation in JIA patients enhances the enzymatic activity of IDO and GTP-CH1 and decreases the co-factor tetrahydrobiopterin (BH4). These compounds play a crucial role in the synthesis and metabolism of neurotransmitters. The aim of our study was to reveal whether inflammation affects both the GTP-CH1 and IDO pathway in JIA patients. Serum samples were collected from twenty-four JIA patients. In these samples, the concentrations of tryptophan (TRP), kynurenine (KYN), tyrosine (TYR), neopterin, and phenylalanine (PHE) were measured. An HPLC method with electrochemical detection was developed to quantify tryptophan, kynurenine, and tyrosine. Neopterin and phenylalanine were quantified by ELISA. The KYN/TRP ratio was measured as an index of IDO activity, while the PHE/TYR ratio was measured as an index of BH4 activity. Neopterin concentrations were used as an indirect measure of GTP-CH1 activity. JIA patients with high disease activity showed higher levels of both neopterin and kynurenine, and a higher ratio of both KYN/TRP and PHE/TYR and lower tryptophan levels than clinically inactive patients. Altogether, these data support our hypothesis that inflammation increases the enzymatic activity of both IDO and GTP-CH1 but decreases the efficacy of the co-factor BH4. In the future, animal studies are needed to investigate whether inflammation-induced changes in these enzymatic pathways and co-factor BH4 lower the levels of the brain neurotransmitters glutamate, noradrenaline, dopamine, serotonin, and melatonin, and consequently, whether they may affect fatigue, cognition, anxiety, and depression. Understanding of these complex neuroimmune interactions provides new possibilities for Pharma-Food interventions to improve the quality of life of patients suffering from chronic inflammation.
Collapse
Affiliation(s)
- Gerdien A H Korte-Bouws
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Faculty of Science, Universities 99, 3584 CG Utrecht, The Netherlands.
| | - Eline Albers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Faculty of Science, Universities 99, 3584 CG Utrecht, The Netherlands.
| | - Marije Voskamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Faculty of Science, Universities 99, 3584 CG Utrecht, The Netherlands.
| | - Hendrikus Hendriksen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Faculty of Science, Universities 99, 3584 CG Utrecht, The Netherlands.
| | - Lidewij R de Leeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Faculty of Science, Universities 99, 3584 CG Utrecht, The Netherlands.
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany.
| | - Sytze de Roock
- Paediatric Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| | - Sebastiaan J Vastert
- Paediatric Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| | - S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Faculty of Science, Universities 99, 3584 CG Utrecht, The Netherlands.
- Department of Biopsychology, Faculty of Psychology, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany.
| |
Collapse
|
617
|
Allen AM, Thomas MD, Michaels EK, Reeves AN, Okoye U, Price MM, Hasson RE, Syme SL, Chae DH. Racial discrimination, educational attainment, and biological dysregulation among midlife African American women. Psychoneuroendocrinology 2019; 99:225-235. [PMID: 30286445 PMCID: PMC6289261 DOI: 10.1016/j.psyneuen.2018.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine the association between self-reported racial discrimination and allostatic load, and whether the association differs by socioeconomic position. METHODS We recruited a purposive cross-section of midlife (ages 30-50) African American women residing in four San Francisco Bay area counties (n = 208). Racial discrimination was measured using the Experience of Discrimination scale. Allostatic load was measured as a composite of 15 biomarkers assessing cardiometabolic, neuroendocrine, and inflammatory activity. We calculated four composite measures of allostatic load and three system-specific measures of biological dysregulation. Multivariable regression was used to examine associations, while adjusting for relevant confounders. RESULTS In the high education group, reporting low (b = -1.09, P = .02, 95% CI = -1.99, -0.18) and very high (b = -1.88, P = .003, 95% CI = -3.11, -0.65) discrimination was associated with lower allostatic load (reference=moderate). Among those with lower education, reporting low (b = 2.05, P = .008, 95% CI = 0.55,3.56) discrimination was associated with higher allostatic load. Similar but less consistent associations were found for poverty status. Associations were similar for cardiometabolic functioning, but not for neuroendocrine or inflammatory activity. CONCLUSIONS Racial discrimination may be an important predictor of cumulative physiologic dysregulation. Factors associated with educational attainment may mitigate this association for African American women and other groups experiencing chronic social stress.
Collapse
Affiliation(s)
- Amani M Allen
- Divisions of Community Health Sciences and Epidemiology, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - Marilyn D Thomas
- Division of Epidemiology, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - Eli K Michaels
- Division of Epidemiology, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - Alexis N Reeves
- Division of Epidemiology, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - Uche Okoye
- Division of Community Health Sciences, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - Melisa M Price
- Division of Community Health Sciences, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - Rebecca E Hasson
- Schools of Kinesiology and Public Health, University of Michigan, 2110 Observatory Lodge/1402 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - S Leonard Syme
- Divisions of Community Health Sciences and Epidemiology, University of California Berkeley School of Public Health, 2121 Berkeley Way #5302, Berkeley, CA, 94720-7360, USA.
| | - David H Chae
- Department of Human Development and Family Studies, College of Human Sciences, Auburn University, 210 Spidle Hall, Auburn, GA, 36849, USA.
| |
Collapse
|
618
|
Calcaterra V, Vinci F, Casari G, Pelizzo G, de Silvestri A, De Amici M, Albertini R, Regalbuto C, Montalbano C, Larizza D, Cena H. Evaluation of Allostatic Load as a Marker of Chronic Stress in Children and the Importance of Excess Weight. Front Pediatr 2019; 7:335. [PMID: 31440490 PMCID: PMC6693076 DOI: 10.3389/fped.2019.00335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: Allostatic load (AL) refers to the physiological response associated with the burden of chronic stress. Excessive weight is an important source of physiological stress that promotes a detrimental chronic low-inflammation state. In order to define a correlation between cumulative biological dysregulation and excess weight, we measured AL scores in a pediatric population. Patients and Methods: We enrolled 164 children and adolescents (11.89 ± 3.89). According to their body mass index (BMI) threshold, subjects were classified as normal in the BMI < 75th percentile, overweight in the BMI 75-95th percentile or obese in the BMI >95th percentile. Data based on 16 biomarkers were used to create the AL score. A dichotomous outcome for high AL was defined in those who had more than four dysregulated components. Results: High AL was noted in 88/164 subjects (53.65%), without significant differences between genders (p = 0.07) or pubertal status (p = 0.10). Subjects with a high AL, in addition to a higher BMI (p < 0.001), showed higher WC and WC/HtR (p < 0.001), triglycerides (p = 0.002), fasting blood glucose (p = 0.03), insulin resistance (p < 0.001), systolic (p < 0.001) and diastolic blood pressure (p = 0.001), GGT (p = 0.01), PCR (p = 0.01), and calprotectin (p < 0.01) as well as lower HDL cholesterol (p = 0.002) than subjects with a low AL. The rate of the cumulative biological dysregulation increased progressively with increases in BMI (p < 0.001). Conclusions: A high AL was associated with excess weight. AL may be considered a significant factor correlated with increased morbidity in children who are overweight/obese.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Unit, Department of the Mother and Child Health, Fondazione IRCCS Policlinico San Matteo and Department of Internal Medicine University of Pavia, Pavia, Italy
| | - Federica Vinci
- Pediatric Unit, Department of the Mother and Child Health, Fondazione IRCCS Policlinico San Matteo and Department of Internal Medicine University of Pavia, Pavia, Italy
| | - Giulia Casari
- Pediatric Unit, Department of the Mother and Child Health, Fondazione IRCCS Policlinico San Matteo and Department of Internal Medicine University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital "G. di Cristina", ARNAS "Civico-Di Cristina-Benfratelli", Palermo, Italy
| | - Annalisa de Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mara De Amici
- Immuno-Allergy Laboratory, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Laboratory of Clinical Chemistry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Corrado Regalbuto
- Pediatric Unit, Department of the Mother and Child Health, Fondazione IRCCS Policlinico San Matteo and Department of Internal Medicine University of Pavia, Pavia, Italy
| | - Chiara Montalbano
- Pediatric Unit, Department of the Mother and Child Health, Fondazione IRCCS Policlinico San Matteo and Department of Internal Medicine University of Pavia, Pavia, Italy
| | - Daniela Larizza
- Pediatric Unit, Department of the Mother and Child Health, Fondazione IRCCS Policlinico San Matteo and Department of Internal Medicine University of Pavia, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
619
|
Kingston D, Mughal MK, Arshad M, Kovalchuk I, Metz GAS, Wynne-Edwards K, King S, Jiang S, Postovit L, Wajid A, McDonald S, Slater DM, Tough SC, Aitchison K, Arnold P. Prediction and Understanding of Resilience in Albertan Families: Longitudinal Study of Disaster Responses (PURLS) - Protocol. Front Psychiatry 2019; 10:729. [PMID: 31736793 PMCID: PMC6834684 DOI: 10.3389/fpsyt.2019.00729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Exposure to a natural disaster in childhood can have serious, long-lasting consequences, impacting physical and mental health, development, and learning. Although many children experience negative effects after a disaster, the majority do not, and what differentiates these groups is not well understood. Some of the factors that influence disaster-related outcomes in the midst of adversity include parents' mental health, the home environment, and socioeconomic status. Furthermore, genetics has also a role to play in how children respond to stressors. We had the opportunity to conduct a natural experiment of disaster recovery following the Alberta 2013 Flood. This paper presents the detailed protocol on prediction of resilience in Albertan families, and validation with cortisol data. In addition, data collection procedures, developing resiliency screening tools, candidate gene identification, genotyping, DNA methylation, and genomic analyses are described to achieve the research objectives. This study produced new knowledge by using pre- and post-disaster information on children's health and development, including children's genetics and responses to stress. This information has been identified as important to governments and other organizations invested in early child development. Our comprehensive research plan generates evidence that can be mobilized population-based approaches to improve child and family resiliency.
Collapse
Affiliation(s)
- Dawn Kingston
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | | | - Muhammad Arshad
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Igor Kovalchuk
- Biological Sciences Department, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Katherine Wynne-Edwards
- Faculty of Veterinary Medicine & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Suzanne King
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Shui Jiang
- Departments of Psychiatry and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Abdul Wajid
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Sheila McDonald
- Child Development Centre, University of Calgary, Calgary, AB, Canada
| | - Donna M Slater
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Obstetrics and Gynaecology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Suzanne C Tough
- Child Development Centre, University of Calgary, Calgary, AB, Canada
| | - Katherine Aitchison
- Departments of Psychiatry and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Paul Arnold
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
620
|
Oxytocin reduces a chemosensory-induced stress bias in social perception. Neuropsychopharmacology 2019; 44:281-288. [PMID: 29703998 PMCID: PMC6300531 DOI: 10.1038/s41386-018-0063-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
Social transmission of fear is not restricted to visual or auditory cues, but extends to the phylogenetically more ancient olfactory domain. Anxious individuals exhibit heightened sensitivity towards chemosensory stress signals in sweat; however, it is still unknown whether endogenous neuromodulators such as the peptide hormone oxytocin (OXT) influence the chemosensory communication of stress. Here, we investigated whether OXT selectively diminishes behavioral and neural responses to social chemosensory stress cues utilizing a randomized, double-blind, placebo (PLC)-controlled, within-subject functional MRI study design. Axillary sweat was obtained from 30 healthy male donors undergoing the Trier Social Stress Test (stress) and bicycle ergometer training (sport). Subsequently, 58 healthy participants (30 females) completed a forced-choice emotional face recognition task with stimuli of varying intensities (neutral to fearful) while they were exposed to both sweat stimuli and a non-social control odor following intranasal OXT or PLC administration, respectively. OXT diminished stress-induced recognition accuracy and response time biases towards fear. On the neural level, OXT reduced stress-evoked responses in the amygdala in both sexes, the anterior cingulate cortex (ACC) in females, and the hippocampus in males. Furthermore, OXT reinstated the functional connectivity between the ACC and the fusiform face area that was disrupted by stress odors under PLC. Our findings reveal a new role for OXT signaling in the modulation of chemosensory communication of stress in humans. Mechanistically, this effect appears to be rooted in a downregulation of stress-induced limbic activations and concomitant strengthening of top-down control descending from the ACC to the fusiform face area.
Collapse
|
621
|
Jeanneteau F, Borie A, Chao MV, Garabedian MJ. Bridging the Gap between Brain-Derived Neurotrophic Factor and Glucocorticoid Effects on Brain Networks. Neuroendocrinology 2019; 109:277-284. [PMID: 30572337 DOI: 10.1159/000496392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
Behavioral choices made by the brain during stress depend on glucocorticoid and brain-derived neurotrophic factor (BDNF) signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation areas may compromise the integration of signals. Glucocorticoid receptor phosphorylation upon BDNF signaling in neurons represents one mechanism underlying the integration of BDNF and glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural plasticity in the mesocorticolimbic system. This provides a novel molecular framework for understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge receptive neuronal fields in temporal domains defined by behavioral experience, and in mood disorders.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France,
| | - Amélie Borie
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
622
|
Lapp HE, Ahmed S, Moore CL, Hunter RG. Toxic stress history and hypothalamic-pituitary-adrenal axis function in a social stress task: Genetic and epigenetic factors. Neurotoxicol Teratol 2019; 71:41-49. [DOI: 10.1016/j.ntt.2018.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
|
623
|
Corrêa MS, de Lima DB, Giacobbo BL, Vedovelli K, Argimon IIDL, Bromberg E. Mental health in familial caregivers of Alzheimer's disease patients: are the effects of chronic stress on cognition inevitable? Stress 2019; 22:83-92. [PMID: 30382760 DOI: 10.1080/10253890.2018.1510485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Familial caregivers of Alzheimer's disease (AD) patients experience an emotional and physical burden which characterizes a chronic stress condition. The resulting hypothalamic-pituitary-adrenal axis dysfunction favors an imbalance of neurotoxic/neuroprotective factors and causes cognitive impairments, increasing the caregivers' risk for cognitive decline and compromising their ability to provide adequate care of the patient. Therefore, the present study aimed to investigate the reversibility of the cognitive impairments of familial caregivers of AD patients during their caregiving-related chronic stress condition. Thirty-three caregivers (61.42 + 2.68 years; 27 women) and thirty-four controls (57.91 ± 2.16 years, 20 women) were evaluated for their cognitive functioning (attention, executive function, processing speed and memory) with a neuropsychological battery (Digit-span, Trail Making, Stroop and the Logical Memory tests). Subjects' cortisol/dehydroepiandrosterone (DHEA) ratios were determined by radioimmunoassay, and their brain-derived neurotrophic factor (BDNF) levels were analyzed by ELISA. An incidental contextual memory task, with or without an associative encoding instruction, was used to investigate if caregivers have a cognitive reserve prone to rehabilitation. The contextual memory impairment of caregivers was associated with prefrontal and hippocampal cognitive dysfunctions, alterations of the cortisol/DHEA ratio and lower BDNF levels. Even so, the contextual memory impairment could be improved by the associative encoding condition. This study suggests that the cognitive impairments of caregivers are not necessarily irreversible, as indicated by the results obtained for contextual memory, which could be improved despite the ongoing chronic stress and associated hormonal and neurotrophin dysfunctions. Lay summary The support of a relative with Alzheimer's Disease submits the familial caregivers to a chronic stress condition that increases their own risk of cognitive decline. This study suggests that, irrespective to their alterations on cortisol/DHEA ratio and BDNF levels, caregivers have a cognitive reserve that could probably be engaged to limit the negative effects of chronic stress on cognition.
Collapse
Affiliation(s)
- Márcio Silveira Corrêa
- a Laboratory of Biology and Development of the Nervous System, Faculty of Biosciences , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
- b Graduate Program in Cellular and Molecular Biology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
- c National Institute of Science and Technology for Translational Medicine (INCT-TM) , Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq) , Brasília , Brazil
| | - Daiane Borba de Lima
- a Laboratory of Biology and Development of the Nervous System, Faculty of Biosciences , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| | - Bruno Lima Giacobbo
- a Laboratory of Biology and Development of the Nervous System, Faculty of Biosciences , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
- b Graduate Program in Cellular and Molecular Biology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
- c National Institute of Science and Technology for Translational Medicine (INCT-TM) , Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq) , Brasília , Brazil
| | - Kelem Vedovelli
- a Laboratory of Biology and Development of the Nervous System, Faculty of Biosciences , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| | - Irani Iracema de Lima Argimon
- d Institute of Geriatrics and Gerontology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| | - Elke Bromberg
- a Laboratory of Biology and Development of the Nervous System, Faculty of Biosciences , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
- b Graduate Program in Cellular and Molecular Biology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
- c National Institute of Science and Technology for Translational Medicine (INCT-TM) , Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq) , Brasília , Brazil
- d Institute of Geriatrics and Gerontology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
624
|
Hinojosa CA, Kaur N, VanElzakker MB, Shin LM. Cingulate subregions in posttraumatic stress disorder, chronic stress, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:355-370. [DOI: 10.1016/b978-0-444-64196-0.00020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
625
|
Levy-Carrick NC, Lewis-OʼConnor A, Rittenberg E, Manosalvas K, Stoklosa HM, Silbersweig DA. Promoting Health Equity Through Trauma-Informed Care: Critical Role for Physicians in Policy and Program Development. FAMILY & COMMUNITY HEALTH 2019; 42:104-108. [PMID: 30768474 DOI: 10.1097/fch.0000000000000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trauma-informed care has emerged as an important model to address the pervasiveness of traumatic experiences across the life cycle and their association with significant adverse medical and psychiatric consequences. To achieve health equity, in which all people have the opportunity for health, it is crucial for physicians to become comfortable with a neurobiopsychosocial understanding of trauma and how to provide optimal trauma-informed care. Given the pervasiveness of trauma exposure, and its impact on individual and community health, this paradigm shift in adult health care delivery systems requires physician engagement at every stage of development and implementation.
Collapse
Affiliation(s)
- Nomi C Levy-Carrick
- Division of Medical Psychiatry (Dr Levy-Carrick), Department of Psychiatry (Dr Silbersweig); Division of Women's Health (Dr Lewis-O'Connor and Ms Manosalvas), Department of Medicine (Dr Rittenberg); and Department of Emergency Medicine (Dr Stoklosa), Brigham and Women's Hospital, Boston, Massachusetts; Departments of Psychiatry (Drs Levy-Carrick and Silbersweig) and Medicine (Drs Lewis-O'Connor and Stoklosa), Harvard Medical School, Boston, Massachusetts; and Mary Horrigan Connors Center for Women's Health & Gender Biology, Boston, Massachusetts (Dr Stoklosa)
| | | | | | | | | | | |
Collapse
|
626
|
Thomas N, Gurvich C, Kulkarni J. Borderline personality disorder, trauma, and the hypothalamus-pituitary-adrenal axis. Neuropsychiatr Dis Treat 2019; 15:2601-2612. [PMID: 31564884 PMCID: PMC6743631 DOI: 10.2147/ndt.s198804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Borderline personality disorder (BPD) is a complex psychiatric illness for which treatment poses a significant challenge due to limited effective pharmacologic treatments, and under-resourced psychological interventions. BPD is one of the most stigmatized conditions in psychiatry today, but can be understood as a modifiable, neurodevelopmental disorder that arises from maladaptive responses to trauma and stress. Stress susceptibility and reactivity in BPD is thought to mediate both the development and maintenance of BPD symptomatology, with trauma exposure considered an early life risk factor of development, and acute stress moderating symptom trajectory. An altered stress response has been characterized in BPD at the structural, neural, and neurobiological level, and is believed to underlie the maladaptive behavioral and cognitive symptomatology presented in BPD. The endocrine hypothalamus-pituitary-adrenal (HPA) axis represents a key stress response system, and growing evidence suggests it is dysfunctional in the BPD patient population. This theoretical review examines BPD in the context of a neurodevelopmental stress-related disorder, providing an overview of measurements of stress with a focus on HPA-axis measurement. Potential confounding factors associated with measurement of the HPA system are discussed, including sex and sex hormones, genetic factors, and the influence of sample collection methods. HPA-axis dysfunction in BPD largely mirrors findings demonstrated in post-traumatic stress disorder and may represent a valuable neuroendocrine target for diagnostic or treatment response biomarkers, or for which novel treatments can be investigated.
Collapse
Affiliation(s)
- Natalie Thomas
- Central Clinical School , Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Caroline Gurvich
- Central Clinical School , Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Jayashri Kulkarni
- Central Clinical School , Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
627
|
Support vector machine classification of brain states exposed to social stress test using EEG-based brain network measures. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
628
|
Chakraborty P, Chattarji S. Timing is everything: differential effects of chronic stress on fear extinction. Psychopharmacology (Berl) 2019; 236:73-86. [PMID: 30306227 DOI: 10.1007/s00213-018-5053-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE Stress disorders cause abnormal regulation of fear-related behaviors. In most rodent models of these effects, stress was administered before fear conditioning, thereby assessing its impact on both the formation and extinction of fear memories, not the latter alone. Here, we dissociated the two processes by also administering stress after fear conditioning, and then compared how pre-conditioning versus post-conditioning exposure to chronic stress affects subsequent acquisition and recall of fear extinction. METHODS Male Wistar rats were subjected to chronic immobilization stress (2 h/day, 10 days); the morphological effects of which were analyzed using modified Golgi-Cox staining across brain areas mediating the formation and extinction of fear memories. Separate groups of rats underwent fear conditioning followed by acquisition and recall of extinction, wherein stress was administered either before or after fear conditioning. RESULTS When fear memories were formed after chronic stress, both acquisition and retrieval of extinction was impaired. Strikingly, these deficits were absent when fear memories were formed before the same stress. Chronic stress also reduced dendritic spine density in the infralimbic prefrontal cortex, but enhanced it in the basolateral amygdala. CONCLUSION Chronic stress, administered either before or after fear learning, had distinct effects on the acquisition and recall of fear extinction memories. Stress also strengthened the structural basis of synaptic connectivity in the amygdala, but weakened it in the prefrontal cortex. Thus, despite eliciting a specific pattern of brain region-specific morphological changes, the timing of the same stress gave rise to strikingly different behavioral effects on the extinction of fear.
Collapse
Affiliation(s)
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, 560065, India. .,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India. .,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH89XD, UK.
| |
Collapse
|
629
|
Tripathi SJ, Chakraborty S, Srikumar B, Raju T, Shankaranarayana Rao B. Prevention of chronic immobilization stress-induced enhanced expression of glucocorticoid receptors in the prefrontal cortex by inactivation of basolateral amygdala. J Chem Neuroanat 2019; 95:134-145. [DOI: 10.1016/j.jchemneu.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
630
|
Cramer T, Rosenberg T, Kisliouk T, Meiri N. PARP Inhibitor Affects Long-term Heat-stress Response via Changes in DNA Methylation. Neuroscience 2018; 399:65-76. [PMID: 30579833 DOI: 10.1016/j.neuroscience.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Resilience to stress can be obtained by adjusting the stress-response set point during postnatal sensory development. Recent studies have implemented epigenetic mechanisms to play leading roles in improving resilience. We previously found that better resilience to heat stress in chicks can be achieved by conditioning them to moderate heat stress during their critical developmental period of thermal control establishment, 3 days posthatch. Furthermore, the expression level of corticotropin-releasing hormone (CRH) was found to play a direct role in determining future resilience or vulnerability to heat stress by alterations in its DNA-methylation and demethylation pattern. Here we demonstrate how intraperitoneal injection of poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) influences the DNA methylation pattern, thereby affecting the long-term heat-stress response. Single PARPi administration, induced a reduction in both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), without affecting body temperature. The accumulated effect of three PARPi doses brought about a long-term decrease in 5mC% and 5hmC%. These changes coincided with a reduction in body temperature in non-conditioned chicks, similar to that occurring in moderately conditioned heat-stress-resilient chicks. The observed changes in DNA methylation can be explained by decreased activity of the enzyme DNA methyltransferase as a result of the PARPi injection. Furthermore, evaluation of the DNA-methylation pattern along the CRH intron showed a reduction in 5mC% as a result of PARPi treatment, alongside a reduction in CRH mRNA expression. Thus, PARPi treatment can affect DNA methylation, which can alter hypothalamic-pituitary-adrenal (HPA) axis anchors such as CRH, thereby potentially enhancing long-term resilience to heat stress.
Collapse
Affiliation(s)
- Tomer Cramer
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tali Rosenberg
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel
| | - Noam Meiri
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel.
| |
Collapse
|
631
|
Kretzschmar A, Schülke JP, Masana M, Dürre K, Müller MB, Bausch AR, Rein T. The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics. Int J Mol Sci 2018; 19:ijms19123993. [PMID: 30545002 PMCID: PMC6321462 DOI: 10.3390/ijms19123993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in transfected HeLa cells with fluorescence recovery after photobleaching (FRAP) and confocal microscopy. Results: DRR1 features an actin binding site at each terminus, separated by a coiled coil domain. DRR1 enhances actin bundling, the cellular F-actin content, and serum response factor (SRF)-dependent transcription, while it diminishes actin filament elongation, cell spreading, and actin treadmilling. We also provide evidence for a nucleation effect of DRR1. Blocking of pointed end elongation by addition of profilin indicates DRR1 as a novel barbed end capping factor. Conclusions: DRR1 impacts actin dynamics in several ways with implications for cytoskeletal dynamics in stress physiology and pathophysiology.
Collapse
Affiliation(s)
- Anja Kretzschmar
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Jan-Philip Schülke
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, CIBERNED, Casanova, 143, 08036 Barcelona, Spain.
| | - Katharina Dürre
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| |
Collapse
|
632
|
Gepner Y, Hoffman JR, Hoffman MW, Zelicha H, Cohen H, Ostfeld I. Association between circulating inflammatory markers and marksmanship following intense military training. J ROY ARMY MED CORPS 2018; 165:391-394. [DOI: 10.1136/jramc-2018-001084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023]
Abstract
IntroductionIntense military operations during deployment or training are associated with elevations in inflammatory cytokine markers. However, the influence of an inflammatory response on military-specific skills is unclear. This study examined the association between brain-derived neurotrophic factor (BDNF), glial fibrillar acidic protein, markers of inflammation, marksmanship and cognitive function following a week of intense military field training.MethodsTwenty male soldiers (20.1±0.6 years; 1.78±0.05m; 74.1±7.9kg) from the same elite combat unit of the Israel Defense Forces volunteered to participate in this study. Soldiers completed a five-day period of intense field training including navigation of 27.8km/day with load carriages of ~50% of their body mass. Soldiers slept approximately fivehours per day and were provided with military field rations. Following the final navigational exercise, soldiers returned to their base and provided a blood sample. In addition, cognitive function assessment and both dynamic and static shooting (15 shots each) were performed following a 200 m gauntlet, in which soldiers had to use hand-to-hand combat skills to reach the shooting range.ResultsResults revealed that tumour necrosis factor-α (TNF-α) concentrations were inversely correlated with dynamic shooting (r=−0.646, p=0.005). In addition, a trend (r=0.415, p=0.098) was noted between TNF-α concentrations and target engagement speed (ie, time to complete the shooting protocol). BDNF concentrations were significantly correlated with the Serial Sevens Test performance (r=0.672, p=0.012).ConclusionThe results of this investigation indicate that elevated TNF-α concentrations and lower BDNF concentrations in soldiers following intense military training were associated with decreases in marksmanship and cognitive function, respectively.
Collapse
|
633
|
al'Absi M, Nakajima M, Lemieux A. Impact of early life adversity on the stress biobehavioral response during nicotine withdrawal. Psychoneuroendocrinology 2018; 98:108-118. [PMID: 30130691 PMCID: PMC6613643 DOI: 10.1016/j.psyneuen.2018.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/30/2018] [Accepted: 08/12/2018] [Indexed: 01/08/2023]
Abstract
Exposure to early life adversity (ELA) is associated with increased subsequent risk for addiction and relapse. We examined changes in psychobiological responses to stress in dependent smokers and nonsmoking controls and evaluated how history of early adversity may exacerbate acute changes during nicotine withdrawal and acute stress. Smokers were randomly assigned to one of two conditions; 24 h withdrawal (66 smokers) from smoking and all nicotine-containing products or smoking ad libitum (46 smokers) prior to an acute laboratory stress induction session; and 44 nonsmokers provided normal referencing. The laboratory session included a baseline rest, stress and recovery periods. Plasma and saliva samples for the measurement stress hormones and cardiovascular and self-report mood measures were collected multiple times during the session. Multivariate analysis confirmed that all groups showed stress-related increases in negative mood, cardiovascular measures and stress hormones, particularly smokers in the withdrawal condition. Individuals with high ELA showed greater adrenocorticotropic hormone (ACTH), but lower plasma and salivary cortisol levels, than those with low ELA. Cortisol differences were abolished during tobacco withdrawal. These findings demonstrate that ELA moderates the effects of withdrawal on stress-related biobehavioral changes.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health University of Minnesota Medical School, Duluth, MN, USA.
| | - Motohiro Nakajima
- Department of Family Medicine and Biobehavioral Health University of Minnesota Medical School, Duluth, MN, USA
| | - Andrine Lemieux
- Department of Family Medicine and Biobehavioral Health University of Minnesota Medical School, Duluth, MN, USA
| |
Collapse
|
634
|
Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, Golda S, Kudla L, Wiktorowska L, Szklarczyk K, Korostynski M, Przewlocki R, Slezak M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry 2018; 8:255. [PMID: 30487639 PMCID: PMC6261947 DOI: 10.1038/s41398-018-0300-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.
Collapse
Affiliation(s)
- Magdalena Tertil
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Urszula Skupio
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Justyna Barut
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Valentyna Dubovyk
- Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120 Germany
| | - Agnieszka Wawrzczak-Bargiela
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Zbigniew Soltys
- 0000 0001 2162 9631grid.5522.0Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, 30-387 Poland
| | - Slawomir Golda
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Kudla
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Wiktorowska
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Klaudia Szklarczyk
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Korostynski
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Ryszard Przewlocki
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Slezak
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343, Poland. .,Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120, Germany.
| |
Collapse
|
635
|
Nessaibia I, Fouache A, Lobaccaro JMA, Tahraoui A, Trousson A, Souidi M. Stress as an immunomodulator: liver X receptors maybe the answer. Inflammopharmacology 2018; 27:15-25. [PMID: 30467620 DOI: 10.1007/s10787-018-0546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Stress is a reflex response, both psychological and physiological, of the body to a difficult situation that requires adaptation. Stress is at the intersection of the objective event and the subjective event. The physiological mechanisms involved in chronic stress are numerous and can contribute to a wide variety of disorders, in all systems including the immune system. Stress modifies the Th1/Th2 balance via the HPA axis and a set of immune mediators. This will make the body more vulnerable to external infections in a scientific way while others claim the opposite, stress could be considered immune stimulatory. The development of synthetic LXR ligands such as T0901317 and GW3965 as well as an understanding of the direct involvement of these receptors in the regulation of proopiomelanocortin (POMC) gene expression and indirectly by producing a variety of cytokines in a stressor response, will open in the near future new therapeutic methods against the undesirable effects of stress on the behavior of the immune system.
Collapse
Affiliation(s)
- Issam Nessaibia
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France.
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria.
| | - Allan Fouache
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Abdelkrim Tahraoui
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria
| | - Amalia Trousson
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Maâmar Souidi
- Institut de radioprotection et de sûreté nucléaire, Direction de la radioprotection de l'homme, IRSN, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
636
|
Petrosus E, Silva EB, Lay D, Eicher SD. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J Anim Sci 2018; 96:4543-4551. [PMID: 30060210 PMCID: PMC6373921 DOI: 10.1093/jas/sky312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
Stress and anxiety have been associated with changes in the microbiota of the gut and ultimately diminished resistance to pathogens. The objective of this study was to observe intestinal microbiota and susceptibility to Salmonella associated with stress hormones, cortisol (CORT), and norepinephrine (NE), in piglets. At weaning, 90 piglets (15 for a Salmonella challenge) were trained to take the carrier (apple juice) orally. At 2 wk after weaning, pens of piglets were assigned randomly to 1 of 3 treatments: control (CNT), NE, or CORT. Blood samples were collected prior to treatment, then piglets were dosed orally with treatments twice on day 0; at 0800 and 1600 h. Control piglets were administered 6.1 mL of the carrier only, NE pigs were administered 40 mg/mL of NE-bitartrate salt dissolved in the carrier, and CORT pigs were administered 12 mg/mL of hydrocortisone acetate dissolved in the carrier. Jugular blood samples were collected prior to necropsies (n = 5/treatment) at 0800 and 1600 h on day 1, and at 0800 h on days 2, 7, and 14 after treatments were started. A subset of pigs were subjected to a 24-h Salmonella challenge. Jejunal and ileal tissues and jejunal, ileal, cecal, and rectal contents were collected and colonies were counted. Microbial data and blood samples were analyzed using mixed models with fixed effects of treatment and day. Cortisol-treated piglets exhibited a spike in plasma CORT concentrations at 0800 h day 1 (P = 0.001) accompanied by greater concentrations of cecal Escherichia coli (P < 0.05) and a shift in intestinal environment to favor coliforms on day 2 (P < 0.05). Salmonella concentrations from rectal contents tended (P = 0.07) to be suppressed by CORT. Lactic acid-producing bacteria rectal concentrations were greater (P = 0.03) in CORT pigs on 0800 h on day 1 then NE pigs and tended to be greater than CNT (P = 0.09) and were greater on day 14 for both CNT (P = 0.003) and NE (P = 0.02). Norepinephrine spiked in NE piglets at 0800 h on day 1 (P = 0.001), 1600 h day 1 (P = 0.004), through day 2 (P = 0.04). Intestinal environment of NE pigs shifted to favor ileal anaerobes (P ≤ 0.05) and facultative anaerobes (E. coli; P = 0.01) compared to CNT. However, Salmonella concentrations in rectal contents were suppressed by NE compared to CNT (P = 0.05). Oral administration of NE and CORT had the desired effect of increasing concentrations of stress hormones and resulted in microbiome shifts throughout the intestines.
Collapse
Affiliation(s)
- Elizabeth Petrosus
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Ediane B Silva
- Livestock Behavior Research Unit, Agricultural Research Services, United States Department of Agriculture, West Lafayette, Indiana
| | - Don Lay
- Livestock Behavior Research Unit, Agricultural Research Services, United States Department of Agriculture, West Lafayette, Indiana
| | - Susan D Eicher
- Livestock Behavior Research Unit, Agricultural Research Services, United States Department of Agriculture, West Lafayette, Indiana
| |
Collapse
|
637
|
Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization. Cell Death Dis 2018; 9:1137. [PMID: 30429451 PMCID: PMC6235892 DOI: 10.1038/s41419-018-1172-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Glucocorticoid, a major risk factor of Alzheimer’s disease (AD), is widely known to promote microtubule dysfunction recognized as the early pathological feature that culminates in memory deficits. However, the exact glucocorticoid receptor (GR)-mediated mechanism of how glucocorticoid triggers microtubule destabilization and following intracellular transport deficits remains elusive. Therefore, we investigated the effect of glucocorticoid on microtubule instability and cognitive impairment using male ICR mice and human neuroblastoma SH-SY5Y cells. The mice group that was exposed to corticosteroid, the major glucocorticoid form of rodents, showed reduced trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) 1/2 and mitochondria, which are necessary for memory establishment, into the synapse due to microtubule destabilization. In SH-SY5Y cells, cortisol, the major glucocorticoid form of humans, also decreased microtubule stability represented by reduced acetylated α-tubulin to tyrosinated α-tubulin ratio (A/T ratio), depending on the mitochondria GR-mediated pathway. Cortisol translocated the Hsp70-bound GR into mitochondria which thereafter promoted GR-Bcl-2 interaction. Increased ER-mitochondria connectivity via GR-Bcl-2 coupling led to mitochondrial Ca2+ influx, which triggered mTOR activation. Subsequent autophagy inhibition by mTOR phosphorylation increased SCG10 protein levels via reducing ubiquitination of SCG10, eventually inducing microtubule destabilization. Thus, failure of trafficking AMPAR1/2 and mitochondria into the cell terminus occurred by kinesin-1 detachment from microtubules, which is responsible for transporting organelles towards periphery. However, the mice exposed to pretreatment of microtubule stabilizer paclitaxel showed the restored translocation of AMPAR1/2 or mitochondria into synapses and improved memory function compared to corticosterone-treated mice. In conclusion, glucocorticoid enhances ER-mitochondria coupling which evokes elevated SCG10 and microtubule destabilization dependent on mitochondrial GR. This eventually leads to memory impairment through failure of AMPAR1/2 or mitochondria transport into cell periphery.
Collapse
|
638
|
Abstract
OBJECTIVES This paper focuses on the psychobiology of stress, depression, adjustment disorders (ADs), and resilience. Since the ADs fall under the rubric in DSM-5 of Trauma and Stressor-Related Disorders, essentials of the psychobiology of stress-response syndromes will be reviewed. METHODS A narrative review of the psychobiology of stress-response syndromes is undertaken, and the implications for our understanding of ADs are discussed. RESULTS Advances in our understanding of the psychobiology of stress-response syndromes provide an important foundation for understanding ADs, and for conceptualizing their diagnosis, as well as issues of resilience. CONCLUSIONS Future investigations of the psychobiology of trauma- and stressor-related disorders may shed additional light on ADs, and ultimately improve their treatment.
Collapse
Affiliation(s)
- James J Strain
- a Department of Psychiatry , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
639
|
Pozzi D, Matteoli M. The hypothalamic-LC-PFC axis: a new "ace" in the brain for fast-behavioral stress response. EMBO J 2018; 37:embj.2018100702. [PMID: 30361465 DOI: 10.15252/embj.2018100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Davide Pozzi
- Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy.,IN-CNR, Milan, Italy
| | - Michela Matteoli
- Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy.,IN-CNR, Milan, Italy
| |
Collapse
|
640
|
Maldonado JR. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry 2018; 33:1428-1457. [PMID: 29278283 DOI: 10.1002/gps.4823] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Delirium is the most common neuropsychiatric syndrome encountered by clinicians dealing with older adults and the medically ill and is best characterized by 5 core domains: cognitive deficits, attentional deficits, circadian rhythm dysregulation, emotional dysregulation, and alteration in psychomotor functioning. DESIGN An extensive literature review and consolidation of published data into a novel interpretation of known pathophysiological causes of delirium. RESULTS Available data suggest that numerous pathological factors may serve as precipitants for delirium, each having differential effects depending on patient-specific patient physiological characteristics (substrate). On the basis of an extensive literature search, a newly proposed theory, the systems integration failure hypothesis, was developed to bring together the most salient previously described theories, by describing the various contributions from each into a complex web of pathways-highlighting areas of intersection and commonalities and explaining how the variable contribution of these may lead to the development of various cognitive and behavioral dysfunctions characteristic of delirium. The specific cognitive and behavioral manifestations of the specific delirium picture result from a combination of neurotransmitter function and availability, variability in integration and processing of sensory information, motor responses to both external and internal cues, and the degree of breakdown in neuronal network connectivity, hence the term acute brain failure. CONCLUSIONS The systems integration failure hypothesis attempts to explain how the various proposed delirium pathophysiologic theories interact with each other, causing various clinically observed delirium phenotypes. A better understanding of the underlying pathophysiology of delirium may eventually assist in designing better prevention and management approaches.
Collapse
|
641
|
Mishra PK, Kutty BM, Laxmi TR. The impact of maternal separation and isolation stress during stress hyporesponsive period on fear retention and extinction recall memory from 5-week- to 1-year-old rats. Exp Brain Res 2018; 237:181-190. [PMID: 30374782 DOI: 10.1007/s00221-018-5411-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
Abstract
The purpose of the present study was to determine whether age would disrupt fear retention and extinction memory in rats pre-exposed to maternal separation and isolation stress; these rats are called MS rats. MS stress was induced by exposing rat pups into maternal separation followed by isolation stress from peer groups (MS) daily/6 h during stress hyporesponsive period, while controls rats that were undisturbed during this period are called NMS rats. 5, 8, 15 and 52 weeks later, these animals were exposed to classical fear conditioning test by pairing auditory stimulus (conditioned stimulus, CS+) with electric footshock. 24 h later, conditioned freezing response to CS+ was measured during fear retention, extinction and extinction recall trials. The normal ageing per se did not affect the formation of fear memory, retention and fear extinction memory. MS stress, on the other hand, disrupted fear memory at young adulthood age exhibiting increased freezing response to CS+ during retention test and reduced during fear extinction memory test when compared to NMS groups. On the other hand, rats at adolescence age exhibited reduced freezing during fear retention and enhanced freezing response to CS+ during extinction recall test. However, MS-induced changes in freezing response during fear retention and extinction tests were not seen in adulthood and 1-year-old age groups. These data demonstrate the young adulthood age is highly vulnerable to fear memory and extinction processes. The differences in freezing response to CS+ during fear conditioning from adolescence to old age, thus, appear to be related to the maturation of the limbic circuit.
Collapse
Affiliation(s)
- Pradeep Kumar Mishra
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, P.B. No. 2900, Bengaluru, Karnataka, 560 029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, P.B. No. 2900, Bengaluru, Karnataka, 560 029, India
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, P.B. No. 2900, Bengaluru, Karnataka, 560 029, India.
| |
Collapse
|
642
|
Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage. Neurochem Res 2018; 44:1306-1322. [PMID: 30357653 DOI: 10.1007/s11064-018-2662-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
The hippocampus is not a homogeneous brain area, and the complex organization of this structure underlies its relevance and functional pleiotropism. The new data related to the involvement of the ventral hippocampus in the cognitive function, behavior, stress response and its association with brain pathology, in particular, depression, are analyzed with a focus on neuroplasticity, specializations of the intrinsic neuronal network, corticosteroid signaling through mineralocorticoid and glucocorticoid receptors and neuroinflammation in the hippocampus. The data on the septo-temporal hippicampal gradient are analyzed with particular emphasis on the ventral hippocampus, a region where most important alteration underlying depressive disorders occur. According to the recent data, the existing simple paradigm "learning (dorsal hippocampus) versus emotions (ventral hippocampus)" should be substantially revised and specified. A new hypothesis is suggested on the principal involvement of stress response mechanisms (including interaction of released glucocorticoids with hippocampal receptors and subsequent inflammatory events) in the remote hippocampal damage underlying delayed dementia and depression induced by focal brain damage (e.g. post-stroke and post-traumatic). The translational validity of this hypothesis comprising new approaches in preventing post-stroke and post-trauma depression and dementia can be confirmed in experimental and clinical studies.
Collapse
|
643
|
Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2018; 42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Converging evidence across species highlights the contribution of environmental stress to anhedonia (loss of pleasure and/or motivation). However, despite a clear link between stress and the emergence of anhedonic-like behavior in both human and animal models, the underlying biological pathways remain elusive. Here, we synthesize recent findings across multiple levels, from molecular signaling pathways through whole-brain networks, to discuss mechanisms through which stress may influence anhedonia. Recent work suggests the involvement of diverse systems that converge on the mesolimbic reward pathway, including medial-prefrontal cortical circuitry, neuroendocrine stress responses, homeostatic energy regulation systems, and inflammation. We conclude by emphasizing the need to disentangle the influences of key dimensions of stress on specific aspects of reward processing, taking into account individual differences that could moderate this relationship.
Collapse
Affiliation(s)
- Colin H Stanton
- Department of Psychology, Yale University, New Haven, CT 06511, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
644
|
Chronic social stress-induced hyperglycemia in mice couples individual stress susceptibility to impaired spatial memory. Proc Natl Acad Sci U S A 2018; 115:E10187-E10196. [PMID: 30301805 PMCID: PMC6205456 DOI: 10.1073/pnas.1804412115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stress-associated mental disorders and diabetes pose an enormous socio-economic burden. Glucose dysregulation occurs with both psychosocial and metabolic stress. While cognitive impairments are common in metabolic disorders such as diabetes and are accompanied by hyperglycemia, a causal role for glucose has not been established. We show that chronic social defeat (CSD) stress induces lasting peripheral and central hyperglycemia and impaired glucose metabolism in a subgroup of mice. Animals exhibiting hyperglycemia early post-CSD display spatial memory impairments that can be rescued by the antidiabetic empagliflozin. We demonstrate that individual stress vulnerability to glucose homeostasis can be identified early after insult and that stress-induced hyperglycemia directly impinges on cognitive integrity. Our findings further bridge the gap between stress-related pathologies and metabolic disorders. Stringent glucose demands render the brain susceptible to disturbances in the supply of this main source of energy, and chronic stress may constitute such a disruption. However, whether stress-associated cognitive impairments may arise from disturbed glucose regulation remains unclear. Here we show that chronic social defeat (CSD) stress in adult male mice induces hyperglycemia and directly affects spatial memory performance. Stressed mice developed hyperglycemia and impaired glucose metabolism peripherally as well as in the brain (demonstrated by PET and induced metabolic bioluminescence imaging), which was accompanied by hippocampus-related spatial memory impairments. Importantly, the cognitive and metabolic phenotype pertained to a subset of stressed mice and could be linked to early hyperglycemia 2 days post-CSD. Based on this criterion, ∼40% of the stressed mice had a high-glucose (glucose >150 mg/dL), stress-susceptible phenotype. The relevance of this biomarker emerges from the effects of the glucose-lowering sodium glucose cotransporter 2 inhibitor empagliflozin, because upon dietary treatment, mice identified as having high glucose demonstrated restored spatial memory and normalized glucose metabolism. Conversely, reducing glucose levels by empagliflozin in mice that did not display stress-induced hyperglycemia (resilient mice) impaired their default-intact spatial memory performance. We conclude that hyperglycemia developing early after chronic stress threatens long-term glucose homeostasis and causes spatial memory dysfunction. Our findings may explain the comorbidity between stress-related and metabolic disorders, such as depression and diabetes, and suggest that cognitive impairments in both types of disorders could originate from excessive cerebral glucose accumulation.
Collapse
|
645
|
Floriou-Servou A, von Ziegler L, Stalder L, Sturman O, Privitera M, Rassi A, Cremonesi A, Thöny B, Bohacek J. Distinct Proteomic, Transcriptomic, and Epigenetic Stress Responses in Dorsal and Ventral Hippocampus. Biol Psychiatry 2018; 84:531-541. [PMID: 29605177 DOI: 10.1016/j.biopsych.2018.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acutely stressful experiences can trigger neuropsychiatric disorders and impair cognitive processes by altering hippocampal function. Although the intrinsic organization of the hippocampus is highly conserved throughout its long dorsal-ventral axis, the dorsal (anterior) hippocampus mediates spatial navigation and memory formation, whereas the ventral (posterior) hippocampus is involved in emotion regulation. To understand the molecular consequences of stress, detailed genome-wide screens are necessary and need to distinguish between dorsal and ventral hippocampal regions. While transcriptomic screens have become a mainstay in basic and clinical research, proteomic methods are rapidly evolving and hold even greater promise to reveal biologically and clinically relevant biomarkers. METHODS Here, we provide the first combined transcriptomic (RNA sequencing) and proteomic (sequential window acquisition of all theoretical mass spectra [SWATH-MS]) profiling of dorsal and ventral hippocampus in mice. We used three different acute stressors (novelty, swim, and restraint) to assess the impact of stress on both regions. RESULTS We demonstrated that both hippocampal regions display radically distinct molecular responses and that the ventral hippocampus is particularly sensitive to the effects of stress. Separately analyzing these structures greatly increased the sensitivity to detect stress-induced changes. For example, protein interaction cluster analyses revealed a stress-responsive epigenetic network around histone demethylase Kdm6b restricted to the ventral hippocampus, and acute stress reduced methylation of its enzymatic target H3K27me3. Selective Kdm6b knockdown in the ventral hippocampus led to behavioral hyperactivity/hyperresponsiveness. CONCLUSIONS These findings underscore the importance of considering dorsal and ventral hippocampus separately when conducting high-throughput molecular analyses, which has important implications for fundamental research as well as clinical studies.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland; Laboratory of Neuroepigenetics, Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Zurich, Switzerland
| | - Luzia Stalder
- Laboratory of Neuroepigenetics, Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
646
|
Sargin D. The role of the orexin system in stress response. Neuropharmacology 2018; 154:68-78. [PMID: 30266600 DOI: 10.1016/j.neuropharm.2018.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Orexins are neuropeptides that are exclusively produced by hypothalamic neurons, which project throughout the entire brain. Orexin, also known as hypocretins, were initially identified to play a fundamental role in food intake, arousal and the regulation of sleep and wakefulness. Recent studies identified orexins to be critical for diverse physiological processes including motivation, reward, attention, emotional regulation, stress and anxiety. Here, I review recent findings that indicate orexin has an important role in acute and chronic stress. I also summarize the recent optogenetic and chemogenetic studies that have advanced our understanding of the orexin system. I will conclude by discussing clinical studies that implicate orexins in mental health disorders. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Derya Sargin
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
647
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
648
|
Masis-Calvo M, Schmidtner AK, de Moura Oliveira VE, Grossmann CP, de Jong TR, Neumann ID. Animal models of social stress: the dark side of social interactions. Stress 2018; 21:417-432. [PMID: 29745275 DOI: 10.1080/10253890.2018.1462327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.
Collapse
Affiliation(s)
- Marianela Masis-Calvo
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| | - Anna K Schmidtner
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| | | | - Cindy P Grossmann
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| | - Trynke R de Jong
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
- b Medische Biobank Noord-Nederland B.V , Groningen , Netherlands
| | - Inga D Neumann
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| |
Collapse
|
649
|
Carboni L, Marchetti L, Lauria M, Gass P, Vollmayr B, Redfern A, Jones L, Razzoli M, Malki K, Begni V, Riva MA, Domenici E, Caberlotto L, Mathé AA. Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology 2018; 43:2134-2145. [PMID: 29950584 PMCID: PMC6098161 DOI: 10.1038/s41386-018-0117-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/10/2023]
Abstract
An enhanced understanding of the pathophysiology of depression would facilitate the discovery of new efficacious medications. To this end, we examined hippocampal transcriptional changes in rat models of disease and in humans to identify common disease signatures by using a new algorithm for signature-based clustering of expression profiles. The tool identified a transcriptomic signature comprising 70 probesets able to discriminate depression models from controls in both Flinders Sensitive Line and Learned Helplessness animals. To identify disease-relevant pathways, we constructed an expanded protein network based on signature gene products and performed functional annotation analysis. We applied the same workflow to transcriptomic profiles of depressed patients. Remarkably, a 171-probesets transcriptional signature which discriminated depressed from healthy subjects was identified. Rat and human signatures shared the SCARA5 gene, while the respective networks derived from protein-based significant interactions with signature genes contained 25 overlapping genes. The comparison between the most enriched pathways in the rat and human signature networks identified a highly significant overlap (p-value: 3.85 × 10-6) of 67 terms including ErbB, neurotrophin, FGF, IGF, and VEGF signaling, immune responses and insulin and leptin signaling. In conclusion, this study allowed the identification of a hippocampal transcriptional signature of resilient or susceptible responses in rat MDD models which overlapped with gene expression alterations observed in depressed patients. These findings are consistent with a loss of hippocampal neural plasticity mediated by altered levels of growth factors and increased inflammatory responses causing metabolic impairments as crucial factors in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
| | - Mario Lauria
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Vollmayr
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amanda Redfern
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Maria Razzoli
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, USA
| | - Karim Malki
- King's College London, at the Institute of Psychiatry, Psychology and Neuroscience (IOPPN), London, UK
| | - Veronica Begni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Enrico Domenici
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Laura Caberlotto
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- The Aptuit Center for Drug Discovery & Development, Via Fleming, 4, 37135, Verona, Italy
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
650
|
Serotonin depletion causes valproate-responsive manic-like condition and increased hippocampal neuroplasticity that are reversed by stress. Sci Rep 2018; 8:11847. [PMID: 30087403 PMCID: PMC6081464 DOI: 10.1038/s41598-018-30291-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal hippocampal neural plasticity has been implicated in behavioural abnormalities and complex neuropsychiatric conditions, including bipolar disorder (BD). However, the determinants of this neural alteration remain unknown. This work tests the hypothesis that the neurotransmitter serotonin (5-HT) is a key determinant of hippocampal neuroplasticity, and its absence leads to maladaptive behaviour relevant for BD. Depletion of brain 5-HT in Tph2 mutant mice resulted in reduced behavioural despair, reduced anxiety, marked aggression and lower habituation in novel environments, reminiscent of bipolar-associated manic behaviour. Treatment with valproate produced a substantial improvement of the mania-like behavioural phenotypes displayed by Tph2 mutants. Brain-wide fMRI mapping in mutants revealed functional hippocampal hyperactivity in which we also observed dramatically increased neuroplasticity. Importantly, remarkable correspondence between the transcriptomic profile of the Tph2 mutant hippocampus and neurons from bipolar disorder patients was observed. Chronic stress reversed the emotional phenotype and the hippocampal transcriptional landscape of Tph2 mutants. These changes were associated with inappropriate activation of transcriptional adaptive response to stress as assessed by gene set enrichment analyses in the hippocampus of Tph2 mutant mice. These findings delineate 5-HT as a critical determinant in BD associated maladaptive emotional responses and aberrant hippocampal neuroplasticity, and support the use of Tph2−/− mice as a new research tool for mechanistic and therapeutic research in bipolar disorder.
Collapse
|