601
|
Kvamme BO, Kongshaug H, Nilsen F. Organisation of trypsin genes in the salmon louse (Lepeophtheirus salmonis, Crustacea, copepoda) genome. Gene 2005; 352:63-74. [PMID: 15878809 DOI: 10.1016/j.gene.2005.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/24/2005] [Accepted: 03/14/2005] [Indexed: 11/26/2022]
Abstract
Trypsins constitute a subclass of the S1A family of serine peptidases found in all groups of animal and some bacteria. At present, no information about the genomic organisation of trypsins is available for copepods. The only data of copepod trypsins indicate several different trypsins in the marine parasitic copepod Lepeophtheirus salmonis. In the present study, 31.7 kbp of genomic DNA surrounding the previously described LsTryp1-5 sequences was sequenced. The sequenced regions contain nine full-length and three partial trypsin genes. A conservative estimate based on PCR analysis and genomic sequence indicated at least 22 different trypsin genes in L. salmonis, of which 18 are most similar to the previously described LsTryp1 and -2 cDNA sequences. Four of these genes are putative pseudogenes. In addition, a putative mariner like transposase gene was identified. The genomic sequences suggest that the L. salmonis trypsin genes reside within one or more gene clusters. Three different LsTryp intron exon structures were identified, and all three are different from the intron exon organisation previously reported for other S1A peptidases. This implies several intron loss and gain events in the evolution of the L. salmonis trypsin genes.
Collapse
Affiliation(s)
- Bjørn Olav Kvamme
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.
| | | | | |
Collapse
|
602
|
Bernard D, Méhul B, Thomas-Collignon A, Delattre C, Donovan M, Schmidt R. Identification and Characterization of a Novel Retroviral-Like Aspartic Protease Specifically Expressed in Human Epidermis. J Invest Dermatol 2005; 125:278-87. [PMID: 16098038 DOI: 10.1111/j.0022-202x.2005.23816.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteases play a pivotal role in epidermal differentiation and desquamation. Separation of a total protein extract from human reconstructed epidermis by two-dimensional gel electrophoresis and subsequent peptide analysis of a specific protein spot identified a new protein exhibiting similarities with the retroviral aspartic protease family. Cloning of the corresponding full-length cDNA revealed an open reading frame encoding for a new protease of 343 amino acids, containing a putative aspartic protease catalytic domain. We named this protein Skin ASpartic Protease (SASPase). RT-PCR and northern blot analysis of various human tissues revealed that SASPase was specifically expressed within the epidermis. Immunohistochemical analysis showed a particularly intense expression restricted to the granular layers, whereas in diseased skin, its expression was changed. Western blot analysis, using a monoclonal antibody, revealed the expression of two forms of the enzyme: a 28 kDa putative proform and the active 14 kDa form. Recombinant truncated SASPase (SASP28) was generated from a prokaryotic expression system in Escherichia coli as a fusion protein with GST. SASP28 degraded insulin and to a lesser extent casein with a pH optimum of 5. As seen for retroviral proteases, an auto-activation processing was evidenced, generating a 14 kDa protein (SASP14). Site-directed mutagenesis inhibited auto-activation of the enzyme. Indinavir, a potent HIV protease inhibitor used in AIDS therapy, had a significant inhibitory effect on rSASPase auto-activation, which could explain its side effects on skin.
Collapse
|
603
|
Puente XS, Sánchez LM, Gutiérrez-Fernández A, Velasco G, López-Otín C. A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 2005; 33:331-4. [PMID: 15787599 DOI: 10.1042/bst0330331] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteolytic enzymes play an essential role in different physiological processes, including development, reproduction and host defence, as well as in numerous pathologies, like inflammatory diseases, neurological disorders or cancer. The completion of the human genome sequence allowed us to determine that more than 2% of all human genes are proteases or protease inhibitors, reflecting the importance of proteolysis in human biology. To understand better the complexity of proteases in human and other model organisms, we have used the available genome sequences of different mammalian organisms, including mouse, rat and chimpanzee, to identify and compare their degradomes, the complete set of protease genes in these species. Surprisingly, the rodent protease complement is more complex when compared with that of primates, mainly due to the expansion of protease families implicated in reproduction and host defence. Similarly, most differences between human and chimpanzee proteases are found in genes implicated in the immune system, which might explain some of the differences between both organisms. We have also found several genes implicated in reproduction, nutrition and the immune system, which are functional in rat, mouse or chimpanzee, but have been inactivated by mutations in the human lineage. These findings suggest that pseudogenization of specific protease genes has been a mechanism contributing to the evolution of the human genome. Finally, we found that proteases implicated in human hereditary diseases, and especially in neurodegenerative disorders, are highly conserved among mammals.
Collapse
Affiliation(s)
- X S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | |
Collapse
|
604
|
Sounni NE, Noel A. Membrane type-matrix metalloproteinases and tumor progression. Biochimie 2005; 87:329-42. [PMID: 15781320 DOI: 10.1016/j.biochi.2004.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/16/2004] [Indexed: 01/30/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that process growth factors, growth factor binding proteins, cell surface proteins, degrade extracellular matrix (ECM) components and thereby play a central role in tissue remodeling and tumor progression. Membrane-type matrix metalloproteinases (MT-MMPs) are a recently discovered subgroup of intrinsic plasma membrane proteins. Their functions have been extended from pericellular proteolysis and control of cell migration to cell signaling, control of cell proliferation and regulation of multiple stages of tumor progression including growth and angiogenesis. This review sheds light on the new functions of MT-MMPs and their inhibitors in tumor development and angiogenesis, and presents recent investigations that document their influence on various cell functions.
Collapse
Affiliation(s)
- N E Sounni
- Laboratory of Tumor and Development Biology, University of Liège, Sart-Tilman B23, B4000 Liège, Belgium
| | | |
Collapse
|
605
|
Obiezu CV, Diamandis EP. Human tissue kallikrein gene family: applications in cancer. Cancer Lett 2005; 224:1-22. [PMID: 15911097 DOI: 10.1016/j.canlet.2004.09.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
Human tissue kallikrein genes, located on the long arm of chromosome 19, are a subgroup of the serine protease family of proteolytic enzymes. Initially thought to consist of three members, the human kallikrein locus has now been extended and includes 15 tandemly located genes. These genes, and their protein products, share a high degree of homology and are expressed in a wide array of tissues, mainly those that are under steroid hormone control. PSA (hK3) is one of the human kallikreins, and is the most useful tumor marker for prostate cancer screening, diagnosis, prognosis and monitoring. hK2, another prostate-specific kallikrein, has also been proposed as a complementary prostate cancer biomarker. In the past 5 years, the newly discovered kallikreins (KLK4-KLK15) have been associated with several types of cancer. For example, hK4, hK5, hK6, hK7, hK8, hK10, hK11, hK13 and hK14 are emerging biomarkers for ovarian, breast, prostate and testicular cancer. New evidence raises the possibility that some kallikreins are directly involved with cancer progression. We here review the evidence linking kallikreins and cancer and their applicability as novel biomarkers for cancer diagnosis and management.
Collapse
Affiliation(s)
- Christina V Obiezu
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5
| | | |
Collapse
|
606
|
Daneri-Navarro A, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Dueñas MG, Armendariz-Borunda J, Perez-Montfort R. Immunosuppressive activity of proteases in cervical carcinoma. Gynecol Oncol 2005; 98:111-7. [PMID: 15894359 DOI: 10.1016/j.ygyno.2005.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/19/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The host immune response is essential for restraining both HPV infections and HPV-related cervical cancer. We previously reported a direct correlation between proteolytic activity and malignant progression from precursor lesions to invasive cervical carcinoma. The present study was undertaken to investigate whether proteinases from cervical carcinoma extracts and representative purified proteinases involved in tumor progression could regulate lymphocyte proliferation to phytohemagglutinin (PHA) mitogen. METHODS Extracts were prepared from tissue samples obtained from patients with invasive cervical squamous carcinoma, squamous intra-epithelial lesions or women with normal cervix. Lymphocytes obtained from a single healthy donor were pre-incubated with one of these extracts in the presence or absence of proteinase inhibitors, and stimulated with PHA during 72 h. The proliferative response was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method (re-validated with thymidine uptake). RESULTS Lymphocyte proliferation was significantly decreased by cervical carcinoma extracts, while only slightly decreased by squamous intra-epithelial lesions or normal extracts. Inhibitor assays indicated that proteinases from cervical carcinoma were responsible for 53.30% of total suppressive activity. We found that purified enzymes such as trypsin, cathepsin B, uPA and type IV collagenase suppressed the proliferative response in a dose-dependent fashion. CONCLUSIONS Our data suggest that in addition to the classic role in tumor invasion, proteases could represent an immune evasion mechanism in cervical carcinoma.
Collapse
Affiliation(s)
- Adrian Daneri-Navarro
- Programa de Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Jalisco, México.
| | | | | | | | | | | |
Collapse
|
607
|
Lee YK, Sung KC, Yim JH, Park KJ, Chung HS, Lee HK. Isolation of Protease-Producing Arctic Marine Bacteria. ACTA ACUST UNITED AC 2005. [DOI: 10.4217/opr.2005.27.2.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
608
|
Abstract
Recently, many novel peptide-based near-infrared (NIR) fluorescent molecular probes have been developed for in vivo biomedical imaging. To report specific information of biological targets, the probes were individually designed according to the unique property or functions of their targets. These peptide-based probes can be classified into targeting, crosslinking, and enzyme-activatable probes. Several of them have been tested in various in vitro and in vivo models, and the obtained imaging information has been applied to disease detection, medical diagnosis, and drug evaluations.
Collapse
Affiliation(s)
- Ching-Hsuan Tung
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
609
|
Díaz-Perales A, Quesada V, Peinado JR, Ugalde AP, Alvarez J, Suárez MF, Gomis-Rüth FX, López-Otín C. Identification and characterization of human archaemetzincin-1 and -2, two novel members of a family of metalloproteases widely distributed in Archaea. J Biol Chem 2005; 280:30367-75. [PMID: 15972818 DOI: 10.1074/jbc.m504533200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Systematic analysis of degradomes, the complete protease repertoires of organisms, has demonstrated the large and growing complexity of proteolytic systems operating in all cells and tissues. We report here the identification of two new human metalloproteases that have been called archaemetzincin-1 (AMZ1) and archaemetzincin-2 (AMZ2) to emphasize their close relationship to putative proteases predicted by bioinformatic analysis of archaeal genomes. Both human proteins contain a catalytic domain with a core motif (HEXXHXXGX3CX4CXMX17CXXC) that includes an archetypal zinc-binding site, the methionine residue characteristic of metzincins, and four conserved cysteine residues that are not present at the equivalent positions of other human metalloproteases. Analysis of genome sequence databases revealed that AMZs are widely distributed in Archaea and vertebrates and contribute to the defining of a new metalloprotease family that has been called archaemetzincin. However, AMZ-like sequences are absent in a number of model organisms from bacteria to nematodes. Phylogenetic analysis showed that these enzymes have undergone a complex evolutionary process involving a series of lateral gene transfer, gene loss, and genetic duplication events that have shaped this novel family of metalloproteases. Northern blot analysis showed that AMZ1 and AMZ2 exhibit distinct expression patterns in human tissues. AMZ1 is mainly detected in liver and heart whereas AMZ2 is predominantly expressed in testis and heart, although both are also detectable at lower levels in other tissues. Both human enzymes were produced in Escherichia coli, and the purified recombinant proteins hydrolyzed synthetic substrates and bioactive peptides, demonstrating that they are functional proteases. Finally, these activities were abolished by inhibitors of metalloproteases, providing further evidence that AMZs belong to this catalytic class of proteolytic enzymes.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
610
|
Tyndall JDA, Nall T, Fairlie DP. Proteases universally recognize beta strands in their active sites. Chem Rev 2005; 105:973-99. [PMID: 15755082 DOI: 10.1021/cr040669e] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joel D A Tyndall
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | |
Collapse
|
611
|
Liu S, Redeye V, Kuremsky JG, Kuhnen M, Molinolo A, Bugge TH, Leppla SH. Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol 2005; 23:725-30. [PMID: 15895075 PMCID: PMC2405912 DOI: 10.1038/nbt1091] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 03/23/2005] [Indexed: 11/08/2022]
Abstract
Anthrax toxin protective antigen (PrAg) forms a heptamer in which the binding site for lethal factor (LF) spans two adjacent monomers. This suggested that high cell-type specificity in tumor targeting could be obtained using monomers that generate functional LF-binding sites only through intermolecular complementation. We created PrAg mutants with mutations affecting different LF-binding subsites and containing either urokinase plasminogen activator (uPA) or matrix metalloproteinase (MMP) cleavage sites. Individually, these PrAg mutants had low toxicity as a result of impaired LF binding, but when administered together to uPA- and MMP-expressing tumor cells, they assembled into functional LF-binding heteroheptamers. The mixture of two complementing PrAg variants had greatly reduced toxicity in mice and was highly effective in the treatment of aggressive transplanted tumors of diverse origin. These results show that anthrax toxin, and by implication other multimeric toxins, offer excellent opportunities to introduce multiple-specificity determinants and thereby achieve high therapeutic indices.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
612
|
Gosalia DN, Salisbury CM, Ellman JA, Diamond SL. High Throughput Substrate Specificity Profiling of Serine and Cysteine Proteases Using Solution-phase Fluorogenic Peptide Microarrays. Mol Cell Proteomics 2005; 4:626-36. [PMID: 15705970 DOI: 10.1074/mcp.m500004-mcp200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases regulate numerous biological processes with a degree of specificity often dictated by the amino acid sequence of the substrate cleavage site. To map protease/substrate interactions, a 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized (X=all natural amino acids except cysteine) and microarrayed with fluorescent calibration standards in glycerol nanodroplets on glass slides. Specificities of 13 serine proteases (activated protein C, plasma kallikrein, factor VIIa, factor IXabeta, factor XIa and factor alpha XIIa, activated complement C1s, C1r, and D, tryptase, trypsin, subtilisin Carlsberg, and cathepsin G) and 11 papain-like cysteine proteases (cathepsin B, H, K, L, S, and V, rhodesain, papain, chymopapain, ficin, and stem bromelain) were obtained from 103,968 separate microarray fluorogenic reactions (722 substrates x 24 different proteases x 6 replicates). This is the first comprehensive study to report the substrate specificity of rhodesain, a papain-like cysteine protease expressed by Trypanasoma brucei rhodesiense, a parasitic protozoa responsible for causing sleeping sickness. Rhodesain displayed a strong P2 preference for Leu, Val, Phe, and Tyr in both the P1=Lys and Arg libraries. Solution-phase microarrays facilitate protease/substrate specificity profiling in a rapid manner with minimal peptide library or enzyme usage.
Collapse
Affiliation(s)
- Dhaval N Gosalia
- Department of Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
613
|
Gill JH, Kirwan IG, Seargent JM, Martin SW, Tijani S, Anikin VA, Mearns AJ, Bibby MC, Anthoney A, Loadman PM. MMP-10 is overexpressed, proteolytically active, and a potential target for therapeutic intervention in human lung carcinomas. Neoplasia 2005; 6:777-85. [PMID: 15720804 PMCID: PMC1550316 DOI: 10.1593/neo.04283] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix is a major factor for tumor development and expansion. This study analysed MMP-10 protein expression and activity in human lung tumors of various grade, stage, and type to address the relationship between MMP-10 and tumor characteristics and to evaluate MMP-10 as a therapeutic target in non small cell lung carcinoma (NSCLC). Unlike the majority of MMPs, MMP-10 was located in the tumor mass as opposed to tumor stroma. MMP-10 protein was observed at low levels in normal human lung tissues and at significantly higher levels in all types of NSCLC. No correlation was observed between MMP-10 protein expression and tumor type, stage, or lymph node invasion. To discriminate between active and inactive forms of MMP-10 in samples of human NSCLC, we have developed an ex vivo fluorescent assay. Measurable MMP-10 activity was detected in 42 of 50 specimens of lung cancer and only 2 of 10 specimens of histologically normal lung tissue. No relationship was observed between MMP-10 activity levels and clinicopathologic characteristics. Our results suggest that MMP-10 is expressed and active at high levels in human NSCLC compared to normal lung tissues, and, as such, is a potential target for the development of novel therapeutics for lung cancer treatment.
Collapse
Affiliation(s)
- Jason H Gill
- Cancer Research UK Laboratories, Tom Connors Cancer Research Centre, University of Bradford, Bradford BD7 1DP, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
614
|
Yongzheng Y, Reymond JL. Protease profiling using a fluorescent domino peptide cocktail. MOLECULAR BIOSYSTEMS 2005; 1:57-63. [PMID: 16880964 DOI: 10.1039/b419446b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Five hexapeptides were prepared containing, in a domino-type arrangement, all 25 possible dipeptides between (1) aromatic, (2) hydrophobic, (3) positively charged, (4) negatively charged, and (5) small and polar amino acids. The peptides were fluorescence labeled at the N-terminus with a (7-coumaryl)oxyacetyl group, allowing the selective detection of N-terminal cleavage products. The five peptides were used as a cocktail reagent in an HPLC analysis. The cocktail produced specific cleavage patterns, or fingerprints, for a variety of proteases. This domino peptide cocktail can be used as a general reagent for protease identification and functional profiling.
Collapse
Affiliation(s)
- Yang Yongzheng
- Department of Chemistry & Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | | |
Collapse
|
615
|
Díaz-Perales A, Quesada V, Sánchez LM, Ugalde AP, Suárez MF, Fueyo A, López-Otín C. Identification of Human Aminopeptidase O, a Novel Metalloprotease with Structural Similarity to Aminopeptidase B and Leukotriene A4 Hydrolase. J Biol Chem 2005; 280:14310-7. [PMID: 15687497 DOI: 10.1074/jbc.m413222200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a human brain cDNA encoding a new metalloprotease that has been called aminopeptidase O (AP-O). AP-O exhibits a series of structural features characteristic of aminopeptidases, including a conserved catalytic domain with a zinc-binding site (HEXXHX18E) that allows its classification in the M1 family of metallopeptidases or gluzincins. The structural complexity of AP-O is further increased by the presence of an additional C-terminal domain 170 residues long, which is predicted to have an ARM repeat fold originally identified in the Drosophila segment polarity gene product Armadillo. This ARM repeat domain is also present in aminopeptidase B, aminopeptidase B-like, and leukotriene A4 hydrolase and defines a novel subfamily of aminopeptidases that we have called ARM aminopeptidases. Northern blot analysis revealed that AP-O is mainly expressed in the pancreas, placenta, liver, testis, and heart. Human AP-O was produced in Escherichia coli, and the purified recombinant protein hydrolyzed synthetic substrates used for assaying aminopeptidase activity. This activity was abolished by general inhibitors of metalloproteases and specific inhibitors of aminopeptidases. Recombinant AP-O also cleaved angiotensin III to generate angiotensin IV, a bioactive peptide of the renin-angiotensin pathway with multiple actions on diverse tissues, including brain, testis, and heart. On the basis of these results we suggest that AP-O could play a role in the proteolytic processing of bioactive peptides in those tissues where it is expressed.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Departamento de Bioquímica y Biología Molecular and Biología Funcional, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
616
|
Gosalia DN, Salisbury CM, Maly DJ, Ellman JA, Diamond SL. Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics 2005; 5:1292-8. [PMID: 15742319 DOI: 10.1002/pmic.200401011] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel microarray-based proteolytic profiling assay enabled the rapid determination of protease substrate specificities with minimal sample and enzyme usage. A 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized and microarrayed, along with fluorescent calibration standards, in glycerol nanodroplets on microscope slides. The arrays were then activated by deposition of an aerosolized enzyme solution, followed by incubation and fluorometric scanning. The specificities of human blood serine proteases (human thrombin, factor Xa, plasmin, and urokinase plasminogen activator) were examined. The arrays provided complete maps of protease specificity for all of the substrates tested and allowed for detection of cooperative interactions between substrate subsites. The arrays were further utilized to explore the conservation of thrombin specificity across species by comparing the proteolytic fingerprints of human, bovine, and salmon thrombin. These enzymes share nearly identical specificity profiles despite approximately 390 million years of divergent evolution. Fluorogenic substrate microarrays provide a rapid way to determine protease substrate specificity information that can be used for the design of selective inhibitors and substrates, the study of evolutionary divergence, and potentially, for diagnostic applications.
Collapse
Affiliation(s)
- Dhaval N Gosalia
- Department of Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, PA, USA
| | | | | | | | | |
Collapse
|
617
|
Cichy J, Kulig P, Puré E. Regulation of the release and function of tumor cell-derived soluble CD44. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:59-64. [PMID: 16085055 DOI: 10.1016/j.bbamcr.2005.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/04/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
CD44, a major receptor for glycosaminoglycan hyaluronan (HA), is a broadly distributed cell surface glycoprotein implicated in multiple functions, including tumor growth and dissemination. The affinity of surface CD44 for HA is subject to regulation at several levels. CD44 is found in multiple phases, including as an integral transmembrane protein and as soluble fragment of the extracellular domain found in the circulation and other body fluids. Transmembrane CD44 and its ability to interact with HA have been a focus of numerous studies in the past, but the function of soluble CD44 remains obscure. Interestingly, malignant diseases are often associated with an increase in the plasma level of CD44. The delineation of the HA binding capacity of tumor-derived soluble CD44 is an important step toward understanding the biological function of this molecule. In this study, we demonstrate that tumor cells activated to bind HA by cytokines rapidly release CD44 upon treatment with phorbol ester (PMA). The affinity for HA of the soluble CD44 released in response to PMA varied depending on the cytokine pretreatment. These results suggest that the function of tumor-derived soluble CD44, like the transmembrane form of the receptor, can be regulated.
Collapse
Affiliation(s)
- Joanna Cichy
- Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | | |
Collapse
|
618
|
Michael IP, Sotiropoulou G, Pampalakis G, Magklara A, Ghosh M, Wasney G, Diamandis EP. Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J Biol Chem 2005; 280:14628-35. [PMID: 15713679 DOI: 10.1074/jbc.m408132200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human kallikrein 5 (KLK5) is a member of the human kallikrein gene family of serine proteases. Preliminary results indicate that the protein, hK5, may be a potential serological marker for breast and ovarian cancer. Other studies implicate hK5 with skin desquamation and skin diseases. To gain further insights on hK5 physiological functions, we studied its substrate specificity, the regulation of its activity by various inhibitors, and identified candidate physiological substrates. After producing and purifying recombinant hK5 in yeast, we determined the k(cat)/K(m) ratio of the fluorogenic substrates Gly-Pro-Arg-AMC and Gly-Pro-Lys-AMC, and showed that it has trypsin-like activity with strong preference for Arg over Lys in the P1 position. The serpins alpha(2)-antiplasmin and antithrombin were able to inhibit hK5 with an inhibition constant (k(+2)/K(i)) of 1.0 x 10(-) (2)and 4.2 x 10(-4) m(-1) min(-1), respectively. No inhibition was observed with the serpins alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, although alpha(2)-macroglobulin partially inhibited hK5 at high concentrations. We also demonstrated that hK5 can efficiently digest the extracellular matrix components, collagens type I, II, III, and IV, fibronectin, and laminin. Furthermore, our results suggest that hK5 can potentially release (a) angiostatin 4.5 from plasminogen, (b) "cystatin-like domain 3" from low molecular weight kininogen, and (c) fibrinopeptide B and peptide beta15-42 from the Bbeta chain of fibrinogen. hK5 could also play a role in the regulation of the binding of plasminogen activator inhibitor 1 to vitronectin. Our findings suggest that hK5 may be implicated in tumor progression, particularly in invasion and angiogenesis, and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Iacovos P Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
619
|
Nicholson AC, Malik SB, Logsdon JM, Van Meir EG. Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization. BMC Evol Biol 2005; 5:11. [PMID: 15693998 PMCID: PMC549037 DOI: 10.1186/1471-2148-5-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 02/04/2005] [Indexed: 11/21/2022] Open
Abstract
Background The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs) common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic purpura (ADAMTS13), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted white-spotting mutation in mice (ADAMTS20). Results Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu), chordate (Ciona) and invertebrate (Drosophila and Caenorhabditis) ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. Conclusions The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15) that may have distinct aggrecanase and angiogenesis functions.
Collapse
Affiliation(s)
- Ainsley C Nicholson
- Laboratory of Molecular Neuro-Oncology, Neurosurgery Department and Winship Cancer Institute, 1365-C Clifton Road, Room C5078, Emory University, Atlanta GA 30322 USA
| | - Shehre-Banoo Malik
- Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, 300 Old Biology Building, University of Iowa, Iowa City IA 52242-1324 USA
| | - John M Logsdon
- Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, 300 Old Biology Building, University of Iowa, Iowa City IA 52242-1324 USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Neurosurgery Department and Winship Cancer Institute, 1365-C Clifton Road, Room C5078, Emory University, Atlanta GA 30322 USA
| |
Collapse
|
620
|
Pardo A, Selman M. MMP-1: the elder of the family. Int J Biochem Cell Biol 2005; 37:283-8. [PMID: 15474975 DOI: 10.1016/j.biocel.2004.06.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 06/09/2004] [Accepted: 06/09/2004] [Indexed: 11/26/2022]
Abstract
The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue remodeling. Human fibroblast collagenase (MMP-1) was the first vertebrate collagenase purified as a protein and cloned as a cDNA, and is considered the prototype for all the interstitial collagenases. It is synthesized as a zymogen where N-terminal residues are removed by proteolysis and shares with other MMPs a catalytic domain and a carboxy terminal domain with sequence similarity to hemopexin. Importantly, MMP-1 should be considered a multifunctional molecule since it participates not only in the turnover of collagen fibrils in the extracellular space but also in the cleavage of a number of non-matrix substrates and cell surface molecules suggesting a role in the regulation of cellular behaviour. Furthermore, an extensive body of evidence indicates that MMP-1 plays an important role in diverse physiologic processes such as development, tissue morphogenesis, and wound repair. Likewise, it seems to be implicated in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders, suggesting that its inhibition or stimulation may open therapeutic avenues.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México and Instituto Nacional de Enfermedades Respiratorias, Apartado Postal 21-630, Coyoacan, México, DF, CP 04000, Mexico.
| | | |
Collapse
|
621
|
Overall CM, Tam EM, Kappelhoff R, Connor A, Ewart T, Morrison CJ, Puente X, López-Otín C, Seth A. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biol Chem 2005; 385:493-504. [PMID: 15255181 DOI: 10.1515/bc.2004.058] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The biological role of most proteases in vivo is largely unknown. Therefore, to develop robust techniques to analyze the protease degradome in cells and tissues and to elucidate their substrate degradomes we have developed a dedicated and complete human protease and inhibitor microarray that we have called the CLIP-CHIP Oligonucleotides (70-mers) for identifying all 715 human proteases, inactive homologs and inhibitors were spotted in triplicate onto glass slides with a dedicated subarray containing oligonucleotides for specific human breast carcinoma genes. Initial analyses revealed the elevated expression of a number of proteases in invasive ductal cell carcinoma including ADAMTS17, carboxypeptidases A5 and M, tryptase-gamma and matriptase-2. Matrix metalloproteinases (MMPs) showed a restricted expression pattern in both normal and cancerous breast tissues with most expressed at low levels. However, of the several MMPs expressed in significant quantities, the carcinoma samples showed only slightly elevated amounts other than for MMP-28 which was strongly elevated. To discover new protease substrates we developed a novel yeast two-hybrid approach we term 'inactive catalytic domain capture' (ICDC). Here, an inactive mutant protease catalytic domain lacking the propeptide was used as a yeast two hybrid bait to screen a human fibroblast cDNA library for interactor proteins as a substrate trap. Wnt-induced signaling protein-2 (WISP-2) was identified by ICDC and was biochemically confirmed as a new MMP substrate. In another approach we used isotope-coded affinity tag (ICAT) labeling with tandem mass spectrometry to quantitate the levels of secreted or shed extracellular proteins in MDA-MB-231 breast carcinoma cell cultures in the presence or absence of membrane type 1-MMP (MT1-MMP) overexpression. By this proteomic approach we identified and biochemically confirmed that IL-8, the serine protease inhibitor SLPI, the death receptor-6, pro-TNF-alpha and CTGF are novel substrates of MT1-MMP. The utility and quantitative nature of ICAT with MS/MS analysis as a new screen for protease substrate discovery based on detection of cleaved or shed substrate products should be readily adaptable to other classes of protease for assessing proteolytic function in a cellular context.
Collapse
Affiliation(s)
- Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
622
|
Lecaille F, Muno D, Kominami E, Ishidoh K. Proteinases participating in the processing and activation of prolegumain in primary cultured rat macrophages. Biol Chem 2005; 385:511-6. [PMID: 15255183 DOI: 10.1515/bc.2004.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian legumain is a recently identified lysosomal cysteine proteinase belonging to the clan CD and homologous to plant legumain. This enzyme has the characteristic of specifically hydrolyzing peptide bonds after asparagine residues. As in the case of papain-type cysteine proteinases, legumain is synthesized as an inactive zymogen, and processed into a mature form localized in lysosomes. However, the mechanism of its activation remains unclear. In this study, we analyze which types of proteinases may participate in the processing of legumain in rat primary cultured macrophages using various proteinase inhibitors after 24 h treatment with Bafilomycin A1, a vacuolar ATPase inhibitor. The processing of legumain in macrophages was accomplished by papain-type cysteine proteinases other than cathepsin B.
Collapse
Affiliation(s)
- Fabien Lecaille
- Department of Biochemistry, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | |
Collapse
|
623
|
Almholt K, Lund LR, Rygaard J, Nielsen BS, Danø K, Rømer J, Johnsen M. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 2005; 113:525-32. [PMID: 15472905 DOI: 10.1002/ijc.20631] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume was reduced from 1.58 mm(3) in wild-type controls to 0.21 mm(3) in uPA-deficient mice (p = 0.023). Tumor cell dissemination to brachial lymph nodes was also reduced from 53% (28/53) in wild-type controls to 31% (17/54) in uPA-deficient mice (p = 0.032). Mice without plasminogen display a severe pleiotropic phenotype. By comparison, spontaneous phenotypes are modest in uPA-deficient mice, probably because they still have active tPA. We show that metastasis is strongly and selectively decreased in uPA-deficient mice, suggesting that uPA-directed antimetastatic therapy would be efficacious and have limited side effects.
Collapse
Affiliation(s)
- Kasper Almholt
- Finsen Laboratory, Rigshospitalet 8621, Strand-boulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
624
|
Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgoño CA, Kishi T, Memari N, Michael LP, Sidiropoulos M, Kurlender L, Economopolou K, Kapadia C, Komatsu N, Petraki C, Elliott M, Scorilas A, Katsaros D, Levesque MA, Diamandis EP. Human Tissue Kallikreins: From Gene Structure to Function and Clinical Applications. Adv Clin Chem 2005; 39:11-79. [PMID: 16013667 DOI: 10.1016/s0065-2423(04)39002-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
625
|
Klegeris A, McGeer PL. Chymotrypsin-like proteases contribute to human monocytic THP-1 cell as well as human microglial neurotoxicity. Glia 2005; 51:56-64. [PMID: 15779083 DOI: 10.1002/glia.20186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activated microglia have been observed in various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, and multiple sclerosis. They may exacerbate neuronal damage by secreting various toxic molecules. The list of candidate toxins includes proteases. Since it is currently not known which, if any, proteases are involved in human microglia neurotoxicity, we studied the effects of a panel of protease inhibitors on the toxicity of cell-free supernatants of stimulated human microglia and THP-1 monocytic cells to human SH-SY5Y cells. Five structurally distinct inhibitors that are known to inhibit chymotrypsin-like proteases were partially protective. They included chymostatin, AEBSF (Pefabloc SC), alpha1-antichymotrypsin, bromoenol lactone, and 3,4-dichloroisocoumarin. The data suggest that certain protease inhibitors could inhibit microglial-mediated toxicity. They might represent a novel class of drugs with benefit in diseases where overactivity of microglia contributes to the pathogenesis.
Collapse
Affiliation(s)
- Andis Klegeris
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
626
|
Hong S, Choi I, Woo JM, Oh J, Kim T, Choi E, Kim TW, Jung YK, Kim DH, Sun CH, Yi GS, Eddy EM, Cho C. Identification and integrative analysis of 28 novel genes specifically expressed and developmentally regulated in murine spermatogenic cells. J Biol Chem 2004; 280:7685-93. [PMID: 15613475 DOI: 10.1074/jbc.m412444200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian spermatogenesis is a highly ordered process that occurs in mitotic, meiotic, and postmeiotic phases. The unique mechanisms responsible for this tightly regulated developmental process suggest the presence of an intrinsic genetic program composed of spermatogenic cell-specific genes. In this study, we analyzed the mouse round spermatid UniGene library currently containing 2124 gene-oriented transcript clusters, predicting that 467 of them are testis-specific genes, and systematically identified 28 novel genes with evident testis-specific expression by in silico and in vitro approaches. We analyzed these genes by Northern blot hybridization and cDNA cloning, demonstrating the presence of additional transcript sequences in five genes and multiple transcript isoforms in six genes. Genomic analysis revealed lack of human orthologues for 10 genes, implying a relationship between these genes and male reproduction unique to mouse. We found that all of the novel genes are expressed in developmentally regulated and stage-specific patterns, suggesting that they are primary regulators of male germ cell development. Using computational bioinformatics tools, we found that 20 gene products are potentially involved in various processes during spermatogenesis or fertilization. Taken together, we predict that over 20% of the genes from the round spermatid library are testis-specific, have discovered the 28 authentic, novel genes with probable spermatogenic cell-specific expression by the integrative approach, and provide new and thorough information about the novel genes by various in vitro and in silico analyses. Thus, the study establishes on a comprehensive scale a new basis for studies to uncover molecular mechanisms underlying the reproductive process.
Collapse
Affiliation(s)
- Sungeun Hong
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
627
|
Cal S, Quesada V, Llamazares M, Díaz-Perales A, Garabaya C, López-Otín C. Human polyserase-2, a novel enzyme with three tandem serine protease domains in a single polypeptide chain. J Biol Chem 2004; 280:1953-61. [PMID: 15536082 DOI: 10.1074/jbc.m409139200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned a human cDNA encoding a new serine protease that has been called polyserase-2 (polyserine protease-2) because it is the second identified human enzyme with several tandem serine protease domains in its amino acid sequence. The first serine protease domain contains all characteristic features of these enzymes, whereas the second and third domains lack one residue of the catalytic triad of serine proteases and are predicted to be catalytically inactive. This complex domain organization is also present in the sequences of mouse and rat polyserase-2 and resembles that of polyserase-1, which also contains three serine protease domains in its amino acid sequence. However, polyserase-2 lacks additional domains present in polyserase-1, including a type II transmembrane motif and a low-density lipoprotein receptor A module. Enzymatic analysis demonstrated that both full-length polyserase-2 and its first serine protease domain hydrolyzed synthetic peptides used for assaying serine proteases. Nevertheless, the activity of the isolated domain was greater than that of the entire protein, suggesting that the two catalytically inactive serine protease domains of polyserase-2 may modulate the activity of the first domain. Northern blot analysis showed that polyserase-2 is expressed in fetal kidney; adult skeletal muscle, liver, placenta, prostate, and heart; and tumor cell lines derived from lung and colon adenocarcinomas. Finally, analysis of post-translational processing mechanisms of polyserase-2 revealed that, contrary to those affecting to the membrane-bound polyserase-1, this novel polyprotein is a secreted enzyme whose three protease domains remain as an integral part of a single polypeptide chain.
Collapse
Affiliation(s)
- Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | | | | | | | | | |
Collapse
|
628
|
Abstract
Human tissue kallikreins (hKs), which are encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Although primarily known for their clinical applicability as cancer biomarkers, recent evidence implicates hKs in many cancer-related processes, including cell-growth regulation, angiogenesis, invasion and metastasis. They have been shown to promote or inhibit neoplastic progression, acting individually and/or in cascades with other hKs and proteases, and might represent attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | | |
Collapse
|
629
|
Spiegel PC, Kaiser SM, Simon JA, Stoddard BL. Disruption of Protein-Membrane Binding and Identification of Small-Molecule Inhibitors of Coagulation Factor VIII. ACTA ACUST UNITED AC 2004; 11:1413-22. [PMID: 15489168 DOI: 10.1016/j.chembiol.2004.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 11/16/2022]
Abstract
Factor VIII is a critical member of the blood coagulation cascade. It binds to the membrane surfaces of activated platelets at the site of vascular injury via a highly specific interaction between factor VIII's carboxy-terminal C2 domain and their phosphatidylserine-rich lipid bilayer. We have identified small-molecule inhibitors of factor VIII's membrane binding activity that have IC50 values as low as 2.5 microM. This interaction is approximately 10(3)-fold tighter than that of free o-phospho-L-serine. These compounds also inhibit factor VIII-dependent activation of factor X, indicating that disruption of membrane lipid binding leads to inhibition of the intrinsic coagulation pathway. The tightest binding inhibitor is specific and does not prevent membrane binding by the closely related coagulation factor V. These results indicate that this and related compounds may be used as leads to develop novel antithrombotic agents.
Collapse
Affiliation(s)
- P Clint Spiegel
- Graduate Program in Biomolecular Structure and Design, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
630
|
Hobson JP, Netzel-Arnett S, Szabo R, Réhault SM, Church FC, Strickland DK, Lawrence DA, Antalis TM, Bugge TH. Mouse DESC1 is located within a cluster of seven DESC1-like genes and encodes a type II transmembrane serine protease that forms serpin inhibitory complexes. J Biol Chem 2004; 279:46981-94. [PMID: 15328353 DOI: 10.1074/jbc.m403299200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We report the identification and functional analysis of a type II transmembrane serine protease encoded by the mouse differentially expressed in squamous cell carcinoma (DESC) 1 gene, and the definition of a cluster of seven homologous DESC1-like genes within a 0.5-Mb region of mouse chromosome 5E1. This locus is syntenic to a region of human chromosome 4q13.3 containing the human orthologues of four of the mouse DESC1-like genes. Bioinformatic analysis indicated that all seven DESC1-like genes encode functional proteases. Direct cDNA cloning showed that mouse DESC1 encodes a multidomain serine protease with an N-terminal signal anchor, a SEA (sea urchin sperm protein, enterokinase, and agrin) domain, and a C-terminal serine protease domain. The mouse DESC1 mRNA was present in epidermal, oral, and male reproductive tissues and directed the translation of a membrane-associated 60-kDa N-glycosylated protein with type II topology. Mouse DESC1 was synthesized in insect cells as a zymogen that could be activated by exposure to trypsin. The purified activated DESC1 hydrolyzed synthetic peptide substrates, showing a preference for Arg in the P1 position. DESC1 proteolytic activity was abolished by generic inhibitors of serine proteases but not by other classes of protease inhibitors. Most interestingly, DESC1 formed stable inhibitory complexes with both plasminogen activator inhibitor-1 and protein C inhibitor that are expressed in the same tissues with DESC1, suggesting that type II transmembrane serine proteases may be novel targets for serpin inhibition. Together, these data show that mouse DESC1 encodes a functional cell surface serine protease that may have important functions in the epidermis, oral, and reproductive epithelium.
Collapse
Affiliation(s)
- John P Hobson
- Proteases and Tissue Remodeling Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
631
|
Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A 2004; 101:10000-5. [PMID: 15220480 PMCID: PMC454150 DOI: 10.1073/pnas.0402784101] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metalloproteases (MPs) are a large and diverse class of enzymes implicated in numerous physiological and pathological processes, including tissue remodeling, peptide hormone processing, and cancer. MPs are tightly regulated by multiple posttranslational mechanisms in vivo, hindering their functional analysis by conventional genomic and proteomic methods. Here we describe a general strategy for creating activity-based proteomic probes for MPs by coupling a zinc-chelating hydroxamate to a benzophenone photocrosslinker, which promote selective binding and modification of MP active sites, respectively. These probes labeled active MPs but not their zymogen or inhibitor-bound counterparts and were used to identify members of this enzyme class up-regulated in invasive cancer cells and to evaluate the selectivity of MP inhibitors in whole proteomes. Interestingly, the matrix metalloproteinase inhibitor GM6001 (ilomastat), which is currently in clinical development, was found to also target the neprilysin, aminopeptidase, and dipeptidylpeptidase clans of MPs. These results demonstrate that MPs can display overlapping inhibitor sensitivities despite lacking sequence homology and stress the need to evaluate MP inhibitors broadly across this enzyme class to develop agents with suitable target selectivities in vivo. Activity-based profiling offers a powerful means for conducting such screens, as this approach can be carried out directly in whole proteomes, thereby facilitating the discovery of disease-associated MPs concurrently with inhibitors that selectively target these proteins.
Collapse
Affiliation(s)
- Alan Saghatelian
- The Skaggs Institute for Chemical Biology and Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
632
|
Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM. Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol 2004; 57:577-84. [PMID: 15166260 PMCID: PMC1770325 DOI: 10.1136/jcp.2003.014472] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell surface proteolysis is an important mechanism for generating biologically active proteins that mediate a range of cellular functions and contribute to biological processes such as angiogenesis. Although most studies have focused on the plasminogen system and matrix metalloproteinases (MMPs), recently there has been an increase in the identification of membrane associated proteases, including serine proteases, ADAMs, and membrane-type MMPs (MT-MMPs). Normally, protease activity is tightly controlled by tissue inhibitors of MMPs (TIMPs) and plasminogen activator inhibitors (PAIs). The balance between active proteases and inhibitors is thought to determine the occurrence of proteolysis in vivo. High concentrations of proteolytic system components correlate with poor prognosis in many cancers. Paradoxically, high (not low) PAI-1 or TIMP concentrations predict poor survival in patients with various cancers. Recent observations indicate a much more complex role for protease inhibitors in tumour progression and angiogenesis than initially expected. As knowledge in the field of protease biology has improved, the unforeseen complexities of cell associated enzymes and their interaction with physiological inhibitors have emerged, often revealing unexpected mechanisms of action.
Collapse
Affiliation(s)
- A Noel
- Laboratory of Tumour and Development Biology, University of Liège, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
633
|
Borgoño CA, Michael IP, Diamandis EP. Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.257.2.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone–regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A. Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Iacovos P. Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
634
|
Behrendt N. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem 2004; 385:103-36. [PMID: 15101555 DOI: 10.1515/bc.2004.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The breakdown of the barriers formed by extracellular matrix proteins is a pre-requisite for all processes of tissue remodeling. Matrix degradation reactions take part in specific physiological events in the healthy organism but also represent a crucial step in cancer invasion. These degradation processes involve a highly organized interplay between proteases and their cellular binding sites as well as specific substrates and internalization receptors. This review article is focused on two components, the urokinase plasminogen activator receptor (uPAR) and the uPAR-associated protein (uPARAP, also designated Endo180), that are considered crucially engaged in matrix degradation. uPAR and uPARAP have highly diverse functions, but on certain cell types they interact with each other in a process that is still incompletely understood. uPAR is a glycosyl-phosphatidylinositol-anchored glycoprotein on the surface of various cell types that serves to bind the urokinase plasminogen activator and localize the activation reactions in the proteolytic cascade system of plasminogen activation. uPARAP is an integral membrane protein with a pronounced role in the internalization of collagen for intracellular degradation. Both receptors have additional functions that are currently being unraveled. The present discussion of uPAR and uPARAP is centered on their protein structure and molecular and cellular function.
Collapse
Affiliation(s)
- Niels Behrendt
- Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, Bldg. 7.2, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
635
|
Nuttall RK, Sampieri CL, Pennington CJ, Gill SE, Schultz GA, Edwards DR. Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Lett 2004; 563:129-34. [PMID: 15063736 DOI: 10.1016/s0014-5793(04)00281-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 02/27/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
Matrix metalloproteinases (MMPs) and adamalysins (ADAMs) cleave many extracellular proteins, including matrix, growth factors, and receptors. We profiled the RNA levels of every MMP, several ADAMs, and inhibitors of metalloproteinases (TIMPs and RECK) in numerous mouse tissues during development and in the uterus during pregnancy. Observations include: most secreted MMPs are expressed at low to undetectable levels in tissues, whereas membrane-bound MMPs, ADAMs and inhibitors are abundant; almost every proteinase and inhibitor is present in the uterus or placenta at some time during gestation; the mouse collagenases mColA and mColB are found exclusively in the uterus and testis; and each tissue has its unique signature of proteinase and inhibitor expression.
Collapse
Affiliation(s)
- Robert K Nuttall
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
636
|
Abstract
Cysteine cathepsins are involved in degradation of extracellular matrix, facilitating growth, invasion, and metastasis of tumor cells, in tumor angiogenesis, in apoptosis, and in events of inflammatory and immune responses. In this issue of Cancer Cell, demonstrate association of increased cathepsins activity with angiogenic vasculature and invasive fronts of carcinomas during tumorigenesis in transgenic mouse models using activity-based chemical probes and in vivo imaging. Moreover, this study shows that a broad-spectrum cysteine cathepsin inhibitor effectively blocks several stages of tumorigenesis in the RIP1-Tag2 transgenic mouse model, offering new therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Vito Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular Biology, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
637
|
Tam EM, Morrison CJ, Wu YI, Stack MS, Overall CM. Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci U S A 2004; 101:6917-22. [PMID: 15118097 PMCID: PMC406442 DOI: 10.1073/pnas.0305862101] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
By proteolytic modification of low abundant signaling proteins and membrane receptors, proteases exert potent posttranslational control over cell behavior at the postsecretion level. Hence, substrate discovery is indispensable for understanding the biological role of proteases in vivo. Indeed, matrix metalloproteinases (MMPs), long associated with extracellular matrix degradation, are increasingly recognized as important processing enzymes of bioactive molecules. MS is now the primary proteomic technique for detecting, identifying, and quantitating proteins in cells or tissues. Here we used isotopecoded affinity tag labeling and multidimensional liquid chromatography inline with tandem MS to identify MDA-MB-231 breast carcinoma cell proteins shed from the cell surface or the pericellular matrix and extracellular proteins that were degraded or processed after transfection with human membrane type 1-MMP (MT1-MMP). Potential substrates were identified as those having altered protein levels compared with the E240A inactive MT1-MMP mutant or vector transfectants. New substrates were biochemically confirmed by matrix-assisted laser desorption ionization-time-of-flight MS and Edman sequencing of cleavage fragments after incubation with recombinant soluble MT1-MMP in vitro. We report many previously uncharacterized substrates of MT1-MMP, including the neutrophil chemokine IL-8, secretory leukocyte protease inhibitor, pro-tumor necrosis factor alpha, death receptor-6, and connective tissue growth factor, indicating that MT1-MMP is an important signaling protease in addition to its traditionally ascribed roles in pericellular matrix remodeling. Moreover, the high-throughput and quantitative nature of isotope-coded affinity tag labeling combined with tandem MS sequencing is a previously undescribed degradomic screen for protease substrate discovery that should be generally adaptable to other classes of protease for exploring proteolytic function in complex and dynamic biological contexts.
Collapse
Affiliation(s)
- Eric M Tam
- Department of Biochemistry and Molecular Biology, Centre for Blood Research and Canadian Institutes of Health Research Group in Matrix Dynamics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
638
|
Quesada V, Díaz-Perales A, Gutiérrez-Fernández A, Garabaya C, Cal S, López-Otín C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun 2004; 314:54-62. [PMID: 14715245 DOI: 10.1016/j.bbrc.2003.12.050] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified and cloned 22 human cDNAs encoding novel members of the ubiquitin-specific protease (USP) family. Eighteen of the identified proteins contain all structural features characteristic of these cysteine proteinases, whereas four of them have been classified as non-peptidase homologues. Northern blot analysis demonstrated that the identified USPs are broadly and differentially distributed in human tissues, some of them being especially abundant in skeletal muscle or testis. Enzymatic studies performed with the identified USPs revealed that at least twelve of them are deubiquitylating enzymes based on their ability to cleave ubiquitin from a ubiquitin-beta-galactosidase fusion protein. These results provide additional evidence of the extreme complexity and diversity of the USP proteolytic system in human tissues and open the possibility to explore the relevance of their multiple components in the regulation of ubiquitin-mediated pathways in normal and pathological functions.
Collapse
Affiliation(s)
- Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
639
|
Quesada V, Sánchez LM, Alvarez J, López-Otín C. Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians, and fish. J Biol Chem 2004; 279:26627-34. [PMID: 15087446 DOI: 10.1074/jbc.m401588200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have cloned and characterized human and mouse ovary cDNAs encoding a new protein of the astacin family of metalloproteinases, called ovastacin because of its predominant expression in ovarian tissues. Human and mouse ovastacins exhibit the same domain organization as other astacins, including signal sequence, propeptide, and metalloproteinase domain. However, ovastacins show an additional C-terminal domain of about 150 amino acids with no similarity to other ancillary domains present in the equivalent region of most astacins. Northern blot analysis of human tissues and cell lines revealed that ovastacin is only detected at significant levels in leukemia and lymphoma cells of different origin. In addition, RT-PCR analysis demonstrated that ovastacin is expressed in human and mouse ovary, in unfertilized mouse oocytes, and in 1.5-day-postcoitum preimplantation embryos. Further studies showed that superovulation caused a dramatic increase in the expression of mouse ovastacin, indicating that the production of this enzyme is under hormonal regulation. Human ovastacin was expressed in Escherichia coli and the purified recombinant protein hydrolyzed synthetic substrates used for assaying metalloproteinases. These activities were abolished by inhibitors of metalloproteinases, but not by inhibitors of other classes of proteases. On the basis of these results, we suggest that ovastacin could play in mammals a physiological function similar to that performed by hatching proteases in evolutionary distant species from arthropods to fish.
Collapse
Affiliation(s)
- Víctor Quesada
- Departamento de Bioquimica y Biologia Molecular and Morfologia y Biologia Celular, Facultad de Medicina, Instituto Universitario de Oncologia, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | |
Collapse
|
640
|
Puente XS, López-Otín C. A genomic analysis of rat proteases and protease inhibitors. Genome Res 2004; 14:609-22. [PMID: 15060002 PMCID: PMC383305 DOI: 10.1101/gr.1946304] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 11/24/2003] [Indexed: 11/25/2022]
Abstract
Proteases perform important roles in multiple biological and pathological processes. The availability of the rat genome sequence has facilitated the analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. This distribution is similar to that of the mouse degradome but is more complex than that of the human degradome composed of 561 proteases and homologs. This increased complexity of rat proteases mainly derives from the expansion of several families, including placental cathepsins, testases, kallikreins, and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in rat and mouse and may contribute to explain some functional differences between these closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with mouse protease inhibitors and the expansion of families of cysteine and serine protease inhibitors in rodents with respect to human. These comparative analyses may provide new views on the functional diversity of proteases and inhibitors and contribute to the development of innovative strategies for treating proteolysis diseases.
Collapse
Affiliation(s)
- Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | |
Collapse
|
641
|
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Simons R, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Albà M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hübner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, López-Otín C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 2004; 428:493-521. [PMID: 15057822 DOI: 10.1038/nature02426] [Citation(s) in RCA: 1547] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 02/20/2004] [Indexed: 01/16/2023]
Abstract
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
Collapse
Affiliation(s)
- Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, MS BCM226, One Baylor Plaza, Houston, Texas 77030, USA. http://www.hgsc.bcm.tmc.edu
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
642
|
Byrne LC, Zhou Z, Tryggvason K, Hökfelt T, Fetissov SO. Altered NPY and AgRP in membrane type-1 matrix metalloproteinase-deficient mice. Neuroreport 2004; 15:569-74. [PMID: 15094525 DOI: 10.1097/00001756-200403010-00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane-type-1 matrix metalloproteinase (MT1-MMP) knockout (KO) mice fail to gain weight and die 3-4 weeks after birth. To understand the wasting phenotype in MT1-MMP-KO mice we studied the expression of some hypothalamic neuropeptides involved in control of appetite and body weight. In MT1-MMP-KO mice, neuronal perikarya in the arcuate nucleus displayed accumulations of NPY and agouti-related protein (AgRP) immunoreactivity (-ir). In contrast, NPY-ir and AgRP-ir were reduced in the projection areas of the arcuate neurons. NPY and AgRP are known to relay metabolic signals from the periphery into the brain to stimulate body weight gain. Their altered subcellular distribution suggests that MT1-MMP is involved in postnatal development of the arcuate NPY/AgRP-system which may contribute to the generation of the wasting phenotype.
Collapse
Affiliation(s)
- Leah C Byrne
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
643
|
Abstract
Peptidases (proteolytic enzymes) are of great relevance to biology, medicine and biotechnology. This practical importance creates a need for an integrated source of information about them, and also about their natural inhibitors. The MEROPS database (http://merops.sanger.ac.uk) aims to fill this need. The organizational principle of the database is a hierarchical classification in which homologous sets of the proteins of interest are grouped in families and the homologous families are grouped in clans. Each peptidase, family and clan has a unique identifier. The database has recently been expanded to include the protein inhibitors of peptidases, and these are classified in much the same way as the peptidases. Forms of information recently added include new links to other databases, summary alignments for peptidase clans, displays to show the distribution of peptidases and inhibitors among organisms, substrate cleavage sites and indexes for expressed sequence tag libraries containing peptidases. A new way of making hyperlinks to the database has been devised and a BlastP search of our library of peptidase and inhibitor sequences has been added.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | |
Collapse
|
644
|
Hojilla CV, Mohammed FF, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2004; 89:1817-21. [PMID: 14612884 PMCID: PMC2394437 DOI: 10.1038/sj.bjc.6601327] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) were initially recognised for their extracellular matrix (ECM)-degrading capability during tissue remodelling. Their importance was further highlighted by their role in metastasis. Clinical trials have since evaluated the potential of MMP inhibitors as anticancer therapeutics, but without success. These initial studies point to the complex, multifunctional capacity of MMPs in cancer as shown by their function, not only as strident mediators of advanced malignancies, but also as effectors of early stage tumorigenesis. Research now shows that MMPs, and their tissue inhibitors, affect tumour initiation and growth through loss of cell adhesion, evasion of apoptosis, and deregulation of cell division. The extracellular nature of the metalloproteinase axis situates it as a master regulator of cell fate.
Collapse
Affiliation(s)
- C V Hojilla
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - F F Mohammed
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - R Khokha
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Ontario Cancer Institute, University Health Network, Toronto, Canada. E-mail: .
| |
Collapse
|
645
|
Hagemann S, Günther T, Dennemärker J, Lohmüller T, Brömme D, Schüle R, Peters C, Reinheckel T. The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Eur J Cell Biol 2004; 83:775-80. [PMID: 15679121 DOI: 10.1078/0171-9335-00404] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking the ubiquitously expressed lysosomal cysteine protease cathepsin L, show a complex skin phenotype consisting of periodic hair loss and epidermal hyperplasia with hyperproliferation of basal epidermal keratinocytes, acanthosis and hyperkeratosis. The recently identified human cathepsin L-like enzyme cathepsin V, which is also termed cathepsin L2, is specifically expressed in cornea, testis, thymus, and epidermis. To date, in mice no cathepsin V orthologue with this typical expression pattern has been identified. Since cathepsin V has about 75% protein sequence identity to murine cathepsin L, we hypothesized that transgenic, keratinocyte-specific expression of cathepsin V in cathepsin L knockout mice might rescue the skin and hair phenotype. Thus, we generated a transgenic mouse line expressing cathepsin V under the control of the human keratin 14 promoter, which mimics the genuine cathepsin V expression pattern in human skin, by directing it to basal epidermal keratinocytes and the outer root sheath of hair follicles. Subsequently, transgenic mice were crossed with congenic cathepsin L knockout animals. The resulting mice show normalization of epidermal proliferation and normal epidermal thickness as well as rescue of the hair phenotype. These findings provide evidence for keratinocyte-specific pivotal functions of cathepsin L-like proteolytic activities in maintenance of epidermis and hair follicles and suggest, that cathepsin V may perform similar functions in human skin.
Collapse
Affiliation(s)
- Sascha Hagemann
- Institut für Molekulare Medizin und Zellforschung, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
646
|
Shridhar R, Zhang J, Song J, Booth BA, Kevil CG, Sotiropoulou G, Sloane BF, Keppler D. Cystatin M suppresses the malignant phenotype of human MDA-MB-435S cells. Oncogene 2003; 23:2206-15. [PMID: 14676833 DOI: 10.1038/sj.onc.1207340] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteases are involved in many aspects of tumor progression, including cell survival and proliferation, escape from immune surveillance, cell adhesion and migration, remodeling and invasion of the extracellular matrix. Several lysosomal cysteine proteases have been cloned and shown to be overexpressed in cancer; yet, despite the great potential for development of novel therapeutics, we still know little about the regulation of their proteolytic activity. Cystatins such as cystatin M are potent endogenous protein inhibitors of lysosomal cysteine proteases. Cystatin M is expressed in normal and premalignant human epithelial cells, but not in many cancer cell lines. Here, we examined the effects of cystatin M expression on malignant properties of human breast carcinoma MDA-MB-435S cells. Cystatin M was found to significantly reduce in vitro: cell proliferation, migration, Matrigel invasion, and adhesion to endothelial cells. Reduction of cell proliferation and adhesion to an endothelial cell monolayer were both independent of the inhibition of lysosomal cysteine proteases. In contrast, cell migration and matrix invasion seemed to rely on lysosomal cysteine proteases, as both recombinant cystatin M and E64 were able to block these processes. This study provides the first evidence that cystatin M may play important roles in safeguarding against human breast cancer.
Collapse
Affiliation(s)
- Ravi Shridhar
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
647
|
Brooks DR, Appleford PJ, Murray L, Isaac RE. An Essential Role in Molting and Morphogenesis of Caenorhabditis elegans for ACN-1, a Novel Member of the Angiotensin-converting Enzyme Family That Lacks a Metallopeptidase Active Site. J Biol Chem 2003; 278:52340-6. [PMID: 14559923 DOI: 10.1074/jbc.m308858200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome sequence analyses predict many proteins that are structurally related to proteases but lack catalytic residues, thus making functional assignment difficult. We show that one of these proteins (ACN-1), a unique multi-domain angiotensin-converting enzyme (ACE)-like protein from Caenorhabditis elegans, is essential for larval development and adult morphogenesis. Green fluorescent protein-tagged ACN-1 is expressed in hypodermal cells, the developing vulva, and the ray papillae of the male tail. The hypodermal expression of acn-1 appears to be controlled by nhr-23 and nhr-25, two nuclear hormone receptors known to regulate molting in C. elegans. acn-1(RNAi) causes arrest of larval development because of a molting defect, a protruding vulva in adult hermaphrodites, severely disrupted alae, and an incomplete seam syncytium. Adult males also have multiple tail defects. The failure of the larval seam cells to undergo normal cell fusion is the likely reason for the severe disruption of the adult alae. We propose that alteration of the ancestral ACE during evolution, by loss of the metallopeptidase active site and the addition of new protein modules, has provided opportunities for novel molecular interactions important for post-embryonic development in nematodes.
Collapse
Affiliation(s)
- Darren R Brooks
- Molecular and Cellular Biosciences Research, Faculty of Biological Sciences, Miall Building, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
648
|
Balbín M, Fueyo A, Tester AM, Pendás AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, López-Otín C. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 2003; 35:252-7. [PMID: 14517555 DOI: 10.1038/ng1249] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 09/11/2003] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) have fundamental roles in tumor progression, but most clinical trials with MMP inhibitors have not shown improvements in individuals with cancer. This may be partly because broad-range inhibitors also reduce host-protective antitumor properties of individual MMPs. We generated mice deficient in collagenase-2 (Mmp8), an MMP mainly produced by neutrophils in inflammatory reactions and detected in some malignant tumors. Loss of Mmp8 did not cause abnormalities during embryonic development or in adult mice. Contrary to previous studies with MMP-deficient mice, however, the absence of Mmp8 strongly increased the incidence of skin tumors in male Mmp8(-/-)mice. Female Mmp8(-/-)mice whose ovaries were removed or were treated with tamoxifen were also more susceptible to tumors compared with wild-type mice. Bone marrow transplantation experiments confirmed that Mmp8 supplied by neutrophils was sufficient to restore the natural protection against tumor development mediated by this protease in male mice. Histopathological analysis showed that mutant mice had abnormalities in the inflammatory response induced by carcinogens. Our study identifies a paradoxical protective role for Mmp8 in cancer and provides a genetic model to evaluate the molecular basis of gender differences in cancer susceptibility.
Collapse
Affiliation(s)
- Milagros Balbín
- Departamentos de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
649
|
Cal S, Quesada V, Garabaya C, Lopez-Otin C. Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product. Proc Natl Acad Sci U S A 2003; 100:9185-90. [PMID: 12886014 PMCID: PMC170893 DOI: 10.1073/pnas.1633392100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Indexed: 01/27/2023] Open
Abstract
We have identified and cloned a human liver cDNA encoding an unusual mosaic polyprotein, called polyserase-I (polyserine protease-I). This protein exhibits a complex domain organization including a type II transmembrane motif, a low-density lipoprotein receptor A module, and three tandem serine protease domains. This unusual modular architecture is also present in the sequences predicted for mouse and rat polyserase-I. Human polyserase-I gene maps to 19p13, and its last exon overlaps with that corresponding to the 3' UTR of the gene encoding translocase of mitochondrial inner membrane 13. Northern blot analysis showed the presence of a major polyserase-I transcript of 5.4 kb in human fetal and adult tissues and in tumor cell lines. Analysis of processing mechanisms of polyserase-I revealed that it is synthesized as a membrane-associated polyprotein that is further processed to generate three independent serine protease units. Two of these domains are proteolytically active against synthetic peptides commonly used for assaying serine proteases. These proteolytic activities of the polyserase-I units are blocked by serine protease inhibitors. We show an example of generation of separate serine protease domains from a single translation product in human tissues and illustrate an additional mechanism for expanding the complexity of the human degradome, the entire protease complement of human cells and tissues.
Collapse
Affiliation(s)
- Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | |
Collapse
|