651
|
Mahajan T, Rai K. A novel optogenetically tunable frequency modulating oscillator. PLoS One 2018; 13:e0183242. [PMID: 29389936 PMCID: PMC5794059 DOI: 10.1371/journal.pone.0183242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
Collapse
Affiliation(s)
- Tarun Mahajan
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- * E-mail:
| | - Kshitij Rai
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
652
|
Li G, Yang J, Yang W, Wang F, Wang Y, Wang W, Liu L. Label-free multidimensional information acquisition from optogenetically engineered cells using a graphene transistor. NANOSCALE 2018; 10:2285-2290. [PMID: 29334115 DOI: 10.1039/c7nr07264c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The optogenetic technique, which allows the manipulation of cellular activity patterns in space and time by light, has transformed the field of neuroscience. However, acquiring multidimensional optogenetic information remains challenging despite the fact that several cellular information detection methods have been proposed. Herein, we present a new method to acquire label-free multidimensional information from optogenetically engineered cells using a graphene transistor. Using a graphene film to form a strong densely packed layer with cells, the cellular action potentials were characterized as light-activated transistor conductance signals, which quantified the multidimensional optogenetic information. Based on this approach, some important cellular optogenetic information, including electrophysiological state, cell concentration, expression levels of opsin and response to variable light intensity, were also precisely detected. Furthermore, the graphene transistor was also used to distinguish cells expressing different channelrhodopsin-2 variants. Our study offers a general detection method of multidimensional optogenetic information for extending the applications of the optogenetic technique and provides a novel sensor for the development of future biological prosthetic devices.
Collapse
Affiliation(s)
- Gongxin Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, 110016, China.
| | | | | | | | | | | | | |
Collapse
|
653
|
Robinson JE, Gradinaru V. Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Curr Opin Neurobiol 2018; 48:17-29. [PMID: 28850815 PMCID: PMC5825239 DOI: 10.1016/j.conb.2017.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Neurodevelopmental disorders (NDDs) represent a diverse group of syndromes characterized by abnormal development of the central nervous system and whose symptomatology includes cognitive, emotional, sensory, and motor impairments. The identification of causative genetic defects has allowed for creation of transgenic NDD mouse models that have revealed pathophysiological mechanisms of disease phenotypes in a neural circuit- and cell type-specific manner. Mouse models of several syndromes, including Rett syndrome, Fragile X syndrome, Angelman syndrome, Neurofibromatosis type 1, etc., exhibit abnormalities in the structure and function of dopaminergic circuitry, which regulates motivation, motor behavior, sociability, attention, and executive function. Recent advances in technologies for functional circuit mapping, including tissue clearing, viral vector-based tracing methods, and optical readouts of neural activity, have refined our knowledge of dopaminergic circuits in unperturbed states, yet these tools have not been widely applied to NDD research. Here, we will review recent findings exploring dopaminergic function in NDD models and discuss the promise of new tools to probe NDD pathophysiology in these circuits.
Collapse
Affiliation(s)
- J Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
654
|
Bergs A, Schultheis C, Fischer E, Tsunoda SP, Erbguth K, Husson SJ, Govorunova E, Spudich JL, Nagel G, Gottschalk A, Liewald JF. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS One 2018; 13:e0191802. [PMID: 29389997 PMCID: PMC5794093 DOI: 10.1371/journal.pone.0191802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
In optogenetics, rhodopsins were established as light-driven tools to manipulate neuronal activity. However, during long-term photostimulation using channelrhodopsin (ChR), desensitization can reduce effects. Furthermore, requirement for continuous presence of the chromophore all-trans retinal (ATR) in model systems lacking sufficient endogenous concentrations limits its applicability. We tested known, and engineered and characterized new variants of de- and hyperpolarizing rhodopsins in Caenorhabditis elegans. ChR2 variants combined previously described point mutations that may synergize to enable prolonged stimulation. Following brief light pulses ChR2(C128S;H134R) induced muscle activation for minutes or even for hours (‘Quint’: ChR2(C128S;L132C;H134R;D156A;T159C)), thus featuring longer open state lifetime than previously described variants. Furthermore, stability after ATR removal was increased compared to the step-function opsin ChR2(C128S). The double mutants C128S;H134R and H134R;D156C enabled increased effects during repetitive stimulation. We also tested new hyperpolarizers (ACR1, ACR2, ACR1(C102A), ZipACR). Particularly ACR1 and ACR2 showed strong effects in behavioral assays and very large currents with fast kinetics. In sum, we introduce highly light-sensitive optogenetic tools, bypassing previous shortcomings, and thus constituting new tools that feature high effectiveness and fast kinetics, allowing better repetitive stimulation or investigating prolonged neuronal activity states in C. elegans and, possibly, other systems.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Christian Schultheis
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Elisabeth Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Satoshi P. Tsunoda
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Karen Erbguth
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Steven J. Husson
- Systemic Physiological & Ecotoxicological Research (SPHERE), University of Antwerp, Antwerp, Belgium
| | - Elena Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - Georg Nagel
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| | - Jana F. Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| |
Collapse
|
655
|
O'Banion CP, Priestman MA, Hughes RM, Herring LE, Capuzzi SJ, Lawrence DS. Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase. Cell Chem Biol 2018; 25:100-109.e8. [PMID: 29104065 PMCID: PMC5777159 DOI: 10.1016/j.chembiol.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/27/2017] [Indexed: 11/30/2022]
Abstract
Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
Collapse
Affiliation(s)
- Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Melanie A Priestman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert M Hughes
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry; East Carolina University, Greenville, NC 27858, USA
| | - Laura E Herring
- UNC Proteomics Core, Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen J Capuzzi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
656
|
Abstract
Electrophysiological and cell imaging techniques are powerful tools for understanding alterations in neuronal activity in Huntington's disease (HD), a fatal neurological disorder caused by an expansion of CAG repeats in the HTT gene. Changes in neuronal activity often precede the behavioral manifestations of HD, therefore, understanding the electrophysiology of HD is critical for identifying potential prodromal markers and therapeutic targets. This chapter outlines the basic methodology behind four major electrophysiological and imaging techniques used in HD mouse models: patch clamp recordings, optogenetics, in vivo electrophysiology, and Ca2+ imaging, as well as some of the advancements in HD research using each of these techniques.
Collapse
|
657
|
Capitalizing on Directed Evolution and Rational Protein Engineering to Expand the Neuroscientist's Imaging Toolbox. J Neurosci 2018; 36:5431-3. [PMID: 27194323 DOI: 10.1523/jneurosci.0793-16.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022] Open
|
658
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
659
|
Abstract
For many years, the complexity and multifactorial nature of brain-immune interactions limited our ability to dissect their underlying mechanisms. An especially challenging question was how the brain controls immunity, since the repertoire of techniques to control the brain's activity was extremely limited. New tools, such as optogenetics and chemogenetics (e.g., DREADDs), developed over the last decade, opened new frontiers in neuroscience with major implications for neuroimmunology. These tools enable mapping the causal effects of activating/attenuating defined neurons in the brain, on the immune system. Here, we present a detailed experimental protocol for the analysis of brain-immune interactions, based on chemogenetic or optogenetic manipulation of defined neuronal populations in the brain, and the subsequent analysis of immune cells. Such detailed and systematic dissection of brain-immune interactions has the potential to revolutionize our understanding of how mental and neurological states affect health and disease.
Collapse
Affiliation(s)
- Ben Korin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
660
|
Neuromodulation Using Optogenetics and Related Technologies. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
661
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
662
|
Scholl HPN, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, Sahel JA. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2017; 8:368rv6. [PMID: 27928030 DOI: 10.1126/scitranslmed.aaf2838] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Inherited retinal degenerative diseases, a genetically and phenotypically heterogeneous group of disorders, affect the function of photoreceptor cells and are among the leading causes of blindness. Recent advances in molecular genetics and cell biology are elucidating the pathophysiological mechanisms underlying these disorders and are helping to identify new therapeutic approaches, such as gene therapy, stem cell therapy, and optogenetics. Several of these approaches have entered the clinical phase of development. Artificial replacement of dying photoreceptor cells using retinal prostheses has received regulatory approval. Precise retinal imaging and testing of visual function are facilitating more efficient clinical trial design. In individual patients, disease stage will determine whether the therapeutic strategy should comprise photoreceptor cell rescue to delay or arrest vision loss or retinal replacement for vision restoration.
Collapse
Affiliation(s)
- Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland. .,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rupert W Strauss
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA.,Moorfields Eye Hospital, London EC1V 2PD, U.K.,UCL Institute of Ophthalmology, University College London, London EC1V 9EL, U.K.,Department of Ophthalmology, Medical University Graz, Graz, Austria.,Department of Ophthalmology, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Deniz Dalkara
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - Botond Roska
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland.,Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serge Picaud
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - José-Alain Sahel
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.,Centre d'Investigation Clinique 1423, INSERM-Center Hospitalier National d'Ophtalmologie des Quinze-Vingts, 75012 Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
663
|
Abstract
The past decade has witnessed the development of powerful, genetically encoded tools for manipulating and monitoring neuronal function in freely moving animals. These tools are most readily deployed in genetic model organisms and efforts to map the circuits that govern behavior have increasingly focused on worms, flies, zebrafish, and mice. The traditional virtues of these animals for genetic studies in terms of small size, short generation times, and ease of animal husbandry in a laboratory setting have facilitated rapid progress, and the neural basis of an increasing number of behaviors is being established at cellular resolution in each of these animals. The depth and breadth of this analysis should soon offer a significantly more comprehensive understanding of how the circuitry underlying behavior is organized in particular animals and promises to help answer long-standing questions that have waited for such a brain-wide perspective on nervous system function. The comprehensive understanding achieved in genetic model animals is thus likely to make them into paradigmatic examples that will serve as touchstones for comparisons to understand how behavior is organized in other animals, including ourselves.
Collapse
Affiliation(s)
- Benjamin H White
- a Laboratory of Molecular Biology , National Institute of Mental Health, NIH , Bethesda , MD , USA
| |
Collapse
|
664
|
Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophys J 2017; 114:283-288. [PMID: 29273263 PMCID: PMC5984948 DOI: 10.1016/j.bpj.2017.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 11/20/2022] Open
Abstract
Millisecond pulses of laser light delivered to gold nanoparticles residing in close proximity to the surface membrane of neurons can induce membrane depolarization and initiate an action potential. An optocapacitance mechanism proposed as the basis of this effect posits that the membrane-interfaced particle photothermally induces a cell-depolarizing capacitive current, and predicts that delivering a given laser pulse energy within a shorter period should increase the pulse's action-potential-generating effectiveness by increasing the magnitude of this capacitive current. Experiments on dorsal root ganglion cells show that, for each of a group of interfaced gold nanoparticles and microscale carbon particles, reducing pulse duration from milliseconds to microseconds markedly decreases the minimal pulse energy required for AP generation, providing strong support for the optocapacitance mechanism hypothesis.
Collapse
|
665
|
Chen Y, Lu L, Ye S. Genetic Code Expansion and Optoproteomics. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:599-610. [PMID: 29259524 PMCID: PMC5733852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nature has invented photoreceptor proteins that are involved in sensing and response to light in living organisms. Genetic code expansion (GCE) technology has provided new tools to transform light insensitive proteins into novel photoreceptor proteins. It is achieved by the site-specific incorporation of unnatural amino acids (Uaas) that carry light sensitive moieties serving as "pigments" that react to light via photo-decaging, cross-linking, or isomerization. Over the last two decades, various proteins including ion channels, GPCRs, transporters, and kinases have been successfully rendered light responsive owing to the functionalities of Uaas. Very recently, Cas9 protein has been engineered to enable light activation of genomic editing by CRISPR. Those novel proteins have not only led to discoveries of dynamic protein conformational changes with implications in diseases, but also facilitated the screening of ligand-protein and protein-protein interactions of pharmacological significance. This review covers the genetic editing principles for genetic code expansion and design concepts that guide the engineering of light-sensitive proteins. The applications have brought up a new concept of "optoproteomics" that, in contrast to "optogenetics," aims to combine optical methods and site-specific proteomics for investigating and intervening in biological functions.
Collapse
Affiliation(s)
- Yuting Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (ECNU), Shanghai, China
| | - Linjie Lu
- Université Pierre-et-Marie-Curie, Laboratory of Computational and Quantitative Biology (LCQB), Institute of Biology Paris-Seine, Paris, France
| | - Shixin Ye
- Université Pierre-et-Marie-Curie, Laboratory of Computational and Quantitative Biology (LCQB), Institute of Biology Paris-Seine, Paris, France,Institut National de la Santé et de la Recherche Médicale, Paris, France,Centre National de la Recherche Scientifique, Paris, France,To whom all correspondence should be addressed: Shixin Ye-Lehmann, Laboratory of Computational and Quantitative Biology, Institute of Biology Paris-Seine, University of Pierre and Marie Curie, Bldg. C, 3rd floor, Room 311a, 4 Place Jussieu, 75006 Paris, France, Tel: 33.(0)1.44.27.60.57, .
| |
Collapse
|
666
|
Durand-de Cuttoli R, Mondoloni S, Mourot A. [Optically dissecting brain nicotinic receptor function with photo-controllable designer receptors]. Biol Aujourdhui 2017; 211:173-188. [PMID: 29236669 DOI: 10.1051/jbio/2017022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels widely expressed in the central nervous system and the periphery. They play an important modulatory role in learning, memory and attention, and have been implicated in various diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia and addiction. These receptors are activated by the endogenous neurotransmitter acetylcholine, or by nicotine, the alkaloid found in tobacco leaves. Both molecules open the ion channel and cause the movement of cations across the membrane, which directly affects neuronal excitability and synaptic plasticity. nAChRs are very heterogeneous in their subunit composition (α2-10 et β2-4), in their brain distribution (cortex, midbrain, striatum…) and in their sub-cellular localization (pre- vs post-synaptic, axonal, dendritic…). This heterogeneity highly contributes to the very diverse roles these receptors have in health and disease. The ability to activate or block a specific nAChR subtype, at a defined time and space within the brain, would greatly help obtaining a clearer picture of these various functions. To this aim, we are developing novel optogenetic pharmacology strategies for optically controlling endogenous nAChR isoforms within the mouse brain. The idea is to tether a chemical photoswitch on the surface of a cysteine-modified nAChR, and use light for rapidly and reversibly turning that receptor mutant on and off. Here we will discuss the history of optogenetic pharmacology, and the recent advances for the optical control of brain nicotinic receptors in vivo.
Collapse
Affiliation(s)
- Romain Durand-de Cuttoli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Sarah Mondoloni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
667
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
668
|
Abstract
Rodents (especially Mus musculus and Rattus norvegicus) have been the most widely used models in biomedical research for many years. A notable shift has taken place over the last two decades, with mice taking a more and more prominent role in biomedical science compared to rats. This shift was primarily instigated by the availability of a much larger genetic toolbox for mice, particularly embryonic-stem-cell-based targeting technology for gene disruption. With the recent emergence of tools for altering the rat genome, notably genome-editing technologies, the technological gap between the two organisms is closing, and it is becoming more important to consider the physiological, anatomical, biochemical and pharmacological differences between rats and mice when choosing the right model system for a specific biological question. The aim of this short review and accompanying poster is to highlight some of the most important differences, and to discuss their impact on studies of human diseases, with a special focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| | - Jiun Youn
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| |
Collapse
|
669
|
Humphries MD. Dynamical networks: Finding, measuring, and tracking neural population activity using network science. Netw Neurosci 2017; 1:324-338. [PMID: 30090869 PMCID: PMC6063717 DOI: 10.1162/netn_a_00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/04/2022] Open
Abstract
Systems neuroscience is in a headlong rush to record from as many neurons at the same time as possible. As the brain computes and codes using neuron populations, it is hoped these data will uncover the fundamentals of neural computation. But with hundreds, thousands, or more simultaneously recorded neurons come the inescapable problems of visualizing, describing, and quantifying their interactions. Here I argue that network science provides a set of scalable, analytical tools that already solve these problems. By treating neurons as nodes and their interactions as links, a single network can visualize and describe an arbitrarily large recording. I show that with this description we can quantify the effects of manipulating a neural circuit, track changes in population dynamics over time, and quantitatively define theoretical concepts of neural populations such as cell assemblies. Using network science as a core part of analyzing population recordings will thus provide both qualitative and quantitative advances to our understanding of neural computation.
Collapse
Affiliation(s)
- Mark D. Humphries
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
670
|
Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 2017; 9:861-876. [PMID: 29178082 DOI: 10.1007/s12551-017-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.
Collapse
Affiliation(s)
- Akimasa Kaneko
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
671
|
Christensen AJ, Iyer SM, François A, Vyas S, Ramakrishnan C, Vesuna S, Deisseroth K, Scherrer G, Delp SL. In Vivo Interrogation of Spinal Mechanosensory Circuits. Cell Rep 2017; 17:1699-1710. [PMID: 27806306 DOI: 10.1016/j.celrep.2016.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 11/26/2022] Open
Abstract
Spinal dorsal horn circuits receive, process, and transmit somatosensory information. To understand how specific components of these circuits contribute to behavior, it is critical to be able to directly modulate their activity in unanesthetized in vivo conditions. Here, we develop experimental tools that enable optogenetic control of spinal circuitry in freely moving mice using commonly available materials. We use these tools to examine mechanosensory processing in the spinal cord and observe that optogenetic activation of somatostatin-positive interneurons facilitates both mechanosensory and itch-related behavior, while reversible chemogenetic inhibition of these neurons suppresses mechanosensation. These results extend recent findings regarding the processing of mechanosensory information in the spinal cord and indicate the potential for activity-induced release of the somatostatin neuropeptide to affect processing of itch. The spinal implant approach we describe here is likely to enable a wide range of studies to elucidate spinal circuits underlying pain, touch, itch, and movement.
Collapse
Affiliation(s)
- Amelia J Christensen
- Department of Electrical Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Shrivats M Iyer
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Saurabh Vyas
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Stanford Neurosciences Institute, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
| | - Scott L Delp
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
672
|
Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2017; 192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Optogenetics has emerged as an important tool in neuroscience, especially in central nervous system research. It allows for the study of the brain's highly complex network with high temporal and spatial resolution. The enteric nervous system (ENS), the brain in the gut, plays critical roles for life. Although advanced progress has been made, the neural circuits of the ENS remain only partly understood because the appropriate research tools are lacking. In this review, I highlight the potential application of optogenetics in ENS research. Firstly, I describe the development of optogenetics with focusing on its three main components. I discuss the applications in vitro and in vivo, and summarize current findings in the ENS research field obtained by optogenetics. Finally, the challenges for the application of optogenetics to the ENS research will be discussed.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
673
|
Optogenetic noise-photostimulation on the brain increases somatosensory spike firing responses. Neurosci Lett 2017; 664:51-57. [PMID: 29128628 DOI: 10.1016/j.neulet.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 11/21/2022]
Abstract
We examined whether the optogenetic noise-photostimulation (ONP) of the barrel cortex (BC) of anesthetized Thy1-ChR2-YFP transgenic mice increases the neuronal multiunit-activity response evoked by whisker mechanical stimulation (whisker-evoked MUA). In all transgenic mice, we found that the signal-to-noise ratio (SNR) of such whisker-evoked MUA signals exhibited an inverted U-like shape as a function of the ONP level. Numerical simulations of a ChR2-expressing neuron model qualitatively support our experimental data. These results show that the application of an intermediate intensity of ONP in the brain can increase cortical somatosensory spike responses to whisker protraction. These findings suggest that ONP of the mice-BC could produce improvements in somatosensory perception to whisker stimulation.
Collapse
|
674
|
Galvan A, Stauffer WR, Acker L, El-Shamayleh Y, Inoue KI, Ohayon S, Schmid MC. Nonhuman Primate Optogenetics: Recent Advances and Future Directions. J Neurosci 2017; 37:10894-10903. [PMID: 29118219 PMCID: PMC5678022 DOI: 10.1523/jneurosci.1839-17.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior, optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summarize how optogenetic experiments are expanding our understanding of primate brain function.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center and Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329,
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yasmine El-Shamayleh
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Ken-Ichi Inoue
- Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Shay Ohayon
- McGovern Institute for Brain Research, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Michael C Schmid
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom NE2 4HH
| |
Collapse
|
675
|
Mohamed GA, Cheng RK, Ho J, Krishnan S, Mohammad F, Claridge-Chang A, Jesuthasan S. Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins. BMC Biol 2017; 15:103. [PMID: 29100505 PMCID: PMC5670698 DOI: 10.1186/s12915-017-0430-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay. Results When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm2 of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light-induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of intracellular calcium increased following light offset. Conclusions These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property can provide insight into the effects of transiently stimulating a circuit. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0430-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gadisti Aisha Mohamed
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joses Ho
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
676
|
Abstract
Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.
Collapse
|
677
|
Briant LJB, Reinbothe TM, Spiliotis I, Miranda C, Rodriguez B, Rorsman P. δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J Physiol 2017; 596:197-215. [PMID: 28975620 PMCID: PMC5767697 DOI: 10.1113/jp274581] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 12/28/2022] Open
Abstract
Key points We used a mouse expressing a light‐sensitive ion channel in β‐cells to understand how α‐cell activity is regulated by β‐cells. Light activation of β‐cells triggered a suppression of α‐cell activity via gap junction‐dependent activation of δ‐cells. Mathematical modelling of human islets suggests that 23% of the inhibitory effect of glucose on glucagon secretion is mediated by β‐cells via gap junction‐dependent activation of δ‐cells/somatostatin secretion.
Abstract Glucagon, the body's principal hyperglycaemic hormone, is released from α‐cells of the pancreatic islet. Secretion of this hormone is dysregulated in type 2 diabetes mellitus but the mechanisms controlling secretion are not well understood. Regulation of glucagon secretion by factors secreted by neighbouring β‐ and δ‐cells (paracrine regulation) have been proposed to be important. In this study, we explored the importance of paracrine regulation by using an optogenetic strategy. Specific light‐induced activation of β‐cells in mouse islets expressing the light‐gated channelrhodopsin‐2 resulted in stimulation of electrical activity in δ‐cells but suppression of α‐cell activity. Activation of the δ‐cells was rapid and sensitive to the gap junction inhibitor carbenoxolone, whereas the effect on electrical activity in α‐cells was blocked by CYN 154806, an antagonist of the somatostatin‐2 receptor. These observations indicate that optogenetic activation of the β‐cells propagates to the δ‐cells via gap junctions, and the consequential stimulation of somatostatin secretion inhibits α‐cell electrical activity by a paracrine mechanism. To explore whether this pathway is important for regulating α‐cell activity and glucagon secretion in human islets, we constructed computational models of human islets. These models had detailed architectures based on human islets and consisted of a collection of >500 α‐, β‐ and δ‐cells. Simulations of these models revealed that this gap junctional/paracrine mechanism accounts for up to 23% of the suppression of glucagon secretion by high glucose. We used a mouse expressing a light‐sensitive ion channel in β‐cells to understand how α‐cell activity is regulated by β‐cells. Light activation of β‐cells triggered a suppression of α‐cell activity via gap junction‐dependent activation of δ‐cells. Mathematical modelling of human islets suggests that 23% of the inhibitory effect of glucose on glucagon secretion is mediated by β‐cells via gap junction‐dependent activation of δ‐cells/somatostatin secretion.
Collapse
Affiliation(s)
- L J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK.,Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - T M Reinbothe
- Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - I Spiliotis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - C Miranda
- Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - B Rodriguez
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - P Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK.,Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
678
|
Gezelius H, Moreno-Juan V, Mezzera C, Thakurela S, Rodríguez-Malmierca LM, Pistolic J, Benes V, Tiwari VK, López-Bendito G. Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes. Cereb Cortex 2017; 27:5054-5069. [PMID: 27655933 PMCID: PMC7610997 DOI: 10.1093/cercor/bhw290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
- Present address: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sudhir Thakurela
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Luis Miguel Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | | | - Vladimir Benes
- EMBL, GeneCore, Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | - Vijay K. Tiwari
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| |
Collapse
|
679
|
Widespread functional opsin transduction in the rat cortex via convection-enhanced delivery optimized for horizontal spread. J Neurosci Methods 2017; 291:69-82. [DOI: 10.1016/j.jneumeth.2017.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
|
680
|
Okusa MD, Rosin DL, Tracey KJ. Targeting neural reflex circuits in immunity to treat kidney disease. Nat Rev Nephrol 2017; 13:669-680. [PMID: 28970585 PMCID: PMC6049817 DOI: 10.1038/nrneph.2017.132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural pathways regulate immunity and inflammation via the inflammatory reflex and specific molecular targets can be modulated by stimulating neurons. Neuroimmunomodulation by nonpharmacological methods is emerging as a novel therapeutic strategy for inflammatory diseases, including kidney diseases and hypertension. Electrical stimulation of vagus neurons or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway (CAP) and protects mice from acute kidney injury (AKI). Direct innervation of the kidney, by afferent and efferent neurons, might have a role in modulating and responding to inflammation in various diseases, either locally or by providing feedback to regions of the central nervous system that are important in the inflammatory reflex pathway. Increased sympathetic drive to the kidney has a role in the pathogenesis of hypertension, and selective modulation of neuroimmune interactions in the kidney could potentially be more effective for lowering blood pressure and treating inflammatory kidney diseases than renal denervation. Use of optogenetic tools for selective stimulation of specific neurons has enabled the identification of neural circuits in the brain that modulate kidney function via activation of the CAP. In this Review we discuss evidence for a role of neural circuits in the control of renal inflammation as well as the therapeutic potential of targeting these circuits in the settings of AKI, kidney fibrosis and hypertension.
Collapse
Affiliation(s)
- Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, PO Box 800133, 1300 Jefferson Park Avenue - West Complex, 5 th floor, Charlottesville, Virginia 22908-0133, USA
| | - Diane L Rosin
- Department of Pharmacology, PO Box 800735, 1304 Jefferson Park Avenue, University of Virginia, Charlottesville, Virginia 22908-0735, USA
| | - Kevin J Tracey
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York 11030, USA
| |
Collapse
|
681
|
Samineni VK, Yoon J, Crawford KE, Jeong YR, McKenzie KC, Shin G, Xie Z, Sundaram SS, Li Y, Yang MY, Kim J, Wu D, Xue Y, Feng X, Huang Y, Mickle AD, Banks A, Ha JS, Golden JP, Rogers JA, Gereau RW. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 2017; 158:2108-2116. [PMID: 28700536 PMCID: PMC5640477 DOI: 10.1097/j.pain.0000000000000968] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (μ-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal μ-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.
Collapse
Affiliation(s)
- Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Jangyeol Yoon
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kaitlyn E Crawford
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Ra Jeong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Kajanna C McKenzie
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Gunchul Shin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Saranya S Sundaram
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing, China
| | - Min Young Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeonghyun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Di Wu
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
| | - Xue Feng
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
| | - Aaron D Mickle
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony Banks
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - John A Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery; Center for Bio-Integrated Electronics; Simpson Querrey Institute for Nano/biotechnology; Northwestern University, Evanston, IL, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
682
|
Ferro M, Lamanna J, Ripamonti M, Racchetti G, Arena A, Spadini S, Montesano G, Cortese R, Zimarino V, Malgaroli A. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nat Commun 2017; 8:1229. [PMID: 29089485 PMCID: PMC5663910 DOI: 10.1038/s41467-017-01335-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023] Open
Abstract
Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals. Visualization of synaptic activity in the living brain is challenging. This study devises a simple and efficient scheme that reports synaptic vesicle recycling in vivo using SynaptoZip, a genetically encoded sensor of past synaptic activities.
Collapse
Affiliation(s)
- Mattia Ferro
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Jacopo Lamanna
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Maddalena Ripamonti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Gabriella Racchetti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Alessandro Arena
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Department of Physiology, Institute of Basal Medical Sciences, University of Oslo, Oslo, 0315, Norway
| | - Sara Spadini
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Giovanni Montesano
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Dipartimento Testa-Collo, San Paolo Hospital, University of Milan, Milan, 20122, Italy
| | | | - Vincenzo Zimarino
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Antonio Malgaroli
- Università Vita-Salute San Raffaele, Milan, 20132, Italy. .,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
683
|
Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance. Proc Natl Acad Sci U S A 2017; 114:E9512-E9519. [PMID: 29078348 DOI: 10.1073/pnas.1710702114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently discovered cation-conducting channelrhodopsins in cryptophyte algae are far more homologous to haloarchaeal rhodopsins, in particular the proton pump bacteriorhodopsin (BR), than to earlier known channelrhodopsins. They uniquely retain the two carboxylate residues that define the vectorial proton path in BR in which Asp-85 and Asp-96 serve as acceptor and donor, respectively, of the photoactive site Schiff base (SB) proton. Here we analyze laser flash-induced photocurrents and photochemical conversions in Guillardia theta cation channelrhodopsin 2 (GtCCR2) and its mutants. Our results reveal a model in which the GtCCR2 retinylidene SB chromophore rapidly deprotonates to the Asp-85 homolog, as in BR. Opening of the cytoplasmic channel to cations in GtCCR2 requires the Asp-96 homolog to be unprotonated, as has been proposed for the BR cytoplasmic channel for protons. However, reprotonation of the GtCCR2 SB occurs not from the Asp-96 homolog, but by proton return from the earlier protonated acceptor, preventing vectorial proton translocation across the membrane. In GtCCR2, deprotonation of the Asp-96 homolog is required for cation channel opening and occurs >10-fold faster than reprotonation of the SB, which temporally correlates with channel closing. Hence in GtCCR2, cation channel gating is tightly coupled to intramolecular proton transfers involving the same residues that define the vectorial proton path in BR.
Collapse
|
684
|
Sato MP, Higuchi T, Nin F, Ogata G, Sawamura S, Yoshida T, Ota T, Hori K, Komune S, Uetsuka S, Choi S, Masuda M, Watabe T, Kanzaki S, Ogawa K, Inohara H, Sakamoto S, Takebayashi H, Doi K, Tanaka KF, Hibino H. Hearing Loss Controlled by Optogenetic Stimulation of Nonexcitable Nonglial Cells in the Cochlea of the Inner Ear. Front Mol Neurosci 2017; 10:300. [PMID: 29018325 PMCID: PMC5616010 DOI: 10.3389/fnmol.2017.00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/06/2017] [Indexed: 01/22/2023] Open
Abstract
Light-gated ion channels and transporters have been applied to a broad array of excitable cells including neurons, cardiac myocytes, skeletal muscle cells and pancreatic β-cells in an organism to clarify their physiological and pathological roles. Nonetheless, among nonexcitable cells, only glial cells have been studied in vivo by this approach. Here, by optogenetic stimulation of a different nonexcitable cell type in the cochlea of the inner ear, we induce and control hearing loss. To our knowledge, deafness animal models using optogenetics have not yet been established. Analysis of transgenic mice expressing channelrhodopsin-2 (ChR2) induced by an oligodendrocyte-specific promoter identified this channel in nonglial cells—melanocytes—of an epithelial-like tissue in the cochlea. The membrane potential of these cells underlies a highly positive potential in a K+-rich extracellular solution, endolymph; this electrical property is essential for hearing. Illumination of the cochlea to activate ChR2 and depolarize the melanocytes significantly impaired hearing within a few minutes, accompanied by a reduction in the endolymphatic potential. After cessation of the illumination, the hearing thresholds and potential returned to baseline during several minutes. These responses were replicable multiple times. ChR2 was also expressed in cochlear glial cells surrounding the neuronal components, but slight neural activation caused by the optical stimulation was unlikely to be involved in the hearing impairment. The acute-onset, reversible and repeatable phenotype, which is inaccessible to conventional gene-targeting and pharmacological approaches, seems to at least partially resemble the symptom in a population of patients with sensorineural hearing loss. Taken together, this mouse line may not only broaden applications of optogenetics but also contribute to the progress of translational research on deafness.
Collapse
Affiliation(s)
- Mitsuo P Sato
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Department of Otolaryngology, Kindai University Faculty of MedicineOsaka, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan
| | - Genki Ogata
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Takamasa Yoshida
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Takeru Ota
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Karin Hori
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan
| | - Shizuo Komune
- Division of Otolaryngology-Head and Neck Surgery, Yuaikai Oda HospitalSaga, Japan
| | - Satoru Uetsuka
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Samuel Choi
- Department of Electrical and Electronics Engineering, Niigata UniversityNiigata, Japan.,AMED-CREST, AMEDNiigata, Japan
| | - Masatsugu Masuda
- Department of Otolaryngology, Kyorin University School of MedicineTokyo, Japan
| | - Takahisa Watabe
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Sho Kanzaki
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Shuichi Sakamoto
- Department of Mechanical and Production Engineering, Niigata UniversityNiigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Katsumi Doi
- Department of Otolaryngology, Kindai University Faculty of MedicineOsaka, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of MedicineTokyo, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of MedicineNiigata, Japan.,Center for Transdisciplinary Research, Niigata UniversityNiigata, Japan.,AMED-CREST, AMEDNiigata, Japan
| |
Collapse
|
685
|
Abstract
Optical methods for interrogating membrane potential changes in neurons promise to revolutionize our ability to dissect the activity of individual cells embedded in neural circuits underlying behavior and sensation. A number of voltage imaging strategies have emerged in the past few years. This Perspective discusses developments in both small-molecule and genetically encoded fluorescent indicators of membrane potential. We survey recent advances in small-molecule fluorescent indicators that rely on photoinduced electron transfer to sense voltage as well as refinements of voltage-sensitive fluorescent proteins and new opsin-based strategies for monitoring voltage changes. We compare the requirements of fluorescent voltage indicators to those for more canonical Ca2+ sensing as a way to illuminate the particular challenges associated with voltage imaging.
Collapse
Affiliation(s)
- Rishikesh U. Kulkarni
- Department of Chemistry, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
686
|
Dagnew R, Lin YY, Agatep J, Cheng M, Jann A, Quach V, Monroe M, Singh G, Minasyan A, Hakimian J, Kee T, Cushman J, Walwyn W. CerebraLux: a low-cost, open-source, wireless probe for optogenetic stimulation. NEUROPHOTONICS 2017; 4:045001. [PMID: 29057282 PMCID: PMC5635269 DOI: 10.1117/1.nph.4.4.045001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The use of optogenetics to activate or inhibit neurons is an important toolbox for neuroscientists. Several optogenetic devices are in use. These range from wired systems where the optoprobe is physically connected to the light source by a tether, to wireless systems that are remotely controlled. There are advantages and disadvantages of both; the wired systems are lightweight but limit movement due to the tether, and wireless systems allow unrestricted movement but may be heavier than wired systems. Both systems can be expensive to install and use. We have developed a low cost, wireless optogenetic probe, CerebraLux, built from off-the-shelf components. CerebraLux consists of two separable units; an optical component consisting of the baseplate holding the fiber-optic in place and an electronic component consisting of a light-emitting diode, custom-printed circuit board, an infrared receiver, microcontroller, and a rechargeable, lightweight lithium polymer battery. The optical component (0.5 g) is mounted on the head permanently, whereas the electronic component (2.3 g) is removable and is applied for each experiment. We describe the device, provide all designs and specifications, the methods to manufacture and use the device in vivo, and demonstrate feasibility in a mouse behavioral paradigm.
Collapse
Affiliation(s)
- Robel Dagnew
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Yin-Ying Lin
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Jerikko Agatep
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Michael Cheng
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Andrew Jann
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Viola Quach
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Michelle Monroe
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Ganeev Singh
- University of California, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California, United States
| | - Ani Minasyan
- University of California, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California, United States
| | - Joshua Hakimian
- University of California, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California, United States
| | - Theodore Kee
- University of California, Department of Bioengineering, Los Angeles, California, United States
| | - Jesse Cushman
- University of California, Department of Psychology, Los Angeles, California, United States
| | - Wendy Walwyn
- University of California, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California, United States
- University of California, Brain Research Institute, Los Angeles, California, United States
| |
Collapse
|
687
|
Chao HT, Liu L, Bellen HJ. Building dialogues between clinical and biomedical research through cross-species collaborations. Semin Cell Dev Biol 2017; 70:49-57. [PMID: 28579453 PMCID: PMC5623622 DOI: 10.1016/j.semcdb.2017.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease.
Collapse
Affiliation(s)
- Hsiao-Tuan Chao
- Department of Pediatrics, Section of Child Neurology, Baylor College of Medicine, Houston, TX 77030, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States.
| | - Lucy Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - Hugo J Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, United States; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
688
|
Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017; 83:72-82. [PMID: 28951251 DOI: 10.1016/j.neubiorev.2017.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/12/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023]
Abstract
Opioids, such as morphine or heroin, increase forebrain dopamine (DA) release and locomotion, and support the acquisition of conditioned place preference (CPP) or self-administration. The most sensitive sites for these opioid effects in rodents are in the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg). Opioid inhibition of GABA neurons in these sites is hypothesized to lead to arousing and rewarding effects through disinhibition of VTA DA neurons. We review findings that the laterodorsal tegmental (LDTg) and pedunculopontine tegmental (PPTg) nuclei, which each contain cholinergic, GABAergic, and glutamatergic cells, are important for these effects. LDTg and/or PPTg cholinergic inputs to VTA mediate opioid-induced locomotion and DA activation via VTA M5 muscarinic receptors. LDTg and/or PPTg cholinergic inputs to RMTg also modulate opioid-induced locomotion. Lesions or inhibition of LDTg or PPTg neurons reduce morphine-induced increases in forebrain DA release, acquisition of morphine CPP or self-administration. We propose a circuit model that links VTA and RMTg GABA with LDTg and PPTg neurons critical for DA-dependent opioid effects in drug-naïve rodents.
Collapse
|
689
|
Fukuchi M. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity. YAKUGAKU ZASSHI 2017; 137:1103-1115. [PMID: 28867697 DOI: 10.1248/yakushi.17-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
690
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
691
|
Kianfar E, Apaydin DH, Knör G. Spin-Forbidden Excitation: A New Approach for Triggering Photopharmacological Processes with Low-Intensity NIR Light. CHEMPHOTOCHEM 2017; 1:378-382. [PMID: 29104916 PMCID: PMC5658980 DOI: 10.1002/cptc.201700086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 01/28/2023]
Abstract
Exposure to low-intensity radiation in the near-infrared (NIR) spectral region matching the optically transparent "phototherapeutic window" of biological tissues can be applied to directly populate spin-restricted excited states of light-responsive compounds. This unconventional and unprecedented approach is introduced herein as a new strategy to overcome some of the major unresolved problems observed in the rapidly emerging fields of photopharmacology and molecular photomedicine, where practical applications in living cells and organisms are still limited by undesired side reactions and insufficient light penetration. Water-soluble and biocompatible metal complexes with a significant degree of spin-orbit coupling were identified as target candidates for testing our new hypothesis. As a first example, a dark-stable manganese carbonyl complex acting as a visible-light-triggered CO-releasing molecule (Photo-CORM) is shown to be photoactivated by NIR radiation, although apparently no spectroscopically evident absorption bands are detectable in this low-energy region. This quite remarkable effect is ascribed to a strongly restricted, but obviously not completely forbidden optical population of the lowest triplet excited state manifold of the diamagnetic complex from the singlet ground state.
Collapse
Affiliation(s)
- Elham Kianfar
- Institute of Inorganic ChemistryJohannes Kepler University Linz (JKU)Altenbergerstrasse 69A-4040LinzAustria
| | - Dogukan Hazar Apaydin
- Institute of Physical ChemistryJohannes Kepler University Linz (JKU)Altenbergerstrasse 69A-4040LinzAustria
| | - Günther Knör
- Institute of Inorganic ChemistryJohannes Kepler University Linz (JKU)Altenbergerstrasse 69A-4040LinzAustria
| |
Collapse
|
692
|
Liao Z, Kasirer-Friede A, Shattil SJ. Optogenetic interrogation of integrin αVβ3 function in endothelial cells. J Cell Sci 2017; 130:3532-3541. [PMID: 28864764 DOI: 10.1242/jcs.205203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
The integrin αVβ3 is reported to promote angiogenesis in some model systems but not in others. Here, we used optogenetics to study the effects of αVβ3 interaction with the intracellular adapter kindlin-2 (Fermt2) on endothelial cell functions potentially relevant to angiogenesis. Because interaction of kindlin-2 with αVβ3 requires the C-terminal three residues of the β3 cytoplasmic tail (Arg-Gly-Thr; RGT), optogenetic probes LOVpep and ePDZ1 were fused to β3ΔRGT-GFP and mCherry-kindlin-2, respectively, and expressed in β3 integrin-null microvascular endothelial cells. Exposure of the cells to 450 nm (blue) light caused rapid and specific interaction of kindlin-2 with αVβ3 as assessed by immunofluorescence and total internal reflection fluorescence (TIRF) microscopy, and it led to increased endothelial cell migration, podosome formation and angiogenic sprouting. Analyses of kindlin-2 mutants indicated that interaction of kindlin-2 with other kindlin-2 binding partners, including c-Src, actin, integrin-linked kinase and phosphoinositides, were also likely necessary for these endothelial cell responses. Thus, kindlin-2 promotes αVβ3-dependent angiogenic functions of endothelial cells through its simultaneous interactions with β3 integrin and several other binding partners. Optogenetic approaches should find further use in clarifying spatiotemporal aspects of vascular cell biology.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| | - Ana Kasirer-Friede
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| | - Sanford J Shattil
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
693
|
Huidobro N, Mendez-Fernandez A, Mendez-Balbuena I, Gutierrez R, Kristeva R, Manjarrez E. Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials. Front Neurosci 2017; 11:464. [PMID: 28912671 PMCID: PMC5583167 DOI: 10.3389/fnins.2017.00464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stochastic resonance (SR) is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR) facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2) can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP), we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP). In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP) exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS) on the scalp.
Collapse
Affiliation(s)
- Nayeli Huidobro
- Integrative Neurophysiology and Neurophysics, Institute of Physiology, Benemérita Universidad Autónoma de PueblaPuebla, Mexico
| | - Abraham Mendez-Fernandez
- Integrative Neurophysiology and Neurophysics, Institute of Physiology, Benemérita Universidad Autónoma de PueblaPuebla, Mexico
| | | | - Ranier Gutierrez
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, CINVESTAV IPNMexico City, Mexico
| | - Rumyana Kristeva
- Department of Neurology, University of FreiburgFreiburg, Germany
| | - Elias Manjarrez
- Integrative Neurophysiology and Neurophysics, Institute of Physiology, Benemérita Universidad Autónoma de PueblaPuebla, Mexico
| |
Collapse
|
694
|
François M, Qualls-Creekmore E, Berthoud HR, Münzberg H, Yu S. Genetics-based manipulation of adipose tissue sympathetic innervation. Physiol Behav 2017; 190:21-27. [PMID: 28859876 DOI: 10.1016/j.physbeh.2017.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/17/2022]
Abstract
There is renewed interest in leveraging the thermogenic capacity of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) to improve energy balance and prevent obesity. In addition to these effects on energy expenditure, both BAT and WAT secrete large numbers of hormones and cytokines that play important roles in maintaining metabolic health. Both BAT and WAT are densely innervated by the sympathetic nervous system (SNS) and this innervation is crucial for BAT thermogenesis and WAT browning, making it a potentially interesting target for manipulating energy balance and treatment of obesity and metabolic disease. Peripheral neuromodulation in the form of electrical manipulation of the SNS and parasympathetic nervous system (PSNS) has been used for the management of pain and many other conditions, but progress is hampered by lack of detailed knowledge of function-specific neurons and nerves innervating particular organs and tissues. Therefore, the goal of the National Institutes of Health (NIH) Common Fund project "Stimulating Peripheral Activity to Relieve Conditions (SPARC)" is to comprehensively map both anatomical and neurochemical aspects of the peripheral nervous system in animal model systems to ultimately guide optimal neuromodulation strategies in humans. Compared to electrical manipulation, neuron-specific opto- and chemogenetic manipulation, now being extensively used to decode the function of brain circuits, will further increase the functional specificity of peripheral neuromodulation.
Collapse
Affiliation(s)
- Marie François
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| |
Collapse
|
695
|
Krook-Magnuson E. Illuminating seizures: optogenetic approaches to studying networks in epilepsy. J Neurosci Res 2017; 95:2323-2324. [PMID: 28836289 DOI: 10.1002/jnr.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 11/07/2022]
|
696
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
697
|
Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs. J Neurosci 2017; 36:9268-82. [PMID: 27605603 DOI: 10.1523/jneurosci.1333-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) have proven to be highly effective neuromodulatory tools for the investigation of neural circuits underlying behavioral outputs. They exhibit a number of advantages: they rely on cell-specific manipulations through canonical intracellular signaling pathways, they are easy and cost-effective to implement in a laboratory setting, and they are easily scalable for single-region or full-brain manipulations. On the other hand, DREADDs rely on ligand-G-protein-coupled receptor interactions, leading to coarse temporal dynamics. In this review we will provide a brief overview of DREADDs, their implementation, and the advantages and disadvantages of their use in animal systems. We also will provide numerous examples of their use across a broad variety of biomedical research fields.
Collapse
|
698
|
Shigemoto R, Joesch M. The genetic encoded toolbox for electron microscopy and connectomics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022]
|
699
|
Bazard P, Frisina RD, Walton JP, Bhethanabotla VR. Nanoparticle-based Plasmonic Transduction for Modulation of Electrically Excitable Cells. Sci Rep 2017; 7:7803. [PMID: 28798342 PMCID: PMC5552804 DOI: 10.1038/s41598-017-08141-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/05/2017] [Indexed: 11/11/2022] Open
Abstract
There is a compelling need for the development of new sensory and neural prosthetic devices which are capable of more precise point stimulation. Current prosthetic devices suffer from the limitation of low spatial resolution due to the non-specific stimulation characteristics of electrical stimulation, i.e., the spread of electric fields generated. We present a visible light stimulation method for modulating the firing patterns of electrically-excitable cells using surface plasmon resonance phenomena. In in-vitro studies using gold (Au) nanoparticle-coated nanoelectrodes, we show that this method (substrate coated with nanoparticles) has the potential for incorporating this new technology into neural stimulation prosthetics, such as cochlear implants for the deaf, with very high spatial resolution. Au nanoparticles (NPs) were coated on micropipettes using aminosilane linkers; and these micropipettes were used for stimulating and inhibiting the action potential firing patterns of SH-SY5Y human neuroblastoma cells and neonatal cardiomyocytes. Our findings pave the way for development of biomedical implants and neural testing devices using nanoelectrodes capable of temporally and spatially precise excitation and inhibition of electrically-excitable cellular activity.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA.,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA
| | - Robert D Frisina
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA.,Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL-33620, USA.,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA
| | - Joseph P Walton
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA.,Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL-33620, USA.,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA
| | - Venkat R Bhethanabotla
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL-33620, USA. .,Global Center of Hearing and Speech Research, University of South Florida, Tampa, FL-33612, USA.
| |
Collapse
|
700
|
Kitamura T. Driving and regulating temporal association learning coordinated by entorhinal-hippocampal network. Neurosci Res 2017; 121:1-6. [DOI: 10.1016/j.neures.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|