651
|
Hariparsad N, Chu X, Yabut J, Labhart P, Hartley DP, Dai X, Evers R. Identification of pregnane-X receptor target genes and coactivator and corepressor binding to promoter elements in human hepatocytes. Nucleic Acids Res 2009; 37:1160-73. [PMID: 19129222 PMCID: PMC2651806 DOI: 10.1093/nar/gkn1047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chromatin immunoprecipitation (ChIP) studies were conducted in human hepatocytes treated with rifampicin in order to identify new pregnane-X receptor (PXR) target genes. Genes, both previously known to be involved and not known to be involved in drug disposition, with PXR response elements (PXREs) located upstream, within or downstream from their potentially associated genes, were identified. Validation experiments identified several new drug disposition genes with PXR binding sites. Of these, only CYP4F12 demonstrated increased binding in the presence of rifampicin. The role of PXR in the basal and inductive response of CYP4F12 was confirmed in hepatocytes in which PXR was silenced. We also assessed the association of PXR-coactivators and -corepressors with known and newly identified PXREs. Both PXR and the steroid receptor coactivator (SRC-1) were found to bind to PXREs in the absence of rifampicin, although binding was stronger after rifampicin treatment. We observed promoter-dependent patterns with respect to the binding of various coactivators and corepressors involved in the regulation of CYP4F12, CYP3A4, CYP2B6, UGT1A1 and P-glycoprotein. In conclusion, our findings indicate that PXR is involved in the regulation of CYP4F12 and that PXR along with SRC1 binds to a broad range of promoters but that many of these are not inducible by rifampicin.
Collapse
Affiliation(s)
- Niresh Hariparsad
- Department of Drug Metabolism and Pharmacokinetics, Merck & Co, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | |
Collapse
|
652
|
Toda T, Ohi K, Kudo T, Yoshida T, Ikarashi N, Ito K, Sugiyama K. Ciprofloxacin Suppresses Cyp3a in Mouse Liver by Reducing Lithocholic Acid-producing Intestinal Flora. Drug Metab Pharmacokinet 2009; 24:201-8. [DOI: 10.2133/dmpk.24.201] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
653
|
He J, Xie W. Chapter 3 Nuclear Xenobiotic Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:87-116. [DOI: 10.1016/s1877-1173(09)87003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
654
|
Sandanaraj E, Lal S, Selvarajan V, Ooi LL, Wong ZW, Wong NS, Ang PCS, Lee EJD, Chowbay B. PXR pharmacogenetics: association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res 2008; 14:7116-26. [PMID: 18981011 DOI: 10.1158/1078-0432.ccr-08-0411] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize pregnane X receptor (PXR) polymorphic variants in healthy Asian populations [Chinese, Malay and Indian (n=100 each)], and to investigate the association between PXR haplotypes and hepatic mRNA expression of PXR and its downstream target genes, CYP3A4 and ABCB1, as well as their influence on the clearance of doxorubicin in Asian breast cancer patients. EXPERIMENTAL DESIGN PXR genotyping was done by direct DNA sequencing, and PXR haplotypes and haplotype clusters were derived by expectation-maximization algorithm. Genotype-phenotype correlations were done using Mann-Whitney U test and Kruskal-Wallis test. RESULTS Significant interethnic variations were observed in PXR pharmacogenetics among the three Asian ethnic groups. The expression of PXR mRNA in liver tissues harboring the PXR*1B haplotype clusters was 4-fold lower compared with the non-PXR*1B (*1A + *1C) haplotype clusters [PXR*1B versus PXR*1A; P=0.015; PXR*1B versus PXR*1C; P=0.023]. PXR*1B-bearing liver tissues were associated with significantly lower expression of CYP3A4 (PXR*1B versus non-PXR*1B, P=0.030) and ABCB1 (PXR*1B versus non-PXR*1B, P=0.060) compared with non-PXR*1B-bearing liver tissues. Doxorubicin clearance in breast cancer patients harboring the PXR*1B haplotypes was significantly lower compared with patients carrying the non-PXR*1B haplotypes [PXR*1B versus non-PXR*1B, CL/BSA (L h(-1) m(-2)): 20.84 (range, 8.68-29.24) versus 24.85 (range, 13.80-55.66), P=0.022]. CONCLUSIONS This study showed that PXR*1B was associated with reduced hepatic mRNA expression of PXR and its downstream targets, CYP3A4 and ABCB1. Genotype-phenotype correlates in breast cancer patients showed PXR*1B to be significantly associated with lower doxorubicin clearance, suggesting that PXR haplotype constitution could be important in influencing interindividual and interethnic variations in disposition of its putative drug substrates.
Collapse
Affiliation(s)
- Edwin Sandanaraj
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
655
|
Lee J, Scheri RC, Zhang Y, Curtis LR. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERalpha) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice. Toxicol Appl Pharmacol 2008; 233:193-202. [PMID: 18789348 PMCID: PMC2646613 DOI: 10.1016/j.taap.2008.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/14/2008] [Accepted: 08/16/2008] [Indexed: 11/17/2022]
Abstract
Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [(14)C]CD or [(14)C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor alpha (ERalpha) in a concentration-dependent manner (0-50 muM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.
Collapse
Affiliation(s)
- Junga Lee
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Richard C. Scheri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Yuan Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Lawrence R. Curtis
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
656
|
Ma X, Cheung C, Krausz KW, Shah YM, Wang T, Idle JR, Gonzalez FJ. A double transgenic mouse model expressing human pregnane X receptor and cytochrome P450 3A4. Drug Metab Dispos 2008; 36:2506-12. [PMID: 18799805 PMCID: PMC2678901 DOI: 10.1124/dmd.108.022723] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), the most abundant human cytochrome P450 in liver, participates in the metabolism of approximately 50% of clinically used drugs. The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, is the major activator of CYP3A4 transcription. However, because of species differences in response to PXR ligands, it is problematic to use rodents to assess CYP3A4 regulation and function. The generation of double transgenic mice expressing human PXR and CYP3A4 (TgCYP3A4/hPXR) would provide a solution to this problem. In the current study, a TgCYP3A4/hPXR mouse model was generated by bacterial artificial chromosome transgenesis in Pxr-null mice. In TgCYP3A4/hPXR mice, CYP3A4 was strongly induced by rifampicin, a human-specific PXR ligand, but not by pregnenolone 16alpha-carbonitrile, a rodent-specific PXR ligand. Consistent with CYP3A expression, hepatic CYP3A activity increased approximately 5-fold in TgCYP3A4/hPXR mice pretreated with rifampicin. Most antihuman immunodeficiency virus protease inhibitors are CYP3A substrates and their interactions with rifamycins are a source of major concern in patients coinfected with human immunodeficiency virus and Mycobacterium tuberculosis. By using TgCYP3A4/hPXR mice, human PXR-CYP3A4-mediated rifampicin-protease inhibitor interactions were recapitulated, as the metabolic stability of amprenavir, nelfinavir, and saquinavir decreased 52, 53, and 99%, respectively, in the liver microsomes of TgCYP3A4/hPXR mice pretreated with rifampicin. In vivo, rifampicin pretreatment resulted in an approximately 80% decrease in the area under the serum amprenavir concentration-time curve in TgCYP3A4/hPXR mice. These results suggest that the TgCYP3A4/hPXR mouse model could serve as a useful tool for studies on CYP3A4 transcription and function in vivo.
Collapse
Affiliation(s)
- Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
657
|
Zhou SF, Lecureur V, Guillouzo A. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38:802-32. [PMID: 18668431 DOI: 10.1080/00498250701867889] [Citation(s) in RCA: 384] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. P-glycoprotein (P-gp/MDR1), one of the most clinically important transmembrane transporters in humans, is encoded by the ABCB1/MDR1 gene. Recent insights into the structural features of P-gp/MDR1 enable a re-evaluation of the biochemical evidence on the binding and transport of drugs by P-gp/MDR1. 2. P-gp/MDR1 is found in various human tissues in addition to being expressed in tumours cells. It is located on the apical surface of intestinal epithelial cells, bile canaliculi, renal tubular cells, and placenta and the luminal surface of capillary endothelial cells in the brain and testes. 3. P-gp/MDR1 confers a multi-drug resistance (MDR) phenotype to cancer cells that have developed resistance to chemotherapy drugs. P-gp/MDR1 activity is also of great clinical importance in non-cancer-related drug therapy due to its wide-ranging effects on the absorption and excretion of a variety of drugs. 4. P-gp/MDR1 excretes xenobiotics such as cytotoxic compounds into the gastrointestinal tract, bile and urine. It also participates in the function of the blood-brain barrier. 5. One of the most interesting characteristics of P-gp/MDR1 is that its many substrates vary greatly in their structure and functionality, ranging from small molecules such as organic cations, carbohydrates, amino acids and some antibiotics to macromolecules such as polysaccharides and proteins. 6. Quite a number of single nucleotide polymorphisms have been found for the MDR1 gene. These single nucleotide polymorphisms are associated with altered oral bioavailability of P-gp/MDR1 substrates, drug resistance, and a susceptibility to some human diseases. 7. Altered P-gp/MDR1 activity due to induction and/or inhibition can cause drug-drug interactions with altered drug pharmacokinetics and response. 8. Further studies are warranted to explore the physiological function and pharmacological role of P-gp/MDR1.
Collapse
Affiliation(s)
- S-F Zhou
- Division of Chinese Medicine, School of Health Science, WHO Collaborating Centre for Traditional Medicine, RMIT University, Bundoora, Vic., Australia.
| | | | | |
Collapse
|
658
|
Oshio H, Abe T, Onogawa T, Ohtsuka H, Sato T, Ii T, Fukase K, Muto M, Katayose Y, Oikawa M, Rikiyama T, Egawa S, Unno M. Peroxisome proliferator-activated receptor alpha activates cyclooxygenase-2 gene transcription through bile acid transport in human colorectal cancer cell lines. J Gastroenterol 2008; 43:538-49. [PMID: 18648741 DOI: 10.1007/s00535-008-2188-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 03/11/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Evidence is accumulating that bile acids are involved in colon cancer development, but their molecular mechanisms remain unexplored. Bile acid has been reported to be associated with induction of the cyclooxygenase-2 (COX-2) gene. Because the human liver-specific organic anion transporter-2 (LST-2/OATP8/OATP1B3) is expressed in gastrointestinal cancers and might transport bile acids to the intracellular space, we studied the molecular mechanisms by which bile acids induce the transcription of COX-2, and the role of LST-2 in colonic cell lines. METHODS Transcriptional activity of COX-2 was measured using a human COX-2 promoter-luciferase assay under various concentrations of bile acids. Electrophoresis mobility shift assays (EMSAs) for peroxisome proliferators-activated receptor (PPAR) alpha and cyclic AMP responsive element (CRE) were performed. RESULTS The COX-2 promoter was induced by lithocholic acid (LCA), deoxycholic acid (DCA), and chenodeoxycholic acid (CDCA). Deletion and site-directed mutation analyses showed that CRE is the responsive element for LCA. An adenovirus expression system revealed that LST-2 is responsible for induction of COX-2. By EMSA using oligonucleotides of CRE, we observed formation of a specific protein-DNA complex, which was inhibited by a specific antibody against PPARalpha and CRE. A PPARalpha-specific agonist induced transcription of COX-2. CONCLUSION These results indicate that COX-2 is transcriptionally activated by the addition of LCA, CDCA, and DCA and that LST-2 plays an important role by transporting bile acid to the intracellular space. Moreover, LCA-dependent COX-2 gene activation consists of a transcriptional complex including PPARalpha and CRE-binding protein. Thus, this induction of COX-2 may participate in carcinogenesis and progression of colorectal cancer cells.
Collapse
Affiliation(s)
- Hiroshi Oshio
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medical Science, 1-1 Seiryo-machi, Aoba, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
659
|
Abstract
The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolic enzymes and transporters involved in the responses of mammals to their chemical environment. The same enzyme and transporter systems are also involved in the homeostasis of numerous endogenous chemicals. The regulatory function of PXR is implicated in normal physiology and diseases, such as drug-drug interactions, hepatic steatosis, vitamin D homeostasis, bile acids homeostasis, steroid hormones homeostasis and inflammatory bowel diseases. As such, any genetic variations of this receptor could potentially have widespread effects on the disposition of xenobiotics and endobiotics. Knowledge concerning the genetic polymorphisms of PXR may help to understand the variations in human drug response and ensure safe drug use. The correlation of PXR genetic polymorphisms with several disease conditions also suggests that this receptor may represent a valid therapeutic for hepato-intestinal disorders such as inflammatory bowel disease and primary sclerosing cholangitis.
Collapse
Affiliation(s)
| | - Wen Xie
- Author for correspondence: Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261 USA Tel.: +1 412 648 9941 Fax: +1 412 648 1664
| | | |
Collapse
|
660
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
661
|
Scheer N, Ross J, Rode A, Zevnik B, Niehaves S, Faust N, Wolf CR. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J Clin Invest 2008; 118:3228-39. [PMID: 18677425 DOI: 10.1172/jci35483] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022] Open
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are closely related orphan nuclear hormone receptors that play a critical role as xenobiotic sensors in mammals. Both receptors regulate the expression of genes involved in the biotransformation of chemicals in a ligand-dependent manner. As the ligand specificity of PXR and CAR have diverged between species, the prediction of in vivo PXR and CAR interactions with a drug are difficult to extrapolate from animals to humans. We report the development of what we believe are novel PXR- and CAR-humanized mice, generated using a knockin strategy, and Pxr- and Car-KO mice as well as a panel of mice including all possible combinations of these genetic alterations. The expression of human CAR and PXR was in the predicted tissues at physiological levels, and splice variants of both human receptors were expressed. The panel of mice will allow the dissection of the crosstalk between PXR and CAR in the response to different drugs. To demonstrate the utility of this panel of mice, we used the mice to show that the in vivo induction of Cyp3a11 and Cyp2b10 by phenobarbital was only mediated by CAR, although this compound is described as a PXR and CAR activator in vitro. This panel of mouse models is a useful tool to evaluate the roles of CAR and PXR in drug bioavailability, toxicity, and efficacy in humans.
Collapse
|
662
|
Matsubara T, Yoshinari K, Aoyama K, Sugawara M, Sekiya Y, Nagata K, Yamazoe Y. Role of vitamin D receptor in the lithocholic acid-mediated CYP3A induction in vitro and in vivo. Drug Metab Dispos 2008; 36:2058-63. [PMID: 18645036 DOI: 10.1124/dmd.108.021501] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Lipophilic bile acids are suggested to be involved in the endogenous expression of CYP3A4 in human and experimental animals as ligands of nuclear receptors. To verify the nuclear receptor specificity, the bile acid-mediated induction of CYP3A4 has been studied in vitro and in vivo in the present study. Lithocholic acid (LCA) strongly enhanced the activities of the CYP3A4 reporter gene, which contained multiple nuclear receptor binding elements, in both HepG2 and LS174T cells. The introduction of small interfering RNA for human vitamin D receptor (VDR), but not for human pregnane X receptor, reduced the LCA-induced activation of the reporter gene in these cells, suggesting the major role of VDR in the LCA induction of CYP3A4. Consistently, oral administration of LCA (100 mg/kg/day for 3 days) increased Cyp3a protein levels in the intestine but not in the liver, where a negligible level of VDR mRNA is detected. The selective role of VDR was tested in mice with the adenoviral overexpression of the receptor. Oral administration of LCA had no clear influence on the CYP3A4 reporter activity in the liver of control mice. In mice with the adenovirally expressed VDR, LCA treatment (100 or 400 mg/kg/day for 3 days) resulted in the enhanced reporter activities and increased levels of Cyp3a proteins in the liver. These results indicate the selective involvement of VDR, but not pregnane X receptor, in the LCA-mediated induction of both human and mouse CYP3As in vivo.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
663
|
Abstract
Many proteins possess intrinsic disorder (ID) and lack a rigid three-dimensional structure in at least part of their sequence. ID has been hypothesized to influence protein-protein and protein-ligand interactions. We calculated ID for nearly 400 vertebrate and invertebrate members of the biomedically important nuclear hormone receptor (NHR) superfamily, including all 48 known human NHRs. The predictions correctly identified regions in 20 of the 23 NHRs suggested as disordered based on published X-ray and NMR structures. Of the four major NHR domains (N-terminal domain, DNA-binding domain, D-domain, and ligand-binding domain), we found ID to be highest in the D-domain, a region of NHRs critical in DNA recognition and heterodimerization, coactivator/corepressor interactions and protein-protein interactions. ID in the D-domain and LBD was significantly higher in "hub" human NHRs that have 10 or more downstream proteins in their interaction networks compared to "non-hub" NHRs that interact with fewer than 10 downstream proteins. ID in the D-domain and LBD was also higher in classic, ligand-activated NHRs than in orphan, ligand-independent NHRs in human. The correlation between ID in human and mouse NHRs was high. Less correlation was found for ID between mammalian and non-mammalian vertebrate NHRs. For some invertebrate species, particularly sea squirts ( Ciona), marked differences were observed in ID between invertebrate NHRs and their vertebrate orthologs. Our results indicate that variability of ID within NHRs, particularly in the D-domain and LBD, is likely an important evolutionary force in shaping protein-protein interactions and NHR function. This information enables further understanding of these therapeutic targets.
Collapse
Affiliation(s)
- Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Scaife Hall S-737, 3550 Terrace Street Pittsburgh, Pennsylvania 15261
| | - Erica J. Reschly
- Department of Pathology, University of Pittsburgh, Scaife Hall S-737, 3550 Terrace Street Pittsburgh, Pennsylvania 15261
| | - Sean Ekins
- Collaborations in Chemistry, Inc., Jenkintown, Pennsylvania 19046
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, 675 Hoes lane, New Jersey 08854
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|
664
|
Wada T, Kang HS, Jetten AM, Xie W. The emerging role of nuclear receptor RORalpha and its crosstalk with LXR in xeno- and endobiotic gene regulation. Exp Biol Med (Maywood) 2008; 233:1191-201. [PMID: 18535165 PMCID: PMC2658633 DOI: 10.3181/0802-mr-50] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Retinoid-related orphan receptors (RORs), including the alpha, beta and gamma isoforms (NR1F1-3), are orphan nuclear receptors that have been implicated in tissue development, immune responses, and circadian rhythm. Although RORalpha and RORgamma have been shown to be expressed in the liver, the hepatic function of these two RORs remains unknown. We have recently shown that loss of RORalpha and/or RORgamma can positively or negatively influence the expression of multiple Phase I and Phase II drug metabolizing enzymes and transporters in the liver. Among ROR responsive genes, we identified oxysterol 7alpha-hydroxylase (Cyp7b1), which plays a critical role in the homeostasis of cholesterol, as a RORalpha target gene. We showed that RORalpha is both necessary and sufficient for Cyp7b1 activation. Studies of mice deficient of RORalpha or liver X receptors (LXRs) revealed an interesting and potentially important functional crosstalk between RORalpha and LXR. The respective activation of LXR target genes and ROR target genes in RORalpha null mice and LXR null mice led to our hypothesis that these two receptors are mutually suppressive in vivo. LXRs have been shown to regulate a battery of metabolic genes. We conclude that RORs participate in the xeno- and endobiotic regulatory network by regulating gene expression directly or through crosstalk with LXR, which may have broad implications in metabolic homeostasis.
Collapse
Affiliation(s)
- Taira Wada
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hong Soon Kang
- Cell Biology Section, Division of Intramural Research, The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
665
|
Alnouti Y, Csanaky IL, Klaassen CD. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:209-17. [PMID: 18801708 PMCID: PMC2582521 DOI: 10.1016/j.jchromb.2008.08.018] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/24/2008] [Accepted: 08/26/2008] [Indexed: 12/30/2022]
Abstract
The differences among individual bile acids (BAs) in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual BAs and their taurine and glycine conjugates. Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 6 major BAs, their glycine, and taurine conjugates in mouse liver, bile, plasma, and urine was developed and validated. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for plasma and liver) was used to extract BAs. This method is valid and sensitive with a limit of quantification ranging from 10 to 40 ng/ml for the various analytes, has a large dynamic range (2500), and a short run time (20 min). Detailed BA profiles were obtained from mouse liver, plasma, bile, and urine using this method. Muricholic acid (MCA) and cholic acid (CA) taurine conjugates constituted more than 90% of BAs in liver and bile. BA concentrations in liver were about 300-fold higher than in plasma, and about 180-fold higher in bile than in liver. In summary, a reliable and simple LC-MS/MS method to quantify major BAs and their metabolites was developed and applied to quantify BAs in mouse tissues and fluids.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | | | | |
Collapse
|
666
|
Butterweck V, Derendorf H. Potential of pharmacokinetic profiling for detecting herbal interactions with drugs. Clin Pharmacokinet 2008; 47:383-97. [PMID: 18479173 DOI: 10.2165/00003088-200847060-00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The issue of herb-drug interactions has generated significant concern within the pharmaceutical industry and among regulatory authorities in recent years. Therefore, accurate models of predicting metabolic herb-drug interactions would be useful tools in efforts to avoid toxic adverse events. However, the majority of pharmacokinetic interactions listed for herbal medicinal products are based on theoretical predictions of the in vitro pharmacological effects of known constituents, which do not necessarily have to be the active ingredients. The prediction of herb-drug interactions is further complicated by the fact that pharmacokinetic data on active or (at least) known ingredients are often not available. The present article discusses the potential of pharmacokinetic profiling for detecting herb-drug interactions, using the most frequently cited interactions in the literature as examples. In particular, common mechanisms of herb-drug interactions are summarized, and the available experimental methods for detecting such interactions, as well as the limitations of these models, are critically evaluated. In addition, we discuss the question of whether the existing methods of detecting herb-drug interactions correlate with the clinical relevance. Effective screening tools that accurately predict metabolic herb-drug interactions would offer a tremendous advantage because it is not possible to study all potential herb-drug interactions in clinical trials.
Collapse
Affiliation(s)
- Veronika Butterweck
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| | | |
Collapse
|
667
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
668
|
Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7:678-93. [PMID: 18670431 DOI: 10.1038/nrd2619] [Citation(s) in RCA: 1031] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile acids are increasingly being appreciated as complex metabolic integrators and signalling factors and not just as lipid solubilizers and simple regulators of bile-acid homeostasis. It is therefore not surprising that a number of bile-acid-activated signalling pathways have become attractive therapeutic targets for metabolic disorders. Here, we review how the signalling functions of bile acids can be exploited in the development of drugs for obesity, type 2 diabetes, hypertriglyceridaemia and atherosclerosis, as well as other associated chronic diseases such as non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Charles Thomas
- Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
669
|
Court MH, Hazarika S, Krishnaswamy S, Finel M, Williams JA. Novel polymorphic human UDP-glucuronosyltransferase 2A3: cloning, functional characterization of enzyme variants, comparative tissue expression, and gene induction. Mol Pharmacol 2008; 74:744-54. [PMID: 18523138 PMCID: PMC2574548 DOI: 10.1124/mol.108.045500] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are critical to the detoxification of numerous drugs, environmental pollutants, and endogenous molecules. However, as yet not all of the human UGTs have been cloned and characterized. cDNA clones from the UGT2A3 gene (located on chromosome 4q13) were isolated using pooled human liver RNA. Approximately 10% of clones contained a c.1489A>G nucleotide substitution, yielding proteins with a residue 497 alanine (UGT2A3.2) instead of a threonine (UGT2A3.1). The allele frequency of this polymorphism (rs13128286) was 0.13 in a European-American population as determined by direct DNA sequencing. Of 81 structurally diverse glucuronidation substrates tested, UGT2A3 expressed by a baculovirus system selectively glucuronidated bile acids, particularly hyodeoxycholic acid at the 6-hydroxy position. Apparent K(m) values of UGT2A3.1 and UGT2A3.2 for hyodeoxycholic acid 6-glucuronidation were 69 +/- 7 and 44 +/- 12 microM, respectively. Of 29 different extrahepatic tissues evaluated by real-time polymerase chain reaction, UGT2A3 mRNA was most highly expressed in small intestine (160% of liver), colon (78% of liver), and adipose tissue (91% of liver). An in silico scan of the proximal UGT2A3 promoter/5'-regulatory region identified transcription factor consensus elements consistent with tissue-selective expression in liver (HNF1) and intestine (CXD2), as well as induction by rifampicin (pregnane X receptor). In LS180 human intestinal cells, rifampicin increased UGT2A3 mRNA by more than 4.5-fold compared with vehicle, whereas levels were not significantly affected by the arylhydrocarbon receptor ligand beta-naphthoflavone. This is the first report establishing UGT2A3 as a functional enzyme, and it represents significant progress toward the goal of having a complete set of recombinant human UGTs for comparative functional analyses.
Collapse
Affiliation(s)
- Michael H Court
- Comparative and Molecular Pharmacogenomics Laboratory, Department of Pharmacology and Experimental Therapeutics, Tufts University, 136 Harrison Ave., Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
670
|
Knight TR, Choudhuri S, Klaassen CD. Induction of hepatic glutathione S-transferases in male mice by prototypes of various classes of microsomal enzyme inducers. Toxicol Sci 2008; 106:329-38. [PMID: 18723825 DOI: 10.1093/toxsci/kfn179] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The underlying need for glutathione S-transferase (Gst) induction is thought to be an adaptive response to chemical stress within the cell. Classical microsomal enzyme inducers (MEIs) increase the expression of biotransformation enzymes (phase I and II) and transporters through transcription factors, such as the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR) alpha, and nuclear factor erythroid-derived 2-related factor 2 (Nrf2). The effects of MEIs on the induction of hepatic Gsts in mice have not been comprehensively characterized. The purpose of this study was to determine the effects of 15 MEIs on the mRNA expression of 19 mouse Gsts. Male C57BL/6 mice were treated with three different activators each for AhR, CAR, PXR, PPARalpha, and Nrf2. In general, the Gsts are readily induced. All five transcription factors appear to play a role in Gst induction. The Nrf2 activators induced most Gsts (10), followed by the CAR, PXR, and PPARalpha activators (6-7), whereas the AhR ligands induced the least (1). Clofibrate, a PPARalpha agonist, induced most of the Gsts; however, all three PPARalpha agonists decreased Gstp1/2 mRNA. None of the 15 inducers was able to increase or only minimally increased eight of the Gsts (Gsta3, Gstk1, Gstm6, Gsto1, Gstp1/2, Gstt3, Gstz1, and MGst1). Thus, the protection afforded by a ligand for one of these transcription factors will depend on the activator, as well as which Gst that detoxifies the chemicals of interest.
Collapse
Affiliation(s)
- Tamara R Knight
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
671
|
Cheng X, Klaassen CD. Critical role of PPAR-alpha in perfluorooctanoic acid- and perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse livers. Toxicol Sci 2008; 106:37-45. [PMID: 18703564 DOI: 10.1093/toxsci/kfn161] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na(+)-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-alpha), constitutive androstane receptor, pregnane-X receptor, NF-E2-related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-alpha was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-alpha.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
672
|
Maezawa K, Miyazato K, Matsunaga T, Momose Y, Imamura T, Johkura K, Sasaki K, Ohmori S. Expression of cytochrome P450 and transcription factors during in vitro differentiation of mouse embryonic stem cells into hepatocytes. Drug Metab Pharmacokinet 2008; 23:188-95. [PMID: 18574323 DOI: 10.2133/dmpk.23.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocyte differentiation markers were expressed in the cells differentiated from mouse embryonic stem (ES) cells. In the differentiating ES cells, Cyp1a1 mRNA was highly expressed during the early to middle stage; Cyp2c29, Cyp2e1, Cyp3a11 and Cyp7a1 mRNAs were expressed only at the late stage; Cyp7b1 mRNA was expressed throughout all stages. Alpha-fetoprotein and albumin were co-expressed with Cyp3a and Cyp1a, respectively. Aryl hydrocarbon receptor, aryl hydrocarbon receptor nuclear translocator and glucocorticoid receptor mRNAs were detected in differentiating ES cells throughout the culture period. Pregnane X receptor mRNA was detected only in cells cultured for more than 24 days. The expression levels of Cyp2c29, Cyp3a11 and Cyp7a1 and G6p mRNAs were increased in embryoid bodies that were cultured with culture medium containing acid fibroblast growth factor, hepatocyte growth factor (HGF) and oncostatin M for 12 or 18 days, then the medium was replaced by that without HGF. These findings suggested that the expression levels of Cyp genes in hepatocytes differentiated from ES cells were markedly changed in individual enzymes during the course of differentiation, and that the duration of incubation with the addition of HGF affected the expression of Cyps and hepatocytes marker proteins.
Collapse
Affiliation(s)
- Kayoko Maezawa
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
673
|
Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, Baugé E, Havinga R, Bloks VW, Wolters H, van der Sluijs FH, Vennström B, Kuipers F, Staels B. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 2008; 135:689-98. [PMID: 18565334 DOI: 10.1053/j.gastro.2008.05.035] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 04/18/2008] [Accepted: 05/08/2008] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Conversion into bile acids represents an important route to remove excess cholesterol from the body. Rev-erbalpha is a nuclear receptor that participates as one of the clock genes in the control of circadian rhythmicity and plays a regulatory role in lipid metabolism and adipogenesis. Here, we investigate a potential role for Rev-erbalpha in the control of bile acid metabolism via the regulation of the neutral bile acid synthesis pathway. METHODS Bile acid synthesis and CYP7A1 gene expression were studied in vitro and in vivo in mice deficient for or over expressing Rev-erbalpha. RESULTS Rev-erbalpha-deficient mice display a lower synthesis rate and an impaired excretion of bile acids into the bile and feces. Expression of CYP7A1, the rate-limiting enzyme of the neutral pathway, is decreased in livers of Rev-erbalpha-deficient mice, whereas adenovirus-mediated hepatic Rev-erbalpha overexpression induces its expression. Moreover, bile acid feeding resulted in a more pronounced suppression of hepatic CYP7A1 expression in Rev-erbalpha-deficient mice. Hepatic expression of E4BP4 and the orphan nuclear receptor small heterodimer partner (SHP), both negative regulators of CYP7A1 expression, is increased in Rev-erbalpha-deficient mice. Promoter analysis and chromatin immunoprecipitation experiments demonstrated that SHP and E4BP4 are direct Rev-erbalpha target genes. Finally, the circadian rhythms of liver CYP7A1, SHP, and E4BP4 messenger RNA levels were perturbed in Rev-erbalpha-deficient mice. CONCLUSIONS These data identify a role for Rev-erbalpha in the regulatory loop of bile acid synthesis, likely acting by regulating both hepatic SHP and E4BP4 expression.
Collapse
Affiliation(s)
- Hélène Duez
- Institut Pasteur de Lille, Département d'Athérosclérose, Lille, France; Inserm, U545, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
674
|
Lichti-Kaiser K, Staudinger JL. The traditional Chinese herbal remedy tian xian activates pregnane X receptor and induces CYP3A gene expression in hepatocytes. Drug Metab Dispos 2008; 36:1538-45. [PMID: 18474680 PMCID: PMC2574877 DOI: 10.1124/dmd.108.021774] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a member of the nuclear receptor superfamily that is activated by a myriad of clinically used compounds and natural products. Activation of PXR in liver regulates the expression genes encoding proteins that are intimately involved in the hepatic uptake, metabolism, and elimination of toxic compounds from our bodies. PXR-mediated herb-drug interactions can have undesirable effects in patients receiving combination therapy. This can be especially important in cancer patients who self-administer over-the-counter herbal remedies together with conventional anticancer chemotherapeutics. Tian xian is a traditional Chinese herbal anticancer remedy that activates human PXR in cell-based reporter gene assays. Moreover, tian xian alters the strength of interaction between the human PXR protein and transcriptional cofactor proteins. A novel line of humanized PXR mice are described and used here to show that tian xian increases expression of Cyp3a11 in primary cultures of rodent hepatocytes. Tian xian also induces expression of CYP3A4 in primary cultures of human hepatocytes. Taken together, these data indicate that coadministration of tian xian is probably contraindicated in patients undergoing anticancer therapy with conventional chemotherapeutic agents. These data are of particular importance due to the fact that this herbal remedy is currently marketed as an adjunct therapy that reduces the side effects of conventional chemotherapy and is available without a prescription. Future studies should be conducted to determine the extent to which coadministration of this Chinese herbal remedy alters the pharmacokinetic and pharmacodynamic properties of conventional anticancer therapy.
Collapse
Affiliation(s)
- Kristin Lichti-Kaiser
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., 5046 Malott Hall, Lawrence, Kansas 66045
| | - Jeff L. Staudinger
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., 5046 Malott Hall, Lawrence, Kansas 66045
| |
Collapse
|
675
|
Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med 2008; 14:828-36. [PMID: 18660816 DOI: 10.1038/nm.1853] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/30/2008] [Indexed: 01/16/2023]
Abstract
Production of bile by the liver is crucial for the absorption of lipophilic nutrients. Dysregulation of bile acid homeostasis can lead to cholestatic liver disease and endoplasmic reticulum (ER) stress. We show by global location analysis ('ChIP-on-chip') and cell type-specific gene ablation that the winged helix transcription factor Foxa2 is required for normal bile acid homeostasis. As suggested by the location analysis, deletion of Foxa2 in hepatocytes in mice using the Cre-lox system leads to decreased transcription of genes encoding bile acid transporters on both the basolateral and canalicular membranes, resulting in intrahepatic cholestasis. Foxa2-deficient mice are strikingly sensitive to a diet containing cholic acid, which results in toxic accumulation of hepatic bile salts, ER stress and liver injury. In addition, we show that expression of FOXA2 is markedly decreased in liver samples from individuals with different cholestatic syndromes, suggesting that reduced FOXA2 abundance could exacerbate the injury.
Collapse
|
676
|
Cheng X, Klaassen CD. Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors. Toxicol Sci 2008; 106:29-36. [PMID: 18648086 DOI: 10.1093/toxsci/kfn147] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cytochrome p450 enzymes (Cyps) are major phase-I xenobiotic-metabolizing enzymes. Cyps are regulated by many environmental chemicals and drugs. However, knowledge about regulation of Cyps by perfluorocarboxylic acids (PFCAs), which are persistent in the environment, is limited. Two days after a single i.p. administration (50 mg/kg) of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) increased mRNA expression of Cyp2B10 (20-fold), 3A11 (two-fold), and 4A14 (32-fold), but not Cyp1A1/2 in mouse livers. PFDA and PFOA also markedly increased protein expression of Cyp2B (50-fold) and 4A (10-fold). PFDA increased Cyp4A14 mRNA expression at relatively low doses (0.5 mg/kg), but increased Cyp2B10 mRNA expression only at high doses (> 20 mg/kg). By using constitutive androstane receptor (CAR)-, pregnane-X receptor (PXR)-, peroxisome proliferator-activated receptor alpha (PPAR)-alpha-, and farnesoid X receptor-null mouse models, PPAR-alpha and CAR were shown to play central roles in the induction of Cyps by PFDA. Specifically, PFDA increased Cyp4A14 mRNA expression in wild-type (WT) mice, but much less in PPAR-alpha-null mice. PFDA increased Cyp2B10 mRNA expression in WT mice, but not in CAR-null mice. In addition, PFDA increased mRNA expression and nuclear translocation of the transcription factor CAR. Therefore, the current studies provide important insight into understanding the regulatory mechanisms initiated by PFCAs, and may help to better predict and understand the toxicokinetics and toxicodynamics of various PFCAs. In conclusion, PFCAs increased Cyp2B10 and 4A14 expression by activating PPAR-alpha and CAR nuclear receptors, respectively. PPAR-alpha is activated at much lower doses of PFDA than CAR.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
677
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
678
|
Satsu H, Hiura Y, Mochizuki K, Hamada M, Shimizu M. Activation of pregnane X receptor and induction of MDR1 by dietary phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5366-5373. [PMID: 18540626 DOI: 10.1021/jf073350e] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The pregnane X receptor (PXR) is understood to be the key regulator for gene expression of such drug-metabolizing enzymes and transporters as multidrug-resistant protein 1 (MDR1) and the cytochrome P450 (CYP) family. We examined the effect of dietary phytochemicals on the PXR-dependent transcriptional activity in human intestinal LS180 cells by using a reporter assay. Among approximately 40 kinds of phytochemicals, tangeretin and ginkgolides A and B markedly induced the PXR-dependent transcriptional activity and also the activity of the human MDR1 promoter. The expression levels of MDR1 mRNA as well as of CYP3A4 mRNA, another gene regulated by PXR, were significantly increased by these phytochemicals. Furthermore, an increase was observed of the MDR1 protein and its functional activity by tangeretin and by ginkgolides A and B. These findings strongly suggest that tangeretin and ginkgolides A and B activated PXR, thereby regulating detoxification enzymes and transporters in the intestines.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Biological Products/chemistry
- Biological Products/metabolism
- Biological Products/pharmacology
- Cell Line, Tumor
- Cytochrome P-450 CYP3A/genetics
- Cytochrome P-450 CYP3A/metabolism
- Diet
- Dietary Supplements/analysis
- Flavones/chemistry
- Flavones/metabolism
- Flavones/pharmacology
- Gene Expression/drug effects
- Genes, Reporter
- Ginkgolides/chemistry
- Ginkgolides/metabolism
- Ginkgolides/pharmacology
- Humans
- Plant Extracts/chemistry
- Plant Extracts/metabolism
- Plant Extracts/pharmacology
- Pregnane X Receptor
- Promoter Regions, Genetic
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
679
|
Khandelwal A, Krasowski MD, Reschly EJ, Sinz MW, Swaan PW, Ekins S. Machine learning methods and docking for predicting human pregnane X receptor activation. Chem Res Toxicol 2008; 21:1457-67. [PMID: 18547065 PMCID: PMC2574557 DOI: 10.1021/tx800102e] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR) regulates the expression of genes involved in xenobiotic metabolism and transport. In vitro methods to screen for PXR agonists are used widely. In the current study, computational models for human PXR activators and PXR nonactivators were developed using recursive partitioning (RP), random forest (RF), and support vector machine (SVM) algorithms with VolSurf descriptors. Following 10-fold randomization, the models correctly predicted 82.6-98.9% of activators and 62.0-88.6% of nonactivators. The models were validated using separate test sets. The overall ( n = 15) test set prediction accuracy for PXR activators with RP, RF, and SVM PXR models is 80-93.3%, representing an improvement over models previously reported. All models were tested with a second test set ( n = 145), and the prediction accuracy ranged from 63 to 67% overall. These test set molecules were found to cover the same area in a principal component analysis plot as the training set, suggesting that the predictions were within the applicability domain. The FlexX docking method combined with logistic regression performed poorly in classifying this PXR test set as compared with RP, RF, and SVM but may be useful for qualitative interpretion of interactions within the LBD. From this analysis, VolSurf descriptors and machine learning methods had good classification accuracy and made reliable predictions within the model applicability domain. These methods could be used for high throughput virtual screening to assess for PXR activation, prior to in vitro testing to predict potential drug-drug interactions.
Collapse
Affiliation(s)
- Akash Khandelwal
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Erica J. Reschly
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael W. Sinz
- Bristol-Myers Squibb Company, Research Parkway, Wallingford, CT 06492, USA
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Sean Ekins
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Collaborations in Chemistry, 601 Runnymede Ave, Jenkintown, PA 19046, USA
| |
Collapse
|
680
|
Monte MJ, Rosales R, Macias RIR, Iannota V, Martinez-Fernandez A, Romero MR, Hofmann AF, Marin JJG. Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2008; 295:G54-G62. [PMID: 18467501 DOI: 10.1152/ajpgi.00592.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact with nuclear receptors such as FXR.
Collapse
Affiliation(s)
- Maria J Monte
- Laboratory of Experimental Hepatology and Drug Targeting, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
681
|
Abstract
BACKGROUND The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of metabolic enzymes and transporters involved in the response of mammals to their chemical environment. OBJECTIVE To summarize the functions and clinical implications of PXR. METHODS In the current review, the clinical implications of PXR are discussed, and the use of genetically engineered PXR mouse models is highlighted. RESULTS/CONCLUSION Recent advances in mouse models, including Pxr-null and PXR-humanized mice, provide in vivo tools for evaluating the physiological functions of PXR and its role in controlling xenobiotic metabolism and transport. By using the PXR knockout and humanized mouse models, PXR was found to influence drug-drug interactions, hepatic steatosis, and the homeostasis of vitamin D, bile acids, and steroid hormones. PXR was also shown to influence inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey R. Idle
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University, 128 00 Praha 2, Czech Republic
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
682
|
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 2008; 20:2180-97. [PMID: 18634871 DOI: 10.1016/j.cellsig.2008.06.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.
Collapse
Affiliation(s)
- Amy Nguyen
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
683
|
Conde I, Lobo MVT, Zamora J, Pérez J, González FJ, Alba E, Fraile B, Paniagua R, Arenas MI. Human pregnane X receptor is expressed in breast carcinomas, potential heterodimers formation between hPXR and RXR-alpha. BMC Cancer 2008; 8:174. [PMID: 18565212 PMCID: PMC2442113 DOI: 10.1186/1471-2407-8-174] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 06/19/2008] [Indexed: 11/16/2022] Open
Abstract
Background The human pregnane X receptor (hPXR) is an orphan nuclear receptor that induces transcription of response elements present in steroid-inducible cytochrome P-450 gene promoters. This activation requires the participation of retinoid X receptors (RXRs), needed partners of hPXR to form heterodimers. We have investigated the expression of hPXR and RXRs in normal, premalignant, and malignant breast tissues, in order to determine whether their expression profile in localized infiltrative breast cancer is associated with an increased risk of recurrent disease. Methods Breast samples from 99 patients including benign breast diseases, in situ and infiltrative carcinomas were processed for immunohistochemistry and Western-blot analysis. Results Cancer cells from patients that developed recurrent disease showed a high cytoplasmic location of both hPXR isoforms. Only the infiltrative carcinomas that relapsed before 48 months showed nuclear location of hPXR isoform 2. This location was associated with the nuclear immunoexpression of RXR-alpha. Conclusion Breast cancer cells can express both variants 1 and 2 of hPXR. Infiltrative carcinomas that recurred showed a nuclear location of both hPXR and RXR-alpha; therefore, the overexpression and the subcellular location changes of hPXR could be considered as a potential new prognostic indicator.
Collapse
Affiliation(s)
- Isabel Conde
- Department of Cell Biology and Genetics, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
684
|
Jenkins KT, Merkens LS, Tubb MR, Myatt L, Davidson WS, Steiner RD, Woollett LA. Enhanced placental cholesterol efflux by fetal HDL in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2008; 94:240-7. [PMID: 18346920 PMCID: PMC3037116 DOI: 10.1016/j.ymgme.2008.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
Abstract
Previous studies from this laboratory have shown that maternal-derived cholesterol can be effluxed from trophoblasts to fetal HDL and plasma. We had the opportunity to study for the first time the ability of HDL and plasma from a fetus with the Smith-Lemli-Opitz syndrome (SLOS) to efflux cholesterol from trophoblasts. It was unclear whether cholesterol could be effluxed to fetuses with SLOS since lipoprotein levels are often very low. To answer this question, cord blood was collected from the placentas of an SLOS fetus and unaffected fetuses just after delivery. Plasma cholesterol concentrations were very low in the affected fetus; cholesterol, 7-dehydrocholesterol, and 8-dehydocholesterol concentrations were 14.1, 4.5, and 5.2 mg/dl, respectively. The HDL from the fetal SLOS effluxed approximately 50% more cholesterol from a trophoblast cell line, were smaller in size, and had a lower cholesterol to phospholipid ratio as compared to HDL from unaffected fetuses or adults. Plasma from the SLOS fetus effluxed cholesterol to a similar percentage as unaffected fetal plasma or adult plasma, possibly due to fewer HDL particles as demonstrated in previous SLOS patients. These novel data demonstrate that the cholesterol-deficient SLOS fetus is able to obtain cholesterol from trophoblasts at a time when cholesterol is playing a critical role in development, and has implications for design of treatments for cholesterol deficiency syndromes as well as understanding of prenatal cholesterol transport in humans.
Collapse
Affiliation(s)
- Katie T. Jenkins
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Louise S. Merkens
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R. Tubb
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Leslie Myatt
- Departments of Obstetrics and Gynecology, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - W. Sean Davidson
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Robert D. Steiner
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Departments of Molecular and Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital and Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura A. Woollett
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| |
Collapse
|
685
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
686
|
Tompkins LM, Sit TL, Wallace AD. Unique transcription start sites and distinct promoter regions differentiate the pregnane X receptor (PXR) isoforms PXR 1 and PXR 2. Drug Metab Dispos 2008; 36:923-9. [PMID: 18276839 DOI: 10.1124/dmd.107.018317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pregnane X receptor (PXR) is known as the xenosensing receptor responsible for coordinated regulation of metabolic genes in response to diverse xenobiotic challenges. In particular, the ability of the PXR to regulate CYP3A4, the enzyme capable of metabolizing more than 60% of all pharmaceuticals, defines its metabolic importance. Currently the list of PXR ligands and target genes is extensive, yet investigations into the regulation and expression of PXRs are few. After an initial review of available sequence data, we discovered discrepancies in the 5' untranslated region (UTR) and transcriptional start site (TSS) characterizations of the human PXR gene and subsequently endeavored to define TSSs and proximal promoters for isoforms PXR 1 and PXR 2. Reverse transcriptase-polymerase chain reaction and primer extension experiments performed on RNA from human liver identified two TSSs for each receptor isoform. These results extended the 5'UTR sequence of each isoform and defined new proximal promoters for both. Candidate response elements for liver-enriched transcription factors and other receptors were found in both proximal promoters. Quantitative PCR from human liver illustrated a highly variable expression profile for total PXRs; yet PXR 2 expression represented a consistent 2 to 5% of total PXR expression, despite the observed variability. Transfection experiments demonstrated that PXR 1 and PXR 2 had comparable abilities to transcriptionally activate the CYP3A4 promoter. Collectively, comparable function, consistent expression, and independent regulation suggest that PXR 2 is capable of contributing to the cumulative function of PXRs and should be included in the larger investigations of PXR expression and regulation.
Collapse
Affiliation(s)
- Leslie M Tompkins
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | | | |
Collapse
|
687
|
Lim YP, Huang JD. Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet 2008; 23:14-21. [PMID: 18305371 DOI: 10.2133/dmpk.23.14] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human body needs to protect itself from a diverse array of harmful chemicals. These chemicals are also involved in drug metabolism, enzyme induction, and can cause adverse drug-drug interactions. Being a member of nuclear receptors (NRs), pregnane X receptor (PXR) has recently emerged as transcriptional regulators of cytochrome P450 (CYP) and transporters expression so as to against xenobiotics exposure. This review describes some common nuclear receptors, i.e. farnesoid X receptor (FXR), small heterodimer partner (SHP), hepatocyte nuclear factor-4alpha (HNF-4alpha), liver X receptor (LXR), glucocorticoid receptor (GR), constitutive androstane receptor (CAR) that crosstalk with PXR and involvement of coregulators thus control target genes expression.
Collapse
Affiliation(s)
- Yun-Ping Lim
- Department of Pharmacology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
688
|
Gui C, Miao Y, Thompson L, Wahlgren B, Mock M, Stieger B, Hagenbuch B. Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol 2008; 584:57-65. [PMID: 18321482 PMCID: PMC2376123 DOI: 10.1016/j.ejphar.2008.01.042] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/15/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The pregnane X receptor is a ligand-activated transcription factor that is abundantly expressed in hepatocytes. Numerous drugs are pregnane X receptor ligands. To bind to their receptor they must cross the sinusoidal membrane. Organic anion transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) are polyspecific transporters expressed at the sinusoidal membrane of human hepatocytes. They mediate transport of a variety of drugs including the pregnane X receptor ligands rifampicin and dexamethasone. To test whether additional pregnane X receptor ligands interact with OATP1B1- and 1B3-mediated transport, we developed Chinese Hamster Ovary (CHO) cell lines stably expressing OATP1B1 or 1B3 at high levels. OATP1B1- and 1B3-mediated estradiol-17beta-glucuronide uptake was inhibited by several pregnane X receptor ligands in a concentration dependent way. IC(50) values for rifampicin, paclitaxel, mifepristone, and troglitazone were within their respective pharmacological free plasma concentrations. Kinetic analysis revealed that clotrimazole inhibits OATP1B1-mediated estradiol-17beta-glucuronide transport with a K(i) of 7.7+/-0.3 microM in a competitive way. However, uptake of OATP1B3-mediated estradiol-17beta-glucuronide was stimulated and this stimulation was due to an increased apparent affinity. Transport of estrone-3-sulfate was hardly affected while all other substrates tested were inhibited. Additional azoles like fluconazole, ketoconazole and miconazole did not stimulate OATP1B3-mediated estradiol-17beta-glucuronide transport. In summary, these results demonstrate that pregnane X receptor ligands, by inhibiting or stimulating OATP-mediated uptake, can lead to drug-drug interactions at the transporter level.
Collapse
Affiliation(s)
- Chunshan Gui
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Yi Miao
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Lucas Thompson
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Bret Wahlgren
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Melissa Mock
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zürich, Switzerland
| | - Bruno Stieger
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zürich, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
- Kansas Masonic Cancer Research Institute, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
689
|
Marin JJG, Macias RIR, Briz O, Perez MJ, Blazquez AG, Arrese M, Serrano MA. Molecular bases of the fetal liver-placenta-maternal liver excretory pathway for cholephilic compounds. Liver Int 2008; 28:435-54. [PMID: 18339071 DOI: 10.1111/j.1478-3231.2008.01680.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Potentially toxic endogenous compounds, such as bile acids (BAs) and biliary pigments, as well as many xenobiotics, such as drugs and food components, are biotransformed and eliminated by the hepatobiliary system with the collaboration of the kidney. However, the situation is very different during pregnancy because the fetal liver produces biliary compounds despite the fact that this organ, owing to its immaturity, is not able to eliminate them into bile. Moreover, the excretory ability of the fetal kidneys is also very limited. Thus, during the intra-uterine life, the major route to eliminate fetal BAs and biliary pigments is their transfer to the mother across the placenta. The maternal liver and, to a lesser extent, the maternal kidney, are then in charge of their biotransformation and elimination into faeces and urine respectively. This review describes current knowledge of the machinery responsible for the detoxification and excretion of cholephilic compounds through the pathway formed by the fetal liver-placenta-maternal liver trio.
Collapse
Affiliation(s)
- Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), CIBERehd, University of Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
690
|
Dai G, He L, Bu P, Wan YJY. Pregnane X receptor is essential for normal progression of liver regeneration. Hepatology 2008; 47:1277-87. [PMID: 18167061 DOI: 10.1002/hep.22129] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
UNLABELLED Pregnane X receptor (PXR) mediates xenobiotic and endobiotic metabolism as well as hepatocyte proliferation. To determine the role of PXR in liver regeneration, 2/3 partial hepatectomy (PH) was performed on wild-type and PXR-null mice. Our results showed that hepatic steatosis was markedly suppressed in mice lacking PXR 36 hours after PH, concomitant with reduction of hepatocyte proliferation at the same time point. Gene expression analysis revealed the role of PXR in regulating the transcription of genes involved in lipid uptake, transport, biosynthesis, oxidation, and storage during liver regeneration. When PXR was absent, the second wave of hepatocyte proliferation was severely suppressed, which was accompanied by the inactivation of STAT3. Lack of PXR inhibited the second phase of liver growth, leading to 17% less liver mass at the anticipated end point of liver regeneration (day 10). CONCLUSION PXR is required for normal progression of liver regeneration by modulating lipid homeostasis and regulating hepatocyte proliferation.
Collapse
Affiliation(s)
- Guoli Dai
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
691
|
Roth A, Looser R, Kaufmann M, Blättler SM, Rencurel F, Huang W, Moore DD, Meyer UA. Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol Pharmacol 2008; 73:1282-9. [PMID: 18187584 DOI: 10.1124/mol.107.041012] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by xenobiotic inducers of cytochromes P450 is part of a pleiotropic response that includes liver hypertrophy, tumor promotion, effects on lipid homeostasis, and energy metabolism. Here, we describe an acute response to CAR and PXR activators that is associated with induction of Insig-1, a protein with antilipogenic properties. We first observed that activation of CAR and PXR in mouse liver results in activation of Insig-1 along with reduced protein levels of the active form of sterol regulatory element binding protein 1 (Srebp-1). Studies in mice deficient in CAR and PXR revealed that the effect on triglycerides involves these two nuclear receptors. Finally, we identified a functional binding site for CAR and PXR in the Insig-1 gene by in vivo, in vitro, and in silico genomic analysis. Our experiments suggest that activation Insig-1 by drugs leads to reduced levels of active Srebp-1 and consequently to reduced target gene expression including the genes responsible for triglyceride synthesis. The reduction nuclear Srebp-1 by drugs is not observed when Insig-1 expression is repressed by small interfering RNA. In addition, observed that Insig-1 is also a target of AMP-activated kinase, the hepatic activity of which is increased by activators of CAR and PXR and is known to cause a reduction of triglycerides. The fact that drugs that serve as CAR or PXR ligands induce Insig-1 might have clinical consequences and explains alterations lipid levels after drug therapy.
Collapse
Affiliation(s)
- Adrian Roth
- Division of Pharmacology/Neurobiology, Biozentrum of the University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
692
|
Naspinski C, Gu X, Zhou GD, Mertens-Talcott SU, Donnelly KC, Tian Y. Pregnane X Receptor Protects HepG2 Cells from BaP-Induced DNA Damage. Toxicol Sci 2008; 104:67-73. [DOI: 10.1093/toxsci/kfn058] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
693
|
Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 2008; 48:1-32. [PMID: 17608617 DOI: 10.1146/annurev.pharmtox.47.120505.105349] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The expression of many genes involved in xenobiotic/drug metabolism and transport is regulated by at least three nuclear receptors or xenosensors: aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR). These receptors establish crosstalk with other nuclear receptors or transcription factors controlling signaling pathways that regulate the homeostasis of bile acids, lipids, glucose, inflammation, vitamins, hormones, and others. These crosstalks are expected to modify profoundly our vision of xenobiotic/drug disposition and toxicity. They provide molecular mechanisms to explain how physiopathological stimuli affect xenobiotic/drug disposition, and how xenobiotics/drugs may affect physiological functions and generate toxic responses. In addition, the possibility that xenosensors may control other signaling pathways opens the way to new pharmacological opportunities.
Collapse
|
694
|
A translational view on the biliary lipid secretory network. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:79-96. [DOI: 10.1016/j.bbalip.2007.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 11/28/2007] [Accepted: 12/13/2007] [Indexed: 01/26/2023]
|
695
|
Langhi C, Le May C, Kourimate S, Caron S, Staels B, Krempf M, Costet P, Cariou B. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett 2008; 582:949-55. [PMID: 18298956 DOI: 10.1016/j.febslet.2008.02.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/12/2008] [Accepted: 02/17/2008] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to determine whether bile acids (BAs) modulate hepatic pro-protein convertase subtilisin/kexin 9 (PCSK9) gene expression. Immortalized human hepatocytes were treated with various BAs. Chenodeoxycholic acid (CDCA) treatment specifically decreased both PCSK9 mRNA and protein contents. Moreover, activation of the BA-activated farnesoid X receptor (FXR) by its synthetic specific agonist GW4064 also decreased PCSK9 expression. Of functional relevance, coadministration of CDCA counteracted the statin-induced PCSK9 expression, leading to a potentiation of LDL receptor activity. This study suggests that a transcriptional repression of PCSK9 by CDCA or FXR agonists may potentiate the hypolipidemic effect of statins.
Collapse
Affiliation(s)
- Cédric Langhi
- INSERM, U915, CHU Hôtel Dieu, NORD, Nantes F-44000, France
| | | | | | | | | | | | | | | |
Collapse
|
696
|
Takagi S, Nakajima M, Mohri T, Yokoi T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 2008; 283:9674-80. [PMID: 18268015 DOI: 10.1074/jbc.m709382200] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pregnane X receptor (PXR) is a major transcription factor regulating the inducible expression of a variety of transporters and drug-metabolizing enzymes, including CYP3A4 (cytochrome P450 3A4). We first found that the PXR mRNA level was not correlated with the PXR protein level in a panel of 25 human livers, indicating the involvement of post-transcriptional regulation. Notably, a potential miR-148a recognition element was identified in the 3'-untranslated region of human PXR mRNA. We investigated whether PXR might be regulated by miR-148a. A reporter assay revealed that miR-148a could recognize the miR-148a recognition element of PXR mRNA. The PXR protein level was decreased by the overexpression of miR-148a, whereas it was increased by inhibition of miR-148a. The miR-148a-dependent decrease of PXR protein attenuated the induction CYP3A4 mRNA. Furthermore, the translational efficiency of PXR (PXR protein/PXR mRNA ratio) was inversely correlated with the expression levels of miR-148a in a panel of 25 human livers, supporting the miR-148a-dependent regulation of PXR in human livers. Eventually, the PXR protein level was significantly correlated with the CYP3A4 mRNA and protein levels. In conclusion, we found that miR-148a post-transcriptionally regulated human PXR, resulting in the modulation of the inducible and/or constitutive levels of CYP3A4 in human liver. This study will provide new insight into the unsolved mechanism of the large interindividual variability of CYP3A4 expression.
Collapse
Affiliation(s)
- Shingo Takagi
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
697
|
Abstract
This article gives an overview of the molecular and cellular mechanisms of cholestasis. Topics reviewed include the pathomechanisms of hereditary cholestasis syndromes, such as progressive familial intrahepatic cholestasis, and hepatocellular transporter defects encountered in various acquired cholestatic disorders, such as intrahepatic cholestasis of pregnancy, drug-induced cholestasis, inflammatory cholestasis, primary sclerosing cholangitis, and primary biliary cirrhosis. In addition, current concepts regarding adaptive hepatocellular mechanisms counteracting cholestatic liver damage are discussed.
Collapse
Affiliation(s)
- Gernot Zollner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Laboratory of Experimental and Molecular Hepatology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | |
Collapse
|
698
|
Wang T, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Role of pregnane X receptor in control of all-trans retinoic acid (ATRA) metabolism and its potential contribution to ATRA resistance. J Pharmacol Exp Ther 2008; 324:674-84. [PMID: 17962516 PMCID: PMC2268525 DOI: 10.1124/jpet.107.131045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although all-trans-retinoic acid (ATRA) is an effective treatment for acute promyelocytic leukemia and several solid tumors, its use is limited by resistance due to increased metabolism. The most studied mechanism for ATRA resistance is the autoinduced metabolism regulated by the retinoic acid receptor-CYP26 pathway. However, treatment of cancer is usually not done with a single antineoplastic agent, but with a variety of combined chemotherapy regimens, including several anticancer drugs, and other concomitantly administered supportive drugs. Pregnane X receptor (PXR), an orphan nuclear receptor that functions as a ligand-activated transcription factor, serves as an important xenobiotic sensor regulating metabolism and elimination. Many prescription drugs are PXR ligands, which can activate PXR target genes, including phase I enzyme, phase II enzyme, and transporter genes. The present study was designed to examine the role of PXR in ATRA metabolism. Due to the marked species differences in response to PXR ligands, Pxr-null, wild-type, and PXR-humanized transgenic mouse models were used. In addition to pregnenolone 16alpha-carbonitrile, several clinically relevant PXR ligands (rifampicin and dexamethasone) all increased ATRA metabolism both in vitro and in vivo, which was PXR-dependent, and up-regulation of Cyp3a was the major contributor. Furthermore, induction of the Mdr1a, Mrp3, and Oatp2 genes was also observed. This study suggested that coadministration of PXR ligands can increase ATRA metabolism through activation of the PXR-CYP3A pathway, which might be a mechanism for some form of ATRA resistance. Other PXR target transporters might also be involved.
Collapse
Affiliation(s)
- Ting Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
699
|
Deo AK, Bandiera SM. Biotransformation of lithocholic acid by rat hepatic microsomes: metabolite analysis by liquid chromatography/mass spectrometry. Drug Metab Dispos 2008; 36:442-51. [PMID: 18039809 DOI: 10.1124/dmd.107.017533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Lithocholic acid is a lipid-soluble hepatotoxic bile acid that accumulates in the liver during cholestasis. A potential detoxification pathway for lithocholic acid involves hydroxylation by hepatic cytochrome P450 (P450) enzymes. The purpose of the present study was to identify the hepatic microsomal metabolites of lithocholic acid by liquid chromatography/mass spectrometry and to determine the P450 enzymes involved. Incubation of lithocholic acid with rat hepatic microsomes and NADPH produced murideoxycholic acid (MDCA), isolithocholic acid (ILCA), and 3-keto-5beta-cholanic acid (3KCA) as major metabolites and 6-ketolithocholic acid and ursodeoxycholic acid as minor metabolites. Experiments with hepatic microsomes prepared from rats pretreated with P450 inducers and with inhibitory antibodies indicated that CYP2C and CYP3A enzymes contribute to microsomal MDCA formation. Results obtained with a panel of recombinant P450 enzymes and CYP2D6 antiserum showed that CYP2D1 can also catalyze MDCA formation. Similar experimental evidence revealed that formation of 3KCA was mediated primarily by CYP3A enzymes. ILCA formation appeared to be catalyzed by a distinct pathway mediated largely by microsomal non-P450 enzymes. Based on the results obtained using lithocholic acid and 3KCA as substrates, a mechanism for the formation of ILCA involving a geminal diol intermediate is outlined. In conclusion, lithocholic acid was extensively metabolized by multiple P450 enzymes with the predominant biotransformation pathway being hydroxylation at the 6beta-position. This study provides an insight into possible routes of detoxification of lithocholic acid.
Collapse
Affiliation(s)
- Anand K Deo
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
700
|
Volz DC, Kullman SW, Howarth DL, Hardman RC, Hinton DE. Protective Response of the Ah Receptor to ANIT-Induced Biliary Epithelial Cell Toxicity in See-Through Medaka. Toxicol Sci 2008; 102:262-77. [DOI: 10.1093/toxsci/kfm308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|