651
|
Sasahara K, Morigaki K, Shinya K. Amyloid aggregation and deposition of human islet amyloid polypeptide at membrane interfaces. FEBS J 2014; 281:2597-612. [PMID: 24702784 DOI: 10.1111/febs.12807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/15/2014] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
Abstract
Amyloid deposition of human islet amyloid polypeptide (hIAPP) within the islets of Langerhans is a pathological feature of type 2 diabetes mellitus. Substantial evidence indicates that the membrane-mediated aggregation and subsequent deposition of hIAPP are linked to dysfunction and death of pancreatic β-cells, but the molecular processes of hIAPP deposition are poorly understood. In this study, we examined the membrane-mediated aggregation and deposition of hIAPP at supported planar lipid bilayers with and without raft components (i.e. cholesterol and sphingomyelin) to provide insight into hIAPP-induced membrane dysfunction. The adsorption of hIAPP onto the bilayers was studied using a quartz crystal microbalance with dissipation monitoring, which showed enhanced accumulation of the peptide onto the bilayer containing raft components. Microscope observations demonstrated the growth of the aggregates formed from the membrane-adsorbed hIAPP. The examination of the membrane interfaces revealed that hIAPP aggregates retained the ability to associate with the membranes during the aggregation process, resulting in insertion of the aggregates into the bilayers. We also report the inhibitory effect of insulin on the hIAPP deposition. These findings demonstrate the aggregation of hIAPP at the membrane interfaces leading to amyloid deposits associated with the membrane and suggest a role for insulin in hIAPP deposition. A presumed mechanism regulating hIAPP deposition at the membrane interfaces is discussed.
Collapse
Affiliation(s)
- Kenji Sasahara
- Department of Microbiology and Infectious Diseases, Graduate School of Medicine, Kobe University, Japan
| | | | | |
Collapse
|
652
|
Wang H, Raleigh DP. The ability of insulin to inhibit the formation of amyloid by pro-islet amyloid polypeptide processing intermediates is significantly reduced in the presence of sulfated glycosaminoglycans. Biochemistry 2014; 53:2605-14. [PMID: 24654599 PMCID: PMC4010284 DOI: 10.1021/bi4015488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Islet
amyloid polypeptide (IAPP) is responsible for amyloid deposition
in type 2 diabetes and plays an important role in the loss of β-cell
mass associated with the disease and in the failure of islet transplants, but the mechanism of islet amyloid formation is not understood. The
incorrect processing of proIAPP to produce partially processed forms
of the peptide has been proposed to play a role in the initiation
of islet amyloid in vivo by promoting interactions
with proteoglycans of the extracellular matrix. Insulin is a potent
inhibitor of the formation of amyloid by IAPP in vitro in a homogeneous solution; however, its ability to inhibit IAPP
in the presence of proteoglycans has not been tested, nor has its
effect on the formation of amyloid by proIAPP processing intermediates
been examined. Here we show that insulin is a much less effective
amyloid inhibitor of both IAPP and proIAPP processing intermediates in vitro in the presence of model glycosaminoglycans, but
does inhibit the formation of amyloid by proIAPP processing intermediates
in a homogeneous solution. This highlights another mechanism by which
sulfated proteoglycans could enhance islet amyloid formation in vivo. Interactions with sulfated proteoglycans can directly
promote amyloid formation and can also significantly reduce the effectiveness
of natural inhibitors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, State University of New York at Stony Brook , Stony Brook, New York 11794-3400, United States
| | | |
Collapse
|
653
|
Despa F, Decarli C. Amylin: what might be its role in Alzheimer's disease and how could this affect therapy? Expert Rev Proteomics 2014; 10:403-5. [PMID: 24117198 DOI: 10.1586/14789450.2013.841549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Florin Despa
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA
| | | |
Collapse
|
654
|
Ono K, Takahashi R, Ikeda T, Mizuguchi M, Hamaguchi T, Yamada M. Exogenous amyloidogenic proteins function as seeds in amyloid β-protein aggregation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:646-53. [DOI: 10.1016/j.bbadis.2014.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 02/01/2023]
|
655
|
Park YJ, Woo M, Kieffer TJ, Hakem R, Safikhan N, Yang F, Ao Z, Warnock GL, Marzban L. The role of caspase-8 in amyloid-induced beta cell death in human and mouse islets. Diabetologia 2014; 57:765-75. [PMID: 24442508 DOI: 10.1007/s00125-013-3152-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Reduced beta cell mass due to increased beta cell apoptosis is a key defect in type 2 diabetes. Islet amyloid, formed by the aggregation of human islet amyloid polypeptide (hIAPP), contributes to beta cell death in type 2 diabetes and in islet grafts in patients with type 1 diabetes. In this study, we used human islets and hIAPP-expressing mouse islets with beta cell Casp8 deletion to (1) investigate the role of caspase-8 in amyloid-induced beta cell apoptosis and (2) test whether caspase-8 inhibition protects beta cells from amyloid toxicity. METHODS Human islet cells were cultured with hIAPP alone, or with caspase-8, Fas or amyloid inhibitors. Human islets and wild-type or hIAPP-expressing mouse islets with or without caspase-8 expression (generated using a Cre/loxP system) were cultured to form amyloid. Caspase-8 and -3 activation, Fas and FLICE inhibitory protein (FLIP) expression, islet beta cell and amyloid area, IL-1β levels, and the beta:alpha cell ratio were assessed. RESULTS hIAPP treatment induced activation of caspase-8 and -3 in islet beta cells (via Fas upregulation), resulting in apoptosis, which was markedly reduced by blocking caspase-8, Fas or amyloid. Amyloid formation in cultured human and hIAPP-expressing mouse islets induced caspase-8 activation, which was associated with Fas upregulation and elevated islet IL-1β levels. hIAPP-expressing mouse islets with Casp8 deletion had comparable amyloid, IL-1β and Fas levels with those expressing hIAPP and Casp8, but markedly lower beta cell apoptosis, higher beta:alpha cell ratio, greater beta cell area, and enhanced beta cell function. CONCLUSIONS/INTERPRETATION Beta cell Fas upregulation by endogenously produced and exogenously applied hIAPP aggregates promotes caspase-8 activation, resulting in beta cell apoptosis. The prevention of amyloid-induced caspase-8 activation enhances beta cell survival and function in islets.
Collapse
Affiliation(s)
- Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Jim Pattison Pavilion, Vancouver General Hospital, 910 W 10th Ave., Vancouver, BC, Canada, V5Z 4E3
| | | | | | | | | | | | | | | | | |
Collapse
|
656
|
Bellia F, Grasso G. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:274-279. [PMID: 24719342 DOI: 10.1002/jms.3338] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Amylin or islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin-degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper- and zinc-induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion-induced changes in substrate accessibility.
Collapse
Affiliation(s)
- Francesco Bellia
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
| | | |
Collapse
|
657
|
Jing G, Westwell-Roper C, Chen J, Xu G, Verchere CB, Shalev A. Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through miR-124a and FoxA2. J Biol Chem 2014; 289:11807-11815. [PMID: 24627476 DOI: 10.1074/jbc.m113.525022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is up-regulated by glucose and diabetes and plays a critical role in glucotoxicity, inflammation, and beta-cell apoptosis, whereas we have found that TXNIP deficiency protects against diabetes. Interestingly, human islet amyloid polypeptide (IAPP) is also induced by glucose, aggregates into insoluble amyloid fibrils found in islets of most individuals with type 2 diabetes and promotes inflammation and beta-cell cytotoxicity. However, so far no connection between TXNIP and IAPP signaling had been reported. Using TXNIP gain and loss of function experiments, INS-1 beta-cells and beta-cell-specific Txnip knock-out mice, we now found that TXNIP regulates IAPP expression. Promoter analyses and chromatin-immunoprecipitation assays further demonstrated that TXNIP increases IAPP expression at the transcriptional level, and we discovered that TXNIP-induced FoxA2 (forkhead box A2) transcription factor expression was conferring this effect by promoting FoxA2 enrichment at the proximal FoxA2 site in the IAPP promoter. Moreover, we found that TXNIP down-regulates miR-124a expression, a microRNA known to directly target FoxA2. Indeed, miR-124a overexpression led to decreased FoxA2 expression and IAPP promoter occupancy and to a significant reduction in IAPP mRNA and protein expression and also effectively inhibited TXNIP-induced IAPP expression. Thus, our studies have identified a novel TXNIP/miR-124a/FoxA2/IAPP signaling cascade linking the critical beta-cell signaling pathways of TXNIP and IAPP and thereby provide new mechanistic insight into an important aspect of transcriptional regulation and beta-cell biology.
Collapse
Affiliation(s)
- Gu Jing
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Clara Westwell-Roper
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Junqin Chen
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Guanlan Xu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
658
|
Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev Endocr Metab Disord 2014; 15:11-20. [PMID: 24085381 DOI: 10.1007/s11154-013-9272-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy plays an important role in the regulation of cellular homeostasis through elimination of aggregated proteins, damaged organelles, and intracellular pathogens. Autophagy also contributes to the maintenance of energy balance through degradation of energy reserves such as lipids, glycogen, and proteins in the setting of increased energy demand. Recent studies have suggested that autophagy, or its deficiency, is implicated in the pathogenesis of insulin resistance, obesity, and diabetes. These effects of autophagy or its deficiency in regulation of energy metabolism are mediated not only by cell-autonomous effects, such as direct autophagic degradation of energy stores or intracellular organelles (endoplasmic reticulum and mitochondria) but also by non-cell-autonomous effects, such as induction/suppression of secreted factors or changes of sympathetic tone. In the present review, we highlight a recent surge in the research on the autophagy in the regulation of energy homeostasis, with a focus on its role as a mediator for crosstalk between metabolic organs.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Department of Medicine and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | | |
Collapse
|
659
|
Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2014; 2:246-55. [PMID: 24622755 DOI: 10.1016/s2213-8587(13)70088-3] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Type 2 diabetes is associated with dementia, and also with more slight cognitive decrements. In this Review we discuss trajectories from normal cognition to dementia in people with type 2 diabetes, and explore opportunities for treatment. Slight diabetes-associated cognitive decrements and dementia affect different age groups and show a different evolution. These cognitive entities should therefore not be regarded as a continuum, although their effects might be additive. Vascular damage is a key underlying process in both entities. Glucose-mediated processes and other metabolic disturbances might also have a role. No treatment has been established, but management of vascular risk factors and optimisation of glycaemic control could have therapeutic benefit. We identify possible opportunities for intervention to improve cognitive outcomes in people with type 2 diabetes, and suggest how treatment can be tailored to individual risk profiles and comorbidities.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
660
|
Abstract
This paper reviews the presentation of peptides by major histocompatibility complex (MHC) class II molecules in the autoimmune diabetes of the nonobese diabetic (NOD) mouse. Islets of Langerhans contain antigen-presenting cells that capture the proteins and peptides of the beta cells' secretory granules. Peptides bound to I-A(g7), the unique MHC class II molecule of NOD mice, are presented in islets and in pancreatic lymph nodes. The various beta cell-derived peptides interact with selected CD4 T cells to cause inflammation and beta cell demise. Many autoreactive T cells are found in NOD mice, but not all have a major role in the initiation of the autoimmune process. I emphasize here the evidence pointing to insulin autoreactivity as a seminal component in the diabetogenic process.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
661
|
Hassanpour A, De Carufel CA, Bourgault S, Forgione P. Synthesis of 2,5-diaryl-substituted thiophenes as helical mimetics: towards the modulation of islet amyloid polypeptide (IAPP) amyloid fibril formation and cytotoxicity. Chemistry 2014; 20:2522-8. [PMID: 24488624 DOI: 10.1002/chem.201303928] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Indexed: 11/08/2022]
Abstract
A range of 2,5-diarylated thiophenes were synthesised as small molecule mimetics of the α-helix to modulate the amyloidogenesis and cytotoxic effect of islet amyloid polypeptide (IAPP). 3-Substituted thiophene-2-carboxylic acids were used as key intermediates and functionalised by palladium decarboxylative cross-coupling and direct C-H activation successively with overall yields ranging from 23 to 95 %. The effect of the ligands on IAPP amyloid fibril formation was evaluated with the thioflavin T (ThT) fluorescence-based assay. Furthermore, the capacity of these compounds to inhibit the cytotoxic effect of IAPP was assessed using β-pancreatic cells.
Collapse
Affiliation(s)
- Avid Hassanpour
- Concordia University, Department of Chemistry and Biochemistry, Pharmaqam, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6 (Canada)
| | | | | | | |
Collapse
|
662
|
Landreh M, Alvelius G, Johansson J, Jörnvall H. Insulin, islet amyloid polypeptide and C-peptide interactions evaluated by mass spectrometric analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:178-184. [PMID: 24338965 DOI: 10.1002/rcm.6772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/13/2013] [Accepted: 10/20/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Insulin, islet amyloid polypeptide (IAPP), and the C-peptide part of proinsulin are co-secreted from the pancreatic beta cell granules. IAPP aggregation can be inhibited by insulin and insulin aggregation by C-peptide, but different binding and disaggregating interactions may apply for the peptide complexes. A more detailed knowledge of these interactions is necessary for the development strategies against diabetic complications that stem from peptide aggregations. METHODS Mass spectrometry (MS) is utilized to investigate pH-dependencies, sequence determinants and association strengths of interactions between pairs of all three peptides. Electrospray ionization (ESI)-MS was used to monitor complex formation and interaction stoichiometries at different pH values. Collision-induced dissociation (CID) was employed to probe relative association strengths and complex dissociation pathways. RESULTS IAPP, like C-peptide, removes insulin oligomers observable by ESI-MS. Both C-peptide and IAPP form stable 1:1 heterodimers with insulin. Complexes of the negatively charged C-peptide with the positively charged IAPP, on the other hand, are easily dissociated. Replacement of the conserved glutamic acid residues in C-peptide with alanine residues increases the stability, indicating that net charge alone does not predict association strength. Binding to insulin has been suggested to stabilize a helical fold in IAPP via charge and hydrophobic interactions, which is in agreement with the now observed high gas-phase stability and sensitivity to low pH. CONCLUSIONS Combined, these results suggest that the C-peptide-insulin and IAPP-insulin interactions are mediated by a defined binding site, while such a feature is not apparent in the IAPP-C-peptide association. Hence, IAPP and C-peptide are interacting in similar manners and with similar monomerizing effects on insulin, suggesting that both peptides can prevent insulin aggregation. Simultaneous interactions of all three peptides cannot be excluded but appear unlikely from the uneven pairwise binding strengths.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | |
Collapse
|
663
|
Protein-like fully reversible tetramerisation and super-association of an aminocellulose. Sci Rep 2014; 4:3861. [PMID: 24457430 PMCID: PMC3900928 DOI: 10.1038/srep03861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/06/2014] [Indexed: 11/11/2022] Open
Abstract
Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered “protein-like” and what might be considered as “carbohydrate-like” behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.
Collapse
|
664
|
Young LM, Cao P, Raleigh DP, Ashcroft AE, Radford SE. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J Am Chem Soc 2014; 136:660-70. [PMID: 24372466 PMCID: PMC3928500 DOI: 10.1021/ja406831n] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Indexed: 12/31/2022]
Abstract
The molecular mechanisms by which different proteins assemble into highly ordered fibrillar deposits and cause disease remain topics of debate. Human amylin (also known as islet amyloid polypeptide/hIAPP) is found in vivo as amyloid deposits in the pancreatic islets of sufferers of type II diabetes mellitus, and its self-aggregation is thought to be a pathogenic factor in disease and to contribute to the failure of islet transplants. Here, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) has been used to monitor oligomer formation from IAPP. The detection, identification and characterization of oligomers from both human and rat amylin (rIAPP) are described. Oligomers up to and including hexamers have been detected for both peptides. From ESI-IMS-MS derived collision cross sections (CCS), these species are shown to be elongated in conformation. Collision-induced dissociation (CID-MS/MS) revealed differences in the gas-phase stability of the oligomers formed from hIAPP and rIAPP, which may contribute to their differences in amyloid propensity. Using ESI-IMS-MS, the mode of inhibition of amyloid formation from hIAPP using small molecules or co-incubation with rIAPP was also investigated. We show that the polyphenolic compounds epigallocatechin gallate (EGCG) and silibinin bind to specific conformers within a dynamic ensemble of hIAPP monomers, altering the progress of oligomerization and fibril assembly. Hetero-oligomer formation also occurs with rIAPP but leads only to inefficient inhibition. The results indicate that although different small molecules can be effective inhibitors of hIAPP self-assembly, their modes of action are distinct and can be distinguished using ESI-IMS-MS.
Collapse
Affiliation(s)
- Lydia M Young
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | | | | | | | | |
Collapse
|
665
|
Jha S, Snell JM, Sheftic SR, Patil SM, Daniels SB, Kolling FW, Alexandrescu AT. pH dependence of amylin fibrillization. Biochemistry 2014; 53:300-10. [PMID: 24377660 DOI: 10.1021/bi401164k] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In type 2 diabetics, the hormone amylin misfolds into amyloid plaques implicated in the destruction of the pancreatic β-cells that make insulin and amylin. The aggregative misfolding of amylin is pH-dependent, and exposure of the hormone to acidic and basic environments could be physiologically important. Amylin has two ionizable residues between pH 3 and 9: the α-amino group and His18. Our approach to measuring the pKa values for these sites has been to look at the pH dependence of fibrillization in amylin variants that have only one of the two groups. The α-amino group at the unstructured N-terminus of amylin has a pKa near 8.0, similar to the value in random coil models. By contrast, His18, which is involved in the intermolecular β-sheet structure of the fibrils, has a pKa that is lowered to 5.0 in the fibrils compared to the random coil value of 6.5. The lowered pKa of His18 is due to the hydrophobic environment of the residue, and electrostatic repulsion between positively charged His18 residues on neighboring amylin molecules in the fibril. His18 acts as an electrostatic switch inhibiting fibrillization in its charged state. The presence of a charged side chain at position 18 also affects fibril morphology and lowers amylin cytotoxicity toward a MIN6 mouse model of pancreatic β-cells. In addition to the two expected pKa values, we detected an apparent pKa of ~4.0 for the amylin-derived peptide NAc-SNNFGAILSS-NH2, which has no titratable groups. This pKa is due to the pH-induced ionization of the dye thioflavin T. By using alternative methods to follow fibrillization such as the dye Nile Red or turbidimetry, we were able to distinguish between the titration of the dye and groups on the peptide. Large differences in reaction kinetics were observed between the different methods at acidic pH, because of charges on the ThT dye, which hinder fibril formation much like the charges on the protein.
Collapse
Affiliation(s)
- Suman Jha
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| | | | | | | | | | | | | |
Collapse
|
666
|
Guo SM, Bag N, Mishra A, Wohland T, Bathe M. Bayesian total internal reflection fluorescence correlation spectroscopy reveals hIAPP-induced plasma membrane domain organization in live cells. Biophys J 2014; 106:190-200. [PMID: 24411251 PMCID: PMC3907249 DOI: 10.1016/j.bpj.2013.11.4458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/01/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022] Open
Abstract
Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity. However, the spatial organization of microdomains and their temporal evolution were only partially characterized due to limitations in the conventional analysis and interpretation of imaging FCS datasets. Here, we apply a previously developed Bayesian analysis procedure to ITIR-FCS data to resolve hIAPP-induced microdomain spatial organization and temporal dynamics. Our analysis enables the visualization of the temporal evolution of multiple diffusing species in the spatially heterogeneous cell membrane, lending support to the carpet model for the association mode of hIAPP aggregates with the plasma membrane. The presented Bayesian analysis procedure provides an automated and general approach to unbiased model-based interpretation of imaging FCS data, with broad applicability to resolving the heterogeneous spatial-temporal organization of biological membrane systems.
Collapse
Affiliation(s)
- Syuan-Ming Guo
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nirmalya Bag
- Departments of Biological Sciences and Chemistry, and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Aseem Mishra
- Departments of Biological Sciences and Chemistry, and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry, and Centre for Bioimaging Sciences, National University of Singapore, Singapore.
| | - Mark Bathe
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
667
|
Gingell JJ, Burns ER, Hay DL. Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors. Endocrinology 2014; 155:21-6. [PMID: 24169554 DOI: 10.1210/en.2013-1658] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Amylin is a neuroendocrine hormone involved in glucose regulation. An amylin analog, pramlintide, is used to treat insulin-requiring diabetes. Its anorexigenic actions give it potential as an obesity treatment. There are 3 amylin receptors (AMY1, AMY2, AMY3), comprising the calcitonin receptor and receptor activity-modifying proteins 1, 2, and 3, respectively. The pharmacology of pramlintide at each subtype has not been determined whereas the unrelated peptide β-amyloid 1-42 (Aβ1-42) has recently been proposed to be a specific agonist of the AMY3 receptor. We investigated the actions of Aβ1-42 and pramlintide, compared with human and rat amylin at the calcitonin receptor, AMY1, AMY2, and AMY3 receptors, measuring the cAMP response in human embryonic kidney 293S and Cos 7 cells. Pramlintide activated all receptors with a slight preference for AMY1. No cAMP response was detected with Aβ1-42 at any receptor, suggesting that it may not be a genuine agonist of AMY receptors.
Collapse
Affiliation(s)
- Joseph J Gingell
- School of Biological Sciences (J.J.G., E.R.B., D.L.H.), The University of Auckland and Maurice Wilkins Centre (J.J.G., D.L.H.), University of Auckland, Auckland 1142, New Zealand
| | | | | |
Collapse
|
668
|
Hoenig M. Carbohydrate Metabolism and Pathogenesis of Diabetes Mellitus in Dogs and Cats. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:377-412. [DOI: 10.1016/b978-0-12-800101-1.00012-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
669
|
Milardi D, Sciacca MFM, Randazzo L, Raudino A, La Rosa C. The role of calcium, lipid membranes and islet amyloid polypeptide in the onset of type 2 diabetes: innocent bystanders or partners in a crime? Front Endocrinol (Lausanne) 2014; 5:216. [PMID: 25566188 PMCID: PMC4268396 DOI: 10.3389/fendo.2014.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Danilo Milardi
- Istituto CNR di Biostrutture e Bioimmagini-Sezione di Catania, Catania, Italy
| | - Michele F. M. Sciacca
- Dipartimento di Scienze Chimiche Viale Andrea Doria 6, Università Degli Studi di Catania, Catania, Italy
| | - Loredana Randazzo
- Istituto CNR di Biostrutture e Bioimmagini-Sezione di Catania, Catania, Italy
| | - Antonino Raudino
- Dipartimento di Scienze Chimiche Viale Andrea Doria 6, Università Degli Studi di Catania, Catania, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche Viale Andrea Doria 6, Università Degli Studi di Catania, Catania, Italy
- *Correspondence:
| |
Collapse
|
670
|
Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med (Zagreb) 2013; 23:266-80. [PMID: 24266296 PMCID: PMC3900074 DOI: 10.11613/bm.2013.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Diabetes is a complex, heterogeneous condition that has beta cell dysfunction at its core. Many factors (e.g. hyperglycemia/glucotoxicity, lipotoxicity, autoimmunity, inflammation, adipokines, islet amyloid, incretins and insulin resistance) influence the function of pancreatic beta cells. Chronic hyperglycaemia may result in detrimental effects on insulin synthesis/secretion, cell survival and insulin sensitivity through multiple mechanisms: gradual loss of insulin gene expression and other beta-cell specific genes; chronic endoplasmic reticulum stress and oxidative stress; changes in mitochondrial number, morphology and function; disruption in calcium homeostasis. In the presence of hyperglycaemia, prolonged exposure to increased free fatty acids result in accumulation of toxic metabolites in the cells (“lipotoxicity”), finally causing decreased insulin gene expression and impairment of insulin secretion. The rest of the factors/mechanisms which impact on the course of the disease are also discusses in detail. The correct assessment of beta cell function requires a concomitant quantification of insulin secretion and insulin sensitivity, because the two variables are closely interrelated. In order to better understand the fundamental pathogenetic mechanisms that contribute to disease development in a certain individual with diabetes, additional markers could be used, apart from those that evaluate beta cell function. The aim of the paper was to overview the relevant mechanisms/factors that influence beta cell function and to discuss the available methods of its assessment. In addition, clinical considerations are made regarding the therapeutical options that have potential protective effects on beta cell function/mass by targeting various underlying factors and mechanisms with a role in disease progression.
Collapse
Affiliation(s)
- Simona Cernea
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania.
| | | |
Collapse
|
671
|
De Carufel CA, Nguyen PT, Sahnouni S, Bourgault S. New insights into the roles of sulfated glycosaminoglycans in islet amyloid polypeptide amyloidogenesis and cytotoxicity. Biopolymers 2013; 100:645-55. [DOI: 10.1002/bip.22243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 01/16/2023]
Affiliation(s)
| | - Phuong Trang Nguyen
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| | - Sabrina Sahnouni
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| | - Steve Bourgault
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| |
Collapse
|
672
|
Kumar S, Miranker AD. A foldamer approach to targeting membrane bound helical states of islet amyloid polypeptide. Chem Commun (Camb) 2013; 49:4749-51. [PMID: 23579860 DOI: 10.1039/c3cc41452c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small molecule, protein mimetic based approach is shown to specifically inhibit lipid catalysed self-assembly of islet amyloid polypeptide (IAPP). The lipid-bound oligomerization of this peptide is implicated in cellular dysfunction of insulin secreting β-cells in type II diabetes.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
673
|
Abstract
Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP-membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration-approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.
Collapse
|
674
|
Watve M, Bodas A, Diwekar M. Altered autonomic inputs as a cause of pancreatic β-cell amyloid. Med Hypotheses 2013; 82:49-53. [PMID: 24321738 DOI: 10.1016/j.mehy.2013.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/03/2013] [Indexed: 01/09/2023]
Abstract
A partial loss of β-cell mass and β-cell dysfunction in Type 2 Diabetes Mellitus (T2DM) is associated with amyloid deposition but whether it is causal or consequential is debated. Although the in vitro polymerization of amylin has been studied in detail, the exact trigger for the mechanism in vivo has not been identified. One suggestion is that an increased load on β-cells results in inefficient handling of proteins leading to misfolding and aggregation, but this hypothesis is faced with certain paradoxes. We suggest an alternative mechanism based on the assumption that polymerization is a spontaneous process. The concentration of the polypeptide in β-cell granules is shown to be sufficient to allow polymerization. However if the rate of turnover in normal cells is greater than the rate of polymerization, amyloid deposition will not be observed. If this is true, it follows that amyloid deposition could be a result of increased retention time of amylin in the β-cell granules. In T2D, the sympathetic inputs are known to increase which could result in suppression of the secretion process. The increase in the retention time due to this suppression can allow polymerization. In addition to this in a prediabetic state parasympathetic stimulation increases β-cell proliferation. This reduces the insulin demand per cell thereby increasing the mean retention time. Thus a combination of contrasting actions of sympathetic and parasympathetic systems could lead to increase in the amyloid deposition. We suggest testable predictions of the alternative hypotheses and the lines of research needed to test them.
Collapse
Affiliation(s)
- Milind Watve
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Arushi Bodas
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Manawa Diwekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
675
|
Croymans DM, Paparisto E, Lee MM, Brandt N, Le BK, Lohan D, Lee CC, Roberts CK. Resistance training improves indices of muscle insulin sensitivity and β-cell function in overweight/obese, sedentary young men. J Appl Physiol (1985) 2013; 115:1245-53. [PMID: 23970530 PMCID: PMC3841835 DOI: 10.1152/japplphysiol.00485.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/18/2013] [Indexed: 12/30/2022] Open
Abstract
We examined the effects of RT on oral glucose tolerance test (OGTT)-derived indices of muscle insulin sensitivity, hepatic insulin resistance, β-cell function, and skeletal muscle proteins related to glucose transport in overweight/obese, sedentary young men. Twenty-eight participants [median body mass index (BMI) 30.9 kg/m(2); age 22 yr] completed 12 wk of RT (3 sessions/wk) and were assessed for changes in OGTT-derived indices, resting metabolic rate, body composition, serum adipokines, and skeletal muscle protein content [hexokinase 2 (HK2), glucose transporter type 4 (GLUT4), RAC-β serine/threonine-protein kinase (AKT2), glycogen synthase kinase 3β, and insulin receptor substrate 1]. Individualized responses to RT were also evaluated. RT significantly improved insulin and glucose area under the curve (both P < 0.03). With the use of OGTT indices of insulin action, we noted improved muscle insulin sensitivity index (mISI; P = 0.03) and oral disposition index (P = 0.03). BMI, lean body mass (LBM), and relative strength also increased (all P < 0.03), as did skeletal muscle protein content of HK2, GLUT4, and AKT2 (26-33%; all P < 0.02). Hepatic insulin resistance index, adiponectin, leptin, and total amylin did not change. Further analysis demonstrated the presence of highly individualized responsiveness to RT for glucose tolerance and other outcomes. RT improved oral indices of muscle insulin sensitivity and β-cell function but not hepatic insulin resistance in overweight/obese young men. In addition to the increase in LBM, the improvements in insulin action may be due, in part, to increases in key insulin signaling proteins.
Collapse
Affiliation(s)
- Daniel M Croymans
- David Geffen School of Medicine, University of California, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
676
|
Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, González-Mariscal I, Carlson OD, Sanghvi M, Moaddel R, Farhang K, Gadkaree SK, Doyle ME, Pearson KJ, Mattison JA, de Cabo R, Egan JM. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 2013; 62:3500-13. [PMID: 23884882 PMCID: PMC3781448 DOI: 10.2337/db13-0266] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eating a "Westernized" diet high in fat and sugar leads to weight gain and numerous health problems, including the development of type 2 diabetes mellitus (T2DM). Rodent studies have shown that resveratrol supplementation reduces blood glucose levels, preserves β-cells in islets of Langerhans, and improves insulin action. Although rodent models are helpful for understanding β-cell biology and certain aspects of T2DM pathology, they fail to reproduce the complexity of the human disease as well as that of nonhuman primates. Rhesus monkeys were fed a standard diet (SD), or a high-fat/high-sugar diet in combination with either placebo (HFS) or resveratrol (HFS+Resv) for 24 months, and pancreata were examined before overt dysglycemia occurred. Increased glucose-stimulated insulin secretion and insulin resistance occurred in both HFS and HFS+Resv diets compared with SD. Although islet size was unaffected, there was a significant decrease in β-cells and an increase in α-cells containing glucagon and glucagon-like peptide 1 with HFS diets. Islets from HFS+Resv monkeys were morphologically similar to SD. HFS diets also resulted in decreased expression of essential β-cell transcription factors forkhead box O1 (FOXO1), NKX6-1, NKX2-2, and PDX1, which did not occur with resveratrol supplementation. Similar changes were observed in human islets where the effects of resveratrol were mediated through Sirtuin 1. These findings have implications for the management of humans with insulin resistance, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Jennifer L. Fiori
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Yu-Kyong Shin
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts
| | - Wook Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Susan M. Krzysik-Walker
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Isabel González-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Olga D. Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Mitesh Sanghvi
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kathleen Farhang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Shekhar K. Gadkaree
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Maire E. Doyle
- Division of Endocrinology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Kevin J. Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Corresponding author: Josephine M. Egan,
| |
Collapse
|
677
|
α-helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes. Sci Rep 2013; 3:2781. [PMID: 24071712 PMCID: PMC3784961 DOI: 10.1038/srep02781] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
The human islet amyloid polypeptide (hIAPP) is the primary component in the toxic islet amyloid deposits in type-2 diabetes. hIAPP self-assembles to aggregates that permeabilize membranes and constitutes amyloid plaques. Uncovering the mechanisms of amyloid self-assembly is the key to understanding amyloid toxicity and treatment. Although structurally similar, hIAPP's rat counterpart, the rat islet amyloid polypeptide (rIAPP), is non-toxic. It has been a puzzle why these peptides behave so differently. We combined multiscale modelling and theory to explain the drastically different dynamics of hIAPP and rIAPP: The differences stem from electrostatic dipolar interactions. hIAPP forms pentameric aggregates with the hydrophobic residues facing the membrane core and stabilizing water-conducting pores. We give predictions for pore sizes, the number of hIAPP peptides, and aggregate morphology. We show the importance of curvature-induced stress at the early stages of hIAPP assembly and the α-helical structures over β-sheets. This agrees with recent fluorescence spectroscopy experiments.
Collapse
|
678
|
Genetically engineered pig models for diabetes research. Transgenic Res 2013; 23:27-38. [PMID: 24065178 DOI: 10.1007/s11248-013-9755-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) has emerged into a steadily increasing health problem and the predicted future dimension of the global DM epidemic is alarming: an increase from currently 346 million to over 400 million affected people worldwide by the year 2030 was extrapolated. Thus concerted research efforts are imperative to gain insight into disease mechanisms and to expand the basis for development of preventive and therapeutic strategies. Diabetic rodent models have traditionally been used to follow these goals, but have limitations for translational research. The pig is another classical animal model for diabetes research. Genetic engineering now facilitates tailoring pig models which mimic human disease mechanisms at the molecular level. This article reviews the existing genetically engineered pig models for diabetes research and their current and future applications. Further, the potential role of the pig as donor of pancreatic islets for xenotransplantation or as host for growing human pancreas is outlined.
Collapse
|
679
|
Peinado JR, Sami F, Rajpurohit N, Lindberg I. Blockade of islet amyloid polypeptide fibrillation and cytotoxicity by the secretory chaperones 7B2 and proSAAS. FEBS Lett 2013; 587:3406-11. [PMID: 24042052 DOI: 10.1016/j.febslet.2013.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The deposition of fibrillated human islet β-cell peptide islet amyloid polypeptide (hIAPP) into amyloid plaques is characteristic of the pathogenesis of islet cell death during type 2 diabetes. We investigated the effects of the neuroendocrine secretory proteins 7B2 and proSAAS on hIAPP fibrillation in vitro and on cytotoxicity. In vitro, 21-kDa 7B2 and proSAAS blocked hIAPP fibrillation. Structure-function studies showed that a central region within 21-kDa 7B2 is important in this effect and revealed the importance of the N-terminal region of proSAAS. Both chaperones blocked the cytotoxic effects of exogenous hIAPP on Rin5f cells; 7B2 generated by overexpression was also effective. ProSAAS and 7B2 may perform a chaperone role as secretory anti-aggregants in normal islet cell function and in type 2 diabetes.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, MD 21201, United States
| | | | | | | |
Collapse
|
680
|
Brender JR, Krishnamoorthy J, Messina GML, Deb A, Vivekanandan S, La Rosa C, Penner-Hahn JE, Ramamoorthy A. Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chem Commun (Camb) 2013; 49:3339-41. [PMID: 23505632 DOI: 10.1039/c3cc40383a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) has been linked to beta-cell death in type II diabetes. Zinc present in secretory granules has been shown to affect this aggregation. A combination of EXAFS, NMR, and AFM experiments shows that the influence of zinc is most likely due to the stabilization of prefibrillar aggregates of hIAPP.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
681
|
Pottekat A, Becker S, Spencer KR, Yates JR, Manning G, Itkin-Ansari P, Balch WE. Insulin biosynthetic interaction network component, TMEM24, facilitates insulin reserve pool release. Cell Rep 2013; 4:921-30. [PMID: 24012759 DOI: 10.1016/j.celrep.2013.07.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 12/31/2022] Open
Abstract
Insulin homeostasis in pancreatic β cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D). Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN), a proteomic roadmap in the β cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24) that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in β cells.
Collapse
Affiliation(s)
- Anita Pottekat
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
682
|
Chiu CC, Singh S, de Pablo J. Effect of proline mutations on the monomer conformations of amylin. Biophys J 2013; 105:1227-35. [PMID: 24010666 PMCID: PMC3762349 DOI: 10.1016/j.bpj.2013.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022] Open
Abstract
The formation of human islet amyloid polypeptide (hIAPP) is implicated in the loss of pancreatic β-cells in type II diabetes. Rat amylin, which differs from human amylin at six residues, does not lead to formation of amyloid fibrils. Pramlintide is a synthetic analog of human amylin that shares three proline substitutions with rat amylin. Pramlintide has a much smaller propensity to form amyloid aggregates and has been widely prescribed in amylin replacement treatment. It is known that the three prolines attenuate β-sheet formation. However, the detailed effects of these proline substitutions on full-length hIAPP remain poorly understood. In this work, we use molecular simulations and bias-exchange metadynamics to investigate the effect of proline substitutions on the conformation of the hIAPP monomer. Our results demonstrate that hIAPP can adopt various β-sheet conformations, some of which have been reported in experiments. The proline substitutions perturb the formation of long β-sheets and reduce their stability. More importantly, we find that all three proline substitutions of pramlintide are required to inhibit β conformations and stabilize the α-helical conformation. Fewer substitutions do not have a significant inhibiting effect.
Collapse
Affiliation(s)
- Chi-cheng Chiu
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Sadanand Singh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Juan J. de Pablo
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| |
Collapse
|
683
|
Mishra A, Misra A, Vaishnavi TS, Thota C, Gupta M, Ramakumar S, Chauhan VS. Conformationally restricted short peptides inhibit human islet amyloid polypeptide (hIAPP) fibrillization. Chem Commun (Camb) 2013; 49:2688-90. [PMID: 23435449 PMCID: PMC3684849 DOI: 10.1039/c3cc38982k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inhibition of human islet amyloid polypeptide (hIAPP) fibrillisation by peptides incorporating a helicogenic amino acid, dehydrophenylalanine: implications for Type-2 diabetes.
hIAPP fibrillization implicated in Type 2 diabetes pathology involves formation of oligomers toxic to insulin producing pancreatic β-cells. We report design, synthesis, 3D structure and functional characterization of dehydrophenylalanine (ΔF) containing peptides which inhibit hIAPP fibrillization. The inhibitor protects β-cells from hIAPP induced toxicity.
Collapse
Affiliation(s)
- Aseem Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
684
|
Yan LM, Velkova A, Tatarek-Nossol M, Rammes G, Sibaev A, Andreetto E, Kracklauer M, Bakou M, Malideli E, Göke B, Schirra J, Storr M, Kapurniotu A. Selektiv N-methylierte lösliche IAPP-Mimetika als potente IAPP-Rezeptoragonisten und nanomolare Inhibitoren der Selbstassoziation von IAPP und Aβ40. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
685
|
Yan LM, Velkova A, Tatarek-Nossol M, Rammes G, Sibaev A, Andreetto E, Kracklauer M, Bakou M, Malideli E, Göke B, Schirra J, Storr M, Kapurniotu A. Selectively N-methylated soluble IAPP mimics as potent IAPP receptor agonists and nanomolar inhibitors of cytotoxic self-assembly of both IAPP and Aβ40. Angew Chem Int Ed Engl 2013; 52:10378-83. [PMID: 23956012 DOI: 10.1002/anie.201302840] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/08/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Li-Mei Yan
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany) http://pbch.wzw.tum.de/
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
686
|
Fu W, Patel A, Jhamandas JH. Amylin receptor: a common pathophysiological target in Alzheimer's disease and diabetes mellitus. Front Aging Neurosci 2013; 5:42. [PMID: 23966942 PMCID: PMC3744041 DOI: 10.3389/fnagi.2013.00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/03/2013] [Indexed: 01/26/2023] Open
Abstract
Amylin (islet amyloid polypeptide) and amyloid-beta (Aβ) protein, which are deposited within pancreatic islets of diabetics and brains of Alzheimer’s patients respectively, share many biophysical and physiological properties. Emerging evidence indicates that the amylin receptor is a putative target receptor for the actions of human amylin and Aβ in the brain. The amylin receptor consists of the calcitonin receptor dimerized with a receptor activity-modifying protein and is widely distributed within central nervous system. Both amylin and Aβ directly activate this G protein-coupled receptor and trigger multiple common intracellular signal transduction pathways that can culminate in apoptotic cell death. Moreover, amylin receptor antagonists can block both the biological and neurotoxic effects of human amylin and Aβ. Amylin receptors thus appear to be involved in the pathophysiology of Alzheimer’s disease and diabetes, and could serve as a molecular link between the two conditions that are associated epidemiologically.
Collapse
Affiliation(s)
- Wen Fu
- Division of Neurology, Department of Medicine, Centre for Neuroscience, University of Alberta , Edmonton, AB , Canada
| | | | | |
Collapse
|
687
|
Smaoui MR, Poitevin F, Delarue M, Koehl P, Orland H, Waldispühl J. Computational assembly of polymorphic amyloid fibrils reveals stable aggregates. Biophys J 2013; 104:683-93. [PMID: 23442919 DOI: 10.1016/j.bpj.2012.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 11/27/2022] Open
Abstract
Amyloid proteins aggregate into polymorphic fibrils that damage tissues of the brain, nerves, and heart. Experimental and computational studies have examined the structural basis and the nucleation of short fibrils, but the ability to predict and precisely quantify the stability of larger aggregates has remained elusive. We established a complete classification of fibril shapes and developed a tool called CreateFibril to build such complex, polymorphic, modular structures automatically. We applied stability landscapes, a technique we developed to reveal reliable fibril structural parameters, to assess fibril stability. CreateFibril constructed HET-s, Aβ, and amylin fibrils up to 17 nm in length, and utilized a novel dipolar solvent model that captured the effect of dipole-dipole interactions between water and very large molecular systems to assess their aqueous stability. Our results validate experimental data for HET-s and Aβ, and suggest novel (to our knowledge) findings for amylin. In particular, we predicted the correct structural parameters (rotation angles, packing distances, hydrogen bond lengths, and helical pitches) for the one and three predominant HET-s protofilaments. We reveal and structurally characterize all known Aβ polymorphic fibrils, including structures recently classified as wrapped fibrils. Finally, we elucidate the predominant amylin fibrils and assert that native amylin is more stable than its amyloid form. CreateFibril and a database of all stable polymorphic fibril models we tested, along with their structural energy landscapes, are available at http://amyloid.cs.mcgill.ca.
Collapse
|
688
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine recently published literature in the areas of incretins and amylin in the management of pediatric diabetes. RECENT FINDINGS Recent studies have begun to explore the use of longer-acting GLP-1 analogues that can be given once daily, such as liraglutide, and the use of DPP-IV inhibitors in the management of type 2 diabetes. In addition, recent studies have been published on the use of exenatide in the management of pediatric obesity and newly diagnosed type 1 diabetes. SUMMARY Very few medications are approved for management of type 2 diabetes in youth. In addition, monotherapy of type 1 diabetes in youth with insulin does not achieve HbA1c targets in the majority of youth despite the use of rapid-acting insulin analogues, insulin pump therapy, and continuous glucose monitoring. Novel therapies that target physiologic modalities other than enhancing or replacing insulin secretion or improving insulin sensitivity have shown efficacy in adults. Studies with these drugs are being done in the pediatric population and should provide additional treatment options for these patients.
Collapse
|
689
|
Lomasney AR, Yi L, Roper MG. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device. Anal Chem 2013; 85:7919-25. [PMID: 23848226 DOI: 10.1021/ac401625g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A method was developed that allowed simultaneous monitoring of the acute secretory dynamics of insulin and islet amyloid polypeptide (IAPP) from islets of Langerhans using a microfluidic system with two-color detection. A flow-switching feature enabled changes in the perfusion media within 5 s, allowing rapid exchange of the glucose concentrations delivered to groups of islets. The perfusate was continuously sampled by electroosmotic flow and mixed online with Cy5-labeled insulin, fluorescein isothiocyanate (FITC)-labeled IAPP, anti-insulin, and anti-IAPP antibodies in an 8.15 cm mixing channel maintained at 37 °C. The immunoassay mixture was injected for 0.3 s onto a 1.5 cm separation channel at 11.75 s intervals and immunoassay reagents detected using 488 and 635 nm lasers with two independent photomultiplier tubes for detection of the FITC and Cy5 signal. RSD of the bound-to-free immunoassay ratios ranged from 2 to 7% with LODs of 20 nM for insulin and 1 nM for IAPP. Simultaneous secretion profiles of the two peptides were monitored from groups of 4-10 islets during multiple step changes in glucose concentration. Insulin and IAPP were secreted in an approximately 10:1 ratio and displayed similar responses to step changes from 3 to 11 or 20 mM glucose. The ability to monitor the secretory dynamics of multiple peptides from islets of Langerhans in a highly automated fashion is expected to be a useful tool for investigating hormonal regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Anna R Lomasney
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | | | |
Collapse
|
690
|
Seeliger J, Werkmüller A, Winter R. Macromolecular crowding as a suppressor of human IAPP fibril formation and cytotoxicity. PLoS One 2013; 8:e69652. [PMID: 23922768 PMCID: PMC3726762 DOI: 10.1371/journal.pone.0069652] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/13/2013] [Indexed: 01/21/2023] Open
Abstract
The biological cell is known to exhibit a highly crowded milieu, which significantly influences protein aggregation and association processes. As several cell degenerative diseases are related to the self-association and fibrillation of amyloidogenic peptides, understanding of the impact of macromolecular crowding on these processes is of high biomedical importance. It is further of particular relevance as most in vitro studies on amyloid aggregation have been performed in diluted solution which does not reflect the complexity of their cellular surrounding. The study presented here focuses on the self-association of the type-2 diabetes mellitus related human islet amyloid polypeptide (hIAPP) in various crowded environments including network-forming macromolecular crowding reagents and protein crowders. It was possible to identify two competing processes: a crowder concentration and type dependent stabilization of globular off-pathway species and a--consequently--retarded or even inhibited hIAPP fibrillation reaction. The cause of these crowding effects was revealed to be mainly excluded volume in the polymeric crowders, whereas non-specific interactions seem to be most dominant in protein crowded environments. Specific hIAPP cytotoxicity assays on pancreatic β-cells reveal non-toxicity for the stabilized globular species, in contrast to the high cytotoxicity imposed by the normal fibrillation pathway. From these findings it can be concluded that cellular crowding is able to effectively stabilize the monomeric conformation of hIAPP, hence enabling the conduction of its normal physiological function and prevent this highly amyloidogenic peptide from cytotoxic aggregation and fibrillation.
Collapse
Affiliation(s)
- Janine Seeliger
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Alexander Werkmüller
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
691
|
Jackson K, Barisone GA, Diaz E, Jin LW, DeCarli C, Despa F. Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann Neurol 2013; 74:517-26. [PMID: 23794448 DOI: 10.1002/ana.23956] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Hyperamylinemia, a common pancreatic disorder in obese and insulin-resistant patients, is known to cause amylin oligomerization and cytotoxicity in pancreatic islets, leading to β-cell mass depletion and development of type 2 diabetes. Recent data has revealed that hyperamylinemia also affects the vascular system, heart, and kidneys. We therefore hypothesized that oligomerized amylin might accumulate in the cerebrovascular system and brain parenchyma of diabetic patients. METHODS Amylin accumulation in the brain of diabetic patients with vascular dementia or Alzheimer disease (AD), nondiabetic patients with AD, and age-matched healthy controls was assessed by quantitative real time polymerase chain reaction, immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay. RESULTS Amylin oligomers and plaques were identified in the temporal lobe gray matter from diabetic patients, but not controls. In addition, extensive amylin deposition was found in blood vessels and perivascular spaces. Intriguingly, amylin deposition was also detected in blood vessels and brain parenchyma of patients with late onset AD without clinically apparent diabetes. Mixed amylin and amyloid β (Aβ) deposits were occasionally observed. However, amylin accumulation leads to amyloid formation independent of Aβ deposition. Tissues infiltrated by amylin showed increased interstitial space, vacuolation, spongiform change, and capillaries bent at amylin accumulation sites. Unlike the pancreas, there was no evidence of amylin synthesis in the brain. INTERPRETATION Metabolic disorders and aging promote accumulation of amylin amyloid in the cerebrovascular system and gray matter, altering microvasculature and tissue structure. Amylin amyloid formation in the wall of cerebral blood vessels may also induce failure of elimination of Aβ from the brain, thus contributing to the etiology of AD.
Collapse
Affiliation(s)
- Kaleena Jackson
- Department of Pharmacology, University of California, Davis, Davis, CA
| | | | | | | | | | | |
Collapse
|
692
|
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (AMR) is acknowledged and defined in kidney transplantation, but where do we stand as far as pancreas transplantation is concerned? Here we appraise the most recent findings in pancreatic AMR and give suggestions for future research in the field by addressing currently unresolved issues. RECENT FINDINGS Five main topics are discussed: chronological assessment of all literature on biopsy-proven pancreatic AMR; role of C4d and recent development in other markers; the use of sentinel organs, such as kidney biopsies and duodenal patch biopsies for diagnosis of pancreatic AMR; studies addressing islet pathology and its relevance in AMR; and protocol and follow-up pancreas biopsy practice in relation to pancreas transplant management and survival. SUMMARY Antibody-mediated processes play a role in pancreas transplantation. However, sensitive markers, pathophysiological understanding, and adequate interventions have not yet been established. Much data are still lacking and we believe that studying protocol and follow-up biopsies along with serial donor-specific antibody data may improve pancreas transplant patient management and outcomes.
Collapse
|
693
|
Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013383. [PMID: 23426524 DOI: 10.1101/cshperspect.a013383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folding biology common to all three kingdoms of life (Archaea, Bacteria, and Eukarya) is proteostasis. The proteostasis network (PN) functions as a "cloud" to generate, protect, and degrade the proteome. Whereas microbes (Bacteria, Archaea) have a single compartment, Eukarya have numerous subcellular compartments. We examine evidence that Eukarya compartments use coat, tether, and fusion (CTF) membrane trafficking components to form an evolutionarily advanced arm of the PN that we refer to as the "trafficking PN" (TPN). We suggest that the TPN builds compartments by generating a mosaic of integrated cargo-specific trafficking signatures (TRaCKS). TRaCKS control the temporal and spatial features of protein-folding biology based on the Anfinsen principle that the local environment plays a critical role in managing protein structure. TPN-generated endomembrane compartments apply a "quinary" level of structural control to modify the secondary, tertiary, and quaternary structures defined by the primary polypeptide-chain sequence. The development of Anfinsen compartments provides a unifying foundation for understanding the purpose of endomembrane biology and its capacity to drive extant Eukarya function and diversity.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology and Department of Chemical Physiology, The Skaggs Institute for Chemical Biology and the Dorris Institute for Neurological Diseases, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
694
|
Bastidas M, Showalter SA. Thermodynamic and structural determinants of differential Pdx1 binding to elements from the insulin and IAPP promoters. J Mol Biol 2013; 425:3360-77. [PMID: 23796517 DOI: 10.1016/j.jmb.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
In adult mammals, the production of insulin and other peptide hormones, such as the islet amyloid polypeptide (IAPP), is limited to β-cells due to tissue-specific expression of a set of transcription factors, the best known of which is pancreatic duodenal homeobox protein 1 (Pdx1). Like many homeodomain transcription factors, Pdx1 binds to a core DNA recognition sequence containing the tetranucleotide 5'-TAAT-3'; its consensus recognition element is 5'-CTCTAAT(T/G)AG-3'. Currently, a complete thermodynamic profile of Pdx1 binding to near-consensus and native promoter sequences has not been established, obscuring the mechanism of target site selection by this critical transcription factor. Strikingly, while Pdx1 responsive elements in the human insulin promoter conform to the pentanucleotide 5'-CTAAT-3' sequence, the Pdx1 responsive elements in the human iapp promoter all contain a substitution to 5'-TTAAT-3'. The crystal structure of Pdx1 bound to the consensus nucleotide sequence does not explain how Pdx1 identifies this natural variation, if it does at all. Here we report a combination of isothermal calorimetric titrations, NMR spectroscopy, and extensive multi-microsecond molecular dynamics calculations of Pdx1 that define its interactions with a panel of natural promoter elements and consensus-derived sequences. Our results show a small preference of Pdx1 for a C base 5' relative to the core TAAT promoter element. Molecular mechanics calculations, corroborated by experimental NMR data, lead to a rational explanation for sequence discrimination at this position. Taken together, our results suggest a molecular mechanism for differential Pdx1 affinity to elements from the insulin and iapp promoter sequences.
Collapse
Affiliation(s)
- Monique Bastidas
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA.
| | | |
Collapse
|
695
|
Lam VKL, Ma RCW, Lee HM, Hu C, Park KS, Furuta H, Wang Y, Tam CHT, Sim X, Ng DPK, Liu J, Wong TY, Tai ES, Morris AP, Tang NLS, Woo J, Leung PC, Kong APS, Ozaki R, Jia WP, Lee HK, Nanjo K, Xu G, Ng MCY, So WY, Chan JCN. Genetic associations of type 2 diabetes with islet amyloid polypeptide processing and degrading pathways in asian populations. PLoS One 2013; 8:e62378. [PMID: 23776430 PMCID: PMC3679113 DOI: 10.1371/journal.pone.0062378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 03/21/2013] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a complex disease characterized by beta cell dysfunctions. Islet amyloid polypeptide (IAPP) is highly conserved and co-secreted with insulin with over 40% of autopsy cases of T2D showing islet amyloid formation due to IAPP aggregation. Dysregulation in IAPP processing, stabilization and degradation can cause excessive oligomerization with beta cell toxicity. Previous studies examining genetic associations of pathways implicated in IAPP metabolism have yielded conflicting results due to small sample size, insufficient interrogation of gene structure and gene-gene interactions. In this multi-staged study, we screened 89 tag single nucleotide polymorphisms (SNPs) in 6 candidate genes implicated in IAPP metabolism and tested for independent and joint associations with T2D and beta cell dysfunctions. Positive signals in the stage-1 were confirmed by de novo and in silico analysis in a multi-centre unrelated case-control cohort. We examined the association of significant SNPs with quantitative traits in a subset of controls and performed bioinformatics and relevant functional analyses. Amongst the tag SNPs, rs1583645 in carboxypeptidase E (CPE) and rs6583813 in insulin degrading enzyme (IDE) were associated with 1.09 to 1.28 fold increased risk of T2D (PMeta = 9.4×10−3 and 0.02 respectively) in a meta-analysis of East Asians. Using genetic risk scores (GRS) with each risk variant scoring 1, subjects with GRS≥3 (8.2% of the cohort) had 56% higher risk of T2D than those with GRS = 0 (P = 0.01). In a subcohort of control subjects, plasma IAPP increased and beta cell function index declined with GRS (P = 0.008 and 0.03 respectively). Bioinformatics and functional analyses of CPE rs1583645 predicted regulatory elements for chromatin modification and transcription factors, suggesting differential DNA-protein interactions and gene expression. Taken together, these results support the importance of dysregulation of IAPP metabolism in T2D in East Asians.
Collapse
Affiliation(s)
- Vincent Kwok Lim Lam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and Department of Internal Medicine, College of Medicine, Seoul National University, Chongno-gu, Seoul, Korea
| | - Hiroto Furuta
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ying Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Claudia Ha Ting Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Xueling Sim
- Centre for Molecular Epidemiology, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Daniel Peng-Keat Ng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Nelson Leung Sang Tang
- Department of Chemical Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Jean Woo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Ping Chung Leung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Risa Ozaki
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Wei Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hong Kyu Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and Department of Internal Medicine, College of Medicine, Seoul National University, Chongno-gu, Seoul, Korea
| | - Kishio Nanjo
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Maggie Chor Yin Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Wing-Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
- * E-mail:
| |
Collapse
|
696
|
Donath MY, Dalmas É, Sauter NS, Böni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 2013; 17:860-872. [PMID: 23747245 DOI: 10.1016/j.cmet.2013.05.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
The role of the immune system is to restore functionality in response to stress. Increasing evidence shows that this function is not limited to insults by infection or injury and plays a role in response to overnutrition. Initially, this metabolic activation of the immune system is a physiological response, but it may become deleterious with time. Therefore, therapeutic interventions should aim at modulating the immune system rather than simply damping it. In this article, we describe the physiology and pathology of the immune system during obesity and diabetes with a focus on islet inflammation, the IL-1β pathway, and clinical translation.
Collapse
Affiliation(s)
- Marc Y Donath
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.
| | - Élise Dalmas
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Nadine S Sauter
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
697
|
Woods L, Radford S, Ashcroft A. Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1257-68. [PMID: 23063533 PMCID: PMC3787735 DOI: 10.1016/j.bbapap.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 10/28/2022]
Abstract
Interfacing ion mobility spectrometry to mass spectrometry (IMS-MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS-MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS-MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
| | - S.E. Radford
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - A.E. Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
698
|
Tang J, Pei Y, Zhou G. When aging-onset diabetes is coming across with Alzheimer disease: comparable pathogenesis and therapy. Exp Gerontol 2013; 48:744-50. [PMID: 23648584 DOI: 10.1016/j.exger.2013.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/12/2013] [Accepted: 04/27/2013] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder that is characterized by high blood glucose because of the insulin-resistance and insulin-deficiency in Type 2, while the insulin deficiency due to destruction of islet cells in the pancreas in Type 1. The development of Type 2 diabetes is caused by a combination of lifestyle and genetic factors. Aging patients with diabetes are at increased risk of developing cognitive and memory dysfunctions, which is one of the significant symptoms of Alzheimer disease (AD). Also, over 2/3 of AD patients were clinically indentified with impairment of glucose. Cognitive dysfunction would be associated with poor self-care ability in diabetes patients. This review will briefly summarize the current knowledge of the pathogenesis of these two diseases and highlight similarities in their pathophysiologies. Furthermore, we will shortly discuss recent progress in the insulin-targeted strategy, aiming to explore the inner linkage between these two diseases in aging populations.
Collapse
Affiliation(s)
- Jun Tang
- Department of Laboratory Medicine & Pathology, Kogod Center on Aging, Mayo Clinic,200 First Street SW, Rochester, MN 55905,USA
| | | | | |
Collapse
|
699
|
Linking metabolic abnormalities to apoptotic pathways in Beta cells in type 2 diabetes. Cells 2013; 2:266-83. [PMID: 24709700 PMCID: PMC3972679 DOI: 10.3390/cells2020266] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta-cell apoptosis is an important feature of islets in type 2 diabetes. Apoptosis can occur through two major pathways, the extrinsic or death receptor mediated pathway, and the intrinsic or Bcl-2-regulated pathway. Hyperglycaemia, hyperlipidaemia and islet amyloid poly-peptide (IAPP) represent important possible causes of increased beta-cell apoptosis. Hyperglycaemia induces islet-cell apoptosis by the intrinsic pathway involving molecules of the Bcl-2 family. High concentrations of palmitate also activate intrinsic apoptosis in islets cells. IAPP oligomers can induce apoptosis by both intrinsic and extrinsic pathways. IL-1b produced through NLRP3 inflammasome activation can also induce islet cell death. Activation of the NLRP3 inflammasome may not be important for glucose or palmitate induced apoptosis in islets but may be important for IAPP mediated cell death. Endoplasmic reticulum (ER) and oxidative stress have been observed in beta cells in type 2 diabetes, and these could be the link between upstream metabolic abnormalities and downstream apoptotic machinery.
Collapse
|
700
|
Singh S, Chiu CC, Reddy AS, de Pablo JJ. α-helix to β-hairpin transition of human amylin monomer. J Chem Phys 2013; 138:155101. [PMID: 23614446 PMCID: PMC3643982 DOI: 10.1063/1.4798460] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/13/2013] [Indexed: 12/20/2022] Open
Abstract
The human islet amylin polypeptide is produced along with insulin by pancreatic islets. Under some circumstances, amylin can aggregate to form amyloid fibrils, whose presence in pancreatic cells is a common pathological feature of Type II diabetes. A growing body of evidence indicates that small, early stage aggregates of amylin are cytotoxic. A better understanding of the early stages of the amylin aggregation process and, in particular, of the nucleation events leading to fibril growth could help identify therapeutic strategies. Recent studies have shown that, in dilute solution, human amylin can adopt an α-helical conformation, a β-hairpin conformation, or an unstructured coil conformation. While such states have comparable free energies, the β-hairpin state exhibits a large propensity towards aggregation. In this work, we present a detailed computational analysis of the folding pathways that arise between the various conformational states of human amylin in water. A free energy surface for amylin in explicit water is first constructed by resorting to advanced sampling techniques. Extensive transition path sampling simulations are then employed to identify the preferred folding mechanisms between distinct minima on that surface. Our results reveal that the α-helical conformer of amylin undergoes a transformation into the β-hairpin monomer through one of two mechanisms. In the first, misfolding begins through formation of specific contacts near the turn region, and proceeds via a zipping mechanism. In the second, misfolding occurs through an unstructured coil intermediate. The transition states for these processes are identified. Taken together, the findings presented in this work suggest that the inter-conversion of amylin between an α-helix and a β-hairpin is an activated process and could constitute the nucleation event for fibril growth.
Collapse
Affiliation(s)
- Sadanand Singh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|