651
|
Paim BA, Velho JA, Castilho RF, Oliveira HCF, Vercesi AE. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Free Radic Biol Med 2008; 44:444-51. [PMID: 17991444 DOI: 10.1016/j.freeradbiomed.2007.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/18/2007] [Accepted: 10/08/2007] [Indexed: 12/01/2022]
Abstract
We have previously proposed that hypercholesterolemic LDL receptor knockout (k/o) mice mitochondria possess a lower antioxidant capacity due to a large consumption of reducing equivalents from NADPH to sustain high rates of lipogenesis. In this work, we tested the hypothesis that this k/o mice mitochondrial oxidative stress results from the depletion of NADPH-linked substrates. In addition, the oxidative stress was further characterized by showing a lower mitochondrial GSH/GSSG ratio and a higher liver content of protein carbonyls as compared to controls. The activity of the antioxidant enzyme system glutathione reductase/peroxidase did not differ in k/o and control mitochondria. The faster spontaneous oxidation of endogenous NADPH in the k/o mitochondria was prevented by the addition of exogenous catalase, indicating that this oxidation is mediated by mitochondrially generated H(2)O(2). The higher rate of H(2)O(2) production was also prevented by the addition of exogenous isocitrate that maintains NADP fully reduced. The hypothesis that high rates of lipogenesis in the k/o cells decrease mitochondrial NADPH/NADP(+) ratio due to consumption of NADPH-linked substrates was supported by two findings: (i) oxygen consumption supported by endogenous NAD(P)H-linked substrates was slower in k/o than in control mitochondria, but was similar in the presence of exogenous isocitrate; (ii) in vivo treatment of k/o mice with sodium citrate/citric acid drinking solution for 2 weeks partially restored both the rate of oxygen consumption supported by NAD(P)H-linked substrates and the mitochondrial capacity to sustain reduced NADPH. In conclusion, the data demonstrate that the mitochondrial oxidative stress in hypercholesterolemic LDL receptor knockout mice is the result of a low content of mitochondrial NADPH-linked substrates in the intact animal that can be, at least in part, replenished by oral administration of citrate.
Collapse
Affiliation(s)
- Bruno A Paim
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-887, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
652
|
Shelly L, Royer L, Sand T, Jensen H, Luo Y. Phospholipid transfer protein deficiency ameliorates diet-induced hypercholesterolemia and inflammation in mice. J Lipid Res 2008; 49:773-81. [PMID: 18198166 DOI: 10.1194/jlr.m700336-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids from triglyceride-rich lipoproteins into HDL. PLTP has been shown to be an important factor in lipoprotein metabolism and atherogenesis. Here, we report that chronic high-fat, high-cholesterol diet feeding markedly increased plasma cholesterol levels in C57BL/6 mice. PLTP deficiency attenuated diet-induced hypercholesterolemia by dramatically reducing apolipoprotein E-rich lipoproteins (-88%) and, to a lesser extent, LDL (-40%) and HDL (-35%). Increased biliary cholesterol secretion, indicated by increased hepatic ABCG5/ABCG8 gene expression, and decreased intestinal cholesterol absorption may contribute to the lower plasma cholesterol in PLTP-deficient mice. The expression of proinflammatory genes (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) is reduced in aorta of PLTP knockout mice compared with wild-type mice fed either a chow or a high-cholesterol diet. Furthermore, plasma interleukin-6 levels are significantly lower in PLTP-deficient mice, indicating reduced systemic inflammation. These data suggest that PLTP appears to play a proatherogenic role in diet-induced hyperlipidemic mice.
Collapse
Affiliation(s)
- Lorraine Shelly
- Department of Cardiovascular, Metabolic, & Endocrine Diseases, Pfizer Global Research Division, Pfizer, Inc., Groton, CT 06340, USA
| | | | | | | | | |
Collapse
|
653
|
|
654
|
MacDonald MLE, Singaraja RR, Bissada N, Ruddle P, Watts R, Karasinska JM, Gibson WT, Fievet C, Vance JE, Staels B, Hayden MR. Absence of stearoyl-CoA desaturase-1 ameliorates features of the metabolic syndrome in LDLR-deficient mice. J Lipid Res 2008; 49:217-29. [PMID: 17960025 PMCID: PMC5017869 DOI: 10.1194/jlr.m700478-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A combination of the interrelated metabolic risk factors obesity, insulin resistance, dyslipidemia, and hypertension, often described as the "metabolic syndrome," is known to increase the risk of developing cardiovascular disease and diabetes. Stearoyl-coenzyme A desaturase (SCD) activity has been implicated in the metabolic syndrome, but detailed studies of the beneficial metabolic effects of SCD deficiency have been limited. Here, we show that absence of the Scd1 gene product reduces plasma triglycerides and reduces weight gain in severely hyperlipidemic low density lipoprotein receptor (LDLR)-deficient mice challenged with a Western diet. Absence of SCD1 also increases insulin sensitivity, as measured by intraperitoneal glucose and insulin tolerance testing. SCD1 deficiency dramatically reduces hepatic lipid accumulation while causing more modest reductions in plasma apolipoproteins, suggesting that in conditions of sustained hyperlipidemia, SCD1 functions primarily to mediate lipid stores. In addition, absence of SCD1 partially ameliorates the undesirable hypertriglyceridemic effect of antiatherogenic liver X receptor agonists. Our results demonstrate that constitutive reduction of SCD activity improves the metabolic phenotype of LDLR-deficient mice on a Western diet.
Collapse
Affiliation(s)
- Marcia L. E. MacDonald
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Roshni R. Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Nagat Bissada
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Piers Ruddle
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Russell Watts
- Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Joanna M. Karasinska
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - William T. Gibson
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Catherine Fievet
- Institut Pasteur de Lille, Département d’Athérosclérose, Lille, F-59019 France
- Institut National de la Santé et de la Recherche Médicale U545, Lille, F-59019 France
- Université de Lille 2, Lille, F-59006 France
| | - Jean E. Vance
- Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Bart Staels
- Institut Pasteur de Lille, Département d’Athérosclérose, Lille, F-59019 France
- Institut National de la Santé et de la Recherche Médicale U545, Lille, F-59019 France
- Université de Lille 2, Lille, F-59006 France
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
655
|
Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 2008; 7:84-99. [DOI: 10.1038/nrd2353] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
656
|
Dullens SPJ, Mensink RP, Bragt MCE, Kies AK, Plat J. Effects of emulsified policosanols with different chain lengths on cholesterol metabolism in heterozygous LDL receptor-deficient mice. J Lipid Res 2007; 49:790-6. [PMID: 18162663 DOI: 10.1194/jlr.m700497-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Policosanol is a mixture of long-chain primary aliphatic saturated alcohols. Previous studies in humans and animals have shown that these compounds improved lipoprotein profiles. However, more-recent placebo-controlled studies could not confirm these promising effects. Octacosanol (C28), the main component of sugarcane-derived policosanol, is assumed to be the bioactive component. This has, however, never been tested in an in vivo study that compared individual policosanol components side by side. Here we present that neither the individual policosanol components (C24, C26, C28, or C30) nor the natural policosanol mixture (all 30 mg/100 g diet) lowered serum cholesterol concentrations in LDL receptor knock-out (LDLr(+/-)) mice. Moreover, there was no effect on gene expression profiles of LDLr, ABCA1, HMG-CoA synthase 1, and apolipoprotein A-I (apoA-I) in hepatic and small intestinal tissue of female LDLr(+/-) mice after the 7 week intervention period. Finally, none of the individual policosanols or their respective long-chain fatty acids or aldehydes affected de novo apoA-I protein production in vitro in HepG2 and CaCo-2 cells. Therefore, we conclude that the evaluated individual policosanols, as well as the natural policosanol mixture, have no potential for reducing coronary heart disease risk through effects on serum lipoprotein concentrations.
Collapse
Affiliation(s)
- Stefan P J Dullens
- Department of Human Biology, Nutrition and Toxicology, Maastricht Research Institute, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
657
|
Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, Tansey MG, Dietschy JM. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 2007; 27:14470-80. [PMID: 18160655 PMCID: PMC6673433 DOI: 10.1523/jneurosci.4823-07.2007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 11/21/2022] Open
Abstract
Although cholesterol is a major component of the CNS, there is little information on how or whether a change in sterol flux across the blood-brain barrier might alter neurodegeneration. In Niemann-Pick type C (NPC) disease, a mutation in NPC1 protein causes unesterified cholesterol to accumulate in the lysosomal compartment of every cell, including neurons and glia. Using the murine model of this disease, we used genetic and pharmacologic approaches in an attempt to alter cholesterol homeostasis across the CNS. Genetic deletion of the sterol transporters ATP-binding cassette transporter A1 (ABCA1) and low-density lipoprotein receptor in the NPC1 mouse did not affect sterol balance or longevity. However, deletion of the nuclear receptor, liver X receptor beta (LXRbeta), had an adverse effect on progression of the disease. We therefore tested the effects of increasing LXR activity by oral administration of a synthetic ligand for this transcription factor. Treatment with this LXR agonist increased cholesterol excretion out of brain from 17 to 49 microg per day, slowed neurodegeneration, and prolonged life. This agonist did not alter synthesis of cholesterol or expression of genes associated with the formation of 24(S)-hydroxycholesterol or neurosteroids such as CYP46A1, 3alphaHSD, and CYP11A1. However, levels of the sterol transporters ABCA1 and ATP-binding cassette transporter G1 were increased. Concomitantly, markers of neuroinflammation, CD14, MAC1, CD11c, and inducible nitric oxide synthase, were reduced, and microglia reverted from their amoeboid, active form to a ramified, resting configuration. Thus, LXR activation resulted in increased cholesterol excretion from the brain, decreased neuroinflammation, and deactivation of microglia to slow neurodegeneration and extend the lifespan of the NPC1 mouse.
Collapse
Affiliation(s)
- Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - Hao Li
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
| | - Tamy C. Frank-Cannon
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - Mark A. Valasek
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
| | - Malú G. Tansey
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - John M. Dietschy
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
| |
Collapse
|
658
|
Liu B, Li H, Repa JJ, Turley SD, Dietschy JM. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res 2007; 49:663-9. [PMID: 18077828 DOI: 10.1194/jlr.m700525-jlr200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a multisystem disorder caused primarily by a mutation in the npc1 gene. These studies evaluated the effect of genetic background, deletion of additional genes, and administration of several agents on the age at death in a murine model of this disorder. Such factors as differing strain background or genetic drift within a given background in the npc1(-/-) mouse significantly altered the age at death and the degree of organ disease. Genetic deletion of Siat9 (GM3 synthetase) or Nr1h2 [liver X receptor (LXR)beta] shortened the life of the npc1(-/-) animals. Daily treatment of the npc1(-/-) mice with an LXR agonist or administration of a single dose of cyclodextrin, with or without the neurosteroid allopregnanolone, significantly slowed neurodegeneration and increased the lifespan of these animals. These data illustrate that the age at death of the npc1(-/-) mouse can be significantly influenced by many factors, including differences in strain background, other inactivating gene mutations (Siat9 and lxrbeta), and administration of agents such as LXR agonists and, particularly, cyclodextrin. It is currently not clear which of these effects is nonspecific or which might relate directly to the molecular defect present in the NPC1 syndrome.
Collapse
Affiliation(s)
- Benny Liu
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | |
Collapse
|
659
|
Portugal LR, Fernandes LR, Pietra Pedroso VS, Santiago HC, Gazzinelli RT, Alvarez-Leite JI. Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection. Microbes Infect 2007; 10:276-84. [PMID: 18316222 DOI: 10.1016/j.micinf.2007.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Intracellular replication of Toxoplasma gondii requires cholesterol uptake by host cell low-density lipoprotein receptor (LDLr), a critical element in atherosclerosis. We evaluated host parasitism, inflammatory responses and development of atherosclerosis in LDLr knockout (LDLr(-/-)) and their controls C57BL/6 mice infected with T. gondii. Our results show that T. gondii cysts were reduced in LDLr(-/-) mice when compared to C57BL/6 mice. However, in presence of hypercholesterolemic diet, parasite growth in LDLr(-/-) mice was similar to that seen in infected C57BL/6 mice. In presence of a hypercholesterolemic diet, T. gondii infection leads to a 60% reduction of serum triacylglycerol, total and atherogenic lipoprotein cholesterol. When aortic valve lesion was analyzed, infected mice showed a reduction of atherosclerotic lesion area as well as CD36 expression. MCP-1, SRA-I, SRA-II, ICAM-1 and VCAM-1 mRNA expression was kept similar between infected and control groups. Thus, despite the intense inflammatory process, the drastic reduction in serum lipids seems to limit the development of atherosclerosis in LDLr(-/-) mice infected with T. gondii. In conclusion, our results indicate that T. gondii employs host LDLr to acquire cholesterol and favor its growth. However, in the presence of hypercholesterolemia, T. gondii parasites are able to acquire cholesterol-rich lipoproteins through an alternative host receptor, and overcome LDLr deficiency, favoring host parasitism and impairing lipid loading of foam cells.
Collapse
Affiliation(s)
- Luciane R Portugal
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
660
|
Tobias PS, Curtiss LK. TLR2 in murine atherosclerosis. Semin Immunopathol 2007; 30:23-7. [PMID: 18058099 DOI: 10.1007/s00281-007-0102-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 11/29/2022]
Abstract
Atherosclerosis was once thought to be solely a disease of lipid accumulation in the vessel wall. It does involve lipid accumulation, but inflammation appears to be an important driving factor. Consequently, our laboratory undertook to examine the role(s) of TLRs, and especially TLR2, in murine models of atherosclerosis.
Collapse
Affiliation(s)
- Peter S Tobias
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
661
|
Kobayashi A, Ishikawa K, Matsumoto H, Kimura S, Kamiyama Y, Maruyama Y. Synergetic Antioxidant and Vasodilatory Action of Carbon Monoxide in Angiotensin II–Induced Cardiac Hypertrophy. Hypertension 2007; 50:1040-8. [DOI: 10.1161/hypertensionaha.107.097006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Atsushi Kobayashi
- From the First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazunobu Ishikawa
- From the First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hayato Matsumoto
- From the First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | - Satoshi Kimura
- From the First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshiyuki Kamiyama
- From the First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yukio Maruyama
- From the First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
662
|
Willnow TE, Hammes A, Eaton S. Lipoproteins and their receptors in embryonic development: more than cholesterol clearance. Development 2007; 134:3239-49. [PMID: 17720693 DOI: 10.1242/dev.004408] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously, the relevance of lipoproteins and their receptors has mainly been discussed in terms of cholesterol clearance in the adult organism. Now, findings from nematodes to fruit flies to mammals all point towards novel and unexpected roles for lipoprotein metabolism in the control of key regulatory pathways in the developing embryo, including signaling through steroid hormones and throughout the hedgehog and Wnt signaling pathways. Here, we discuss the emerging view of how lipoproteins and their receptors regulate embryogenesis.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany.
| | | | | |
Collapse
|
663
|
Su YQ, Sugiura K, Wigglesworth K, O'Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 2007; 135:111-21. [PMID: 18045843 DOI: 10.1242/dev.009068] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oocyte-derived bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are key regulators of follicular development. Here we show that these factors control cumulus cell metabolism, particularly glycolysis and cholesterol biosynthesis before the preovulatory surge of luteinizing hormone. Transcripts encoding enzymes for cholesterol biosynthesis were downregulated in both Bmp15(-/-) and Bmp15(-/-) Gdf9(+/-) double mutant cumulus cells, and in wild-type cumulus cells after removal of oocytes from cumulus-cell-oocyte complexes. Similarly, cholesterol synthesized de novo was reduced in these cumulus cells. This indicates that oocytes regulate cumulus cell cholesterol biosynthesis by promoting the expression of relevant transcripts. Furthermore, in wild-type mice, Mvk, Pmvk, Fdps, Sqle, Cyp51, Sc4mol and Ebp, which encode enzymes required for cholesterol synthesis, were highly expressed in cumulus cells compared with oocytes; and oocytes, in the absence of the surrounding cumulus cells, synthesized barely detectable levels of cholesterol. Furthermore, coincident with reduced cholesterol synthesis in double mutant cumulus cells, lower levels were also detected in cumulus-cell-enclosed double mutant oocytes compared with wild-type oocytes. Levels of cholesterol synthesis in double mutant cumulus cells and oocytes were partially restored by co-culturing with wild-type oocytes. Together, these results indicate that mouse oocytes are deficient in synthesizing cholesterol and require cumulus cells to provide products of the cholesterol biosynthetic pathway. Therefore, oocyte-derived paracrine factors, particularly, BMP15 and GDF9, promote cholesterol biosynthesis in cumulus cells, probably as compensation for oocyte deficiencies in cholesterol production.
Collapse
Affiliation(s)
- You-Qiang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
664
|
Petrovan RJ, Yuan Y, Curtiss LK. Expression of the Lyst(beige) mutation is atheroprotective in chow-fed apolipoprotein E-deficient mice. J Lipid Res 2007; 49:429-37. [PMID: 17982137 DOI: 10.1194/jlr.m700410-jlr200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyst(beige) mice crossed with hyperlipidemic low density lipoprotein receptor-deficient mice (BgLDLr(-/-)) display increased lesion area and a more stable lesion morphology. To verify that the beige phenotype is not unique to LDLr(-/-) mice, we examined atherosclerosis in beige, apolipoprotein E-deficient mutant mice (BgApoE(-/-)). Severe diet-induced hyperlipidemia in BgApoE(-/-) mice resulted in increased aortic sinus lesion areas compared with controls. Minimal aortic lesions were observed in both genotypes on a chow diet. Nevertheless, BgApoE(-/-) mice displayed drastically reduced aortic sinus lesion growth. Reconstitution with bone marrow (BM) from green fluorescent protein mice created chimeric animals that allowed for the identification of donor-derived cells within lesions. Expressing the beige mutation exclusively in BM-derived cells had no impact on plaque development, yet the beige mutation in all cells except the BM-derived cells led to significantly larger aortic sinus lesion areas. Both mRNA and secreted protein levels of monocyte chemoattractant protein 1 were altered in quiescent and phorbol ester-stimulated cultured macrophages, vascular smooth muscle cells, and aortic endothelial cells isolated from BgApoE(-/-) mice. Thus, expression of the beige mutation in all cell types involved in lesion development contributed to atheroprotection in chow-fed ApoE(-/-) mice.
Collapse
Affiliation(s)
- Ramona J Petrovan
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
665
|
Hu L, Bovenschen N, Havekes LM, van Vlijmen BJM, Tamsma JT. Plasma plasminogen activator inhibitor-1 level is not regulated by the hepatic low-density lipoprotein receptor-related protein. J Thromb Haemost 2007; 5:2301-4. [PMID: 17958748 DOI: 10.1111/j.1538-7836.2007.02733.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
666
|
Mulder M, Koopmans G, Wassink G, Al Mansouri G, Simard ML, Havekes LM, Prickaerts J, Blokland A. LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 2007; 59:251-6. [PMID: 17720268 DOI: 10.1016/j.neures.2007.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/22/2007] [Accepted: 07/03/2007] [Indexed: 11/26/2022]
Abstract
An aberrant cholesterol metabolism in the brain may contribute to the pathogenesis of Alzheimer's disease (AD). The LDL receptor (LDLR) regulates plasma cholesterol levels and recently we and others obtained evidence that it is also involved in regulating brain cholesterol homeostasis. Moreover, we found that LDLR-deficient mice display impaired spatial memory. Because cholesterol, in part derived from cellular uptake via LDLR, is required for peripheral cell proliferation and growth, we examined the effect of absence of the LDLR on hippocampal proliferation and the density of synaptic connections. Mice deficient for the LDLR displayed a reduced number of proliferating (BrdU-labeled) cells in the hippocampus as compared to wild type control mice. In addition, the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and the dentate gyrus (DG) areas, but not in cortical areas, was lower in the LDLR-knockout mice than in the control mice. In vitro experiments showed that LDLR activity is increased when cell growth is enhanced by the addition of N2 supplement. This further supports a role for the LDLR in the outgrowth of neurites. These findings support the notion that, similar to its role in the periphery, the LDLR is important for the cellular uptake of cholesterol in the brain and that disturbance of this process affects neuronal plasticity.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Molecular Cell Biology, University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
667
|
Chen CT, Ma DWL, Kim JH, Mount HTJ, Bazinet RP. The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. J Lipid Res 2007; 49:147-52. [PMID: 17932396 DOI: 10.1194/jlr.m700386-jlr200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The brain cannot synthesize n-6 or n-3 PUFAs de novo and requires their transport from the blood. Two models of brain fatty acid uptake have been proposed. One requires the passive diffusion of unesterified fatty acids through endothelial cells of the blood-brain barrier, and the other requires the uptake of lipoproteins via a lipoprotein receptor on the luminal membrane of endothelial cells. This study tested whether the low density lipoprotein receptor (LDLr) is necessary for maintaining brain PUFA concentrations. Because the cortex has a low basal expression of LDLr and the anterior brain stem has a relatively high expression, we analyzed these regions separately. LDLr knockout (LDLr(-/-)) and wild-type mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem (pons and medulla) were isolated for phospholipid fatty acid analyses. There were no differences in phosphatidylserine, phosphatidylinositol, ethanolamine, or choline glycerophospholipid esterified PUFA or saturated or monounsaturated fatty acid concentrations in the cortex or brain stem between LDLr(-/-) and wild-type mice. These findings demonstrate that the LDLr is not necessary for maintaining brain PUFA concentrations and suggest that other mechanisms to transport PUFAs into the brain must exist.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
668
|
Seli E, Guzeloglu-Kayisli O, Kayisli UA, Kizilay G, Arici A. Estrogen increases apoptosis in the arterial wall in a murine atherosclerosis model. Fertil Steril 2007; 88:1190-6. [PMID: 17498707 DOI: 10.1016/j.fertnstert.2007.01.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the effect of estrogen (E) on vascular apoptosis during atherosclerotic plaque formation. DESIGN Laboratory study using a murine atherosclerosis model. SETTING Academic research center. ANIMAL(S) Female mice homozygous for null alleles of LDL receptor (LDL-R(-/-)) in a C57BL/6 background. LDL-R(-/-) mice develop atherosclerosis in a predictable manner when fed a high cholesterol diet. INTERVENTION(S) Eight-week-old female LDL-R(-/-) mice (n = 68) were ovariectomized, and implanted subcutaneously with 90-day release pellets containing 0.5 mg of 17beta-estradiol (E(2)) or placebo. Four animals were evaluated at the initiation of the study. Thereafter, four animals from each group were sacrificed weekly for 8 weeks and their aortas studied. MAIN OUTCOME MEASURE(S) The effect of E(2) on atherosclerotic plaque development, apoptosis, and cell proliferation was examined in the aorta of ovariectomized LDL-R(-/-) mice that were fed a high cholesterol diet. RESULT(S) Mice treated with E(2) displayed a delay in atherosclerotic plaque formation, associated with an increase in DNA strand breaks in the arterial wall indicative of increased apoptosis, compared to placebo-treated mice. The two groups did not differ in mitotic activity. CONCLUSION(S) In female LDL-R(-/-) mice fed a high cholesterol diet, ovariectomy is associated with increased atherogenesis. The effect of ovariectomy on atherogenesis is reversed by E(2) treatment. In addition to delayed atherogenesis, E(2) treatment of ovariectomized LDL-R(-/-) mice results in an increase in apoptosis in the aortic wall without an effect on the mitotic activity. Our findings suggest that vascular effects of E may be in part mediated by a proapoptotic activity.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520-8063 , USA
| | | | | | | | | |
Collapse
|
669
|
Cohen J, Gaw A, Barnes RI, Landschulz KT, Hobbs HH. Genetic factors that contribute to interindividual variations in plasma low density lipoprotein-cholesterol levels. CIBA FOUNDATION SYMPOSIUM 2007; 197:194-206; discussion 206-10. [PMID: 8827375 DOI: 10.1002/9780470514887.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interplay of multiple genes and environmental factors generates interindividual variation in plasma low density lipoprotein-cholesterol (LDL-C) concentrations. As a result, it has been difficult to identify individual genes that contribute to variation in plasma LDL-C levels using classical linkage analysis. We have exploited a genetic defect in the gene encoding the LDL receptor that is associated with a dramatically elevated plasma LDL-C level to unmask an allele at another locus that lowers plasma LDL-C levels. The existence of such an allele was implied by the analysis of a human pedigree with familial hypercholesterolaemia in which a third of the familial hypercholesterolaemia heterozygotes had normal levels of LDL-C. To develop an animal model of this LDL-C lowering effect and to identify genes that modify the plasma LDL-C level, we crossed LDL receptor-deficient mice with other strains of mice.
Collapse
Affiliation(s)
- J Cohen
- Center for Human Nutrition, University of Texas, Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | |
Collapse
|
670
|
Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 2007; 25:1149-57. [PMID: 17873866 DOI: 10.1038/nbt1339] [Citation(s) in RCA: 744] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/27/2007] [Indexed: 12/11/2022]
Abstract
Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Christian Wolfrum
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, ETH Zürich, HPT E73
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
671
|
Babaev VR, Ishiguro H, Ding L, Yancey PG, Dove DE, Kovacs WJ, Semenkovich CF, Fazio S, Linton MF. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007; 116:1404-12. [PMID: 17724261 DOI: 10.1161/circulationaha.106.684704] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The peroxisome proliferator-activated receptor-alpha (PPARalpha) plays important roles in lipid metabolism, inflammation, and atherosclerosis. PPARalpha ligands have been shown to reduce cardiovascular events in high-risk subjects. PPARalpha expression by arterial cells, including macrophages, may exert local antiatherogenic effects independent of plasma lipid changes. METHODS AND RESULTS To examine the contribution of PPARalpha expression by bone marrow-derived cells in atherosclerosis, male and female low-density lipoprotein receptor-deficient (LDLR(-/-)) mice were reconstituted with bone marrow from PPARalpha(-/-) or PPARalpha(+/+) mice and challenged with a high-fat diet. Although serum lipids and lipoprotein profiles did not differ between the groups, the size of atherosclerotic lesions in the distal aorta of male and female PPARalpha(-/-) --> LDLR(-/-) mice was significantly increased (44% and 46%, respectively) compared with controls. Male PPARalpha(-/-) --> LDLR(-/-) mice also had larger (44%) atherosclerotic lesions in the proximal aorta than male PPARalpha(+/+) --> LDLR(-/-) mice. Peritoneal macrophages from PPARalpha(-/-) mice had increased uptake of oxidized LDL and decreased cholesterol efflux. PPARalpha(-/-) macrophages had lower levels of scavenger receptor B type I and ABCA1 protein expression and an accelerated response of nuclear factor-kappaB-regulated inflammatory genes. A laser capture microdissection analysis verified suppressed scavenger receptor B type I and increased nuclear factor-kappaB gene expression levels in vivo in atherosclerotic lesions of PPARalpha(-/-) --> LDLR(-/-) mice compared with the lesions of control PPARalpha(+/+) --> LDLR(-/-) mice. CONCLUSIONS These data demonstrate that PPARalpha expression by macrophages has antiatherogenic effects via modulation of cell cholesterol trafficking and inflammatory activity.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
672
|
Romeo GR, Moulton KS, Kazlauskas A. Attenuated Expression of Profilin-1 Confers Protection From Atherosclerosis in the LDL Receptor–Null Mouse. Circ Res 2007; 101:357-67. [PMID: 17615372 DOI: 10.1161/circresaha.107.151399] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis-related events are a major cause of morbidity and death worldwide, but the mechanisms underlying atherogenesis are not fully understood. We showed in previous studies that the actin-binding protein profilin-1 (pfn) was upregulated in atherosclerotic plaques and in endothelial cells (ECs) treated with oxidized low-density lipoproteins (oxLDL). The present study addressed the role of pfn in atheroma formation. To this end, mice with heterozygous deficiency of pfn,
Pfn
+/−
, were crossed with
Ldlr
−/−
mice. After 2 months under a 1.25% cholesterol atherogenic diet,
Pfn
+/−
Ldlr
−/−
(PfnHet) exhibited a significant reduction in lesion burden compared with
Ldlr
−/−
control mice (PfnWT), whereas total cholesterol and triglyceride levels were similar in the 2 groups. Relevant atheroprotective changes were identified in PfnHet. When compared with PfnWT, aortas from PfnHet mice showed preserved endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO)-dependent signaling, and reduced vascular cell adhesion molecule (VCAM)-1 expression and macrophage accumulation at lesion-prone sites. Similarly, knockdown of pfn in cultured aortic ECs was protective against endothelial dysfunction triggered by oxLDL. Finally, bone marrow–derived macrophages from PfnHet showed blunted internalization of oxLDL and oxLDL-induced inflammation. These studies demonstrate that pfn levels modulate processes critical for early atheroma formation and suggest that pfn heterozygosity confers atheroprotection through combined endothelial- and macrophage-dependent mechanisms.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- CD36 Antigens/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Heterozygote
- Lipoproteins, LDL/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III
- Profilins/genetics
- Profilins/metabolism
- Receptors, LDL/genetics
- Signal Transduction/physiology
- Vascular Cell Adhesion Molecule-1/metabolism
- Vasculitis/metabolism
- Vasculitis/pathology
- Vasculitis/physiopathology
Collapse
Affiliation(s)
- Giulio R Romeo
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
673
|
Munteanu A, Zingg JM. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol Aspects Med 2007; 28:538-90. [PMID: 17825403 DOI: 10.1016/j.mam.2007.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells. Vitamin E may act by normalizing aberrant signal transduction and gene expression in antioxidant and non-antioxidant manners; in particular, over-expression of scavenger receptors and consequent foam cell formation can be prevented by vitamin E. In addition to that, the cellular effects of alpha-tocopheryl phosphate and of EPC-K1, a composite molecule between alpha-tocopheryl phosphate and l-ascorbic acid, are summarized.
Collapse
Affiliation(s)
- Adelina Munteanu
- Physiology Department, Faculty of Medicine, University of Medicine and Pharmacy Bucharest, Romania
| | | |
Collapse
|
674
|
Liu B, Xie C, Richardson JA, Turley SD, Dietschy JM. Receptor-mediated and bulk-phase endocytosis cause macrophage and cholesterol accumulation in Niemann-Pick C disease. J Lipid Res 2007; 48:1710-23. [PMID: 17476031 DOI: 10.1194/jlr.m700125-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
These studies explored the roles of receptor-mediated and bulk-phase endocytosis as well as macrophage infiltration in the accumulation of cholesterol in the mouse with Niemann-Pick type C (NPC) disease. Uptake of LDL-cholesterol varied from 514 microg/day in the liver to zero in the central nervous system. In animals lacking LDL receptors, liver uptake remained about the same (411 microg/day), but more cholesterol was taken up in extrahepatic organs. This uptake was unaffected by the reductive methylation of LDL and consistent with bulk-phase endocytosis. All tissues accumulated cholesterol in mice lacking NPC1 function, but this accumulation was decreased in adrenal, unchanged in liver, and increased in organs like spleen and lung when LDL receptor function was also deleted. Over 56 days, the spleen and lung accumulated amounts of cholesterol greater than predicted, and these organs were heavily infiltrated with macrophages. This accumulation of both cholesterol and macrophages was increased by deleting LDL receptor function. These observations indicate that both receptor-mediated and bulk-phase endocytosis of lipoproteins, as well as macrophage infiltration, contribute to the cholesterol accumulation seen in NPC disease. These macrophages may also play a role in parenchymal cell death in this syndrome.
Collapse
Affiliation(s)
- Benny Liu
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | |
Collapse
|
675
|
McDonald TO, Gerrity RG, Jen C, Chen HJ, Wark K, Wight TN, Chait A, O'Brien KD. Diabetes and arterial extracellular matrix changes in a porcine model of atherosclerosis. J Histochem Cytochem 2007; 55:1149-57. [PMID: 17652266 PMCID: PMC3957530 DOI: 10.1369/jhc.7a7221.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Patients with diabetes are at substantially increased risk for atherosclerosis and clinical cardiovascular events. Because arterial extracellular matrix contains several molecules, including biglycan, versican, hyaluronan, and elastin, that may affect plaque lipid retention and stability, we determined whether diabetes affects plaque content of these molecules in a porcine model of hyperlipidemia and diabetes. Coronary artery sections were studied from non-diabetic normolipidemic (n=11, N-NL), diabetic normolipidemic (n=10, DM-NL), non-diabetic hyperlipidemic (n=16, N-HL), and diabetic hyperlipidemic (n=15, DM-HL) animals. Hyaluronan, biglycan, versican, and apolipoprotein B (apoB) were detected with monospecific peptides or antisera, and elastin with Movat's pentachrome stain, and contents of each were quantified by computer-assisted morphometry. In the hyperlipidemic groups, diabetes was associated with a 4-fold increase in intimal area, with strong correlations between intimal area and immunostained areas for hyaluronan (R(2) = 0.83, p<0.0001), biglycan (R(2) = 0.72, p<0.0001), and apoB (R(2) = 0.23, p=0.0069). In contrast, median (interquartile range) intimal elastin content was significantly lower with diabetes [N-HL: 5.2% (2.4-8.2%) vs DM-HL: 1.5% (0.5-4.2%), p=0.01], and there was a strong negative correlation between intimal total and elastin areas (Spearman r = -0.62, p=0.001). In this porcine model, diabetes was associated with multiple extracellular matrix changes that have been associated with increased lesion instability, greater atherogenic lipoprotein retention, and accelerated atherogenesis.
Collapse
Affiliation(s)
- Thomas O. McDonald
- Divisions of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Ross G. Gerrity
- Department of Pathology, Medical College of Georgia, Augusta, Georgia
| | - Christy Jen
- Divisions of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Hao-Ji Chen
- Divisions of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Kathleen Wark
- Divisions of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas N. Wight
- Hope Heart Program at the Benaroya Research Institute, Seattle, Washington
| | - Alan Chait
- Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
| | - Kevin D. O'Brien
- Divisions of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Correspondence to: Kevin D. O'Brien, MD, Division of Cardiology, Box 356422, University of Washington, Seattle, WA 98195-6422. E-mail:
| |
Collapse
|
676
|
Stapleton PA, Goodwill AG, James ME, Frisbee JC. Altered mechanisms of endothelium-dependent dilation in skeletal muscle arterioles with genetic hypercholesterolemia. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1110-9. [PMID: 17626122 DOI: 10.1152/ajpregu.00410.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With most cardiovascular disease risk factors, endothelium-dependent dilation of skeletal muscle resistance arterioles is compromised, although with hypercholesterolemia, impairments to reactivity are not consistently observed. Using apolipoprotein E (ApoE) and low-density lipoprotein receptor (LDLR) gene deletion male mouse models of hypercholesterolemia at 20 wk of age, we tested the hypothesis that arteriolar dilation would be maintained due to an increased stimulus-induced production of dilator metabolites via cyclooxygenase and cytochrome P-450 epoxygenase pathways. Arterioles from both strains demonstrated mild reductions in dilation to hypoxia and acetylcholine versus responses in C57/Bl/6J (C57) controls. However, although inhibition of nitric oxide synthase (NOS) attenuated dilation in arterioles from C57 controls, this effect was absent in ApoE or LDLR strains. In contrast, cyclooxygenase-dependent portions of dilator reactivity were maintained across the three strains. Notably, although combined NOS and cyclooxygenase inhibition abolished arteriolar responses to hypoxia and acetylcholine in C57 controls, significant reactivity remained in ApoE and LDLR strains. Whereas inhibition of cytochrome P-450 omega-hydroxylase and epoxygenases had no effect on this residual reactivity in ApoE and LDLR strains, inhibition of 12/15-lipoxygenase with nordihydroguaiaretic acid abolished the residual reactivity. With both hypoxic and methacholine challenges, arteries from ApoE and LDLR strains demonstrated an increased production of both 12(S)- and 15(S)-hydroxyeicosatetraenoic acid, end products of arachidonic acid metabolism via 12/15-lipoxygenase, a response that was not present in C57 controls. These results suggest that with development of hypercholesterolemia, mechanisms contributing to dilator reactivity in skeletal muscle arterioles are modified such that net reactivity to endothelium-dependent stimuli is largely intact.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Interdisciplinary Research in Cardiovascular Science, Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | | | | | | |
Collapse
|
677
|
Mineo C, Shaul PW. Role of High-Density Lipoprotein and Scavenger Receptor B Type I in the Promotion of Endothelial Repair. Trends Cardiovasc Med 2007; 17:156-61. [PMID: 17574123 DOI: 10.1016/j.tcm.2007.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is considerable experimental evidence that high-density lipoprotein (HDL) cholesterol and the principal high-affinity HDL receptor scavenger receptor B type I (SR-BI) afford cardiovascular protection. However, the fundamental mechanisms underlying the protection remain complex and not well understood. Recent work in cell culture indicates that the HDL-SR-BI tandem stimulates endothelial cell migration. Further studies have revealed that this entails Src-mediated, phosphatidylinositol 3-kinase-mediated, and mitogen-activated protein kinase-mediated signaling that leads to the activation of Rac guanosine triphosphate hydrolase and the resultant rearrangement of the actin cytoskeleton. Furthermore, assessment of reendothelialization after perivascular electric injury in mice indicates that HDL-SR-BI-mediated stimulation of endothelial migration is operative in vivo. Recent additional work in mice also indicates that HDL activates the recruitment of endothelial progenitor cells into the intimal layer in the setting of endothelial injury. As such, signaling initiated by HDL-SR-BI promotes endothelial repair, and this novel mechanism of action may be critically involved in the impact of the lipoprotein on vascular health and disease.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
678
|
Ito KM, Okayasu M, Koshimoto C, Shinohara A, Asada Y, Tsuchiya K, Sakamoto T, Ito K. Impairment of endothelium-dependent relaxation of aortas and pulmonary arteries from spontaneously hyperlipidemic mice (Apodemus sylvaticus). Vascul Pharmacol 2007; 47:166-73. [PMID: 17616485 DOI: 10.1016/j.vph.2007.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 05/16/2007] [Accepted: 06/04/2007] [Indexed: 02/06/2023]
Abstract
We evaluated the endothelial function of thoracic aortas and pulmonary arteries in a population of European wood mice (Apodemus sylvaticus), which exhibit hypercholesterolemia. According to the plasma cholesterol level, mice were divided into two groups: hypercholesterolemic (AHL, total plasma cholesterol 200-300 mg/dl) and normocholesterolemic (ANL, total plasma cholesterol <200 mg/dl). Acetylcholine (ACh) caused endothelium-dependent relaxation of precontracted aortas and pulmonary arteries. Relaxation of the pulmonary artery is completely dependent on nitric oxide. This relaxation was inhibited in AHL pulmonary arteries. On the other hand, part of the ACh-induced relaxation of the thoracic aorta was resistant to N(omega)-nitro-L-arginine (L-NNA). L-NNA-sensitive and -resistant relaxation to ACh were also inhibited in AHL aortas. Inhibition of endothelium-dependent relaxation of the aortas was correlated with total plasma cholesterol level. Endothelium-independent relaxation to sodium nitroprusside (SNP) was similar in AHL and ANL pulmonary arteries, but in the thoracic aorta of AHL mice, the sensitivity to SNP was slightly decreased, without a change in maximal response to SNP. No morphological change was observed in the aortas and the pulmonary arteries from AHL and ANL mice. Thus, AHL mice are valuable as a new experimental model to study the relation of hyperlipidemia to vascular disease since the endothelial function is impaired in these mild hyperlipidemic animals.
Collapse
Affiliation(s)
- Kaoru M Ito
- Department of Nutrition Management, Faculty of Health and Nutrition, Minami Kyushu University, 880-0032 Miyazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
679
|
Hibbitt OC, Harbottle RP, Waddington SN, Bursill CA, Coutelle C, Channon KM, Wade-Martins R. Delivery and long-term expression of a 135 kb LDLR genomic DNA locus in vivo by hydrodynamic tail vein injection. J Gene Med 2007; 9:488-97. [PMID: 17471590 DOI: 10.1002/jgm.1041] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The delivery of a complete genomic DNA locus in vivo may prove advantageous for complementation gene therapy, especially when physiological regulation of gene expression is desirable. Hydrodynamic tail vein injection has been shown to be a highly efficient means of non-viral delivery of plasmid DNA to the liver. Here, we apply hydrodynamic tail vein injection to deliver and express large genomic DNA inserts > 100 kb in vivo. METHODS Firstly, a size series (12-172 kb) of bacterial artificial chromosome (BAC) plasmids, carrying human genomic DNA inserts, episomal retention elements, and the enhanced green fluorescent protein (EGFP) reporter gene, was delivered to mice by hydrodynamic tail vein injection. Secondly, an episomal BAC vector carrying the whole genomic DNA locus of the human low-density lipoprotein receptor (LDLR) gene, and an expression cassette for the LacZ reporter gene, was delivered by the same method. RESULTS We show that the efficiency of delivery is independent of vector size, when an equal number of plasmid molecules are used. We also show, by LacZ reporter gene analysis, that BAC delivery within the liver is widespread. Finally, BAC-end PCR, RT-PCR and immunohistochemistry demonstrate plasmid retention and long-term expression (4 months) of human LDLR in transfected hepatocytes. CONCLUSION This is the first demonstration of somatic delivery and long-term expression of a genomic DNA transgene > 100 kb in vivo and shows that hydrodynamic tail vein injection can be used to deliver and express large genomic DNA transgenes in the liver.
Collapse
Affiliation(s)
- Olivia C Hibbitt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
680
|
|
681
|
Zhang Q, Chang Z, Wang Q. Ursane triterpenoids inhibit atherosclerosis and xanthoma in LDL receptor knockout mice. Cardiovasc Drugs Ther 2007; 20:349-57. [PMID: 17136324 DOI: 10.1007/s10557-006-0509-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In order to determine the mechanism of triterpenes, a class of secondary metabolites in plants, in modulating progression of vascular atherosclerotic lesions, we isolated three ursane triterpenoids (euscaphic acid, tormentic acid and 2alpha-hydroxyursolic acid) from aerial part of Salvia miltirrhiza Bge. and fed LDLr(-/-) mice the isolated compounds at a dose of 10 mg/kg p.o. for 24 weeks. MATERIALS AND METHODS The treated mice were raised with a cholesterol-enriched (1.25%) diet. Implying serum and aorta MCP-1 analysis, we found that all mice treated with the compounds exhibited a significant reduction of whole body and vascular inflammation. RESULTS The reduction of macrophage cells' number in aortic atherosclerotic lesions suggests that triterpenes treatment results in the development of a more stable plaque phenotype. Analysis of the structure-activity relationships demonstrates that compounds with a beta-orientated hydrogen-bond forming group at C-3 exhibit more potent anti-atherogenic effect than the alpha-counterpart on the development of atherosclerosis and xanthoma. However, the biological activities of the compounds are significantly reduced when they have C-19 hydrogen-bonds. CONCLUSION These Results suggest that down-regulation of MCP-1 is the main mechanism for antiatherogenic activity of triterpenes and MCP-1 might play important roles in the development of atherosclerosis and xanthoma.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | |
Collapse
|
682
|
Boucher P, Li WP, Matz RL, Takayama Y, Auwerx J, Anderson RG, Herz J. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS One 2007; 2:e448. [PMID: 17505534 PMCID: PMC1864997 DOI: 10.1371/journal.pone.0000448] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 04/23/2007] [Indexed: 01/09/2023] Open
Abstract
Background The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-β in vascular smooth muscle cells (VSMC). LRP1 is also a receptor for TGFβ1 and is required for TGFβ mediated inhibition of cell proliferation. Methods and Principal Findings We show that loss of LRP1 in VSMC (smLRP−) in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFβ target genes thrombospondin-1 (TSP1) and PDGFRβ in the vascular wall. Treatment of smLRP1− animals with the PPARγ agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels. Conclusions and Significance Our findings are consistent with an activation of TGFβ signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity.
Collapse
Affiliation(s)
- Philippe Boucher
- Institut Gilbert-Laustriat, UMR 7175 LC-1, Department of Pharmacology; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wei-Ping Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rachel L. Matz
- Institut Gilbert-Laustriat, UMR 7175 LC-1, Department of Pharmacology; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
| | - Yoshiharu Takayama
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Johan Auwerx
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
| | - Richard G.W. Anderson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
683
|
Solcà C, Pandit B, Yu H, Tint GS, Patel SB. Loss of apolipoprotein E exacerbates the neonatal lethality of the Smith-Lemli-Opitz syndrome mouse. Mol Genet Metab 2007; 91:7-14. [PMID: 17197219 PMCID: PMC1852500 DOI: 10.1016/j.ymgme.2006.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is caused by a genetic defect in cholesterol biosynthesis; mutations in the enzyme 3ss-hydroxysterol Delta7 reductase (Dhcr7) lead to a failure of cholesterol (and desmosterol) synthesis, with an accumulation of precursor sterols, such as 7-dehydrocholesterol. Extensive genotype-phenotype analyses have indicated that there is considerable variation in the severity of the disease, much of which is not explained by defects in the Dhcr7 gene alone. Factors ranging from variations in maternal-fetal cholesterol transfer during pregnancy, to other genetic factors have been proposed to account for this variability. Variations at the APOE locus affect plasma cholesterol levels in humans and this polymorphic gene has been found to be associated with cardiovascular as well as neurological disorders. This locus has recently been implicated in accounting for some of the variations in SLOS. To address whether maternal hypercholesterolemia can affect fetal outcome, we tested the ability of maternal hypercholesterolemia to rescue the neonatal lethality in a mouse model of SLOS. Maternal hypercholesterolemia, induced by ApoE or Ldl-r deficiency not only failed to ameliorate the postnatal lethality, it increased the prenatal mortality of Dhcr7 deficient pups. Thus the murine data suggest that maternal loss of ApoE or Ldl-r function further exacerbates the neonatal lethality, suggesting they may play a role in maternal transfer of cholesterol to the embryo.
Collapse
Affiliation(s)
- Curzio Solcà
- Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
684
|
Elder GA, Cho JY, English DF, Franciosi S, Schmeidler J, Sosa MAG, Gasperi RD, Fisher EA, Mathews PM, Haroutunian V, Buxbaum JD. Elevated plasma cholesterol does not affect brain Abeta in mice lacking the low-density lipoprotein receptor. J Neurochem 2007; 102:1220-31. [PMID: 17472705 DOI: 10.1111/j.1471-4159.2007.04614.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidemiological studies support an association between vascular risk factors, including hypercholesterolemia, and Alzheimer's disease (AD). Recently, there has been much interest in the possibility that hypercholesterolemia might directly promote beta-amyloid (Abeta) production. Indeed, in vitro studies have shown that increasing cellular cholesterol levels enhances Abeta production. However, studies in AD transgenic mouse models have not consistently found that elevated plasma cholesterol leads to increased Abeta production or deposition in vivo. In this study, we determined whether elevated peripheral cholesterol influences Abeta production in mice with a null mutation of the low-density lipoprotein receptor (LDLR). We show that dramatically elevated plasma cholesterol levels, whether induced by high cholesterol, high fat, or high fat/high cholesterol diets, did not affect either levels of brain Abeta40, Abeta42, or APP, or the Abeta42/40 or APP-CTF/APP ratios, nor substantially alter brain cholesterol levels. ApoE protein levels in brain were, however, elevated, in LDLR-/- mice by post-transcriptional mechanisms. Collectively, these studies argue that plasma cholesterol levels do not normally regulate production of brain Abeta.
Collapse
Affiliation(s)
- Gregory A Elder
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
685
|
Nassoury N, Blasiole DA, Tebon Oler A, Benjannet S, Hamelin J, Poupon V, McPherson PS, Attie AD, Prat A, Seidah NG. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic 2007; 8:718-32. [PMID: 17461796 DOI: 10.1111/j.1600-0854.2007.00562.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the proprotein convertase PCSK9 gene are associated with autosomal dominant familial hyper- or hypocholesterolemia. These phenotypes are caused by a gain or loss of function of proprotein convertase subtilisin kexin 9 (PCSK9) to elicit the degradation of the low-density lipoprotein receptor (LDLR) protein. Herein, we asked whether the subcellular localization of wild-type PCSK9 or mutants of PCSK9 and the LDLR would provide insight into the mechanism of PCSK9-dependent LDLR degradation. We show that the LDLR is the dominant partner in regulating the cellular trafficking of PCSK9. In cells lacking the LDLR, PCSK9 localized in the endoplasmic reticulum (ER). In cells expressing the LDLR, PCSK9 sorted to post-ER compartments (i.e. endosomes in cell lines and Golgi apparatus in primary hepatocytes), where it colocalized with the LDLR. In cell lines, PCSK9 also colocalized with the LDLR at the cell surface, requiring the presence of the C-terminal Cys/His-rich domain of PCSK9. We provide evidence that PCSK9 promotes the degradation of the LDLR by an endocytic mechanism, as small interfering RNA-mediated knockdown of the clathrin heavy chain reduced the functional activity of PCSK9. We also compared the subcellular localization of natural mutants of PCSK9 with that of the wild-type enzyme in human hepatic (HuH7) cells. Whereas the mutants associated with hypercholesterolemia (S127R, F216L and R218S) localized to endosomes/lysosomes, those associated with hypocholesterolemia did not reach this compartment. We conclude that the sorting of PCSK9 to the cell surface and endosomes is required for PCSK9 to fully promote LDLR degradation and that retention in the ER prevents this activity. Mutations that affect this transport can lead to hyper- or hypocholesterolemia.
Collapse
Affiliation(s)
- Nasha Nassoury
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | | | | | | | | | |
Collapse
|
686
|
Dhingra S, Bansal MP. Hypercholesterolemia and LDL receptor mRNA expression: modulation by selenium supplementation. Biometals 2007; 19:493-501. [PMID: 16937255 DOI: 10.1007/s10534-005-5393-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 11/22/2005] [Indexed: 10/24/2022]
Abstract
Selenium (Se) status has been associated with cardiovascular disorders. Present study was aimed to elucidate the protective role of Se supplementation on LDL receptor (LDL-R) activity as well as mRNA expression during experimental hypercholesterolemia in SD male rats. Animals were fed 0.2 and 1 ppm Se supplemented control diet as well as 2% cholesterol supplemented diet for 3 months. LDL-R activity was measured in-vivo by injecting radiolabeled LDL to rats and decrease in counts per minute with time was taken as a measure of LDL clearance and in turn LDL-R activity. LDL-R mRNA expression was studied by RT-PCR. LDL-R activity and mRNA expression decreased significantly on 2% cholesterol supplemented diet feeding. On 1 ppm Se supplementation LDL-R activity as well as mRNA expression increased significantly. Present results demonstrate that Se supplementation upto 1 ppm is responsible for up regulation of LDL-R activity as well as mRNA expression, during hypercholesterolemia. These findings highlight the therapeutic potential of Se supplementation in lipid metabolism.
Collapse
Affiliation(s)
- Sanjiv Dhingra
- Department of Biophysics, Punjab University, Chandigarh, 160014, India
| | | |
Collapse
|
687
|
Jones C, Garuti R, Michaely P, Li WP, Maeda N, Cohen JC, Herz J, Hobbs HH. Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J Clin Invest 2007; 117:165-74. [PMID: 17200716 PMCID: PMC1716209 DOI: 10.1172/jci29415] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/10/2006] [Indexed: 11/17/2022] Open
Abstract
Genetic defects in LDL clearance result in severe hypercholesterolemia and premature atherosclerosis. Mutations in the LDL receptor (LDLR) cause familial hypercholesterolemia (FH), the most severe form of genetic hypercholesterolemia. A phenocopy of FH, autosomal recessive hypercholesterolemia (ARH), is due to mutations in an adaptor protein involved in LDLR internalization. Despite comparable reductions in LDL clearance rates, plasma LDL levels are substantially lower in ARH than in FH. To determine the metabolic basis for this difference, we examined the synthesis and catabolism of VLDL in murine models of FH (Ldlr(-/-)) and ARH (Arh(-/-)). The hyperlipidemic response to a high-sucrose diet was greatly attenuated in Arh(-/-) mice compared with Ldlr(-/-) mice despite similar rates of VLDL secretion. The rate of VLDL clearance was significantly higher in Arh(-/-) mice than in Ldlr(-/-) mice, suggesting that LDLR-dependent uptake of VLDL is maintained in the absence of ARH. Consistent with these findings, hepatocytes from Arh(-/-) mice (but not Ldlr(-/-) mice) internalized beta-migrating VLDL (beta-VLDL). These results demonstrate that ARH is not required for LDLR-dependent uptake of VLDL by the liver. The preservation of VLDL remnant clearance attenuates the phenotype of ARH and likely contributes to greater responsiveness to statins in ARH compared with FH.
Collapse
Affiliation(s)
- Christopher Jones
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rita Garuti
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Michaely
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wei-Ping Li
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nobuyo Maeda
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan C. Cohen
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Helen H. Hobbs
- Department of Molecular Genetics and
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Center for Human Nutrition and
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
688
|
Savransky V, Nanayakkara A, Li J, Bevans S, Smith PL, Rodriguez A, Polotsky VY. Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med 2007; 175:1290-7. [PMID: 17332479 PMCID: PMC2176090 DOI: 10.1164/rccm.200612-1771oc] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established. OBJECTIVES The objective of the present study was to examine whether CIH may induce atherosclerosis in C57BL/6J mice. METHODS Forty male C57BL/6J mice, 8 weeks of age, were fed either a high-cholesterol diet or a regular chow diet and subjected either to CIH or intermittent air (control conditions) for 12 weeks. MEASUREMENTS AND MAIN RESULTS Nine of 10 mice simultaneously exposed to CIH and high-cholesterol diet developed atherosclerotic lesions in the aortic origin and descending aorta. In contrast, atherosclerosis was not observed in mice exposed to intermittent air and a high-cholesterol diet or in mice exposed to CIH and a regular diet. A high-cholesterol diet resulted in significant increases in serum total and low-density lipoprotein cholesterol levels and a decrease in high-density lipoprotein cholesterol. Compared with mice exposed to intermittent air and a high-cholesterol diet, combined exposure to CIH and a high-cholesterol diet resulted in marked progression of dyslipidemia with further increases in serum total cholesterol and low-density lipoprotein cholesterol (124 +/- 4 vs. 106 +/- 6 mg/dl; p < 0.05), a twofold increase in serum lipid peroxidation, and up-regulation of an important hepatic enzyme of lipoprotein secretion, stearoyl-coenzyme A desaturase-1. CONCLUSIONS CIH causes atherosclerosis in the presence of diet-induced dyslipidemia.
Collapse
Affiliation(s)
- Vladimir Savransky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
689
|
Bell TA, Wilson MD, Kelley K, Sawyer JK, Rudel LL. Monounsaturated fatty acyl-coenzyme A is predictive of atherosclerosis in human apoB-100 transgenic, LDLr-/- mice. J Lipid Res 2007; 48:1122-31. [PMID: 17277381 DOI: 10.1194/jlr.m600526-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.
Collapse
Affiliation(s)
- Thomas A Bell
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
690
|
Bock HH, Herz J, May P. Conditional animal models for the study of lipid metabolism and lipid disorders. Handb Exp Pharmacol 2007:407-39. [PMID: 17203665 DOI: 10.1007/978-3-540-35109-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The advent of technologies that allow conditional mutagenesis has revolutionized our ability to explore gene functions and to establish animal models of human diseases. Both aspects have proven to be of particular importance in the study of lipid-related disorders. Classical approaches to gene inactivation by conventional gene targeting strategies have been successfully applied to generate animal models like the LDL receptor- and the apolipoprotein E-knockout mice, which are still widely used to study diverse aspects of atherosclerosis, lipid transport, and neurodegenerative disease. In many cases, however, simply inactivating the gene of interest has resulted in early lethal or complex phenotypes which are difficult to interpret. In recent years, additional tools have therefore been developed that allow the spatiotemporally controlled manipulation of the genome, as described in detail in Part I of this volume. Our aim is to provide an exemplary survey of the application of different conditional mutagenesis techniques in lipid research in order to illustrate their potential to unravel physiological functions of a broad range of genes involved in lipid homeostasis.
Collapse
Affiliation(s)
- H H Bock
- Zentrum für Neurowissenschaften, Universität Freiburg, Albertstrasse 23, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
691
|
Ijiri Y, Naemura A, Yamashita T, Ikarugi H, Meguro S, Tokimitsu I, Yamamoto J. Mechanism of the Antithrombotic Effect of Dietary Diacylglycerol in Atherogenic Mice. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2007; 35:380-7. [PMID: 17230040 DOI: 10.1159/000097693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We have shown earlier that diacylglycerol (DAG) but not triacylglycerol (TAG) inhibited thrombus formation. The aim of the present study was to investigate the mechanism of this antithrombotic effect of DAG. MATERIALS AND METHODS Four different diets, the (1) Western-style high-fat diet (HFD) containing 20% lipid and 0.05% cholesterol (w/w), (2) TAG-rich and (3) DAG-rich HFDs containing 20% lipid and 0.05% cholesterol, but all lipid replaced by TAG or DAG oil with very similar fatty acid composition and the (4) Japanese-style low-fat diet (LFD) containing 7% oil but no cholesterol were given to apolipoprotein E and low-density lipoprotein (LDL) receptor double-deficient mice. Atherogenicity was assessed by morphology, mapping the whole aorta and measuring the total area of lipid-stained lesions. Endothelial function was measured by the flow-mediated vasodilation test. Platelet reactivity was assessed from native blood sample by a shear-induced platelet function test (hemostatometry). Serum lipoprotein profile was measured by HPLC. RESULTS Both the Western-style and the TAG-rich HFDs have accelerated atherosclerosis. In contrast, DAG-rich HFD inhibited the atherosclerotic process to an extent comparable with the Japanese-style LFD. There was no significant difference in platelet and coagulant activity between the studied diet groups. DAG-rich but not the TAG-rich HFD significantly suppressed serum LDL cholesterol level. CONCLUSIONS The present findings suggest that the mechanism of antithrombotic and anti-atherogenic effect of DAG may involve the protection of the vascular endothelium from injury and lowered serum LDL cholesterol.
Collapse
Affiliation(s)
- Yoshinobu Ijiri
- Laboratory of Physiology, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
692
|
Hartvigsen K, Binder CJ, Hansen LF, Rafia A, Juliano J, Hörkkö S, Steinberg D, Palinski W, Witztum JL, Li AC. A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome. Arterioscler Thromb Vasc Biol 2007; 27:878-85. [PMID: 17255537 DOI: 10.1161/01.atv.0000258790.35810.02] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Western-type high-fat/high-cholesterol diets used to induce atherogenesis in low-density lipoprotein (LDL) receptor-deficient mice also lead to obesity with concomitant metabolic complications, eg, hypertriglyceridemia, hyperinsulinemia, and insulin resistance. Our aim was to design a diet inducing atherosclerosis through moderate hypercholesterolemia without associated parameters of the metabolic syndrome. METHODS AND RESULTS Male LDL receptor-deficient mice were fed regular chow (RC; 0.01% cholesterol/4.4% fat), cholesterol-enriched regular chow (HC; 1% cholesterol/4.4% fat), or Western diet (WD 0.06% cholesterol/21% milk fat) for 28 weeks. HC-feeding led to elevated plasma (approximately 20.7 mmol/L [800 mg/dL]) and LDL cholesterol and accelerated atherosclerosis. Plasma triglycerides were unaffected. Compared with RC-fed controls, HC-fed mice had normal body weight gain and normal fasting levels of glucose, free fatty acids, and insulin. In contrast, WD-fed mice were extremely hypercholesterolemic (>41.4 mmol/L), obese, hypertriglyceridemic, hyperinsulinemic, insulin resistant, and showed adverse health such as skin/fur abnormalities and hepatic steatosis. Although atherosclerotic surface areas in the entire aorta were similar in HC-fed and WD-fed mice, lesions in aortic origin cross sections were significantly larger in WD-fed mice. However, morphology was similar in lesions of equal size. CONCLUSIONS The HC diet induced moderate hypercholesterolemia and extensive atherosclerosis and should be useful to study specific aspects of atherogenesis in the absence of confounding effects of the metabolic syndrome.
Collapse
Affiliation(s)
- Karsten Hartvigsen
- Department of Medicine, 0682, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0682, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Abstract
Atherosclerotic lesions develop through interactions with diverse cell types whose functions are determined by a complex array of regulators. Immunostaining is now a commonly applied technique to identify these numerous cell types and regulators in lesions. The principle of the technique is that an antibody is incubated with the tissue under conditions that favor a specific interaction with its antigen. This is subsequently visualized most commonly by a chromogenic substrate that produces a colored precipitate at the location of the antigen-antibody interaction. When appropriately applied, it is a powerful technique to provide mechanistic insight into the atherogenic process. However, the complexity of atherosclerotic tissue can provide challenges to ensuring that development of the chromogen is due to specific antigen-antibody interaction. Thus, the determination of specific interactions frequently requires the judicious use of appropriate control experiments.
Collapse
|
694
|
MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 2007; 117:153-64. [PMID: 17200715 PMCID: PMC1716206 DOI: 10.1172/jci29154] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 10/03/2006] [Indexed: 12/17/2022] Open
Abstract
We examined the role of hepatic heparan sulfate in triglyceride-rich lipoprotein metabolism by inactivating the biosynthetic gene GlcNAc N-deacetylase/N-sulfotransferase 1 (Ndst1) in hepatocytes using the Cre-loxP system, which resulted in an approximately 50% reduction in sulfation of liver heparan sulfate. Mice were viable and healthy, but they accumulated triglyceride-rich lipoprotein particles containing apoB-100, apoB-48, apoE, and apoCI-IV. Compounding the mutation with LDL receptor deficiency caused enhanced accumulation of both cholesterol- and triglyceride-rich particles compared with mice lacking only LDL receptors, suggesting that heparan sulfate participates in the clearance of cholesterol-rich lipoproteins as well. Mutant mice synthesized VLDL normally but showed reduced plasma clearance of human VLDL and a corresponding reduction in hepatic VLDL uptake. Retinyl ester excursion studies revealed that clearance of intestinally derived lipoproteins also depended on hepatocyte heparan sulfate. These findings show that under normal physiological conditions, hepatic heparan sulfate proteoglycans play a crucial role in the clearance of both intestinally derived and hepatic lipoprotein particles.
Collapse
Affiliation(s)
- Jennifer M. MacArthur
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joseph R. Bishop
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kristin I. Stanford
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lianchun Wang
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - André Bensadoun
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joseph L. Witztum
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey D. Esko
- Biomedical Sciences Graduate Program and
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.
Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
695
|
Arai Y, Fujita M, Marui A, Hirose K, Sakaguchi H, Ikeda T, Tabata Y, Komeda M. Combined Treatment With Sustained-Release Basic Fibroblast Growth Factor and Heparin Enhances Neovascularization in Hypercholesterolemic Mouse Hindlimb Ischemia. Circ J 2007; 71:412-7. [PMID: 17322644 DOI: 10.1253/circj.71.412] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Whether the combined treatment with sustained-release basic fibroblast growth factor (bFGF) and heparin enhances neovascularization in hypercholesterolemic mouse hindlimb ischemia was investigated. METHODS AND RESULTS Wild-type C57BL/6 and low density lipoprotein receptor-deficient mice were assigned to 1 of the following 4 experimental groups and treated for 2 weeks after femoral artery extraction: group N, no treatment; group H, daily subcutaneous injection of heparin calcium; group F, single intramuscular injection of the sustained-release bFGF microspheres; and group FH, combined treatment with sustained-release bFGF and heparin. Among the wild-type mice at 4 weeks after femoral artery extraction, the laser Doppler perfusion image index (LDPII) in groups H, F, and FH was significantly higher than that in group N. The vascular density in group FH was the highest among the 4 groups. The maturation index in the 3 treated groups was significantly higher than that in group N. Among the hypercholesterolemic mice, the LDPII in group FH was significantly higher than that in the other 3 groups. The vascular density and maturation index in group FH were the highest among the 4 groups. CONCLUSIONS Combined treatment with sustained-release bFGF and heparin enhanced neovascularization in the hypercholesterolemic hindlimb ischemia model.
Collapse
Affiliation(s)
- Yoshio Arai
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
696
|
Abstract
N-3 (omega-3) (polyunsaturated) fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved.
Collapse
|
697
|
Plat J, Beugels I, Gijbels MJJ, de Winther MPJ, Mensink RP. Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols. J Lipid Res 2006; 47:2762-71. [PMID: 16957178 DOI: 10.1194/jlr.m600346-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Statins do not always decrease coronary heart disease mortality, which was speculated based on increased serum plant sterols observed during statin treatment. To evaluate plant sterol atherogenicity, we fed low density lipoprotein-receptor deficient (LDLr(+/-)) mice for 35 weeks with Western diets (control) alone or enriched with atorvastatin or atorvastatin plus plant sterols or stanols. Atorvastatin decreased serum cholesterol by 22% and lesion area by 57%. Adding plant sterols or stanols to atorvastatin decreased serum cholesterol by 39% and 41%. Cholesterol-standardized serum plant sterol concentrations increased by 4- to 11-fold during sterol plus atorvastatin treatment versus stanol plus atorvastatin treatment. However, lesion size decreased similarly in the sterol plus atorvastatin (-99% vs. control) and the stanol plus atorvastatin (-98%) groups, with comparable serum cholesterol levels, suggesting that increased plant sterol concentrations are not atherogenic. Our second study confirms this conclusion. Compared with lesions after a 33 week atherogenic period, lesion size further increased in controls (+97%) during 12 more weeks on the diet, whereas 12 weeks with the addition of plant sterols or stanols decreased lesion size (66% and 64%). These findings indicate that in LDLr(+/-) mice 1) increased cholesterol-standardized serum plant sterol concentrations are not atherogenic, 2) adding plant sterols/stanols to atorvastatin further inhibits lesion formation, and 3) plant sterols/stanols inhibit the progression or even induce the regression of existing lesions.
Collapse
Affiliation(s)
- Jogchum Plat
- Nutrition and Toxicology Research Institute Maastricht, Department of Human Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
698
|
Sugiyama E, Tanaka N, Nakajima T, Kamijo Y, Yokoyama S, Li Y, Gonzalez FJ, Aoyama T. Haploinsufficiency in the PPARalpha and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia. Biochem Biophys Res Commun 2006; 350:370-376. [PMID: 17011521 DOI: 10.1016/j.bbrc.2006.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 09/12/2006] [Indexed: 11/21/2022]
Abstract
When preparing peroxisome proliferator-activated receptor (PPAR)alpha:low-density lipoprotein receptor (LDLR) (-/-) double knockout mice, we unexpectedly found a unique gender- and age-specific obesity in the F1 generation, PPARalpha (+/-):LDLR (+/-), even in mice fed standard chow. Body weights of the male heterozygous mice increased up to about 60 g at 75 weeks of age, then decreased by about 30 g at 100 weeks of age. More than 95% of the heterozygous mice between 35- and 75-week-olds were overweight. Of interest, the obese heterozygous mice also exhibited hyperinsulinemia correlating with moderate insulin resistance. Hepatic gene expression of LDLR was lower than expected in the heterozygous mice, particularly at 50 and 75 weeks of age. In contrast, the hepatic expression of PPARalpha was higher than expected in obese heterozygous mice, but decreased in non-obese older heterozygous mice. Modulated expression of these genes may be partially associated with the onset of the hyperinsulinemia.
Collapse
Affiliation(s)
- Eiko Sugiyama
- The Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
699
|
Steffens S, Burger F, Pelli G, Dean Y, Elson G, Kosco-Vilbois M, Chatenoud L, Mach F. Short-Term Treatment With Anti-CD3 Antibody Reduces the Development and Progression of Atherosclerosis in Mice. Circulation 2006; 114:1977-84. [PMID: 17043169 DOI: 10.1161/circulationaha.106.627430] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Atherosclerosis is a chronic inflammatory disease of the large arteries that is the primary cause of heart disease and stroke. Anti-CD3–specific antibodies suppress immune responses by antigenic modulation of the CD3 antibody/T-cell receptor complex. Their unique capacity to restore self-tolerance in a mouse model of diabetes and, importantly, in patients with recent-onset type 1 diabetes involves transforming growth factor-β–dependent mechanisms via expansion and/or activation of regulatory T cells. We hypothesized that treatment with anti-CD3–specific antibodies might inhibit atherosclerosis development and progression in mice.
Methods and Results—
Low-density lipoprotein receptor–deficient mice were fed a high-cholesterol diet for 13 or 24 weeks. Anti-CD3 antibody was administered on 5 consecutive days beginning 1 week before or 13 weeks after the high-cholesterol diet was initiated, respectively. Control mice were injected in parallel with phosphate-buffered saline. Anti-CD3 antibody therapy reduced plaque development when administered before a high-cholesterol diet and markedly decreased lesion progression in mice with already established atherosclerosis. We found increased production of the antiinflammatory cytokine transforming growth factor-β in concanavalin A–stimulated lymph node cells and enhanced expression of the regulatory T-cell marker Foxp3 in spleens of anti-CD3 antibody–treated mice. A higher percentage of apoptotic cells within the plaques of anti-CD3 antibody–treated mice was also observed.
Conclusions—
Altered disease progression, combined with the emergence of this particular cytokine pattern, indicates that short-term treatment with an anti-CD3 antibody induces a regulatory T-cell phenotype that restores self-tolerance in a mouse model of atherosclerosis.
Collapse
Affiliation(s)
- Sabine Steffens
- Division of Cardiology, Department of Medicine, University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
700
|
Abstract
Over the last 4 decades, heart transplantation (HTx) has evolved as a mainstream therapy for heart failure. Approximately half of patients needing HTx have organ failure consequent to atherosclerosis. Despite advances in immunosuppressive drugs, long-term success of HTx is limited by the development of a particular type of coronary atherosclerosis, referred to as cardiac allograft vasculopathy (CAV). Although the exact pathogenesis of CAV remains to be established, there is strong evidence that CAV involves immunologic mechanisms operating in a milieu of nonimmunologic risk factors. The immunologic events constitute the principal initiating stimuli, resulting in endothelial injury and dysfunction, altered endothelial permeability, with consequent myointimal hyperplasia and extracellular matrix synthesis. Lipid accumulation in allograft arteries is prominent, with lipoprotein entrapment in the subendothelial tissue, through interactions with proteoglycans. The apparent endothelial "intactness" in human coronary arteries of the transplanted heart suggest that permeability and function of the endothelial barrier altered. Various insults to the vascular bed result in vascular smooth muscle cell (SMC) activation. Activated SMCs migrate from the media into the intima, proliferate, and elaborate cytokines and extracellular matrix proteins, resulting in luminal narrowing and impaired vascular function. Arteriosclerosis is a broad term that is used to encompass all diseases that lead to arterial hardening, including native atherosclerosis, postangioplasty restenosis, vein bypass graft occlusion, and CAV. These diseases exhibit many similarities; however, they are distinct from one another in numerous ways as well. The present review summarizes the current understanding of the risk factors and the pathophysiological similarities and differences between CAV and atherosclerosis.
Collapse
Affiliation(s)
- Maziar Rahmani
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Research Institute, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|