701
|
Abstract
PURPOSE OF REVIEW This review aims to survey recent trends in electrical forms of neuromodulation, with a specific application to Parkinson's disease (PD). Emerging trends are identified, highlighting synergies in state-of-the-art neuromodulation strategies, with directions for future improvements in stimulation efficacy suggested. RECENT FINDINGS Deep brain stimulation remains the most common and effective form of electrical stimulation for the treatment of PD. Evidence suggests that transcranial direct current stimulation (tDCS) most likely impacts the motor symptoms of the disease, with the most prominent results relating to rehabilitation. However, utility is limited due to its weak effects and high variability, with medication state a key confound for efficacy level. Recent innovations in transcranial alternating current stimulation (tACS) offer new areas for investigation. SUMMARY Our understanding of the mechanistic foundations of electrical current stimulation is advancing and as it does so, trends emerge which steer future clinical trials towards greater efficacy.
Collapse
Affiliation(s)
- John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hayriye Cagnan
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
702
|
Bieck SM, Artemenko C, Moeller K, Klein E. Low to No Effect: Application of tRNS During Two-Digit Addition. Front Neurosci 2018; 12:176. [PMID: 29674948 PMCID: PMC5895770 DOI: 10.3389/fnins.2018.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
Transcranial electric stimulation such as transcranial random noise stimulation (tRNS) and transcranial direct current stimulation (tDCS) have been used to investigate structure-function relationships in numerical cognition. Recently, tRNS was suggested to be more effective than tDCS. However, so far there is no evidence on the differential impact of tDCS and tRNS on numerical cognition using the same experimental paradigm. In the present study, we used a two-digit addition paradigm for which significant-albeit small-effects of tDCS were observed previously to evaluate the impact of parietal and frontal tRNS on specific numerical effects. While previous studies reported a modulation of numerical effects of this task through tDCS applied to parietal areas, we did not observe any effect of parietal tRNS on performance in two-digit addition. These findings suggest that tRNS seemed to influence concurrent mental arithmetic less than tDCS at least when applied over the IPS. These generally small to absent effects of tES on actual arithmetic performance in the current addition paradigm are in line with the results of a recent meta-analysis indicating that influences of tES may be more pronounced in training paradigms.
Collapse
Affiliation(s)
- Silke M Bieck
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.,Leibniz-Institut für Wissensmedien, Tuebingen, Germany
| | - Christina Artemenko
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.,Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | - Korbinian Moeller
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.,Leibniz-Institut für Wissensmedien, Tuebingen, Germany.,Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | - Elise Klein
- Leibniz-Institut für Wissensmedien, Tuebingen, Germany
| |
Collapse
|
703
|
Pixa NH, Pollok B. Effects of tDCS on Bimanual Motor Skills: A Brief Review. Front Behav Neurosci 2018; 12:63. [PMID: 29670514 PMCID: PMC5893856 DOI: 10.3389/fnbeh.2018.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.
Collapse
Affiliation(s)
- Nils H Pixa
- Department of Sport Psychology, Institute of Sports Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
704
|
Chesters J, Möttönen R, Watkins KE. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain 2018; 141:1161-1171. [PMID: 29394325 PMCID: PMC6019054 DOI: 10.1093/brain/awy011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022] Open
Abstract
See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving transcranial direct current stimulation compared with the sham group, in whom fluency was unchanged from baseline. We conclude that transcranial direct current stimulation combined with behavioural fluency intervention can improve fluency in adults who stutter. Transcranial direct current stimulation thereby offers a potentially useful adjunct to future speech therapy interventions for this population, for whom fluency therapy outcomes are currently limited.
Collapse
Affiliation(s)
- Jennifer Chesters
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Riikka Möttönen
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Kate E Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
705
|
Chauhan M, Indahlastari A, Kasinadhuni AK, Schar M, Mareci TH, Sadleir RJ. Low-Frequency Conductivity Tensor Imaging of the Human Head In Vivo Using DT-MREIT: First Study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:966-976. [PMID: 29610075 PMCID: PMC5963516 DOI: 10.1109/tmi.2017.2783348] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the first in vivo images of anisotropic conductivity distribution in the human head, measured at a frequency of approximately 10 Hz. We used magnetic resonance electrical impedance tomography techniques to encode phase changes caused by current flow within the head via two independent electrode pairs. These results were then combined with diffusion tensor imaging data to reconstruct full anisotropic conductivity distributions in 5-mm-thick slices of the brains of two participants. Conductivity values recovered in this paper were broadly consistent with literature values. We anticipate that this technique will be of use in many areas of neuroscience, most importantly in functional imaging via inverse electroencephalogram. Future studies will involve pulse sequence acceleration to maximize brain coverage and resolution.
Collapse
|
706
|
Anodal tDCS over Primary Motor Cortex Provides No Advantage to Learning Motor Sequences via Observation. Neural Plast 2018; 2018:1237962. [PMID: 29796014 PMCID: PMC5896271 DOI: 10.1155/2018/1237962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
When learning a new motor skill, we benefit from watching others. It has been suggested that observation of others' actions can build a motor representation in the observer, and as such, physical and observational learning might share a similar neural basis. If physical and observational learning share a similar neural basis, then motor cortex stimulation during observational practice should similarly enhance learning by observation as it does through physical practice. Here, we used transcranial direct-current stimulation (tDCS) to address whether anodal stimulation to M1 during observational training facilitates skill acquisition. Participants learned keypress sequences across four consecutive days of observational practice while receiving active or sham stimulation over M1. The results demonstrated that active stimulation provided no advantage to skill learning over sham stimulation. Further, Bayesian analyses revealed evidence in favour of the null hypothesis across our dependent measures. Our findings therefore provide no support for the hypothesis that excitatory M1 stimulation can enhance observational learning in a similar manner to physical learning. More generally, the results add to a growing literature that suggests that the effects of tDCS tend to be small, inconsistent, and hard to replicate. Future tDCS research should consider these factors when designing experimental procedures.
Collapse
|
707
|
Regner GG, Pereira P, Leffa DT, de Oliveira C, Vercelino R, Fregni F, Torres ILS. Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review. Front Neurosci 2018; 12:189. [PMID: 29623027 PMCID: PMC5874505 DOI: 10.3389/fnins.2018.00189] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/09/2022] Open
Abstract
Epilepsy is a chronic brain syndrome characterized by recurrent seizures resulting from excessive neuronal discharges. Despite the development of various new antiepileptic drugs, many patients are refractory to treatment and report side effects. Non-invasive methods of brain stimulation, such as transcranial direct current stimulation (tDCS), have been tested as alternative approaches to directly modulate the excitability of epileptogenic neural circuits. Although some pilot and initial clinical studies have shown positive results, there is still uncertainty regarding the next steps of investigation in this field. Therefore, we reviewed preclinical and clinical studies using the following framework: (1) preclinical studies that have been successfully translated to clinical studies, (2) preclinical studies that have failed to be translated to clinical studies, and (3) clinical findings that were not previously tested in preclinical studies. We searched PubMed, Web of Science, Embase, and SciELO (2002–2017) using the keywords “tDCS,” “epilepsy,” “clinical trials,” and “animal models.” Our initial search resulted in 64 articles. After applying inclusion and exclusion criteria, we screened 17 full-text articles to extract findings about the efficacy of tDCS, with respect to the therapeutic framework used and the resulting reduction in seizures and epileptiform patterns. We found that few preclinical findings have been translated into clinical research (number of sessions and effects on seizure frequency) and that most findings have not been tested clinically (effects of tDCS on status epilepticus and absence epilepsy, neuroprotective effects in the hippocampus, and combined use with specific medications). Finally, considering that clinical studies on tDCS have been conducted for several epileptic syndromes, most were not previously tested in preclinical studies (Rasmussen's encephalitis, drug resistant epilepsy, and hippocampal sclerosis-induced epilepsy). Overall, most studies report positive findings. However, it is important to underscore that a successful preclinical study may not indicate success in a clinical study, considering the differences highlighted herein. Although most studies report significant findings, there are still important insights from preclinical work that must be tested clinically. Understanding these factors may improve the evidence for the potential use of this technique as a clinical tool in the treatment of epilepsy.
Collapse
Affiliation(s)
- Gabriela G Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences, School of Medicine Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences, School of Medicine Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Vercelino
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro Universitário FADERGS, Health and Wellness School Laureate International Universities, Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation, Preclinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences, School of Medicine Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
708
|
Abstract
Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Collapse
|
709
|
Abstract
Our present frequently resembles our past. Patterns of actions and events repeat throughout our lives like a motif. Identifying and exploiting these patterns are fundamental to many behaviours, from creating grammar to the application of skill across diverse situations. Such generalization may be dependent upon memory instability. Following their formation, memories are unstable and able to interact with one another, allowing, at least in principle, common features to be extracted. Exploiting these common features creates generalized knowledge that can be applied across varied circumstances. Memory instability explains many of the biological and behavioural conditions necessary for generalization and offers predictions for how generalization is produced.
Collapse
Affiliation(s)
- Edwin M. Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
710
|
Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol 2018. [PMID: 29538384 PMCID: PMC5868840 DOI: 10.1371/journal.pbio.2005348] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.
Collapse
Affiliation(s)
- Nina Wolinski
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Nicholas R. Cooper
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Paul Sauseng
- Department Psychologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Vincenzo Romei
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Viale Europa, Cesena, Italy
- * E-mail:
| |
Collapse
|
711
|
Ciechanski P, Cheng A, Damji O, Lopushinsky S, Hecker K, Jadavji Z, Kirton A. Effects of transcranial direct-current stimulation on laparoscopic surgical skill acquisition. BJS Open 2018; 2:70-78. [PMID: 29951631 PMCID: PMC5989997 DOI: 10.1002/bjs5.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023] Open
Abstract
Background Changes in medical education may limit opportunities for trainees to gain proficiency in surgical skills. Transcranial direct-current stimulation (tDCS) can augment motor skill learning and may enhance surgical procedural skill acquisition. The aim of this study was to determine the effects of tDCS on simulation-based laparoscopic surgical skill acquisition. Methods In this double-blind, sham-controlled randomized trial, participants were randomized to receive 20 min of anodal tDCS or sham stimulation over the dominant primary motor cortex, concurrent with Fundamentals of Laparoscopic Surgery simulation-based training. Primary outcomes of laparoscopic pattern-cutting and peg transfer tasks were scored at baseline, during repeated performance over 1 h, and again at 6 weeks. Intent-to-treat analysis examined the effects of treatment group on skill acquisition and retention. Results Of 40 participants, those receiving tDCS achieved higher mean(s.d.) final pattern-cutting scores than participants in the sham group (207·6(30·0) versus 186·0(32·7) respectively; P = 0·022). Scores were unchanged at 6 weeks. Effects on peg transfer scores were not significantly different (210·2(23·5) in the tDCS group versus 201·7(18·1) in the sham group; P = 0·111); the proportion achieving predetermined proficiency levels was higher for tDCS than for sham stimulation. Procedures were well tolerated with no serious adverse events and no decreases in motor measures. Conclusion The addition of tDCS to laparoscopic surgical training may enhance skill acquisition. Trials of additional skills and translation to non-simulated performance are required to determine the potential value in medical education and impact on patient outcomes. Registration number: NCT02756052 (https://clinicaltrials.gov/).
Collapse
Affiliation(s)
- P Ciechanski
- Department of Neuroscience University of Calgary Calgary Alberta Canada
| | - A Cheng
- Department of Pediatrics University of Calgary Calgary Alberta Canada
| | - O Damji
- Department of Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - S Lopushinsky
- Department of Surgery University of Calgary Calgary Alberta Canada
| | - K Hecker
- Department of Veterinary Medicine University of Calgary Calgary Alberta Canada.,Department of Community Health Sciences University of Calgary Calgary Alberta Canada
| | - Z Jadavji
- Department of Neuroscience University of Calgary Calgary Alberta Canada
| | - A Kirton
- Department of Pediatrics University of Calgary Calgary Alberta Canada.,Department of Clinical Neurosciences University of Calgary Calgary Alberta Canada
| |
Collapse
|
712
|
Ziomber A, Surowka AD, Antkiewicz-Michaluk L, Romanska I, Wrobel P, Szczerbowska-Boruchowska M. Combined brain Fe, Cu, Zn and neurometabolite analysis - a new methodology for unraveling the efficacy of transcranial direct current stimulation (tDCS) in appetite control. Metallomics 2018; 10:397-405. [PMID: 29384550 DOI: 10.1039/c7mt00329c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is a chronic, multifactorial origin disease that has recently become one of the most frequent lifestyle disorders. Unfortunately, current obesity treatments seem to be ineffective. At present, transcranial direct current brain stimulation (tDCS) represents a promising novel treatment methodology that seems to be efficient, well-tolerated and safe for a patient. Unfortunately, the biochemical action of tDCS remains unknown, which prevents its widespread use in the clinical arena, although neurobiochemical changes in brain signaling and metal metabolism are frequently reported. Therefore, our research aimed at exploring the biochemical response to tDCS in situ, in the brain areas triggering feeding behavior in obese animals. The objective was to propose a novel neurochemical (serotoninergic and dopaminergic signaling) and trace metal analysis of Fe, Cu and Zn. In doing so, we used energy-dispersive X-ray fluorescence (EDXRF) and high-performance liquid chromatography (HPLC). Anodal-type stimulation (atDCS) of the right frontal cortex was utilized to down-regulate food intake and body weight gain in obese rats. EDXRF was coupled with the external standard method in order to quantify the chemical elements within appetite-triggering brain areas. Major dopamine metabolites were assessed in the brains, based on the HPLC assay utilizing the external standard assay. Our study confirms that elemental analysis by EDXRF and brain metabolite assay by HPLC can be considered as a useful tool for the in situ investigation of the interplay between neurochemical and Fe/Cu/Zn metabolism in the brain upon atDCS. With this methodology, an increase in both Cu and Zn in the satiety center of the stimulated group could be reported. In turn, the most significant neurochemical changes involved dopaminergic and serotoninergic signaling in the brain reward system.
Collapse
Affiliation(s)
- Agata Ziomber
- Jagiellonian University, Chair of Pathophysiology, Faculty of Medicine, Krakow, Poland
| | - Artur Dawid Surowka
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343 Kraków, Poland
| | - Irena Romanska
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343 Kraków, Poland
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Magdalena Szczerbowska-Boruchowska
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
713
|
Lee WH, Kennedy NI, Bikson M, Frangou S. A Computational Assessment of Target Engagement in the Treatment of Auditory Hallucinations with Transcranial Direct Current Stimulation. Front Psychiatry 2018; 9:48. [PMID: 29520240 PMCID: PMC5826940 DOI: 10.3389/fpsyt.2018.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 01/04/2023] Open
Abstract
We use auditory verbal hallucinations (AVH) to illustrate the challenges in defining and assessing target engagement in the context of transcranial direct current stimulation (tDCS) for psychiatric disorders. We defined the target network as the cluster of regions of interest (ROIs) that are consistently implicated in AVH based on the conjunction of multimodal meta-analytic neuroimaging data. These were prescribed in the New York Head (a population derived model) and head models of four single individuals. We appraised two potential measures of target engagement, tDCS-induced peak electric field strength and tDCS-modulated volume defined as the percentage of the volume of the AVH network exposed to electric field magnitude stronger than the postulated threshold for neuronal excitability. We examined a left unilateral (LUL) montage targeting the prefrontal cortex (PFC) and temporoparietal junction (TPJ), a bilateral (BL) prefrontal montage, and a 2 × 1 montage targeting the left PFC and the TPJ bilaterally. Using computational modeling, we estimated the peak electric field strength and modulated volume induced by each montage for current amplitudes ranging 1-4 mA. We found that the LUL montage was inferior to both other montages in terms of peak electric field strength in right-sided AVH-ROIs. The BL montage was inferior to both other montages in terms of modulated volume of the left-sided AVH-ROIs. As the modulated volume is non-linear, its variability between montages reduced for current amplitudes above 3 mA. These findings illustrate how computational target engagement for tDCS can be tailored to specific networks and provide a principled approach for future study design.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nigel I. Kennedy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, United States
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
714
|
Sheldon SS, Mathewson KE. Does 10-Hz Cathodal Oscillating Current of the Parieto-Occipital Lobe Modulate Target Detection? Front Neurosci 2018. [PMID: 29520215 PMCID: PMC5827548 DOI: 10.3389/fnins.2018.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phase of alpha (8–12 Hz) brain oscillations have been associated with moment to moment changes in visual attention and awareness. Previous work has demonstrated that endogenous oscillations and subsequent behavior can be modulated by oscillating transcranial current stimulation (otCS). The purpose of the current study is to establish the efficacy of cathodal otCS for modulation of the ongoing alpha brain oscillations, allowing for modulation of individual's visual perception. Thirty-six participants performed a target detection with sham and 10-Hz cathodal otCS. Each participant had two practice and two experimental sets composed of three blocks of 128 trials per block. Stimulating electrodes were placed on the participant's head with the anode electrode at Cz and the cathode electrode at Oz. A 0.5 mA current was applied every 100 ms (10 Hz frequency) during the otCS condition. The same current and frequency was applied for the first 10–20 s of the sham condition, after which the current was turned off. Target detection rates were compared between the sham and otCS experimental conditions in order to test for effects of otCS phase on target detection. We found no significant difference in target detection rates between the sham and otCS conditions, and discuss potential reasons for the apparent inability of cathodal otCS to effectively modulate visual perception.
Collapse
Affiliation(s)
- Sarah S Sheldon
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
715
|
Coles AS, Kozak K, George TP. A review of brain stimulation methods to treat substance use disorders. Am J Addict 2018; 27:71-91. [PMID: 29457674 DOI: 10.1111/ajad.12674] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/26/2017] [Accepted: 12/16/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Substance use disorders (SUDs) are a leading cause of disability worldwide. While several pharmacological and behavioral treatments for SUDs are available, these may not be effective for all patients. Recent studies using non-invasive neuromodulation techniques including Repetitive Transcranial Magnetic Stimulation (rTMS), Transcranial Direct Current Stimulation (tDCS), and Deep Brain Stimulation (DBS) have shown promise for SUD treatment. OBJECTIVE Multiple studies were evaluated investigating the therapeutic potential of non-invasive brain stimulation techniques in treatment of SUDs. METHOD Through literature searches (eg, PubMed, Google Scholar), 60 studies (2000-2017) were identified examining the effect of rTMS, tDCS, or DBS on cravings and consumption of SUDs, including tobacco, alcohol, cannabis, opioids, and stimulants. RESULTS rTMS and tDCS demonstrated decreases in drug craving and consumption, while early studies with DBS suggest similar results. Results are most encouraging when stimulation is targeted to the Dorsolateral Prefrontal Cortex (DLPFC). CONCLUSIONS Short-term treatment with rTMS and tDCS may have beneficial effects on drug craving and consumption. Future studies should focus on extending therapeutic benefits by increasing stimulation frequency and duration of treatment. SCIENTIFIC SIGNIFICANCE The utility of these methods in SUD treatment and prevention are unclear, and warrants further study using randomized, controlled designs. (Am J Addict 2018;27:71-91).
Collapse
Affiliation(s)
- Alexandria S Coles
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Karolina Kozak
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Sciences (IMS), University of Toronto, Toronto, Ontario, Canada
| | - Tony P George
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Sciences (IMS), University of Toronto, Toronto, Ontario, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
716
|
Simione M, Fregni F, Green JR. The Effect of Transcranial Direct Current Stimulation on Jaw Motor Function Is Task Dependent: Speech, Syllable Repetition and Chewing. Front Hum Neurosci 2018; 12:33. [PMID: 29487512 PMCID: PMC5816739 DOI: 10.3389/fnhum.2018.00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/19/2018] [Indexed: 11/13/2022] Open
Abstract
Motor cortex transcranial direct current stimulation (tDCS) has been shown to enhance motor learning in healthy adults as well as various neurological conditions. However, there has been limited data on whether tDCS enhances jaw motor performance during different oral behaviors such as speech, maximum syllable repetition, and chewing. Because the effects of anodal and cathodal stimulation are known to be dependent on task demands, we hypothesized that tDCS would have a distinct effect on the jaw motor performance during these disparate oral behaviors. Ten healthy adults completed speech, maximum syllable repetition, and chewing tasks as their jaw movements were recorded using 3D optical motion capture during sham, anodal, and cathodal tDCS. Our findings showed that compared to the sham condition, jaw displacements during speech and syllable repetition were smaller during anodal stimulation, but larger during cathodal stimulation for syllable repetition and chewing indicating improved performance during anodal tDCS. On the other hand, there were no effects of anodal tDCS during chewing. These results confirm our hypotheses that: (1) tDCS induces a significant effect on jaw motor function; (2) its effects are polarity dependent; and (3) its effects are dependent on the task demands on jaw motor function. These findings support future studies exploring the effects of tDCS on persons with oral sensorimotor impairments and the development of therapeutic protocols.
Collapse
Affiliation(s)
- Meg Simione
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, United States
| | - Felipe Fregni
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Jordan R. Green
- Speech and Feeding Disorders Laboratory, MGH Institute of Health Professions, Boston, MA, United States
- *Correspondence: Jordan R. Green
| |
Collapse
|
717
|
Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 2018; 9:483. [PMID: 29396478 PMCID: PMC5797140 DOI: 10.1038/s41467-018-02928-3] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022] Open
Abstract
Transcranial electric stimulation is a non-invasive tool that can influence brain activity; however, the parameters necessary to affect local circuits in vivo remain to be explored. Here, we report that in rodents and human cadaver brains, ~75% of scalp-applied currents are attenuated by soft tissue and skull. Using intracellular and extracellular recordings in rats, we find that at least 1 mV/mm voltage gradient is necessary to affect neuronal spiking and subthreshold currents. We designed an ‘intersectional short pulse’ stimulation method to inject sufficiently high current intensities into the brain, while keeping the charge density and sensation on the scalp surface relatively low. We verify the regional specificity of this novel method in rodents; in humans, we demonstrate how it affects the amplitude of simultaneously recorded EEG alpha waves. Our combined results establish that neuronal circuits are instantaneously affected by intensity currents that are higher than those used in conventional protocols. Though transcranial electric stimulation has been used to influence brain activity, it is debated whether neuronal spiking activity is directly affected by commonly-used protocols. Here, the authors quantify the voltage gradients necessary to instantaneously affect neuronal spiking and show that they are higher than commonly-used protocols.
Collapse
|
718
|
Woods AJ, Cohen R, Marsiske M, Alexander GE, Czaja SJ, Wu S. Augmenting cognitive training in older adults (The ACT Study): Design and Methods of a Phase III tDCS and cognitive training trial. Contemp Clin Trials 2018; 65:19-32. [PMID: 29313802 PMCID: PMC5803439 DOI: 10.1016/j.cct.2017.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adults over age 65 represent the fastest growing population in the US. Decline in cognitive abilities is a hallmark of advanced age and is associated with loss of independence and dementia risk. There is a pressing need to develop effective interventions for slowing or reversing the cognitive aging process. While certain forms of cognitive training have shown promise in this area, effects only sometimes transfer to neuropsychological tests within or outside the trained domain. This paper describes a NIA-funded Phase III adaptive multisite randomized clinical trial, examining whether transcranial direct current stimulation (tDCS) of frontal cortices enhances neurocognitive outcomes achieved from cognitive training in older adults experiencing age-related cognitive decline: the Augmenting Cognitive Training in Older Adults study (ACT). METHODS ACT will enroll 360 participants aged 65 to 89 with age-related cognitive decline, but not dementia. Participants will undergo cognitive training intervention or education training-control combined with tDCS or sham tDCS control. Cognitive training employs a suite of eight adaptive training tasks focused on attention/speed of processing and working memory from Posit Science BrainHQ. Training control involves exposure to educational nature/history videos and related content questions of the same interval/duration as the cognitive training. Participants are assessed at baseline, after training (12weeks), and 12-month follow-up on our primary outcome measure, NIH Toolbox Fluid Cognition Composite Score, as well as a comprehensive neurocognitive, functional, clinical and multimodal neuroimaging battery. SIGNIFICANCE The findings from this study have the potential to significantly enhance efforts to ameliorate cognitive aging and slow dementia.
Collapse
Affiliation(s)
- Adam J Woods
- Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, United States.
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, United States
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, United States
| | - Gene E Alexander
- Departments of Psychology and Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, BIO5 Institute, and McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Sara J Czaja
- Center on Aging, Department of Psychiatry and Behavioral Sciences, McKnight Brain Institute, Miller School of Medicine, University of Miami, United States
| | - Samuel Wu
- Department of Biostatistics, University of Florida, United States
| |
Collapse
|
719
|
Nitsche MA, Bikson M. Extending the parameter range for tDCS: Safety and tolerability of 4 mA stimulation. Brain Stimul 2018; 10:541-542. [PMID: 28456325 DOI: 10.1016/j.brs.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, City College of New York, City University of New York, New York, NY, USA
| |
Collapse
|
720
|
Soutschek A, Ugazio G, Crockett MJ, Ruff CC, Kalenscher T, Tobler PN. Binding oneself to the mast: stimulating frontopolar cortex enhances precommitment. Soc Cogn Affect Neurosci 2018; 12:635-642. [PMID: 28170049 PMCID: PMC5390697 DOI: 10.1093/scan/nsw176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022] Open
Abstract
Humans often give in to temptations that are in conflict with valuable long-term goals like health or saving for the future. Such willpower failures represent a prevalent problem in everyday life and in many psychiatric disorders. Strategies that increase resistance to temptations could therefore improve overall societal well-being. One important strategy is to voluntarily precommit, i.e. to restrict one’s future action space by removing the tempting short-term option from the choice set, thereby leaving only the long-term option for implementation. The neural mechanisms necessary to implement precommitment have remained unknown. Here, we test whether anodal transcranial direct current stimulation (tDCS) over the frontopolar cortex (FPC) can improve precommitment. Participants performed a self-control task in which they could precommit to obtain a delayed larger reward by removing an immediately available smaller reward from the future choice options. We found that anodal stimulation over FPC selectively increased the propensity to precommit. In contrast, tDCS had no effects on non-binding decisions, impulse control or reward preference. Our data establish a causal role for the FPC in the implementation of precommitment, revealing a novel route to improving resistance against temptations.
Collapse
Affiliation(s)
- Alexander Soutschek
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich - 8006, Switzerland
| | - Giuseppe Ugazio
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich - 8006, Switzerland
| | - Molly J Crockett
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Christian C Ruff
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich - 8006, Switzerland
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich - 8006, Switzerland
| |
Collapse
|
721
|
Zoefel B, Archer-Boyd A, Davis MH. Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech. Curr Biol 2018; 28:401-408.e5. [PMID: 29358073 PMCID: PMC5807089 DOI: 10.1016/j.cub.2017.11.071] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
Abstract
Due to their periodic nature, neural oscillations might represent an optimal "tool" for the processing of rhythmic stimulus input [1-3]. Indeed, the alignment of neural oscillations to a rhythmic stimulus, often termed phase entrainment, has been repeatedly demonstrated [4-7]. Phase entrainment is central to current theories of speech processing [8-10] and has been associated with successful speech comprehension [11-17]. However, typical manipulations that reduce speech intelligibility (e.g., addition of noise and time reversal [11, 12, 14, 16, 17]) could destroy critical acoustic cues for entrainment (such as "acoustic edges" [7]). Hence, the association between phase entrainment and speech intelligibility might only be "epiphenomenal"; i.e., both decline due to the same manipulation, without any causal link between the two [18]. Here, we use transcranial alternating current stimulation (tACS [19]) to manipulate the phase lag between neural oscillations and speech rhythm while measuring neural responses to intelligible and unintelligible vocoded stimuli with sparse fMRI. We found that this manipulation significantly modulates the BOLD response to intelligible speech in the superior temporal gyrus, and the strength of BOLD modulation is correlated with a phasic modulation of performance in a behavioral task. Importantly, these findings are absent for unintelligible speech and during sham stimulation; we thus demonstrate that phase entrainment has a specific, causal influence on neural responses to intelligible speech. Our results not only provide an important step toward understanding the neural foundation of human abilities at speech comprehension but also suggest new methods for enhancing speech perception that can be explored in the future.
Collapse
Affiliation(s)
- Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK.
| | - Alan Archer-Boyd
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
722
|
Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:167-175. [DOI: 10.3758/s13415-018-0561-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
723
|
Külzow N, Cavalcanti de Sousa AV, Cesarz M, Hanke JM, Günsberg A, Harder S, Koblitz S, Grittner U, Flöel A. No Effects of Non-invasive Brain Stimulation on Multiple Sessions of Object-Location-Memory Training in Healthy Older Adults. Front Neurosci 2018; 11:746. [PMID: 29375290 PMCID: PMC5767718 DOI: 10.3389/fnins.2017.00746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and a non-optimal timing of atDCS between sessions might have masked beneficial effects and should be more systematically addressed in future studies.
Collapse
Affiliation(s)
- Nadine Külzow
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Clinical Research Unit, Berlin Institute of Health, Berlin, Germany
| | - Angelica Vieira Cavalcanti de Sousa
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Magda Cesarz
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Julie-Marie Hanke
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Alida Günsberg
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Solvejg Harder
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Swantje Koblitz
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Ulrike Grittner
- Charité - Universitätsmedizin Berlin, Department of Biostatistics and Clinical Epidemiology, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Stroke Research, Berlin, Germany
| | - Agnes Flöel
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Stroke Research, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
724
|
Brunyé TT. Modulating Spatial Processes and Navigation via Transcranial Electrical Stimulation: A Mini Review. Front Hum Neurosci 2018; 11:649. [PMID: 29375346 PMCID: PMC5767283 DOI: 10.3389/fnhum.2017.00649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
Transcranial electrical stimulation (tES) uses low intensity current to alter neuronal activity in superficial cortical regions, and has gained popularity as a tool for modulating several aspects of perception and cognition. This mini-review article provides an overview of tES and its potential for modulating spatial processes underlying successful navigation, including spatial attention, spatial perception, mental rotation and visualization. Also considered are recent advances in empirical research and computational modeling elucidating several stable cortical-subcortical networks with dynamic involvement in spatial processing and navigation. Leveraging these advances may prove valuable for using tES, particularly transcranial direct and alternating current stimulation (tDCS/tACS), to indirectly target subcortical brain regions by altering neuronal activity in distant yet functionally connected cortical areas. We propose future research directions to leverage these advances in human neuroscience.
Collapse
Affiliation(s)
- Tad T Brunyé
- Center for Applied Brain and Cognitive Sciences, School of Engineering, Tufts University, Medford, MA, United States.,Cognitive Science Team, U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, MA, United States.,Department of Psychology, Tufts University, Medford, MA, United States
| |
Collapse
|
725
|
Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 2018; 21:174-187. [PMID: 29311747 DOI: 10.1038/s41593-017-0054-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
In the past three decades, our understanding of brain-behavior relationships has been significantly shaped by research using non-invasive brain stimulation (NIBS) techniques. These methods allow non-invasive and safe modulation of neural processes in the healthy brain, enabling researchers to directly study how experimentally altered neural activity causally affects behavior. This unique property of NIBS methods has, on the one hand, led to groundbreaking findings on the brain basis of various aspects of behavior and has raised interest in possible clinical and practical applications of these methods. On the other hand, it has also triggered increasingly critical debates about the properties and possible limitations of these methods. In this review, we discuss these issues, clarify the challenges associated with the use of currently available NIBS techniques for basic research and practical applications, and provide recommendations for studies using NIBS techniques to establish brain-behavior relationships.
Collapse
Affiliation(s)
- Rafael Polanía
- Laboratory for Social and Neural Systems Research (SNS-Lab), Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Michael A Nitsche
- Leibniz Research Center for Working Environment and Human Factors, Department of Psychology and Neurosciences, TU Dortmund, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Christian C Ruff
- Laboratory for Social and Neural Systems Research (SNS-Lab), Department of Economics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
726
|
|
727
|
Thibaut A, French M, Vasquez A, Fregni F. Optimization of Noninvasive Brain Stimulation Clinical Trials. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
728
|
Abstract
Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
729
|
Qin J, Wang Y, Liu W. Current Design with Minimum Error in Transcranial Direct Current Stimulation. Brain Inform 2018. [DOI: 10.1007/978-3-030-05587-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
730
|
Giustolisi B, Vergallito A, Cecchetto C, Varoli E, Romero Lauro LJ. Anodal transcranial direct current stimulation over left inferior frontal gyrus enhances sentence comprehension. BRAIN AND LANGUAGE 2018; 176:36-41. [PMID: 29175380 DOI: 10.1016/j.bandl.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
We tested the possibility of enhancing natural language comprehension through the application of anodal tDCS (a-tDCS) over the left inferior frontal gyrus, a key region for verbal short-term memory and language comprehension. We designed a between subjects sham- and task-controlled study. During tDCS stimulation, participants performed a sentence to picture matching task in which targets were sentences with different load on short-term memory. Regardless of load on short-term memory, the Anodal group performed significantly better than the Sham group, thus providing evidence that a-tDCS over LIFG enhances natural language comprehension. To our knowledge, we apply for the first time tDCS to boost sentence comprehension. This result is of special interest also from a clinical perspective: applying a-tDCS in patients manifesting problems at the sentence level due to brain damage could enhance the effects of behavioral rehabilitation procedures aimed to improve language comprehension.
Collapse
Affiliation(s)
| | | | - Carlo Cecchetto
- Université de Paris 8 & CNRS - UMR 7023 Structures Formelles du Langage, France; Dipartimento di Psicologia, Università di Milano-Bicocca, Italy
| | - Erica Varoli
- Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Italy
| | | |
Collapse
|
731
|
MacKay MAB, Paylor JW, Wong JTF, Winship IR, Baker GB, Dursun SM. Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front Psychiatry 2018; 9:537. [PMID: 30425662 PMCID: PMC6218602 DOI: 10.3389/fpsyt.2018.00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a very complex syndrome that involves widespread brain multi-dysconnectivity. Neural circuits within specific brain regions and their links to corresponding regions are abnormal in the illness. Theoretical models of dysconnectivity and the investigation of connectomics and brain network organization have been examined in schizophrenia since the early nineteenth century. In more recent years, advancements have been achieved with the development of neuroimaging tools that have provided further clues to the structural and functional organization of the brain and global neural networks in the illness. Neural circuitry that extends across prefrontal, temporal and parietal areas of the cortex as well as limbic and other subcortical brain regions is disrupted in schizophrenia. As a result, many patients have a poor response to antipsychotic treatment and treatment failure is common. Treatment resistance that is specific to positive, negative, and cognitive domains of the illness may be related to distinct circuit phenotypes unique to treatment-refractory disease. Currently, there are no customized neural circuit-specific and targeted therapies that address this neural dysconnectivity. Investigation of targeted therapeutics that addresses particular areas of substantial regional dysconnectivity is an intriguing approach to precision medicine in schizophrenia. This review examines current findings of system and circuit-level brain dysconnectivity in treatment-resistant schizophrenia based on neuroimaging studies. Within a connectome context, on-off circuit connectivity synonymous with excitatory and inhibitory neuronal pathways is discussed. Mechanistic cellular, neurochemical and molecular studies are included with specific emphasis given to cell pathology and synaptic communication in glutamatergic and GABAergic systems. In this review we attempt to deconstruct how augmenting treatments may be applied within a circuit context to improve circuit integration and treatment response. Clinical studies that have used a variety of glutamate receptor and GABA interneuron modulators, nitric oxide-based therapies and a variety of other strategies as augmenting treatments with antipsychotic drugs are included. This review supports the idea that the methodical mapping of system-level networks to both on (excitatory) and off (inhibitory) cellular circuits specific to treatment-resistant disease may be a logical and productive approach in directing future research toward the advancement of targeted pharmacotherapeutics in schizophrenia.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - John W Paylor
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - James T F Wong
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
732
|
Cespón J, Rodella C, Rossini PM, Miniussi C, Pellicciari MC. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects. Front Aging Neurosci 2017; 9:420. [PMID: 29326582 PMCID: PMC5741680 DOI: 10.3389/fnagi.2017.00420] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/07/2017] [Indexed: 01/07/2023] Open
Abstract
Recent studies have demonstrated that transcranial direct current stimulation (tDCS) is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task (n-back task) during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC). We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials). A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.
Collapse
Affiliation(s)
- Jesús Cespón
- Cognitive Neuroscience Section, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Rodella
- Cognitive Neuroscience Section, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Institute of Neurology, Policlinico A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Paolo M. Rossini
- Institute of Neurology, Policlinico A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Carlo Miniussi
- Cognitive Neuroscience Section, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Maria C. Pellicciari
- Cognitive Neuroscience Section, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
733
|
Naro A, Bramanti A, Leo A, Bramanti P, Calabrò RS. Metaplasticity: A Promising Tool to Disentangle Chronic Disorders of Consciousness Differential Diagnosis. Int J Neural Syst 2017; 28:1750059. [PMID: 29370729 DOI: 10.1142/s0129065717500599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The extent of cortical reorganization after brain injury in patients with Vegetative State/Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS) depends on the residual capability of modulating synaptic plasticity. Neuroplasticity is largely abnormal in patients with UWS, although the fragments of cortical activity may exist, while patients MCS show a better cortical organization. The aim of this study was to evaluate cortical excitability in patients with disorders of consciousness (DoC) using a transcranial direct current stimulation (TDCS) metaplasticity protocol. To this end, we tested motor-evoked potential (MEP) amplitude, short intracortical inhibition (SICI), and intracortical facilitation (ICF). These measures were correlated with the level of consciousness (by the Coma Recovery Scale-Revised, CRS-R). MEP amplitude, SICI, and ICF strength were significantly modulated following different metaplasticity TDCS protocols only in the patients with MCS. SICI modulations showed a significant correlation with the CRS-R score. Our findings demonstrate, for the first time, a partial preservation of metaplasticity properties in some patients with DoC, which correlates with the level of awareness. Thus, metaplasticity assessment may help the clinician in differentiating the patients with DoC, besides the clinical evaluation. Moreover, the responsiveness to metaplasticity protocols may identify the subjects who could benefit from neuromodulation protocols.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Antonino Leo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
- S.S. 113, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
734
|
Esmaeilpour Z, Marangolo P, Hampstead BM, Bestmann S, Galletta E, Knotkova H, Bikson M. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul 2017; 11:310-321. [PMID: 29258808 DOI: 10.1016/j.brs.2017.12.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function by applying a fixed low-intensity direct current to scalp. OBJECTIVES We critically discuss evidence for a monotonic response in effect size with increasing current intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS. METHODS We analyzed tDCS intensity does-response from different perspectives including biophysical modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. Further, we discuss approaches to design dose-response trials. RESULTS Physical models predict electric field in the brain increases with applied tDCS intensity. Data from animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation (TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are subject brain-state dependent. Measurements and models of current flow show that for the same applied current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-individual differences that complicate consideration of population-level dose response. CONCLUSION The presence or absence of simple dose response does not impact how efficacious a given tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed for protocol optimization including individualized dose to reduce outcome variability, which requires intelligent design of dose-response studies.
Collapse
Affiliation(s)
- Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, University Federico II, Naples and IRCCS Fondazione Santa Lucia, Rome Italy
| | - Benjamin M Hampstead
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, UK
| | - Elisabeth Galletta
- Rusk Rehabilitation Medicine, New York University Langone Medical Center, USA
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA
| |
Collapse
|
735
|
Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder. Neuropharmacology 2017; 131:51-57. [PMID: 29221791 DOI: 10.1016/j.neuropharm.2017.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023]
Abstract
Gambling disorder is characterized by persistent maladaptive gambling behaviors and is now considered among substance-related and addictive disorders. There is still unmet therapeutic need for these clinical populations, however recent advances indicate that interventions targeting the Glutamatergic/GABAergic system hold promise in reducing symptoms in substance-related and addictive disorders, including gambling disorder. There is some data indicating that transcranial direct current stimulation may hold clinical benefits in substance use disorders and modulate levels of brain metabolites including glutamate and GABA. The goal of the present work was to test whether this non-invasive neurostimulation method modulates key metabolites in gambling disorder. We conducted a sham-controlled, crossover, randomized study, blinded at two levels in order to characterize the effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on neural metabolites levels in sixteen patients with gambling disorder. Metabolite levels were measured with magnetic resonance spectroscopy from the right dorsolateral prefrontal cortex and the right striatum during active and sham stimulation. Active as compared to sham stimulation elevated prefrontal GABA levels. There were no significant changes between stimulation conditions in prefrontal glutamate + glutamine and N-acetyl Aspartate, or in striatal metabolite levels. Results also indicated positive correlations between metabolite levels during active, but not sham, stimulation and levels of risk taking, impulsivity and craving. Our findings suggest that transcranial direct current stimulation can modulate GABA levels in patients with gambling disorder which may represent an interesting future therapeutic avenue.
Collapse
|
736
|
Ciechanski P, Cheng A, Lopushinsky S, Hecker K, Gan LS, Lang S, Zareinia K, Kirton A. Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial. World Neurosurg 2017; 108:876-884.e4. [DOI: 10.1016/j.wneu.2017.08.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
|
737
|
Relevance of Dorsolateral and Frontotemporal Cortex on the Phonemic Verbal Fluency – A fNIRS-Study. Neuroscience 2017; 367:169-177. [DOI: 10.1016/j.neuroscience.2017.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 09/22/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022]
|
738
|
Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation. Front Neurosci 2017; 11:641. [PMID: 29213226 PMCID: PMC5702643 DOI: 10.3389/fnins.2017.00641] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.
Collapse
Affiliation(s)
- Hayley Thair
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Amy L Holloway
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Roger Newport
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Alastair D Smith
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
739
|
Crivelli D, Balconi M. The Agent Brain: A Review of Non-invasive Brain Stimulation Studies on Sensing Agency. Front Behav Neurosci 2017; 11:229. [PMID: 29209181 PMCID: PMC5701922 DOI: 10.3389/fnbeh.2017.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022] Open
Abstract
According to philosophy of mind and neuroscientific models, the sense of agency can be defined as the sense that I am the one that is generating an action and causing its effects. Such ability to sense ourselves as causal agents is critical for the definition of intentional behavior and is a primary root for human interaction skills. The present mini-review aims at discussing evidences from non-invasive brain stimulation (NIBS) studies targeting functional correlates of different aspects of agency and evidences on the way stimulation techniques affect such core feature of human subjective experience. Clinical and brain imaging studies helped in defining a neural network mediating agency-related processes, which includes the dorsolateral prefrontal cortex (dlPFC), the cingulate cortex (CC), the supplementary and pre-supplementary motor areas (SMA and pre-SMA), the posterior parietal cortex (PPC) and its inferior regions and the cerebellum. However, while the plurality of those structures mirrors the complexity of the phenomenon, their actual roles with respect to different components of the experience of agency have been primarily explored via correlational techniques, without a clear evidence about their causal significance with respect to the integration of sensorimotor information, intentionalization, and action monitoring processes. Therefore, insights into the specific causal role of different cortical structures can be specified by using NIBS techniques, in order to provide improved understanding into the bases of our ability vs. inability to properly act in complex social contexts.
Collapse
Affiliation(s)
- Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
740
|
Rich TL, Menk JS, Rudser KD, Chen M, Meekins GD, Peña E, Feyma T, Bawroski K, Bush C, Gillick BT. Determining Electrode Placement for Transcranial Direct Current Stimulation: A Comparison of EEG- Versus TMS-Guided Methods. Clin EEG Neurosci 2017; 48:367-375. [PMID: 28530154 PMCID: PMC5933436 DOI: 10.1177/1550059417709177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcranial direct current stimulation (tDCS) is increasingly researched as an adjuvant to motor rehabilitation for children with hemiparesis. The optimal method for the primary motor cortex (M1) somatotopic localization for tDCS electrode placement has not been established. The objective, therefore, was to determine the location of the M1 derived using the 10/20 electroencephalography (EEG) system and transcranial magnetic stimulation (TMS) in children with hemiparesis (CWH) and a comparison group of typically developing children (TDC). We hypothesized a difference in location for CWH but not for TDC. The 2 locations were evaluated in 47 children (21 CWH, 26 TDC). Distances between the locations were measured pending presence of a motor evoked potential. Distances between the EEG and TMS locations that exceeded the 2.5 cm × 2.5 cm rubber electrode area are reported in percentages [95% confidence interval] in CWH-nonlesioned hemisphere was 68.8% [41.3-89.0], lesioned: 85.7% [57.2-98.2]; TDC-dominant hemisphere 73.9% [51.6-89.8], nondominant: 82.6% [61.2-95.0]. Distances that exceeded the 3 × 5 cm electrode sponge area in CWH-nonlesioned was 25.0% [7.3-52.4], lesioned was 28.6% [8.4-58.1]; TDC-dominant was 52.2% [30.6-73.2], nondominant was 43.5 [23.2-65.5]). Distances that exceeded the 5 × 7 cm electrode sponge area in CWH-nonlesioned was 18.8% [4.0-45.6] and lesioned was 21.4% [4.7-50.8]; TDC-dominant was 21.7% [7.5-43.7] and nondominant was 26.1% [10.2-48.4]. Individual variability in brain somatotopic organization may influence surface scalp localization of underlying M1 in children regardless of neurologic impairment. Findings suggest further investigation of optimal tDCS electrode placement. EEG and TMS methods reveal variability in localizing M1 in children regardless of stroke diagnosis. This study was registered on clinicaltrials.gov NCT02015338.
Collapse
Affiliation(s)
- Tonya L. Rich
- Department of Physical Medicine and Rehabilitation, Program in Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Jeremiah S. Menk
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kyle D. Rudser
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mo Chen
- Non-Invasive Neuromodulation Laboratory, Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Gregg D. Meekins
- Department of Neurology, University of Minnesota, Medical School, Minneapolis, MN, USA
| | - Edgar Peña
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Timothy Feyma
- Gillette Children’s Specialty Healthcare, St Paul, MN, USA
| | - Kay Bawroski
- Gillette Children’s Specialty Healthcare, St Paul, MN, USA
| | - Christina Bush
- Gillette Children’s Specialty Healthcare, St Paul, MN, USA
| | - Bernadette T. Gillick
- Department of Physical Medicine and Rehabilitation, Program in Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
- Department of Physical Medicine and Rehabilitation, Program in Physical Therapy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
741
|
Robinson C, Armenta M, Combs A, Lamphere ML, Garza GJ, Neary J, Wolfe JH, Molina E, Semey DE, McKee CM, Gallegos SJ, Jones AP, Trumbo MC, Al-Azzawi H, Hunter MA, Lieberman G, Coffman BA, Aboseria M, Bikson M, Clark VP, Witkiewitz K. Modulating affective experience and emotional intelligence with loving kindness meditation and transcranial direct current stimulation: A pilot study. Soc Neurosci 2017; 14:10-25. [PMID: 29067880 DOI: 10.1080/17470919.2017.1397054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Positive emotional perceptions and healthy emotional intelligence (EI) are important for social functioning. In this study, we investigated whether loving kindness meditation (LKM) combined with anodal transcranial direct current stimulation (tDCS) would facilitate improvements in EI and changes in affective experience of visual stimuli. LKM has been shown to increase positive emotional experiences and we hypothesized that tDCS could enhance these effects. Eighty-seven undergraduates were randomly assigned to 30 minutes of LKM or a relaxation control recording with anodal tDCS applied to the left dorsolateral prefrontal cortex (left dlPFC) or right temporoparietal junction (right TPJ) at 0.1 or 2.0 milliamps. The primary outcomes were self-reported affect ratings of images from the International Affective Picture System and EI as measured by the Mayer, Salovey and Caruso Emotional Intelligence Test. Results indicated no effects of training on EI, and no main effects of LKM, electrode placement, or tDCS current strength on affect ratings. There was a significant interaction of electrode placement by meditation condition (p = 0.001), such that those assigned to LKM and right TPJ tDCS, regardless of current strength, rated neutral and positive images more positively after training. Results suggest that LKM may enhance positive affective experience.
Collapse
Affiliation(s)
- Charles Robinson
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Mika Armenta
- b Department of Psychology , The University of Chicago , Chicago , IL , USA
| | - Angela Combs
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Melanie L Lamphere
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Gabrielle J Garza
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - James Neary
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Janet H Wolfe
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Edward Molina
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Dominick E Semey
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Christina M McKee
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Stevi J Gallegos
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Aaron P Jones
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Michael C Trumbo
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Hussein Al-Azzawi
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Michael A Hunter
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Gregory Lieberman
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA.,e Human Research and Engineering Directorate , U.S. Army Research Laboratory , Adelphi , MD , USA
| | - Brian A Coffman
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA.,c Department of Psychiatry , The University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Mohamed Aboseria
- d Department of Biomedical Engineering , The City University of New York , New York , NY , USA
| | - Marom Bikson
- d Department of Biomedical Engineering , The City University of New York , New York , NY , USA
| | - Vincent P Clark
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| | - Katie Witkiewitz
- a The Psychology Clinical Neuroscience Center, Department of Psychology , University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|
742
|
Menezes IS, Cohen LG, Mello EA, Machado AG, Peckham PH, Anjos SM, Siqueira IL, Conti J, Plow EB, Conforto AB. Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment. Neuromodulation 2017; 21:176-183. [PMID: 29067749 DOI: 10.1111/ner.12717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate effects of somatosensory stimulation in the form of repetitive peripheral nerve sensory stimulation (RPSS) in combination with transcranial direct current stimulation (tDCS), tDCS alone, RPSS alone, or sham RPSS + tDCS as add-on interventions to training of wrist extension with functional electrical stimulation (FES), in chronic stroke patients with moderate to severe upper limb impairments in a crossover design. We hypothesized that the combination of RPSS and tDCS would enhance the effects of FES on active range of movement (ROM) of the paretic wrist to a greater extent than RPSS alone, tDCS alone or sham RPSS + tDCS. MATERIALS AND METHODS The primary outcome was the active ROM of extension of the paretic wrist. Secondary outcomes were ROM of wrist flexion, grasp, and pinch strength of the paretic and nonparetic upper limbs, and ROM of wrist extension of the nonparetic wrist. Outcomes were blindly evaluated before and after each intervention. Analysis of variance with repeated measures with factors "session" and "time" was performed. RESULTS After screening 2499 subjects, 22 were included. Data from 20 subjects were analyzed. There were significant effects of "time" for grasp force of the paretic limb and for ROM of wrist extension of the nonparetic limb, but no effects of "session" or interaction "session x time." There were no significant effects of "session," "time," or interaction "session x time" regarding other outcomes. CONCLUSIONS Single sessions of PSS + tDCS, tDCS alone, or RPSS alone did not improve training effects in chronic stroke patients with moderate to severe impairment.
Collapse
Affiliation(s)
| | - Leonardo G Cohen
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo A Mello
- Hospital das Clinicas/São Paulo University, São Paulo, Brazil
| | - André G Machado
- Departament of Neurosciences, Lerner Reasearch Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Western Reserve University, Cleveland, OH, USA
| | | | - Sarah M Anjos
- Hospital das Clinicas/São Paulo University, São Paulo, Brazil.,Departments of Physical Therapy and Occupational Therapy; School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Juliana Conti
- Hospital das Clinicas/São Paulo University, São Paulo, Brazil
| | - Ela B Plow
- Departament of Neurosciences, Lerner Reasearch Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Western Reserve University, Cleveland, OH, USA
| | - Adriana B Conforto
- Hospital das Clinicas/São Paulo University, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
743
|
Stephens JA, Jones KT, Berryhill ME. Task demands, tDCS intensity, and the COMT val 158met polymorphism impact tDCS-linked working memory training gains. Sci Rep 2017; 7:13463. [PMID: 29044248 PMCID: PMC5647397 DOI: 10.1038/s41598-017-14030-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022] Open
Abstract
Working memory (WM) training paired with transcranial direct current stimulation (tDCS) can improve executive function in older adults. The unclear mechanism of tDCS likely depends on tDCS intensity, and task relevant genetic factors (e.g., for WM: COMT val158met, DAT, BDNF val66met). Higher tDCS intensity does not always lead to greater cognitive gains, and genetic polymorphisms may modulate tDCS-linked WM improvements. To evaluate these factors, 137 healthy older adults provided DNA samples and received Visual and Spatial WM training paired with tDCS (sham, 1, 1.5, 2 mA). After one session of tDCS, significant group differences in WM performance were predicted by COMT val158met status. One month after training, there was a significant interaction of tDCS intensity, COMT genotype, and WM task. Specifically, val/val homozygotes benefited most from 1.5 mA tDCS on Visual WM and from 1 mA tDCS on Spatial WM. For met/met homozygotes, 2 mA resulted in significantly poorer performance compared to 1.5 mA on Spatial WM. While this pattern was observed with relatively small sample sizes, these data indicate that variations in COMT val158met may predict the nature of WM improvement after initial and longitudinal tDCS. This contributes to our understanding of the underlying mechanism by which tDCS affects behaviour.
Collapse
Affiliation(s)
- Jaclyn A Stephens
- University of Nevada, Department of Psychology, Program in Cognitive and Brain Sciences, Reno, Nevada, USA. .,Kennedy Krieger Institute, Department of Physical Medicine and Rehabilitation Baltimore, Maryland, USA. .,Johns Hopkins School of Medicine, Department of Physical Medicine and Rehabilitation, Baltimore, Maryland, USA. .,Colorado State University, Department of Occupational Therapy, Fort Collins, Colorado, USA.
| | - Kevin T Jones
- University of Nevada, Department of Psychology, Program in Cognitive and Brain Sciences, Reno, Nevada, USA.,Colorado State University, Department of Psychology, Fort Collins, Colorado, USA
| | - Marian E Berryhill
- University of Nevada, Department of Psychology, Program in Cognitive and Brain Sciences, Reno, Nevada, USA
| |
Collapse
|
744
|
Bikson M, Paneri B, Mourdoukoutas A, Esmaeilpour Z, Badran BW, Azzam R, Adair D, Datta A, Fang XH, Wingeier B, Chao D, Alonso-Alonso M, Lee K, Knotkova H, Woods AJ, Hagedorn D, Jeffery D, Giordano J, Tyler WJ. Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimul 2017; 11:134-157. [PMID: 29122535 DOI: 10.1016/j.brs.2017.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/16/2017] [Accepted: 10/15/2017] [Indexed: 01/17/2023] Open
Abstract
We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with regard to output performance and standing regulation, the availability of tDCS, tACS, or tPCS to the public would not introduce risk, provided such devices are responsibly manufactured and legally marketed. In Part 3, we develop voluntary manufacturer guidance for limited output tES that is aligned with current regulatory standards. Based on established medical engineering and scientific principles, we outline a robust and transparent technical framework for ensuring limited output tES devices are designed to minimize risks, while also supporting access and innovation. Alongside applicable medical and government activities, this voluntary industry standard (LOTES-2017) further serves an important role in supporting informed decisions by the public.
Collapse
Affiliation(s)
- Marom Bikson
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA.
| | - Bhaskar Paneri
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | - Andoni Mourdoukoutas
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | - Zeinab Esmaeilpour
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | - Bashar W Badran
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | - Devin Adair
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | | | - Xiao Hui Fang
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | | | - Daniel Chao
- Halo Neuroscience Inc., San Francisco, CA 94103, USA
| | - Miguel Alonso-Alonso
- Harvard Medical School, Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Boston, MA, USA
| | - Kiwon Lee
- Ybrain Inc., Sampyeong-dong, Seongnam-si, South Korea
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, USA
| | | | | | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, USA
| | - William J Tyler
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85287, USA
| |
Collapse
|
745
|
McLaren ME, Nissim NR, Woods AJ. The effects of medication use in transcranial direct current stimulation: A brief review. Brain Stimul 2017; 11:52-58. [PMID: 29066167 DOI: 10.1016/j.brs.2017.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There has been increased interest in the potential use of transcranial direct current stimulation (tDCS) as treatment for multiple conditions including depression, pain, and cognitive impairment. However, few studies account for the possible influence of comorbid medications when conducting tDCS research. OBJECTIVE/HYPOTHESIS This literature review was conducted to examine what is currently known about the impact of medications on tDCS, provide recommendations for future research practices, and highlight areas where more research is needed. METHODS Key terms were searched in PubMed and Web of Science to identify studies that examine the impact of medication on tDCS effects in adults. Relevant papers' reference lists were also reviewed for thoroughness. Studies examined the effects of medication on 1 mA tDCS delivered to M1 (motor) and orbit/supraorbital (SO) area. All studies measured the effects of tDCS via MEP TMS paradigm. RESULTS Results of the literature review suggest multiple classes of medications, including sodium and calcium channel blockers, and medications that influence various neurotransmitter systems (GABA, dopamine, serotonin, etc.) may all impact tDCS effects on tissue excitability. CONCLUSIONS Research to date suggests multiple classes of medications may impact tDCS effects. These results highlight the importance of documenting medication use in research subjects and carefully considering what types of medications should be allowed into tDCS trials. Many questions still remain regarding the exact mechanisms of action for tDCS and how various parameters (medication dosages, tDCS stimulation intensity, etc.) may further impact the effects of medications on tDCS.
Collapse
Affiliation(s)
- Molly E McLaren
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL 32610, USA.
| | - Nicole R Nissim
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, USA.
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, USA.
| |
Collapse
|
746
|
Fazeli PL, Woods AJ, Pope CN, Vance DE, Ball KK. Effect of transcranial direct current stimulation combined with cognitive training on cognitive functioning in older adults with HIV: A pilot study. APPLIED NEUROPSYCHOLOGY-ADULT 2017; 26:36-47. [PMID: 29020472 DOI: 10.1080/23279095.2017.1357037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The objective of this study was to examine combination speed of processing (SOP) cognitive remediation therapy (CRT) and transcranial direct stimulation (tDCS) as neurorehabilitation in older HIV+ adults. Thirty-three HIV+ adults aged 50+ completed neurocognitive testing and were randomized to either active (n = 17) or sham (n = 16) tDCS. Both conditions received 10 1-hour sessions of SOP CRT, with either active or sham tDCS for the first 20 minutes. Participants then completed a posttest assessment. Repeated measures analysis of variance examining Time X Condition showed small-to-medium effects in the expected direction for an executive (d = 0.36), and SOP measure (d = 0.49), while medium-to-large effects were observed for an executive/attention (d = 0.60) and oral reading measure (d = 0.75). The only statistically significant interaction was the oral reading measure. Small-to-medium and medium-to-large effects (ds = 0.32, 0.58) were found for two SOP measures in the opposite direction (sham group showing greater improvements). Further trials of CRT and tDCS in this population are needed, including larger samples and a nonactive control and tDCS only condition, as is determination of which parameters of each technique (e.g., tDCS montage, timing of tDCS, domain targeted in CRT, number of sessions) are most effective in improving cognitive outcomes, durability of training gains, and translation to everyday functioning.
Collapse
Affiliation(s)
- Pariya L Fazeli
- a Center for Research on Applied Gerontology , University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Adam J Woods
- b Center for Cognitive Aging and Memory , McKnight Brain Institute, University of Florida , Gainesville , Florida , USA
| | - Caitlin N Pope
- a Center for Research on Applied Gerontology , University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - David E Vance
- a Center for Research on Applied Gerontology , University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Karlene K Ball
- a Center for Research on Applied Gerontology , University of Alabama at Birmingham , Birmingham , Alabama , USA
| |
Collapse
|
747
|
Lozano-Soto E, Soto-León V, Sabbarese S, Ruiz-Alvarez L, Sanchez-del-Rio M, Aguilar J, Strange BA, Foffani G, Oliviero A. Transcranial static magnetic field stimulation (tSMS) of the visual cortex decreases experimental photophobia. Cephalalgia 2017; 38:1493-1497. [DOI: 10.1177/0333102417736899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Transcranial static magnetic field stimulation (tSMS) reduces cortical excitability in humans. Methods The objective of this study was to determine whether tSMS over the occipital cortex is effective in reducing experimental photophobia. In a sham-controlled double-blind crossover study, tSMS (or sham) was applied for 10 minutes with a cylindrical magnet on the occiput of 20 healthy subjects. We assessed subjective discomfort induced by low-intensity and high-intensity visual stimuli presented in a dark room before, during and after tSMS (or sham). Results Compared to sham, tSMS significantly reduced the discomfort induced by high-intensity light stimuli. Conclusions The visual cortex may contribute to visual discomfort in experimental photophobia, providing a rationale for investigating tSMS as a possible treatment for photophobia in migraine.
Collapse
Affiliation(s)
- Elena Lozano-Soto
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Vanesa Soto-León
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Simona Sabbarese
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Lara Ruiz-Alvarez
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Neurology Service, Hospital del Henares. Coslada, Madrid, Spain
| | | | - Juan Aguilar
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, CTB, Universidad Politecnica de Madrid, Madrid, Spain
- Department of Neuroimaging, Alzheimer’s Disease Research Centre, Reina Sofia-CIEN Foundation, Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain
- Neural Bioengineering Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
748
|
Radel R, Tempest G, Denis G, Besson P, Zory R. Extending the limits of force endurance: Stimulation of the motor or the frontal cortex? Cortex 2017; 97:96-108. [PMID: 29101820 DOI: 10.1016/j.cortex.2017.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Previous findings indicate that facilitation of primary motor cortex (PMC) activity using trans-cranial direct current stimulation (tDCS) could improve resistance to physical fatigue. However, studies have failed to consistently replicate these results. Using non-focal-tDCS during a fatiguing task, recent work showed no enhancement of corticospinal excitability of the PMC despite a longer endurance time and suggested that contamination in other brain regions involved in motor command may have occurred. In accordance with recent evidence supporting the role of the prefrontal cortex (PFC) in exercise maintenance, this double-blind sham-controlled crossover study (N = 22) compared the effect of high definition (HD)-tDCS of the PMC or the PFC on endurance time of a sustained contraction task of the elbow flexor. Brain activity was monitored using near infrared spectroscopy (NIRS) to measure the neurovascular response elicited by HD-tDCS. Electromyography (EMG) and force obtained during maximal voluntary and evoked contractions were assessed before and after the contraction task to explore the effect of brain stimulation on peripheral and central fatigue. While the stimulation affected the brain response in the PFC during the contraction task, no effects of the stimulation were observed on endurance time or fatigue indices. These results are discussed in relation to the neurocognitive models of physical effort.
Collapse
Affiliation(s)
- Rémi Radel
- Université Cote D'Azur, LAMHESS, Nice, France.
| | | | | | - Pierre Besson
- EuroMov, University Montpellier, Montpellier, France
| | | |
Collapse
|
749
|
|
750
|
Liu CS, Rau A, Gallagher D, Rajji TK, Lanctôt KL, Herrmann N. Using transcranial direct current stimulation to treat symptoms in mild cognitive impairment and Alzheimer's disease. Neurodegener Dis Manag 2017; 7:317-329. [DOI: 10.2217/nmt-2017-0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has recently been investigated as a potential nonpharmacological treatment for individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD). A comprehensive literature search was performed on tDCS studies published until March 2017 using MEDLINE, Embase and PsychINFO databases. 12 articles with a total of 202 MCI or AD participants were included. Although ten of the 12 studies demonstrated positive findings with tDCS, two studies reported no effect on cognition. There was a wide range of methodological approaches used and in the cognitive functions measured. The variability in treatment response may be related to the heterogeneity in stimulation parameters including the site of stimulation, and cognitive assessments used. Patient-related factors including individual psychological, biological, and physiological status at the time of stimulation may also influence treatment response. We recommend that more comparative studies using similar patient factors and study parameters are needed in order to better understand the efficacy of tDCS in MCI and AD.
Collapse
Affiliation(s)
- Celina S Liu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Allison Rau
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry Division, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|