751
|
Nunes C, Primavesi LF, Patel MK, Martinez-Barajas E, Powers SJ, Sagar R, Fevereiro PS, Davis BG, Paul MJ. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:89-98. [PMID: 23257075 DOI: 10.1016/j.plaphy.2012.11.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/15/2012] [Indexed: 05/02/2023]
Abstract
SnRK1 of the SNF1/AMPK group of protein kinases is an important regulatory protein kinase in plants. SnRK1 was recently shown as a target of the sugar signal, trehalose 6-phosphate (T6P). Glucose 6-phosphate (G6P) can also inhibit SnRK1 and given the similarity in structure to T6P, we sought to establish if each could impart distinct inhibition of SnRK1. Other central metabolites, glucose 1-phosphate (G1P), fructose 6-phosphate and UDP-glucose were also tested, and additionally ribose 5-phosphate (R5P), recently reported to inhibit SnRK1 strongly in wheat grain tissue. For the metabolites that inhibited SnRK1, kinetic models show that T6P, G1P and G6P each provide distinct regulation (50% inhibition of SnRK1 at 5.4 μM, 480 μM, >1 mM, respectively). Strikingly, G1P in combination with T6P inhibited SnRK1 synergistically. R5P, in contrast to the other inhibitors, inhibited SnRK1 in green tissues only. We show that this is due to consumption of ATP in the assay mediated by phosphoribulokinase during conversion of R5P to ribulose-1,5-bisphosphate. The accompanying loss of ATP limits the activity of SnRK1 giving rise to an apparent inhibition of SnRK1. Inhibition of SnRK1 by R5P in wheat grain preparations can be explained by the presence of green pericarp tissue; this exposes an important caveat in the assessment of potential protein kinase inhibitors. Data provide further insight into the regulation of SnRK1 by metabolites.
Collapse
Affiliation(s)
- Cátia Nunes
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
752
|
Sonnewald U, Kossmann J. Starches--from current models to genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2013. [PMID: 23190212 DOI: 10.1111/pbi.12029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the world's second most abundant biopolymer, starch serves as food, feed and renewable resource for bioenergy production and other industrial applications. Unlike storage lipids, starch is stored in the form of semi-crystalline granules, which are tissue- and species-specific in number, shape and size. Over the last decades, most biosynthetic and degradative enzymes of starch metabolism have been identified in the model species Arabidopsis thaliana. Based on this, biotechnological applications have arisen that led to a number of transgenic crop plants with elevated starch content or improved starch quality. Irrespective of this great success, there are still numerous open questions including the regulation of starch metabolism, the initiation of granule formation, the regulation of granule shape and size and many more, which will be tackled over the next decades. Here, we briefly summarize current knowledge concerning starch metabolism and its regulation and biotechnological use.
Collapse
Affiliation(s)
- Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
753
|
Thomas H. Senescence, ageing and death of the whole plant. THE NEW PHYTOLOGIST 2013; 197:696-711. [PMID: 23176101 DOI: 10.1111/nph.12047] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/15/2012] [Indexed: 05/18/2023]
Abstract
UNLABELLED 696 I. 697 II. 697 III. 699 IV. 700 V. 703 VI. 704 VII. 707 708 References 708 SUMMARY This review considers the relationship between the lifespan of an individual plant and the longevity of its component cells, tissues and organs. It begins by defining the terms senescence, growth, development, turnover, ageing, death and program. Genetic and epigenetic mechanisms regulating phase change from juvenility to maturity influence directly the capacity for responding to senescence signals and factors determining reproduction-related patterns of deteriorative ageing and death. Senescence is responsive to communication between sources and sinks in which sugar signalling and hormonal regulation play central roles. Monocarpy and polycarpy represent contrasting outcomes of the balance between the determinacy of apical meristems and source-sink cross-talk. Even extremely long-lived perennials sustain a high degree of meristem integrity. Factors associated with deteriorative ageing in animals, such as somatic mutation, telomere attrition and the costs of repair and maintenance, do not seem to be particularly significant for plant lifespan, but autophagy-related regulatory networks integrated with nutrient signalling may have a part to play. Size is an important influence on physiological function and fitness of old trees. Self-control of modular structure allows trees to sustain viability over prolonged lifespans. Different turnover patterns of structural modules can account for the range of plant life histories and longevities.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Aberystwyth University, Edward Llwyd Building, Aberystwyth, Ceredigion, SY23 3DA, UK
| |
Collapse
|
754
|
Rodríguez M, Muñoz N, Lenardon S, Lascano R. Redox-related metabolites and gene expression modulated by sugar in sunflower leaves: similarities with Sunflower chlorotic mottle virus-induced symptom. Redox Rep 2013; 18:27-35. [PMID: 23321504 DOI: 10.1179/1351000212y.0000000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Sugars are part of an integrated redox system, since they are key regulators of respiration and photosynthesis, and therefore of the levels of reducing power, ATP and ROS. These elements are major determinants of the cellular redox state, which is involved in the perception and regulation of many endogenous and environmental stimuli. Our previous findings suggested that early sugar increase produced during compatible Sunflower chlorotic mottle virus (SuCMoV) infection might modulate chlorotic symptom development through redox state alteration in sunflower. The purpose of this work was to characterize redox-related metabolites and gene expression changes associated with high sugar availability and symptom development induced by SuCMoV. The results show that sugar caused an increase in glutathione, ascorbate, pyridine nucleotides, and ATP. In addition, higher sugar availability reduced hydrogen peroxide and ΦPSII. This finding suggests that high sugar availability would be associated with cellular redox alteration and photoinhibitory process. The expression of the genes analyzed was also strongly affected by sugar, such as the down-regulation of psbA and up-regulation of psbO and cp29. The expression level of cytoplasmic (apx-1 and gr)- and chloroplastic (Fe-sod)-targeted genes was also significantly enhanced in sugar-treated leaves. Therefore, all these responses suggest that sugars induce chloroplastic redox state alteration with photoinhibition process that could be contributing to chlorotic symptom development during SuCMoV infection.
Collapse
Affiliation(s)
- Marianela Rodríguez
- IFRGV, CIAP, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras Km 5½, X5020 ICA, Córdoba, Argentina.
| | | | | | | |
Collapse
|
755
|
Gillaspy GE. The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:141-57. [DOI: 10.1007/978-94-007-6331-9_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
756
|
Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-González E. miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:197. [PMID: 23802004 PMCID: PMC3687772 DOI: 10.3389/fpls.2013.00197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/27/2013] [Indexed: 05/17/2023]
Abstract
The SnRK1 protein kinase, the plant ortholog of mammalian AMPK and yeast Snf1, is activated by the energy depletion caused by adverse environmental conditions. Upon activation, SnRK1 triggers extensive transcriptional changes to restore homeostasis and promote stress tolerance and survival partly through the inhibition of anabolism and the activation of catabolism. Despite the identification of a few bZIP transcription factors as downstream effectors, the mechanisms underlying gene regulation, and in particular gene repression by SnRK1, remain mostly unknown. microRNAs (miRNAs) are 20-24 nt RNAs that regulate gene expression post-transcriptionally by driving the cleavage and/or translation attenuation of complementary mRNA targets. In addition to their role in plant development, mounting evidence implicates miRNAs in the response to environmental stress. Given the involvement of miRNAs in stress responses and the fact that some of the SnRK1-regulated genes are miRNA targets, we postulated that miRNAs drive part of the transcriptional reprogramming triggered by SnRK1. By comparing the transcriptional response to energy deprivation between WT and dcl1-9, a mutant deficient in miRNA biogenesis, we identified 831 starvation genes misregulated in the dcl1-9 mutant, out of which 155 are validated or predicted miRNA targets. Functional clustering analysis revealed that the main cellular processes potentially co-regulated by SnRK1 and miRNAs are translation and organelle function and uncover TCP transcription factors as one of the most highly enriched functional clusters. TCP repression during energy deprivation was impaired in miR319 knockdown (MIM319) plants, demonstrating the involvement of miR319 in the stress-dependent regulation of TCPs. Altogether, our data indicates that miRNAs are components of the SnRK1 signaling cascade contributing to the regulation of specific mRNA targets and possibly tuning down particular cellular processes during the stress response.
Collapse
Affiliation(s)
- Ana Confraria
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Cláudia Martinho
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Alexandre Elias
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
757
|
Response of Mature, Developing and Senescing Chloroplasts to Environmental Stress. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
758
|
Wingler A, Paul M. The Role of Trehalose Metabolism in Chloroplast Development and Leaf Senescence. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
759
|
Biotechnological approaches to study plant responses to stress. BIOMED RESEARCH INTERNATIONAL 2012; 2013:654120. [PMID: 23509757 PMCID: PMC3591138 DOI: 10.1155/2013/654120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/30/2012] [Indexed: 12/01/2022]
Abstract
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.
Collapse
|
760
|
Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci 2012; 367:2619-39. [PMID: 22889912 DOI: 10.1098/rstb.2012.0003] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.
Collapse
Affiliation(s)
- Melissa D Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
761
|
Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, Narsai R, Carrie C, Walker H, Day DA, Blanco NE, Strand Å, Whelan J, Ivanova A. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J Biol Chem 2012; 288:3449-59. [PMID: 23229550 DOI: 10.1074/jbc.m112.416727] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants must deal effectively with unfavorable growth conditions that necessitate a coordinated response to integrate cellular signals with mitochondrial retrograde signals. A genetic screen was carried out to identify regulators of alternative oxidase (rao mutants), using AOX1a expression as a model system to study retrograde signaling in plants. Two independent rao1 mutant alleles identified CDKE1 as a central nuclear component integrating mitochondrial retrograde signals with energy signals under stress. CDKE1 is also necessary for responses to general cellular stresses, such as H(2)O(2) and cold that act, at least in part, via anterograde pathways, and integrates signals from central energy/stress sensing kinase signal transduction pathways within the nucleus. Together, these results place CDKE1 as a central kinase integrating diverse cellular signals and shed light on a mechanism by which plants can effectively switch between growth and stress responses.
Collapse
Affiliation(s)
- Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
762
|
Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: effective flooding survival strategies. PLANT PHYSIOLOGY 2012; 160:1698-709. [PMID: 23093359 PMCID: PMC3510103 DOI: 10.1104/pp.112.208173] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 05/17/2023]
Affiliation(s)
- Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Science, University of California, Riverside, California 92521-0124, USA.
| | | | | |
Collapse
|
763
|
Gaupels F, Sarioglu H, Beckmann M, Hause B, Spannagl M, Draper J, Lindermayr C, Durner J. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling. PLANT PHYSIOLOGY 2012; 160:2285-99. [PMID: 23085839 PMCID: PMC3510148 DOI: 10.1104/pp.112.205336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/18/2012] [Indexed: 05/22/2023]
Abstract
In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
764
|
Das PK, Shin DH, Choi SB, Park YI. Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 2012; 34:501-7. [PMID: 22936387 PMCID: PMC3887831 DOI: 10.1007/s10059-012-0151-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/17/2022] Open
Abstract
Anthocyanins, a class of flavonoids, are recognized for their diverse functions in plant development and beneficial effects on human health. Many of the genes encoding anthocyanin biosynthesis enzymes and the transcription factors that activate or repress them have been identified. Regulatory proteins that control anthocyanin biosynthesis by regulating the expression of different structural genes at the transcriptional and post-transcriptional levels are differentially modulated by environmental and biological factors such as light, temperature, sugar and hormones. This minireview summarizes the recent findings contributing to our understanding of the role of sugars and hormones in the modulation of the anthocyanin biosynthesis pathway with emphasis on the coordinated regulation of the critical transcriptional R2R3-MYB/bHLH/WD40 (MBW) complex in Arabidopsis.
Collapse
Affiliation(s)
- Prasanta Kumar Das
- Department of Biological Sciences, College of Biological Science and Technology, Chungnam National University, Daejeon 305-764,
Korea
| | - Dong Ho Shin
- Department of Biological Sciences, College of Biological Science and Technology, Chungnam National University, Daejeon 305-764,
Korea
| | | | - Youn-Il Park
- Department of Biological Sciences, College of Biological Science and Technology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
765
|
Soitamo AJ, Jada B, Lehto K. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC PLANT BIOLOGY 2012; 12:204. [PMID: 23130567 PMCID: PMC3519546 DOI: 10.1186/1471-2229-12-204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/24/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS) proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum) leaves and in flowers. RESULTS Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. CONCLUSIONS AC2 RSS in transgenic tobacco plants interferes with the silencing machinery. It causes stress and defence reactions for instance via induction of the jasmonate and ethylene biosynthesis, and by consequent gene expression alteration regulated by these hormones. The changed sugar metabolism may cause significant down-regulation of genes encoding ribosomal proteins, thus reducing the general translation level.
Collapse
Affiliation(s)
- Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Vesilinnantie 5, LTII, 2.floor, Turku, 20014, Finland
| | - Balaji Jada
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Vesilinnantie 5, LTII, 2.floor, Turku, 20014, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Vesilinnantie 5, LTII, 2.floor, Turku, 20014, Finland
| |
Collapse
|
766
|
|
767
|
Sukrong S, Yun KY, Stadler P, Kumar C, Facciuolo T, Moffatt BA, Falcone DL. Improved growth and stress tolerance in the Arabidopsis oxt1 mutant triggered by altered adenine metabolism. MOLECULAR PLANT 2012; 5:1310-32. [PMID: 22859732 DOI: 10.1093/mp/sss065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses. A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1, a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions. Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1), an enzyme that converts adenine to adenosine monophosphate (AMP), indicating a link between purine metabolism, whole-plant growth responses, and stress acclimation. The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity. Correspondingly, oxt1 plants possess elevated levels of adenine. Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1. The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge. Finally, it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants. Collectively, these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth, leading to increases in plant biomass. The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.
Collapse
Affiliation(s)
- Suchada Sukrong
- Department of Plant and Soil Science, University of Kentucky Lexington, KY 40546, USA
| | | | | | | | | | | | | |
Collapse
|
768
|
Trivellini A, Jibran R, Watson LM, O’Donoghue EM, Ferrante A, Sullivan KL, Dijkwel PP, Hunter DA. Carbon deprivation-driven transcriptome reprogramming in detached developmentally arresting Arabidopsis inflorescences. PLANT PHYSIOLOGY 2012; 160:1357-72. [PMID: 22930749 PMCID: PMC3490613 DOI: 10.1104/pp.112.203083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/24/2012] [Indexed: 05/22/2023]
Abstract
Senescence is genetically controlled and activated in mature tissues during aging. However, immature plant tissues also display senescence-like symptoms when continuously exposed to adverse energy-depleting conditions. We used detached dark-held immature inflorescences of Arabidopsis (Arabidopsis thaliana) to understand the metabolic reprogramming occurring in immature tissues transitioning from rapid growth to precocious senescence. Macroscopic growth of the detached inflorescences rapidly ceased upon placement in water in the dark at 21°C. Inflorescences were completely degreened by 120 h of dark incubation and by 24 h had already lost 24% of their chlorophyll and 34% of their protein content. Comparative transcriptome profiling at 24 h revealed that inflorescence response at 24 h had a large carbon-deprivation component. Genes that positively regulate developmental senescence (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN92) and shade-avoidance syndrome (PHYTOCHROME INTERACTING FACTOR4 [PIF4] and PIF5) were up-regulated within 24 h. Mutations in these genes delayed degreening of the inflorescences. Their up-regulation was suppressed in dark-held inflorescences by glucose treatment, which promoted macroscopic growth and development and inhibited degreening of the inflorescences. Detached inflorescences held in the dark for 4 d were still able to reinitiate development to produce siliques upon being brought out to the light, indicating that the transcriptional reprogramming at 24 h was adaptive and reversible. Our results suggest that the response of detached immature tissues to dark storage involves interactions between carbohydrate status sensing and light deprivation signaling and that the dark-adaptive response of the tissues appears to utilize some of the same key regulators as developmental senescence.
Collapse
Affiliation(s)
- Alice Trivellini
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Rubina Jibran
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Lyn M. Watson
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Erin M. O’Donoghue
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Antonio Ferrante
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Kerry L. Sullivan
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Paul P. Dijkwel
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Donald A. Hunter
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| |
Collapse
|
769
|
Yim HK, Lim MN, Lee SE, Lim J, Lee Y, Hwang YS. Hexokinase-mediated sugar signaling controls expression of the calcineurin B-like interacting protein kinase 15 gene and is perturbed by oxidative phosphorylation inhibition. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1551-8. [PMID: 22796010 DOI: 10.1016/j.jplph.2012.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 05/08/2023]
Abstract
Calcineurin B-like (CBL) interacting protein kinase 15 (CIPK15) is a newly identified positive regulator which is critical to directing the O(2) deficiency signal to the sugar signaling cascade as part of Amy3D (representative Amy3 gene) regulation in rice. It is located upstream and probably contributes to reserve mobilization under anoxia. In isolated starving embryos, the temporal pattern of accumulation of CIPK15 transcripts and leaky suppression of this gene suggests that factors other than CIPK15 may also be involved in the regulation of Amy3D expression. Probing of a variety of sugars and sugar analogs has shown that hexokinase mediates the sugar regulation of CIPK15. For example, hexokinase substrates, such as mannose, 2-deoxyglucose, and other metabolizable sugars, repressed CIPK15 expression, whereas 3-O-methylglucose and 6-deoxyglucose did not. By using glucosamine, a hexokinase inhibitor, to release glucose-dependent CIPK15 suppression, we confirmed that hexokinase mediates regulation of this gene. Chemical inhibitors of mitochondrial electron transfer, proton separation or ATP synthase also effectively abolished sugar-induced repression of CIPK15. This type of interference, the release from glucose-induced repression of gene expression by inhibition of oxidative phosphorylation, was previously identified for the Amy3D gene, which suggests that hexokinase-mediated sugar signaling may be coordinated with the cellular energy status. Analysis of a transgenic rice cell line harboring the GUS reporter gene under the control of the CIPK15 promoter, and transient expression assay for 3' UTR of the CIPK15 gene indicate that sugar regulation of the rice CIPK15 gene is likely mediated by 2548-bp 5'-flanking region, with no additional post-transcriptional control.
Collapse
Affiliation(s)
- Hui-Kyeong Yim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
770
|
Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 2012; 48:521-31. [PMID: 23063528 DOI: 10.1016/j.molcel.2012.08.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/19/2012] [Accepted: 08/27/2012] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a class of regulators of gene expression through posttranscriptional degradation or translational repression in living cells. Increasing evidence points to the important relationship between miRNAs and environmental stress responses, but the regulatory mechanisms in plants are poorly understood. Here, we found that Arabidopsis thaliana intronic miR400 was cotranscribed with its host gene (At1g32583) and downregulated by heat treatment. Intriguingly, an alternative splicing (AS) event that occurred in the intron (306 bp) where MIR400 was located was specifically induced by heat stress. A 100 bp fragment was excised, and the remaining 206 bp intron containing MIR400 transcripts was retained in the host gene. The stress-induced AS event thus resulted in greater accumulation of miR400 primary transcripts and a low level of mature miR400. Together, these results provide the direct evidence that AS acts as a regulatory mechanism linking miRNAs and environmental stress in plants.
Collapse
Affiliation(s)
- Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
771
|
Tsai AYL, Gazzarrini S. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination. PLANT SIGNALING & BEHAVIOR 2012; 7:1238-42. [PMID: 22902692 PMCID: PMC3493403 DOI: 10.4161/psb.21549] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.
Collapse
|
772
|
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. PLANT PHYSIOLOGY 2012; 160:846-67. [PMID: 22837360 PMCID: PMC3461560 DOI: 10.1104/pp.112.200444] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/19/2012] [Indexed: 05/18/2023]
Abstract
Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.
Collapse
Affiliation(s)
| | | | - Curtis Klumas
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | | | | | - Elijah Myers
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Ruth Grene
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Andy Pereira
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| |
Collapse
|
773
|
Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, Lammens W, Rolland F, Lunn JE, Avonce N, Beeckman T, Van Dijck P. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:884-96. [PMID: 22855938 PMCID: PMC3461562 DOI: 10.1104/pp.112.201400] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/30/2012] [Indexed: 05/18/2023]
Abstract
Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-β-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.
Collapse
Affiliation(s)
| | | | - Kevin Vanneste
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Regina Feil
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Steven Maere
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Willem Lammens
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Filip Rolland
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - John E. Lunn
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Nelson Avonce
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Tom Beeckman
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| | - Patrick Van Dijck
- Department of Molecular Microbiology, VIB, Leuven, Belgium (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Cell Biology (L.V., L.L.-G., N.A., P.V.D.), Laboratory of Molecular Plant Physiology (W.L.), and Laboratory of Molecular Plant Biology-Plant Metabolic Signaling (F.R.), Institute of Botany and Microbiology, KU Leuven, B–3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium (L.L.-G., K.V., S.M., T.B.); Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany (R.F., J.E.L.)
| |
Collapse
|
774
|
Kusakina J, Dodd AN. Phosphorylation in the plant circadian system. TRENDS IN PLANT SCIENCE 2012; 17:575-83. [PMID: 22784827 DOI: 10.1016/j.tplants.2012.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 05/17/2023]
Abstract
Circadian regulation is essential for optimum plant performance. In addition to loops and cascades of transcription and translation, the plant circadian clock and its associated signal transduction networks incorporate many post-translational mechanisms. Phosphorylation is a common feature of signal transduction and gene regulation. In this opinion article, we illustrate how phosphorylation events are positioned within the entrainment, functioning, and regulation of the circadian timing system. Phosphorylation regulates protein stability, protein-protein interactions and protein-DNA interactions within the core oscillator. We suggest that phosphorylation provides a potential mechanism for the distribution of circadian timing information within the cell and for the integration of circadian timing information with other signaling pathways.
Collapse
Affiliation(s)
- Jelena Kusakina
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
775
|
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
776
|
Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:74. [PMID: 23006831 PMCID: PMC3549901 DOI: 10.1186/1754-6834-5-74] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/13/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG) biofuel precursor. RESULTS After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases-presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. CONCLUSIONS Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and provides a variety of genetic engineering targets and strategies for focused efforts to improve the production rate and cellular content of biofuel precursors in oleaginous microalgae.
Collapse
Affiliation(s)
- Hamid Rismani-Yazdi
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Ave, New Haven, CT 06520, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Berat Z Haznedaroglu
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Ave, New Haven, CT 06520, USA
| | - Carol Hsin
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Ave, New Haven, CT 06520, USA
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Ave, New Haven, CT 06520, USA
| |
Collapse
|
777
|
Zhu D, Cai H, Luo X, Bai X, Deyholos MK, Chen Q, Chen C, Ji W, Zhu Y. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochem Biophys Res Commun 2012; 426:273-9. [PMID: 22943855 DOI: 10.1016/j.bbrc.2012.08.086] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 08/18/2012] [Indexed: 11/18/2022]
Abstract
Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.
Collapse
Affiliation(s)
- Dan Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
778
|
Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS One 2012; 7:e44908. [PMID: 23028673 PMCID: PMC3441479 DOI: 10.1371/journal.pone.0044908] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/09/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. METHODOLOGY/PRINCIPAL FINDINGS We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. CONCLUSIONS/SIGNIFICANCE This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.
Collapse
Affiliation(s)
- Jianjun Guo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | | | | | | | | | | |
Collapse
|
779
|
Zhu W, Miao Q, Sun D, Yang G, Wu C, Huang J, Zheng C. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One 2012; 7:e43530. [PMID: 22937061 PMCID: PMC3427375 DOI: 10.1371/journal.pone.0043530] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial phosphate transporter (MPT) plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Qing Miao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| |
Collapse
|
780
|
Wang X, Peng F, Li M, Yang L, Li G. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1173-82. [PMID: 22727046 DOI: 10.1016/j.jplph.2012.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 05/23/2023]
Abstract
SnRK1 (sucrose non-fermenting-1-related protein kinase 1) plays an important role in plant carbon metabolism and development. To understand the mechanism of carbon and nitrogen metabolism regulated by MhSnRK1 from pingyitiancha (Malus hupehensis Rehd. var. pinyiensis Jiang), two transgenic lines (T2-7 and T2-9) over expressing this gene in tomato were studied. SnRK1 activity in the leaves of 2 transgenic lines was increased by 15-16% compared with that in the wild-type. The leaf photosynthetic rate in transgenic tomatoes was higher than the wild-type. The activity of sucrose synthase breakdown and ADP-glucose pyrophosphorylase was also increased, by approximately 25-36% and 44-48%, respectively, whereas sucrose synthase synthesis and sucrose phosphate synthase activities were unchanged. The content of starch in the leaves and red-ripening fruits was higher than that of the wild-type. The transgenic fruit ripened ∼10 days earlier than the wild-type. The nitrate reductase activity (mgplant⁻¹ h⁻¹) shows no significant difference between the transgenic plant and the wild-type, but the N-uptake efficiency and root/shoot ratio in the T2-9 line were 15% and 35% higher than that in the wild-type, respectively. These results suggest that over expressing MhSnRK1 can increase both the carbon and nitrogen assimilation rate of the plant as well as regulate the development of fruit.
Collapse
Affiliation(s)
- Xinliang Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | |
Collapse
|
781
|
Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC PLANT BIOLOGY 2012; 12:125. [PMID: 22852874 PMCID: PMC3438128 DOI: 10.1186/1471-2229-12-125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 07/11/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND In higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs) that bind Auxin Response Elements (AuxREs), also members of the bZIP- and MYB-transcription factor (TF) families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs) or Myb Response Elements (MREs), respectively. RESULTS Applying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana) and monocot (Oryza sativa) model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE) and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription. CONCLUSIONS Using genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.
Collapse
Affiliation(s)
- Kenneth W Berendzen
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Dierk Wanke
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Joachim Kilian
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| |
Collapse
|
782
|
Shen Q, Bao M, Zhou X. A plant kinase plays roles in defense response against geminivirus by phosphorylation of a viral pathogenesis protein. PLANT SIGNALING & BEHAVIOR 2012; 7:888-92. [PMID: 22751295 PMCID: PMC3583982 DOI: 10.4161/psb.20646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The plant SNF1-related kinase (SnRK1) is the α-subunit of the SnRK1 heterotrimeric compleses. Although SnRK1 is widely known as a key regulator of plant response to various physiological processes including nutrient- and energy-sensing, regulation of global metabolism, and control of cell cycle, development, as well as abiotics stress, less is known about the function of SnRK1 during pathogen infection. Our previous work has demonstrated that a tomato SNF1-related kinase (SlSnRK1) can interact with and phosphorylate βC1, a pathogenesis protein encoded by tomato yellow leaf curl China betasatellite. Our results also showed that the plant SnRK1 can affect genimivirus infection in plant and reduce viral DNA accumulation. Phosphorylation of βC1 protein negatively impacts its function as a pathogenicity determinant. Here we provide more information on interaction between βC1 and SlSnRK1 and propose a mechanistic model for the SlSnRK1-mediated defense responses against geminiviruses and the potential role of SnRK1 in plant resistance to geminivirus.
Collapse
|
783
|
Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1159-75. [PMID: 22570470 PMCID: PMC3387702 DOI: 10.1104/pp.112.198150] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 05/18/2023]
Abstract
In the interaction between Arabidopsis (Arabidopsis thaliana) and the generalist herbivorous insect Spodoptera littoralis, little is known about early events in defense signaling and their link to downstream phytohormone pathways. S. littoralis oral secretions induced both Ca²⁺ and phytohormone elevation in Arabidopsis. Plant gene expression induced by oral secretions revealed up-regulation of a gene encoding a calmodulin-like protein, CML42. Functional analysis of cml42 plants revealed more resistance to herbivory than in the wild type, because caterpillars gain less weight on the mutant, indicating that CML42 negatively regulates plant defense; cml42 also showed increased aliphatic glucosinolate content and hyperactivated transcript accumulation of the jasmonic acid (JA)-responsive genes VSP2 and Thi2.1 upon herbivory, which might contribute to increased resistance. CML42 up-regulation is negatively regulated by the jasmonate receptor Coronatine Insensitive1 (COI1), as loss of functional COI1 resulted in prolonged CML42 activation. CML42 thus acts as a negative regulator of plant defense by decreasing COI1-mediated JA sensitivity and the expression of JA-responsive genes and is independent of herbivory-induced JA biosynthesis. JA-induced Ca²⁺ elevation and root growth inhibition were more sensitive in cml42, also indicating higher JA perception. Our results indicate that CML42 acts as a crucial signaling component connecting Ca²⁺ and JA signaling. CML42 is localized to cytosol and nucleus. CML42 is also involved in abiotic stress responses, as kaempferol glycosides were down-regulated in cml42, and impaired in ultraviolet B resistance. Under drought stress, the level of abscisic acid accumulation was higher in cml42 plants. Thus, CML42 might serve as a Ca²⁺ sensor having multiple functions in insect herbivory defense and abiotic stress responses.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Michael Reichelt
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Bettina Hause
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Jonathan Gershenzon
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Wilhelm Boland
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | | |
Collapse
|
784
|
Robaglia C, Thomas M, Meyer C. Sensing nutrient and energy status by SnRK1 and TOR kinases. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:301-7. [PMID: 22305521 DOI: 10.1016/j.pbi.2012.01.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 05/18/2023]
Abstract
The perception of nutrient and energy levels inside and outside the cell is crucial to adjust growth and metabolism to available resources. The signaling pathways centered on the conserved TOR and SnRK1/Snf1/AMPK kinases have crucial and numerous roles in nutrient and energy sensing and in translating this information into metabolic and developmental adaptations. In plants evidence is mounting that, like in other eukaryotes, these signaling pathways have pivotal and antagonistic roles in connecting external or intracellular cues to many biological processes, including ribosome biogenesis, regulation of translation, cell division, accumulation of reserves and autophagy. Data on the plant TOR pathway have been hitherto rather scarce but recent findings have shed new light on its roles in plants. Moreover, the distinctive energy metabolism of photosynthetic organisms may reveal new features of these ancestral eukaryotic signaling elements.
Collapse
Affiliation(s)
- Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CEA/CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, Marseille, France
| | | | | |
Collapse
|
785
|
Guiboileau A, Masclaux-Daubresse C. L’autophagie chez les plantes : mécanismes, régulations et fonctions. C R Biol 2012; 335:375-88. [DOI: 10.1016/j.crvi.2012.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 12/20/2022]
|
786
|
Rabot A, Henry C, Ben Baaziz K, Mortreau E, Azri W, Lothier J, Hamama L, Boummaza R, Leduc N, Pelleschi-Travier S, Le Gourrierec J, Sakr S. Insight into the role of sugars in bud burst under light in the rose. PLANT & CELL PHYSIOLOGY 2012; 53:1068-82. [PMID: 22505690 DOI: 10.1093/pcp/pcs051] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bud burst is a decisive process in plant architecture that requires light in Rosa sp. This light effect was correlated with stimulation of sugar transport and metabolism in favor of bud outgrowth. We investigated whether sugars could act as signaling entities in the light-mediated regulation of vacuolar invertases and bud burst. Full-length cDNAs encoding two vacuolar invertases (RhVI1 and RhVI2) were isolated from buds. Unlike RhVI2, RhVI1 was preferentially expressed in bursting buds, and was up-regulated in buds of beheaded plants exposed to light. To assess the importance of sugars in this process, the expression of RhVI1 and RhVI2 and the total vacuolar invertase activity were further characterized in buds cultured in vitro on 100 mM sucrose or mannitol under light or in darkness for 48 h. Unlike mannitol, sucrose promoted the stimulatory effect of light on both RhVI1 expression and vacuolar invertase activity. This up-regulation of RhVI1 was rapid (after 6 h incubation) and was induced by as little as 10 mM sucrose or fructose. No effect of glucose was found. Interestingly, both 30 mM palatinose (a non-metabolizable sucrose analog) and 5 mM psicose (a non-metabolizable fructose analog) promoted the light-induced expression of RhVI1 and total vacuolar invertase activity. Sucrose, fructose, palatinose and psicose all promoted bursting of in vitro cultured buds under light. These findings indicate that soluble sugars contribute to the light effect on bud burst and vacuolar invertases, and can function as signaling entities.
Collapse
Affiliation(s)
- Amelie Rabot
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
787
|
Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML, Britton M, Buffalo V, Fass J, Leicht E, Zhao W, Lin D, D'Souza R, Davis CE, Bowman KD, Dandekar AM. Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS One 2012; 7:e38039. [PMID: 22675433 PMCID: PMC3364978 DOI: 10.1371/journal.pone.0038039] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production.
Collapse
Affiliation(s)
- Federico Martinelli
- Plant Sciences Department, University of California Davis, Davis, California, United States of America
- Dipartimento di Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
| | - Sandra L. Uratsu
- Plant Sciences Department, University of California Davis, Davis, California, United States of America
| | - Ute Albrecht
- U.S. Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Russell L. Reagan
- Plant Sciences Department, University of California Davis, Davis, California, United States of America
| | - My L. Phu
- Plant Sciences Department, University of California Davis, Davis, California, United States of America
| | - Monica Britton
- Bioinformatics Core, Genome Center, University of California Davis, Davis, California, United States of America
| | - Vincent Buffalo
- Bioinformatics Core, Genome Center, University of California Davis, Davis, California, United States of America
| | - Joseph Fass
- Bioinformatics Core, Genome Center, University of California Davis, Davis, California, United States of America
| | - Elizabeth Leicht
- Mechanical and Aerospace Engineering Department, University of California Davis, Davis, California, United States of America
- Center for Computational Science and Engineering, University of California Davis, Davis, California, United States of America
| | - Weixiang Zhao
- Mechanical and Aerospace Engineering Department, University of California Davis, Davis, California, United States of America
| | - Dawei Lin
- Bioinformatics Core, Genome Center, University of California Davis, Davis, California, United States of America
| | - Raissa D'Souza
- Mechanical and Aerospace Engineering Department, University of California Davis, Davis, California, United States of America
- Center for Computational Science and Engineering, University of California Davis, Davis, California, United States of America
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering Department, University of California Davis, Davis, California, United States of America
| | - Kim D. Bowman
- U.S. Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
788
|
Schulz P, Neukermans J, Van Der Kelen K, Mühlenbock P, Van Breusegem F, Noctor G, Teige M, Metzlaff M, Hannah MA. Chemical PARP inhibition enhances growth of Arabidopsis and reduces anthocyanin accumulation and the activation of stress protective mechanisms. PLoS One 2012; 7:e37287. [PMID: 22662141 PMCID: PMC3360695 DOI: 10.1371/journal.pone.0037287] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/17/2012] [Indexed: 12/29/2022] Open
Abstract
Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity.
Collapse
Affiliation(s)
- Philipp Schulz
- Bayer CropScience NV, Gent, Belgium
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Vienna, Austria
| | - Jenny Neukermans
- Institut de Biologie des Plantes, Université de Paris Sud XI, Orsay, France
| | - Katrien Van Der Kelen
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Per Mühlenbock
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Graham Noctor
- Institut de Biologie des Plantes, Université de Paris Sud XI, Orsay, France
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
789
|
The AMPK β2 subunit is required for energy homeostasis during metabolic stress. Mol Cell Biol 2012; 32:2837-48. [PMID: 22586267 DOI: 10.1128/mcb.05853-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.
Collapse
|
790
|
Wormit A, Butt M, Chairam I, McKenna J, Nunes-Nesi A, Kjaer L, O’Donnelly K, Fernie A, Woscholski R, Barter L, Hamann T. Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. PLANT PHYSIOLOGY 2012; 159:105-17. [PMID: 22422940 PMCID: PMC3375954 DOI: 10.1104/pp.112.195198] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cellulose is the most abundant biopolymer in the world, the main load-bearing element in plant cell walls, and represents a major sink for carbon fixed during photosynthesis. Previous work has shown that photosynthetic activity is partially regulated by carbohydrate sinks. However, the coordination of cellulose biosynthesis with carbohydrate metabolism and photosynthesis is not well understood. Here, we demonstrate that cellulose biosynthesis inhibition (CBI) leads to reductions in transcript levels of genes involved in photosynthesis, the Calvin cycle, and starch degradation in Arabidopsis (Arabidopsis thaliana) seedlings. In parallel, we show that CBI induces changes in carbohydrate distribution and influences Rubisco activase levels. We find that the effects of CBI on gene expression and carbohydrate metabolism can be neutralized by osmotic support in a concentration-dependent manner. However, osmotic support does not suppress CBI-induced metabolic changes in seedlings impaired in mechanoperception (mid1 complementing activity1 [mca1]) and osmoperception (cytokinin receptor1 [cre1]) or reactive oxygen species production (respiratory burst oxidase homolog DF [rbohDF]). These results show that carbohydrate metabolism is responsive to changes in cellulose biosynthesis activity and turgor pressure. The data suggest that MCA1, CRE1, and RBOHDF-derived reactive oxygen species are involved in the regulation of osmosensitive metabolic changes. The evidence presented here supports the notion that cellulose and carbohydrate metabolism may be coordinated via an osmosensitive mechanism.
Collapse
|
791
|
Sun X, Li Y, Cai H, Bai X, Ji W, Ding X, Zhu Y. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. JOURNAL OF PLANT RESEARCH 2012; 125:429-38. [PMID: 21938515 DOI: 10.1007/s10265-011-0448-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/04/2011] [Indexed: 05/26/2023]
Abstract
According to the AtGenExpress transcriptome data sets, AtbZIP1 is an Arabidopsis gene induced by several abiotic stresses, such as salt, cold and drought. Here, we isolated AtbZIP1, and used semi-quantitative reverse transcription-PCR to verify that AtbZIP1 expression was indeed significantly induced by salt, osmotic, and cold stresses in Arabidopsis. AtbZIP1 knockout mutants showed a reduced tolerance to salt and osmotic stresses, coinciding with a suppression of the expression of several stress-responsive genes, such as COR15A, RD17 and RD29A. Consistently, the restoration of AtbZIP1 in the knockout lines restored the plants ability to tolerate salt and osmotic stresses. Furthermore, overexpressing AtbZIP1 in the wild type Arabidopsis resulted in an enhanced tolerance to salt and drought stresses. Sequence analysis shows that AtbZIP1 belongs to the S subfamily of basic leucine zipper transcription factors (TFs). The transient expression of green fluorescent protein-AtbZIP1 in tobacco leaf cells showed that AtbZIP1 localizes in nuclei. A transactivation assay further suggested that AtbZIP1 functions as a transcriptional activator in yeast and the two protein motifs (aa 13-38 and 92-118) are indispensable for transactivation activity. These results indicate that the TF AtbZIP1 is a positive regulator of plant tolerance to salt, osmotic, and drought stresses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | |
Collapse
|
792
|
Halford NG, Curtis TY, Muttucumaru N, Postles J, Elmore JS, Mottram DS. The acrylamide problem: a plant and agronomic science issue. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2841-51. [PMID: 22345642 DOI: 10.1093/jxb/ers011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acrylamide, a chemical that is probably carcinogenic in humans and has neurological and reproductive effects, forms from free asparagine and reducing sugars during high-temperature cooking and processing of common foods. Potato and cereal products are major contributors to dietary exposure to acrylamide and while the food industry reacted rapidly to the discovery of acrylamide in some of the most popular foods, the issue remains a difficult one for many sectors. Efforts to reduce acrylamide formation would be greatly facilitated by the development of crop varieties with lower concentrations of free asparagine and/or reducing sugars, and of best agronomic practice to ensure that concentrations are kept as low as possible. This review describes how acrylamide is formed, the factors affecting free asparagine and sugar concentrations in crop plants, and the sometimes complex relationship between precursor concentration and acrylamide-forming potential. It covers some of the strategies being used to reduce free asparagine and sugar concentrations through genetic modification and other genetic techniques, such as the identification of quantitative trait loci. The link between acrylamide formation, flavour, and colour is discussed, as well as the difficulty of balancing the unknown risk of exposure to acrylamide in the levels that are present in foods with the well-established health benefits of some of the foods concerned.
Collapse
Affiliation(s)
- Nigel G Halford
- Department of Plant Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | | | | | | | | | | |
Collapse
|
793
|
Schluepmann H, Berke L, Sanchez-Perez GF. Metabolism control over growth: a case for trehalose-6-phosphate in plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3379-90. [PMID: 22058405 DOI: 10.1093/jxb/err311] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.
Collapse
Affiliation(s)
- Henriette Schluepmann
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | |
Collapse
|
794
|
Eveland AL, Jackson DP. Sugars, signalling, and plant development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3367-77. [PMID: 22140246 DOI: 10.1093/jxb/err379] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Like all organisms, plants require energy for growth. They achieve this by absorbing light and fixing it into a usable, chemical form via photosynthesis. The resulting carbohydrate (sugar) energy is then utilized as substrates for growth, or stored as reserves. It is therefore not surprising that modulation of carbohydrate metabolism can have profound effects on plant growth, particularly cell division and expansion. However, recent studies on mutants such as stimpy or ramosa3 have also suggested that sugars can act as signalling molecules that control distinct aspects of plant development. This review will focus on these more specific roles of sugars in development, and will concentrate on two major areas: (i) cross-talk between sugar and hormonal signalling; and (ii) potential direct developmental effects of sugars. In the latter, developmental mutant phenotypes that are modulated by sugars as well as a putative role for trehalose-6-phosphate in inflorescence development are discussed. Because plant growth and development are plastic, and are greatly affected by environmental and nutritional conditions, the distinction between purely metabolic and specific developmental effects is somewhat blurred, but the focus will be on clear examples where sugar-related processes or molecules have been linked to known developmental mechanisms.
Collapse
Affiliation(s)
- Andrea L Eveland
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
795
|
Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 2012; 503:65-74. [PMID: 22561114 DOI: 10.1016/j.gene.2012.04.042] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022]
Abstract
Fructose 1,6-biphosphate aldolase (FBA) is a key enzyme in plants, which is involved not only in glycolysis and gluconeogenesis in the cytoplasm, but also in the Calvin cycle in plastids. Research on FBAs in various organisms has been reported, but there is none on FBAs in Arabidopsis at the molecular level. In the current study, eight FBA family genes (AtFBA1-8) were identified and analyzed in Arabidopsis thaliana. These genes have a highly conserved aldolase-type TIM barrel domain and a C-terminal peptide, but variable N-terminal peptides. Based on the phylogenetic analysis of FBA protein sequences from Arabidopsis and other plant species, AtFBA family was classified into two subfamilies, including three members (AtFBA1-3) with high similarities to FBAs occurring at plastid, and five (AtFBA4-8) with high similarities to FBAs localized in the cytoplasm. By confocal microscopy analysis with GFP fusion protein, AtFBA3 and AtFBA4 as well as AtFBA6 were observed to be localized in the plastid and cytoplasm, respectively. At least two duplicated gene pairs of AtFBA1 and AtFBA2, as well as AtFBA4 and AtFBA8 were found. Transcript level analysis of AtFBA genes in various tissues revealed the unique and overlapping expression patterns of plastid and cytosol AtFBA genes, suggesting that these genes may function at different stages of plant growth and development. Interestingly, AtFBA1, AtFBA2, AtFBA5 and AtFBA7 showed undetectable expression in roots. The expression patterns of AtFBA genes under different stress conditions suggested that all the members showed different expression patterns in response to stresses, including ABA, NaCl, Cd, abnormal temperature and drought, and, except for AtFBA3, most of the AtFBA genes were significantly responsive to drought stress in roots. Moreover, AtFBA1, AtFBA2, AtFBA5, AtFBA7 and AtFBA8 were induced by at least one of three sugars (sucrose, glucose and fructose) after 24h of treatment. Further functional analyses indicated important clues of AtFBA2, AtFBA6 and AtFBA8 in plant growth, stress responses and development, respectively. Thus these results provide additional knowledge on AtFBA families and their roles.
Collapse
Affiliation(s)
- Wei Lu
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
796
|
Cho YH, Hong JW, Kim EC, Yoo SD. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. PLANT PHYSIOLOGY 2012; 158:1955-64. [PMID: 22232383 PMCID: PMC3320198 DOI: 10.1104/pp.111.189829] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1-null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergence-dependent manner. From early seedling development through late senescence, SnRK1 activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stress-responsive gene regulation and in plant growth and development throughout the life cycle.
Collapse
|
797
|
Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. THE NEW PHYTOLOGIST 2012; 194:206-219. [PMID: 22269069 DOI: 10.1111/j.1469-8137.2011.04026.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1. • AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions. • Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dual-targeted to both plastids and mitochondria by a C-terminal targeting signal. • One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Feng Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pui Kit Suen
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Youjun Zhang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Liang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Jane L Ward
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Common, Harpenden, Herts, AL5 2JQ, UK
| | - Nathaniel D Hawkins
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Common, Harpenden, Herts, AL5 2JQ, UK
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
798
|
Thalor SK, Berberich T, Lee SS, Yang SH, Zhu X, Imai R, Takahashi Y, Kusano T. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves. PLoS One 2012; 7:e33111. [PMID: 22457737 PMCID: PMC3310857 DOI: 10.1371/journal.pone.0033111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/09/2012] [Indexed: 12/22/2022] Open
Abstract
Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S - stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5′-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5′-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3–4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.
Collapse
Affiliation(s)
- Sunil Kumar Thalor
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Thomas Berberich
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan
- Biodiversity and Climate Research Center (BiK-F), BioCampus-Westend, Frankfurt, Germany
| | - Sung Shin Lee
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Seung Hwan Yang
- Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University Science Campus, Namdong, Cheoin-Gu, Yongin, Gyeonggi, Korea
| | - XuJun Zhu
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Ryozo Imai
- Crop Cold Research Team, National Agricultural Research Center for Hokkaido Region, Toyohira-ku, Sapporo, Japan
| | - Yoshihiro Takahashi
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
799
|
Wingler A, Delatte TL, O'Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. PLANT PHYSIOLOGY 2012; 158:1241-51. [PMID: 22247267 PMCID: PMC3291265 DOI: 10.1104/pp.111.191908] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/12/2012] [Indexed: 05/17/2023]
Abstract
Trehalose 6-phosphate (T6P) is an important regulator of plant metabolism and development. T6P content increases when carbon availability is high, and in young growing tissue, T6P inhibits the activity of Snf1-related protein kinase (SnRK1). Here, strong accumulation of T6P was found in senescing leaves of Arabidopsis (Arabidopsis thaliana), in parallel with a rise in sugar contents. To determine the role of T6P in senescence, T6P content was altered by expressing the bacterial T6P synthase gene, otsA (to increase T6P), or the T6P phosphatase gene, otsB (to decrease T6P). In otsB-expressing plants, T6P accumulated less strongly during senescence than in wild-type plants, while otsA-expressing plants contained more T6P throughout. Mature otsB-expressing plants showed a similar phenotype as described for plants overexpressing the SnRK1 gene, KIN10, including reduced anthocyanin accumulation and delayed senescence. This was confirmed by quantitative reverse transcription-polymerase chain reaction analysis of senescence-associated genes and genes involved in anthocyanin synthesis. To analyze if the senescence phenotype was due to decreased sugar sensitivity, the response to sugars was determined. In combination with low nitrogen supply, metabolizable sugars (glucose, fructose, or sucrose) induced senescence in wild-type and otsA-expressing plants but to a smaller extent in otsB-expressing plants. The sugar analog 3-O-methyl glucose, on the other hand, did not induce senescence in any of the lines. Transfer of plants to and from glucose-containing medium suggested that glucose determines senescence during late development but that the effects of T6P on senescence are established by the sugar response of young plants.
Collapse
Affiliation(s)
- Astrid Wingler
- Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
800
|
Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LACJ, van Dongen JT. Making sense of low oxygen sensing. TRENDS IN PLANT SCIENCE 2012; 17:129-38. [PMID: 22280796 DOI: 10.1016/j.tplants.2011.12.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 05/21/2023]
Abstract
Plant-specific group VII Ethylene Response Factor (ERF) transcription factors have emerged as pivotal regulators of flooding and low oxygen responses. In rice (Oryza sativa), these proteins regulate contrasting strategies of flooding survival. Recent studies on Arabidopsis thaliana group VII ERFs show they are stabilized under hypoxia but destabilized under oxygen-replete conditions via the N-end rule pathway of targeted proteolysis. Oxygen-dependent sequestration at the plasma membrane maintains at least one of these proteins, RAP2.12, under normoxia. Remarkably, SUB1A, the rice group VII ERF that enables prolonged submergence tolerance, appears to evade oxygen-regulated N-end rule degradation. We propose that the turnover of group VII ERFs is of ecological relevance in wetland species and might be manipulated to improve flood tolerance of crops.
Collapse
Affiliation(s)
- Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|