751
|
Longitudinal single-cell RNA-seq of hESCs-derived retinal organoids. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1661-1676. [PMID: 33521856 DOI: 10.1007/s11427-020-1836-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
Human retina development involves multiple well-studied signaling pathways that promote the genesis of a wide arrange of different cell types in a complex architectural structure. Human embryonic stem cells (hESCs)-derived retinal organoids could recapitulate the human retinal development. We performed single-cell RNA-seq of retinal organoids from 5 time points (D36, D66, D96, D126, D186) and identified 9 distinct populations of cells. In addition, we analyzed the molecular characteristics of each main population and followed them from genesis to maturity by pseudotime analysis and characterized the cell-cell interactions between different cell types. Interestingly, we identified insulin receptor (INSR) as a specifically expressed receptor involved in the genesis of photoreceptors, and pleiothropin (PTN)-protein tyrosine phosphatase receptor type Z1 (PTPRZ1) as a mediator of a previously unknown interaction between Müller and retinal progenitor cells. Taken together, these findings provide a rich transcriptome-based lineage map for studying human retinal development and modeling developmental disorders in retinal organoids.
Collapse
|
752
|
Van Phan H, van Gent M, Drayman N, Basu A, Gack MU, Tay S. Fixed single-cell RNA sequencing for understanding virus infection and host response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.17.302232. [PMID: 32995793 PMCID: PMC7523121 DOI: 10.1101/2020.09.17.302232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Single-cell transcriptomic studies that require intracellular protein staining, rare cell sorting, or inactivation of infectious pathogens are severely limited because current high-throughput RNA sequencing methods are incompatible with paraformaldehyde treatment, a common tissue and cell fixation and preservation technique. Here we present FD-seq, a high-throughput method for droplet-based RNA sequencing of paraformaldehyde-fixed, stained and sorted single-cells. We show that FD-seq preserves the mRNA integrity and relative abundances during fixation and subsequent cell retrieval. Furthermore, FD-seq detects a higher number of genes and transcripts than methanol fixation. We applied FD-seq to investigate two important questions in Virology. First, by analyzing a rare population of cells supporting lytic reactivation of the human tumor virus KSHV, we identified TMEM119 as a host factor that mediates viral reactivation. Second, we found that upon infection with the betacoronavirus OC43, which causes the common cold and is a close relative of SARS-CoV-2, pro-inflammatory pathways are primarily upregulated in lowly-infected cells that are exposed to the virus but fail to express high levels of viral genes. FD-seq thus enables integrating phenotypic with transcriptomic information in rare cell populations, and preserving and inactivating pathogenic samples that cannot be handled under regular biosafety measures.
Collapse
Affiliation(s)
- Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Anindita Basu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
753
|
Wei Z, Feng M, Wu Z, Shen S, Zhu D. Bcl9 Depletion Modulates Endothelial Cell in Tumor Immune Microenvironment in Colorectal Cancer Tumor. Front Oncol 2021; 10:603702. [PMID: 33552975 PMCID: PMC7856347 DOI: 10.3389/fonc.2020.603702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor endothelial cells are an important part of the tumor microenvironment, and angiogenesis inhibitory therapy has shown potential in tumor treatment. However, which subtypes of tumor endothelial cells are distributed in tumors, what are the differences between tumor endothelial cells and normal endothelial cells, and what is the mechanism of angiogenesis inhibitory therapy at the histological level, are all need to be resolved urgently. Using single-cell mRNA sequencing, we analyzed 12 CT26 colon cancer samples from mice, and found that knockdown of the downstream factor BCL9 in the Wnt signaling pathway or inhibitor-mediated functional inhibition can modulate tumor endothelial cells at a relatively primitive stage, inhibiting their differentiation into further extracellular matrix construction and angiogenesis functions. Furthermore, we propose a BCL9-endo-Score based on the differential expression of cells related to different states of BCL9 functions. Using published data sets with normal endothelial cells, we found that this score can characterize endothelial cells at different stages of differentiation. Finally, in the The Cancer Genome Atlas (TCGA) pan-cancer database, we found that BCL9-endo-Score can well predict the prognosis of diseases including colon cancer, kidney cancer and breast cancer, and identified the markers of these tumor subtypes, provide a basis for the prognosis prediction of patients with such types of tumor. Our data also contributed knowledge for tumor precision treatment with angiogenesis inhibitory therapy by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhuang Wei
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mei Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhongen Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Shuru Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Department of Pharmacology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China.,Yangtze Delta Drug Advanced Research Institute, Nantong, China
| |
Collapse
|
754
|
Johnnidis JB, Muroyama Y, Ngiow SF, Chen Z, Manne S, Cai Z, Song S, Platt JM, Schenkel JM, Abdel-Hakeem M, Beltra JC, Greenplate AR, Ali MAA, Nzingha K, Giles JR, Harly C, Attanasio J, Pauken KE, Bengsch B, Paley MA, Tomov VT, Kurachi M, Vignali DAA, Sharpe AH, Reiner SL, Bhandoola A, Johnson FB, Wherry EJ. Inhibitory signaling sustains a distinct early memory CD8 + T cell precursor that is resistant to DNA damage. Sci Immunol 2021; 6:6/55/eabe3702. [PMID: 33452106 DOI: 10.1126/sciimmunol.abe3702] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.
Collapse
Affiliation(s)
- Jonathan B Johnnidis
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Shufei Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse M Platt
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohamed Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim A Ali
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO 'Immunotherapy, Graft, Oncology', Nantes, France
| | - John Attanasio
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Michael A Paley
- Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vesselin T Tomov
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh PA 15232, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - F Bradley Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
755
|
Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, Guilak F. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun 2021; 12:362. [PMID: 33441552 PMCID: PMC7806634 DOI: 10.1038/s41467-020-20598-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Chia-Lung Wu
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14627, USA
| | - Amanda Dicks
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Nancy Steward
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Ruhang Tang
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Dakota B Katz
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Yun-Rak Choi
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Orthopaedic Surgery, Yonsei University, Seoul, South Korea
| | - Farshid Guilak
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA.
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
756
|
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK, Stiene J, Cruise M, Hwang TH, Shen X, Spence JR, Huang EH. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 2021; 12:262. [PMID: 33431859 PMCID: PMC7801686 DOI: 10.1038/s41467-020-20351-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO). Notably, iHUCOs recapitulated histological and functional features of primary colitic tissues, including the absence of acidic mucus secretion and aberrant adherens junctions in the epithelial barrier both in vitro and in vivo. We demonstrate that the CXCL8/CXCR1 axis was overexpressed in iHUCO but not in iHNO. As proof-of-principle, we show that inhibition of CXCL8 receptor by the small-molecule non-competitive inhibitor repertaxin attenuated the progression of UC phenotypes in vitro and in vivo. This patient-derived organoid model, containing both epithelial and stromal compartments, will generate new insights into the underlying pathogenesis of UC while offering opportunities to tailor interventions to the individual patient.
Collapse
Affiliation(s)
- Samaneh K Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Steven Signs
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - David R Hill
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert C Fisher
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Sylvain Ferrandon
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Reece K DeHaan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jennifer Stiene
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emina H Huang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
757
|
Woolaver RA, Wang X, Krinsky AL, Waschke BC, Chen SMY, Popolizio V, Nicklawsky AG, Gao D, Chen Z, Jimeno A, Wang XJ, Wang JH. Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts. J Immunother Cancer 2021; 9:jitc-2020-001615. [PMID: 33414263 PMCID: PMC7797305 DOI: 10.1136/jitc-2020-001615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Antitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences. Methods We developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes. Results We discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status. Conclusions We reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Rachel A Woolaver
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoguang Wang
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexandra L Krinsky
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brittany C Waschke
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha M Y Chen
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vince Popolizio
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew G Nicklawsky
- Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dexiang Gao
- Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhangguo Chen
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonio Jimeno
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jing Hong Wang
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
758
|
Taylor SA, Chen SY, Gadhvi G, Feng L, Gromer KD, Abdala-Valencia H, Nam K, Dominguez ST, Montgomery AB, Reyfman PA, Ostilla L, Wechsler JB, Cuda CM, Green RM, Perlman H, Winter DR. Transcriptional profiling of pediatric cholestatic livers identifies three distinct macrophage populations. PLoS One 2021; 16:e0244743. [PMID: 33411796 PMCID: PMC7790256 DOI: 10.1371/journal.pone.0244743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background & aims Limited understanding of the role for specific macrophage subsets in the pathogenesis of cholestatic liver injury is a barrier to advancing medical therapy. Macrophages have previously been implicated in both the mal-adaptive and protective responses in obstructive cholestasis. Recently two macrophage subsets were identified in non-diseased human liver; however, no studies to date fully define the heterogeneous macrophage subsets during the pathogenesis of cholestasis. Here, we aim to further characterize the transcriptional profile of macrophages in pediatric cholestatic liver disease. Methods We isolated live hepatic immune cells from patients with biliary atresia (BA), Alagille syndrome (ALGS), and non-cholestatic pediatric liver by fluorescence activated cell sorting. Through single-cell RNA sequencing analysis and immunofluorescence, we characterized cholestatic macrophages. We next compared the transcriptional profile of pediatric cholestatic and non-cholestatic macrophage populations to previously published data on normal adult hepatic macrophages. Results We identified 3 distinct macrophage populations across cholestatic liver samples and annotated them as lipid-associated macrophages, monocyte-like macrophages, and adaptive macrophages based on their transcriptional profile. Immunofluorescence of liver tissue using markers for each subset confirmed their presence across BA (n = 6) and ALGS (n = 6) patients. Cholestatic macrophages demonstrated reduced expression of immune regulatory genes as compared to normal hepatic macrophages and were distinct from macrophage populations defined in either healthy adult or pediatric non-cholestatic liver. Conclusions We are the first to perform single-cell RNA sequencing on human pediatric cholestatic liver and identified three macrophage subsets with distinct transcriptional signatures from healthy liver macrophages. Further analyses will identify similarities and differences in these macrophage sub-populations across etiologies of cholestatic liver disease. Taken together, these findings may allow for future development of targeted therapeutic strategies to reprogram macrophages to an immune regulatory phenotype and reduce cholestatic liver injury.
Collapse
Affiliation(s)
- Sarah A. Taylor
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Shang-Yang Chen
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gaurav Gadhvi
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Liang Feng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Kyle D. Gromer
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kiwon Nam
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Salina T. Dominguez
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Anna B. Montgomery
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Paul A. Reyfman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lorena Ostilla
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Joshua B. Wechsler
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois, United States of America
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Deborah R. Winter
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
759
|
Zarinsefat A, Hartoularos G, Rychkov D, Rashmi P, Chandran S, Vincenti F, Yee CJ, Sarwal MM. Single-Cell RNA Sequencing of Tocilizumab-Treated Peripheral Blood Mononuclear Cells as an in vitro Model of Inflammation. Front Genet 2021; 11:610682. [PMID: 33469465 PMCID: PMC7813999 DOI: 10.3389/fgene.2020.610682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
COVID-19 has posed a significant threat to global health. Early data has revealed that IL-6, a key regulatory cytokine, plays an important role in the cytokine storm of COVID-19. Multiple trials are therefore looking at the effects of Tocilizumab, an IL-6 receptor antibody that inhibits IL-6 activity, on treatment of COVID-19, with promising findings. As part of a clinical trial looking at the effects of Tocilizumab treatment on kidney transplant recipients with subclinical rejection, we performed single-cell RNA sequencing of comparing stimulated PBMCs before and after Tocilizumab treatment. We leveraged this data to create an in vitro cytokine storm model, to better understand the effects of Tocilizumab in the presence of inflammation. Tocilizumab-treated cells had reduced expression of inflammatory-mediated genes and biologic pathways, particularly amongst monocytes. These results support the hypothesis that Tocilizumab may hinder the cytokine storm of COVID-19, through a demonstration of biologic impact at the single-cell level.
Collapse
Affiliation(s)
- Arya Zarinsefat
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - George Hartoularos
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Dmitry Rychkov
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Priyanka Rashmi
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sindhu Chandran
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Chun J. Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M. Sarwal
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
760
|
Abstract
Large amounts of effort have been invested in trying to understand how a single genome is able to specify the identity of hundreds of cell types. Inspired by some aspects of Caenorhabditis elegans biology, we implemented an in silico evolutionary strategy to produce gene regulatory networks (GRNs) that drive cell-specific gene expression patterns, mimicking the process of terminal cell differentiation. Dynamics of the gene regulatory networks are governed by a thermodynamic model of gene expression, which uses DNA sequences and transcription factor degenerate position weight matrixes as input. In a version of the model, we included chromatin accessibility. Experimentally, it has been determined that cell-specific and broadly expressed genes are regulated differently. In our in silico evolved GRNs, broadly expressed genes are regulated very redundantly and the architecture of their cis-regulatory modules is different, in accordance to what has been found in C. elegans and also in other systems. Finally, we found differences in topological positions in GRNs between these two classes of genes, which help to explain why broadly expressed genes are so resilient to mutations. Overall, our results offer an explanatory hypothesis on why broadly expressed genes are regulated so redundantly compared to cell-specific genes, which can be extrapolated to phenomena such as ChIP-seq HOT regions.
Collapse
Affiliation(s)
- Carlos Mora-Martinez
- Evo-devo Helsinki community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
761
|
Abstract
Normalization is an important step in the analysis of single-cell RNA-seq data. While no single method outperforms all others in all datasets, the choice of normalization can have profound impact on the results. Data-driven metrics can be used to rank normalization methods and select the best performers. Here, we show how to use R/Bioconductor to calculate normalization factors, apply them to compute normalized data, and compare several normalization approaches. Finally, we briefly show how to perform downstream analysis steps on the normalized data.
Collapse
Affiliation(s)
- Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
762
|
Afeworki Y, Wollenzien H, Kareta MS. Transcriptional Profiling During Neural Conversion. Methods Mol Biol 2021; 2352:171-181. [PMID: 34324187 PMCID: PMC9131516 DOI: 10.1007/978-1-0716-1601-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The processes that underlie neuronal conversion ultimately involve a reorganization of transcriptional networks to establish a neuronal cell fate. As such, transcriptional profiling is a key component toward understanding this process. In this chapter, we will discuss methods of elucidating transcriptional networks during neuronal reprogramming and considerations that should be incorporated in experimental design.
Collapse
Affiliation(s)
- Yohannes Afeworki
- Functional Genomics and Bioinformatics Core, Sanford Research, Sioux Falls, SD, USA
| | - Hannah Wollenzien
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, USA
| | - Michael S Kareta
- Functional Genomics and Bioinformatics Core, Sanford Research, Sioux Falls, SD, USA.
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA.
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, USA.
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD, USA.
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
763
|
Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf 2021; 20:20-32. [PMID: 33388438 DOI: 10.1016/j.jtos.2020.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This study aimed to uncover novel cell types in heterogenous basal limbus of human cornea for identifying LSC at single cell resolution. METHODS Single cells of human limbal basal epithelium were isolated from young donor corneas. Single-cell RNA-Sequencing was performed using 10x Genomics platform, followed by clustering cell types through the graph-based visualization method UMAP and unbiased computational informatic analysis. Tissue RNA in situ hybridization with RNAscope, immunofluorescent staining and multiple functional assays were performed using human corneas and limbal epithelial culture models. RESULTS Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters belonging to three lineages. A smallest cluster (0.4% of total cells) was identified as LSCs based on their quiescent and undifferentiated states with enriched marker genes for putative epithelial stem cells. TSPAN7 and SOX17 are discovered and validated as new LSC markers based on their exclusive expression pattern and spatial localization in limbal basal epithelium by RNAscope and immunostaining, and functional role in cell growth and tissue regeneration models with RNA interference in cultures. Interestingly, five cell types/states mapping a developmental trajectory of LSC from quiescence to proliferation and differentiation are uncovered by Monocle3 and CytoTRACE pseudotime analysis. The transcription factor networks linking novel signaling pathways are revealed to maintain LSC stemness. CONCLUSIONS This human corneal scRNA-Seq identifies the LSC population and uncovers novel cell types mapping the differentiation trajectory in heterogenous limbal basal epithelium. The findings provide insight into LSC concept and lay the foundation for understanding the corneal homeostasis and diseases.
Collapse
|
764
|
Ferchen K, Song B, Grimes HL. A primer on single-cell genomics in myeloid biology. Curr Opin Hematol 2021; 28:11-17. [PMID: 33186153 PMCID: PMC9205579 DOI: 10.1097/moh.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Understanding the fast-moving field of single-cell technologies, as applied to myeloid biology, requires an appreciation of basic molecular, informatics, and biological concepts. Here, we highlight both key and recent articles to illustrate basic concepts for those new to molecular single-cell analyses in myeloid hematology. RECENT FINDINGS Recent studies apply single-cell omics to discover novel cell populations, construct relationships between cell populations, reconfigure the organization of hematopoiesis, and study hematopoietic lineage tree and fate choices. Accompanying development of technologies, new informatic tools have emerged, providing exciting new insights. SUMMARY Hematopoietic stem and progenitor cells are regulated by complex intrinsic and extrinsic factors to produce blood cell types. In this review, we discuss recent advances in single-cell omics to profile these cells, methods to infer cell type identify, and trajectories from molecular omics data to ultimately derive new insights into hematopoietic stem and progenitor cell biology. We further discuss future applications of these technologies to understand hematopoietic cell interactions, function, and development. The goal is to offer a comprehensive overview of current single-cell technologies and their impact on our understanding of myeloid cell development for those new to single-cell analyses.
Collapse
Affiliation(s)
- Kyle Ferchen
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| |
Collapse
|
765
|
Ge W, Wang JJ, Zhang RQ, Tan SJ, Zhang FL, Liu WX, Li L, Sun XF, Cheng SF, Dyce PW, De Felici M, Shen W. Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell Mol Life Sci 2021; 78:695-713. [PMID: 32367190 PMCID: PMC11072979 DOI: 10.1007/s00018-020-03533-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
Abstract
Meiosis is one of the most finely orchestrated events during gametogenesis with distinct developmental patterns in males and females. However, the molecular mechanisms involved in this process remain not well known. Here, we report detailed transcriptome analyses of cell populations present in the mouse female gonadal ridges (E11.5) and the embryonic ovaries from E12.5 to E14.5 using single-cell RNA sequencing (scRNA seq). These periods correspond with the initiation and progression of meiosis throughout the first stage of prophase I. We identified 13 transcriptionally distinct cell populations and 7 transcriptionally distinct germ cell subclusters that correspond to mitotic (3 clusters) and meiotic (4 clusters) germ cells. By analysing cluster-specific gene expression profiles, we found four cell clusters correspond to different cell stages en route to meiosis and characterized their detailed transcriptome dynamics. Our scRNA seq analysis here represents a new important resource for deciphering the molecular pathways driving female meiosis initiation.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rui-Qian Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shao-Jing Tan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen-Xiang Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
766
|
Lieberman B, Kusi M, Hung CN, Chou CW, He N, Ho YY, Taverna JA, Huang THM, Chen CL. Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:1-21. [PMID: 34322662 PMCID: PMC8315474 DOI: 10.20517/jtgg.2020.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.
Collapse
Affiliation(s)
- Brandon Lieberman
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ning He
- Department of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, SC 29208, USA
| | - Josephine A. Taverna
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tim H. M. Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
767
|
Ho R, Workman MJ, Mathkar P, Wu K, Kim KJ, O'Rourke JG, Kellogg M, Montel V, Banuelos MG, Arogundade OA, Diaz-Garcia S, Oheb D, Huang S, Khrebtukova I, Watson L, Ravits J, Taylor K, Baloh RH, Svendsen CN. Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Syst 2020; 12:159-175.e9. [PMID: 33382996 DOI: 10.1016/j.cels.2020.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cell (iPSC)-derived neural cultures from amyotrophic lateral sclerosis (ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and experimental variability limits their utility, impacting reproducibility and the ability to track cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA sequencing (scRNA-seq) analysis to address these limitations. By repeatedly differentiating and applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic and experimental variability toward identifying unified and reproducible ALS signatures. Combining HOX and developmental gene expression with global clustering, we anatomically classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical thresholds, we discovered genes in iPSC-MNs that were concordantly dysregulated in postmortem MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus revealed early, convergent, and MN-resolved signatures of ALS.
Collapse
Affiliation(s)
- Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pranav Mathkar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathryn Wu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kevin J Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacqueline G O'Rourke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - Maria G Banuelos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Oheb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven Huang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
768
|
Preparing Highly Viable Single-Cell Suspensions from Mouse Pancreatic Islets for Single-Cell RNA Sequencing. STAR Protoc 2020; 1:100144. [PMID: 33377038 PMCID: PMC7757316 DOI: 10.1016/j.xpro.2020.100144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pancreatic islets consist of several cell types, including alpha, beta, delta, epsilon, and PP cells. Due to cellular heterogeneity, it is challenging to interpret whole-islet transcriptome data. Single-cell transcriptomics offers a powerful method for investigating gene expression at the single-cell level and identifying cellular heterogeneity and subpopulations. Here, we describe a protocol for mouse pancreatic islet isolation, culturing, and dissociation into a single-cell suspension. This protocol yields highly viable cells for successful library preparation and single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Lee et al. (2020). A detailed protocol for the isolation and culture of pancreatic islets from mice A procedure for dissociation of mouse islets into a single-cell suspension Method consistently yields optimal cell viability (90%) for scRNA sequencing
Collapse
|
769
|
Chopp LB, Gopalan V, Ciucci T, Ruchinskas A, Rae Z, Lagarde M, Gao Y, Li C, Bosticardo M, Pala F, Livak F, Kelly MC, Hannenhalli S, Bosselut R. An Integrated Epigenomic and Transcriptomic Map of Mouse and Human αβ T Cell Development. Immunity 2020; 53:1182-1201.e8. [PMID: 33242395 PMCID: PMC8641659 DOI: 10.1016/j.immuni.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
αβ lineage T cells, most of which are CD4+ or CD8+ and recognize MHC I- or MHC II-presented antigens, are essential for immune responses and develop from CD4+CD8+ thymocytes. The absence of in vitro models and the heterogeneity of αβ thymocytes have hampered analyses of their intrathymic differentiation. Here, combining single-cell RNA and ATAC (chromatin accessibility) sequencing, we identified mouse and human αβ thymocyte developmental trajectories. We demonstrated asymmetric emergence of CD4+ and CD8+ lineages, matched differentiation programs of agonist-signaled cells to their MHC specificity, and identified correspondences between mouse and human transcriptomic and epigenomic patterns. Through computational analysis of single-cell data and binding sites for the CD4+-lineage transcription factor Thpok, we inferred transcriptional networks associated with CD4+- or CD8+-lineage differentiation, and with expression of Thpok or of the CD8+-lineage factor Runx3. Our findings provide insight into the mechanisms of CD4+ and CD8+ T cell differentiation and a foundation for mechanistic investigations of αβ T cell development.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Ruchinskas
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Zachary Rae
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Manon Lagarde
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caiyi Li
- Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ferenc Livak
- Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael C Kelly
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
770
|
Zhang Z, Cui F, Wang C, Zhao L, Zou Q. Goals and approaches for each processing step for single-cell RNA sequencing data. Brief Bioinform 2020; 22:6034054. [PMID: 33316046 DOI: 10.1093/bib/bbaa314] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at the cellular level. However, due to the extremely low levels of transcripts in a single cell and technical losses during reverse transcription, gene expression at a single-cell resolution is usually noisy and highly dimensional; thus, statistical analyses of single-cell data are a challenge. Although many scRNA-seq data analysis tools are currently available, a gold standard pipeline is not available for all datasets. Therefore, a general understanding of bioinformatics and associated computational issues would facilitate the selection of appropriate tools for a given set of data. In this review, we provide an overview of the goals and most popular computational analysis tools for the quality control, normalization, imputation, feature selection and dimension reduction of scRNA-seq data.
Collapse
Affiliation(s)
- Zilong Zhang
- University of Electronic Science and Technology of China
| | | | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology
| | - Lingling Zhao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| |
Collapse
|
771
|
Uchimura K, Wu H, Yoshimura Y, Humphreys BD. Human Pluripotent Stem Cell-Derived Kidney Organoids with Improved Collecting Duct Maturation and Injury Modeling. Cell Rep 2020; 33:108514. [PMID: 33326782 PMCID: PMC10122187 DOI: 10.1016/j.celrep.2020.108514] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 11/19/2020] [Indexed: 01/28/2023] Open
Abstract
Maximizing the potential of human kidney organoids for drug testing and regenerative medicine and to model development and disease requires addressing cell immaturity, the lack of a mature collecting system, and off-target cell types. By independently generating two kidney progenitor cell populations-metanephric mesenchyme and ureteric bud (UB)-like cells-we could generate kidney organoids with a collecting system. We also identify the hormones aldosterone and arginine vasopressin (AVP) as critical to promote differentiation of collecting duct cell types including both principal cells (PCs) and intercalated cells (ICs). The resulting PCs express aquaporin-2 (AQP2) protein, which undergoes translocation to the apical membrane after vasopressin or forskolin stimulation. By single-cell RNA sequencing (scRNA-seq), we demonstrate improved proximal tubule maturation and reduced off-target cell populations. We also show appropriate downregulation of progenitor cell types, improved modeling of tubular injury, the presence of urothelium (Uro), and the ability of Notch pathway modulation to regulate PC:IC ratios during organoid development.
Collapse
Affiliation(s)
- Kohei Uchimura
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
772
|
Miura A, Shimbo T, Kitayama T, Ouchi Y, Yamazaki S, Nishida M, Takaki E, Yamamoto R, Wijaya E, Tamai K. Contribution of PDGFRα lineage cells in adult mouse hematopoiesis. Biochem Biophys Res Commun 2020; 534:186-192. [PMID: 33309273 DOI: 10.1016/j.bbrc.2020.11.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα) is a dominant marker of mesodermal mesenchymal cells in mice. Previous studies demonstrated that PDGFRα-positive (PDGFRα+) mesodermal cells develop not only into mesenchymal cells but also into a subset of total hematopoietic cells (HCs) in the limited period during mouse embryogenesis. However, the precise characteristics of the PDGFRα lineage positive (PDGFRα Lin+) HCs in adult mouse hematopoiesis are largely unknown. In this study, we systematically evaluated the characteristics of PDGFRα Lin+ HCs in the bone marrow and peripheral blood using PDGFRα-CRE; ROSAtdTomato mice. Flow cytometry analysis revealed that PDGFRα Lin+ HCs accounted for approximately 20% of total HCs in both the bone marrow and peripheral blood in adult mice. Compositions of myeloid and lymphoid subpopulations among CD45+ mononuclear cells were almost identical in both PDGFRα Lin+ and PDGFRα Lin- cells. Single-cell RNA-sequencing analysis also demonstrated that the transcriptomic signatures of the PDGFRα Lin+ HCs in the peripheral blood largely overlapped with those of the PDGFRα Lin- HCs, suggesting equivalent functions of the PDGFRα Lin+ and PDGFRα Lin- HCs. Although pathophysiological activities of the PDGFRα Lin + HCs were not evaluated, our data clearly demonstrate a significant role of the PDGFRα Lin + HCs in physiological hematopoiesis in adult mice.
Collapse
Affiliation(s)
- Asaka Miura
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, 565-0871, Japan
| | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Mami Nishida
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Eiichi Takaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Ryoma Yamamoto
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Edward Wijaya
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; StemRIM Co., Ltd., Ibaraki, Osaka, 567-0085, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
773
|
Bordone MC, Barbosa-Morais NL. Unraveling Targetable Systemic and Cell-Type-Specific Molecular Phenotypes of Alzheimer's and Parkinson's Brains With Digital Cytometry. Front Neurosci 2020; 14:607215. [PMID: 33362460 PMCID: PMC7756021 DOI: 10.3389/fnins.2020.607215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders worldwide, with age being their major risk factor. The increasing worldwide life expectancy, together with the scarcity of available treatment choices, makes it thus pressing to find the molecular basis of AD and PD so that the causing mechanisms can be targeted. To study these mechanisms, gene expression profiles have been compared between diseased and control brain tissues. However, this approach is limited by mRNA expression profiles derived for brain tissues highly reflecting their degeneration in cellular composition but not necessarily disease-related molecular states. We therefore propose to account for cell type composition when comparing transcriptomes of healthy and diseased brain samples, so that the loss of neurons can be decoupled from pathology-associated molecular effects. This approach allowed us to identify genes and pathways putatively altered systemically and in a cell-type-dependent manner in AD and PD brains. Moreover, using chemical perturbagen data, we computationally identified candidate small molecules for specifically targeting the profiled AD/PD-associated molecular alterations. Our approach therefore not only brings new insights into the disease-specific and common molecular etiologies of AD and PD but also, in these realms, foster the discovery of more specific targets for functional and therapeutic exploration.
Collapse
Affiliation(s)
- Marie C Bordone
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
774
|
Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell 2020; 28:637-652.e8. [PMID: 33301706 PMCID: PMC8024900 DOI: 10.1016/j.stem.2020.11.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.
Collapse
|
775
|
Zhang Y, Wang J, Liu X, Liu H. Exploring the role of RALYL in Alzheimer's disease reserve by network-based approaches. Alzheimers Res Ther 2020; 12:165. [PMID: 33298176 PMCID: PMC7724892 DOI: 10.1186/s13195-020-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) reserve theory is based on specific individual characteristics that are associated with a higher resilience against neurodegeneration and its symptoms. A given degree of AD pathology may contribute to varying cognitive decline levels in different individuals. Although this phenomenon is attributed to reserve, the biological mechanisms that underpin it remain elusive, which restricts translational medicine research and treatment strategy development. METHODS Network-based approaches were integrated to identify AD reserve related genes. Then, AD brain transcriptomics data were clustered into co-expression modules, and a Bayesian network was developed using these modules plus AD reserve related phenotypes. The directed acyclic graph suggested that the module was strongly associated with AD reserve. The hub gene of the module of interest was filtered using the topological method. Validation was performed in the multi-AD brain transcriptomic dataset. RESULTS We revealed that the RALYL (RALY RNA Binding Protein-like) is the hub gene of the module which was highly associated with AD reserve related phenotypes. Pseudo-time projections of RALYL revealed the changes in relative expression drivers in the AD and control subjects over pseudo-time had distinct transcriptional states. Notably, the expression of RALYL decreased with the gradual progression of AD, and this corresponded to MMSE decline. Subjects with AD reserve exhibited significantly higher RALYL expression than those without AD reserve. CONCLUSION The present study suggests that RALYL may be associated with AD reserve, and it provides novel insights into the mechanisms of AD reserve and highlights the potential role of RALYL in this process.
Collapse
Affiliation(s)
- Yixuan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Jiali Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Xiaoquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Haochen Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
776
|
He S, Wang LH, Liu Y, Li YQ, Chen HT, Xu JH, Peng W, Lin GW, Wei PP, Li B, Xia X, Wang D, Bei JX, He X, Guo Z. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol 2020; 21:294. [PMID: 33287869 PMCID: PMC7720616 DOI: 10.1186/s13059-020-02210-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As core units of organ tissues, cells of various types play their harmonious rhythms to maintain the homeostasis of the human body. It is essential to identify the characteristics of cells in human organs and their regulatory networks for understanding the biological mechanisms related to health and disease. However, a systematic and comprehensive single-cell transcriptional profile across multiple organs of a normal human adult is missing. RESULTS We perform single-cell transcriptomes of 84,363 cells derived from 15 tissue organs of one adult donor and generate an adult human cell atlas. The adult human cell atlas depicts 252 subtypes of cells, including major cell types such as T, B, myeloid, epithelial, and stromal cells, as well as novel COCH+ fibroblasts and FibSmo cells, each of which is distinguished by multiple marker genes and transcriptional profiles. These collectively contribute to the heterogeneity of major human organs. Moreover, T cell and B cell receptor repertoire comparisons and trajectory analyses reveal direct clonal sharing of T and B cells with various developmental states among different tissues. Furthermore, novel cell markers, transcription factors, and ligand-receptor pairs are identified with potential functional regulations in maintaining the homeostasis of human cells among tissues. CONCLUSIONS The adult human cell atlas reveals the inter- and intra-organ heterogeneity of cell characteristics and provides a useful resource in uncovering key events during the development of human diseases in the context of the heterogeneity of cells and organs.
Collapse
Affiliation(s)
- Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Lin-He Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Yang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Yi-Qi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Hai-Tian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Jing-Hong Xu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Wan Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Guo-Wang Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 People’s Republic of China
| | - Xiaojun Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
777
|
Wang S, Zhang Q, Hui H, Agrawal K, Karris MAY, Rana TM. An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. Emerg Microbes Infect 2020; 9:2333-2347. [PMID: 32954948 PMCID: PMC7646563 DOI: 10.1080/22221751.2020.1826361] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Chronic infection with human immunodeficiency virus (HIV) can cause progressive loss of immune cell function, or exhaustion, which impairs control of virus replication. However, little is known about the development and maintenance, as well as heterogeneity of immune cell exhaustion. Here, we investigated the effects of HIV infection on immune cell exhaustion at the transcriptomic level by analyzing single-cell RNA sequencing of peripheral blood mononuclear cells from four healthy subjects (37,847 cells) and six HIV-infected donors (28,610 cells). We identified nine immune cell clusters and eight T cell subclusters, and three of these (exhausted CD4+ and CD8+ T cells and interferon-responsive CD8+ T cells) were detected only in samples from HIV-infected donors. An inhibitory receptor KLRG1 was identified in a HIV-1 specific exhausted CD8+ T cell population expressing KLRG1, TIGIT, and T-betdimEomeshi markers. Ex-vivo antibody blockade of KLRG1 restored the function of HIV-specific exhausted CD8+ T cells demonstrating the contribution of KLRG1+ population to T cell exhaustion and providing an immunotherapy target to treat HIV chronic infection. These data provide a comprehensive analysis of gene signatures associated with immune cell exhaustion during HIV infection, which could be useful in understanding exhaustion mechanisms and developing new cure therapies.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- UCSD Center for AIDS Research, University of California San Diego, La Jolla, CA, USA
| | - Qiong Zhang
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- UCSD Center for AIDS Research, University of California San Diego, La Jolla, CA, USA
| | - Hui Hui
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- Department of Biology, Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Kriti Agrawal
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- Department of Biology, Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Maile Ann Young Karris
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, USA
| | - Tariq M. Rana
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- UCSD Center for AIDS Research, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
778
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
779
|
Kubick N, Henckell Flournoy PC, Klimovich P, Manda G, Mickael M. What has single-cell RNA sequencing revealed about microglial neuroimmunology? Immun Inflamm Dis 2020; 8:825-839. [PMID: 33085226 PMCID: PMC7654416 DOI: 10.1002/iid3.362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
The use of single-cell RNA sequencing (scRNA-seq) in microglial research is increasing rapidly. The basic workflow of this approach consists of isolating single cells, followed by sequencing. scRNA-seq is capable of examining microglial heterogeneity on a cellular level. However, the results gained from applying this technique suffer from discrepancies due to differences between applied methods characteristics such as the number of cells sequenced and the depth of sequencing. This review aims to shed more light on the recent developments that happened in this field and how they are related to the methods used. To do that, we track the progress and limitations of various scRNA-seq methods currently available. The review then summarizes the current knowledge gained using scRNA-seq in the field of microglia, including novel subpopulations associated with function and development under homeostasis as well during several pathological conditions such as Alzheimer, lipopolysaccharide response, and HIV in relation to the methods employed. Our review points out that despite major developments found using this technique, current scRNA-seq methods suffer from high cost, low yields, and nonstandardization of generated data. Additional development of scRNA-seq methods will raise our awareness of microglia's heterogeneity and plasticity under healthy and pathological conditions.
Collapse
Affiliation(s)
- Norwin Kubick
- Department of Biochemistry and Molecular Cell Biology (IBMZ)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Pavel Klimovich
- Department of ImmunologyPM Research CenterStockholmEkeröSweden
| | - Gina Manda
- Department of RadiologyVictor Babes National Institute of PathologyBucharestRomania
| | - Michel‐Edwar Mickael
- Department of ImmunologyPM Research CenterStockholmEkeröSweden
- Department of PathologyBevill Biomedical SciencesBirminghamAlabamaUSA
- Department of Experimental Genomics, Neuroimmunology Group, Institute of Genetics and Animal BiotechnologyPolish Academy of ScienceMagdalenkaPoland
| |
Collapse
|
780
|
Yuan Y, Loh YHE, Han X, Feng J, Ho TV, He J, Jing J, Groff K, Wu A, Chai Y. Spatiotemporal cellular movement and fate decisions during first pharyngeal arch morphogenesis. SCIENCE ADVANCES 2020; 6:eabb0119. [PMID: 33328221 PMCID: PMC7744069 DOI: 10.1126/sciadv.abb0119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/27/2020] [Indexed: 06/02/2023]
Abstract
Cranial neural crest (CNC) cells contribute to different cell types during embryonic development. It is unknown whether postmigratory CNC cells undergo dynamic cellular movement and how the process of cell fate decision occurs within the first pharyngeal arch (FPA). Our investigations demonstrate notable heterogeneity within the CNC cells, refine the patterning domains, and identify progenitor cells within the FPA. These progenitor cells undergo fate bifurcation that separates them into common progenitors and mesenchymal cells, which are characterized by Cdk1 and Spry2/Notch2 expression, respectively. The common progenitors undergo further bifurcations to restrict them into osteogenic/odontogenic and chondrogenic/fibroblast lineages. Disruption of a patterning domain leads to specific mandible and tooth defects, validating the binary cell fate restriction process. Different from the compartment model of mandibular morphogenesis, our data redefine heterogeneous cellular domains within the FPA, reveal dynamic cellular movement in time, and describe a sequential series of binary cell fate decision-making process.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yong-Hwee Eddie Loh
- Bioinformatics Service, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Kimberly Groff
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Alan Wu
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
781
|
Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Faury D, Jawhar W, Dali R, Suzuki H, Pathania M, A D, Dubois F, Woodward E, Hébert S, Coutelier M, Karamchandani J, Albrecht S, Brandner S, De Jay N, Gayden T, Bajic A, Harutyunyan AS, Marchione DM, Mikael LG, Juretic N, Zeinieh M, Russo C, Maestro N, Bassenden AV, Hauser P, Virga J, Bognar L, Klekner A, Zapotocky M, Vicha A, Krskova L, Vanova K, Zamecnik J, Sumerauer D, Ekert PG, Ziegler DS, Ellezam B, Filbin MG, Blanchette M, Hansford JR, Khuong-Quang DA, Berghuis AM, Weil AG, Garcia BA, Garzia L, Mack SC, Beroukhim R, Ligon KL, Taylor MD, Bandopadhayay P, Kramm C, Pfister SM, Korshunov A, Sturm D, Jones DTW, Salomoni P, Kleinman CL, Jabado N. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell 2020; 183:1617-1633.e22. [PMID: 33259802 DOI: 10.1016/j.cell.2020.11.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.
Collapse
Affiliation(s)
- Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shriya Deshmukh
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 2A7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Véronique Lisi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wajih Jawhar
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Rola Dali
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Hiromichi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Manav Pathania
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge CB2 0RE, UK
| | - Deli A
- Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Frank Dubois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Eleanor Woodward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Steven Hébert
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Marie Coutelier
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Ashot S Harutyunyan
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nikoleta Juretic
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nicola Maestro
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Peter Hauser
- Second Department of Paediatrics, Semmelweis University, Budapest 1094, Hungary
| | - József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary; Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Katerina Vanova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - David Sumerauer
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Paul G Ekert
- Children's Cancer Center, The Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Jordan R Hansford
- Children's Cancer Center, The Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Center, The Royal Children's Hospital; and Murdoch Children's Research Institute; Parkville, VIC 3052, Australia
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Keith L Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Department of Pathology, Boston Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen 37075, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ) and Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg 69120, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dominik Sturm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen 37075, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David T W Jones
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg 69120, Germany
| | - Paolo Salomoni
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
782
|
Bernardes JP, Mishra N, Tran F, Bahmer T, Best L, Blase JI, Bordoni D, Franzenburg J, Geisen U, Josephs-Spaulding J, Köhler P, Künstner A, Rosati E, Aschenbrenner AC, Bacher P, Baran N, Boysen T, Brandt B, Bruse N, Dörr J, Dräger A, Elke G, Ellinghaus D, Fischer J, Forster M, Franke A, Franzenburg S, Frey N, Friedrichs A, Fuß J, Glück A, Hamm J, Hinrichsen F, Hoeppner MP, Imm S, Junker R, Kaiser S, Kan YH, Knoll R, Lange C, Laue G, Lier C, Lindner M, Marinos G, Markewitz R, Nattermann J, Noth R, Pickkers P, Rabe KF, Renz A, Röcken C, Rupp J, Schaffarzyk A, Scheffold A, Schulte-Schrepping J, Schunk D, Skowasch D, Ulas T, Wandinger KP, Wittig M, Zimmermann J, Busch H, Hoyer BF, Kaleta C, Heyckendorf J, Kox M, Rybniker J, Schreiber S, Schultze JL, Rosenstiel P. Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity 2020; 53:1296-1314.e9. [PMID: 33296687 PMCID: PMC7689306 DOI: 10.1016/j.immuni.2020.11.017] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19. SARS-CoV2 infection elicits dynamic changes of circulating cells in the blood Severe COVID-19 is characterized by increased metabolically active plasmablasts Elevation of IFN-activated megakaryocytes and erythroid cells in severe COVID-19 Cell-type-specific expression signatures are associated with a fatal COVID-19 outcome
Collapse
Affiliation(s)
- Joana P Bernardes
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Bahmer
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Lena Best
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Johanna I Blase
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Dora Bordoni
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jeanette Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Ulf Geisen
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jonathan Josephs-Spaulding
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Philipp Köhler
- Department I of Internal Medicine, University of Cologne and University Hospital Cologne; German Center for Infection Research, Partner Site Bonn-Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50937 Cologne, Germany
| | - Axel Künstner
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Anna C Aschenbrenner
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Departments of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Institute of Immunology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Teide Boysen
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Niklas Bruse
- Departments of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jonathan Dörr
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andreas Dräger
- Department of Computer Science, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen and German Center for Infection Research (DZIF), Partner site Tübingen, 72076 Tübingen, Germany
| | - Gunnar Elke
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne and University Hospital Cologne; German Center for Infection Research, Partner Site Bonn-Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Anette Friedrichs
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andreas Glück
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Finn Hinrichsen
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Simon Imm
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Sina Kaiser
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Ying H Kan
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Rainer Knoll
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel and German Center for Infection Research (DZIF), TTU-TB, 23845 Borstel, Germany
| | - Georg Laue
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Clemens Lier
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Matthias Lindner
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Georgios Marinos
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I and German Center for Infection Research (DZIF), University of Bonn, 53217 Bonn, Germany
| | - Rainer Noth
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Peter Pickkers
- Departments of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Klaus F Rabe
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, 22927 Grosshansdorf, Germany
| | - Alina Renz
- Department of Computer Science, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen and German Center for Infection Research (DZIF), Partner site Tübingen, 72076 Tübingen, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23562 Lübeck, Germany
| | - Annika Schaffarzyk
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jonas Schulte-Schrepping
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Domagoj Schunk
- Department for Emergency Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Dirk Skowasch
- Section of Pneumology, Department of Internal Medicine II, University Hospital Bonn, , 53127 Bonn, Germany
| | - Thomas Ulas
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Johannes Zimmermann
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Bimba F Hoyer
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Christoph Kaleta
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jan Heyckendorf
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthijs Kox
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, University of Cologne and University Hospital Cologne; German Center for Infection Research, Partner Site Bonn-Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Joachim L Schultze
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany.
| |
Collapse
|
783
|
Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I, Jiang C, Goff LA, Dölen G. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 2020; 108:659-675.e6. [PMID: 33113347 PMCID: PMC8033501 DOI: 10.1016/j.neuron.2020.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Collapse
Affiliation(s)
- Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alejandra V Patino
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Bidii Bangamwabo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ndeye Ndiaye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Giovinazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie Jiang
- Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
784
|
Landry AP, Balas M, Alli S, Spears J, Zador Z. Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci Rep 2020; 10:19542. [PMID: 33177572 PMCID: PMC7658345 DOI: 10.1038/s41598-020-76657-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) constitute up to 50% of tumor bulk in glioblastoma (GBM) and play an important role in tumor maintenance and progression. The recently discovered differences between invading tumour periphery and hypoxic tumor core implies that macrophage biology is also distinct by location. This may provide further insight into the observed treatment resistance to immune modulation. We hypothesize that macrophage activation occurs through processes that are distinct in tumor periphery versus core. We therefore investigated regional differences in TAM recruitment and evolution in GBM by combining open source single cell and bulk gene expression data. We used single cell gene expression data from 4 glioblastomas (total of 3589 cells) and 122 total bulk samples obtained from 10 different patients. Cell identity, ontogeny (bone-marrow derived macrophages-BMDM vs microglia), and macrophage activation state were inferred using verified gene expression signatures. We captured the spectrum of immune states using cell trajectory analysis with pseudotime ordering. In keeping with previous studies, TAMs carrying BMDM identity were more abundant in tumor bulk while microglia-derived TAMs dominated the tumor periphery across all macrophage activation states including pre-activation. We note that core TAMs evolve towards a pro-inflammatory state and identify a subpopulation of cells based on a gene program exhibiting strong, opposing correlation with Programmed cell Death-1 (PD-1) signaling, which may correlate to their response to PD-1 inhibition. By contrast, peripheral TAMs evolve towards anti-inflammatory phenotype and contains a population of cells strongly associated with NFkB signaling. Our preliminary analysis suggests important regional differences in TAMs with regard to recruitment and evolution. We identify regionally distinct and potentially actionable cell subpopulations and advocate the need for a multi-targeted approach to GBM therapeutics.
Collapse
Affiliation(s)
- Alexander P Landry
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada.
| | - Michael Balas
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Saira Alli
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Zsolt Zador
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
785
|
Huang Y, Zheng Y, Yin J, Lu T, Li M, Liang J, Hu Z, Bi G, Zhan C, Xue L, Jiang W, Wang Q. Reconstructing the Developmental Trajectories of Multiple Subtypes in Pulmonary Parenchymal Epithelial Cells by Single-Cell RNA-seq. Front Genet 2020; 11:573429. [PMID: 33133163 PMCID: PMC7573224 DOI: 10.3389/fgene.2020.573429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background Some lung diseases are cell type-specific. It is essential to study the cellular anatomy of the normal human lung for exploring the cellular origin of lung disease and the cell development trajectory. Methods We used the Seurat R package for data quality control. The principal component analysis (PCA) was used for linear dimensionality reduction. UMAP and tSNE were used for dimensionality reduction. Muonocle2 was used to extract lung epithelial cells to analyze the subtypes of epithelial cells further and to study the development of these cell subtypes. Results We showed a total of 20154 high quality of cells from human normal lung tissue. They were initially divided into 17 clusters cells and then identified as seven types of cells, namely macrophages, monocytes, CD8 + T cells, epithelial cells, endothelial cells, adipocytes, and NK cells. 4240 epithelial cells were extracted for further analysis and they were divided into seven clusters. The seven cell clusters include alveolar cell, alveolar endothelial progenitor, ciliated cell, secretory cell, ionocyte cell, and a group of cells that are not clear at present. We show the development track of these subtypes of epithelial cells, in which we speculate that alveolar epithelial progenitor (AEP) is a kind of progenitor cells that can develop into alveolar cells, and find six essential genes that determine the cell fate, including AGER, RPL10, RPL9, RPS18, RPS27, and SFTPB. Conclusion We provide a transcription map of human lung cells, especially the in-depth study on the development of epithelial cell subtypes, which will help us to study lung cell biology and lung diseases.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiacheng Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Xue
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
786
|
Single symbiotic cell transcriptome sequencing of coral. Genomics 2020; 112:5305-5312. [DOI: 10.1016/j.ygeno.2020.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
|
787
|
Chung NC. Statistical significance of cluster membership for unsupervised evaluation of cell identities. Bioinformatics 2020; 36:3107-3114. [PMID: 32142108 PMCID: PMC7214036 DOI: 10.1093/bioinformatics/btaa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 01/05/2020] [Accepted: 03/03/2020] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Single-cell RNA-sequencing (scRNA-seq) allows us to dissect transcriptional heterogeneity arising from cellular types, spatio-temporal contexts and environmental stimuli. Transcriptional heterogeneity may reflect phenotypes and molecular signatures that are often unmeasured or unknown a priori. Cell identities of samples derived from heterogeneous subpopulations are then determined by clustering of scRNA-seq data. These cell identities are used in downstream analyses. How can we examine if cell identities are accurately inferred? Unlike external measurements or labels for single cells, using clustering-based cell identities result in spurious signals and false discoveries. RESULTS We introduce non-parametric methods to evaluate cell identities by testing cluster memberships in an unsupervised manner. Diverse simulation studies demonstrate accuracy of the jackstraw test for cluster membership. We propose a posterior probability that a cell should be included in that clustering-based subpopulation. Posterior inclusion probabilities (PIPs) for cluster memberships can be used to select and visualize samples relevant to subpopulations. The proposed methods are applied on three scRNA-seq datasets. First, a mixture of Jurkat and 293T cell lines provides two distinct cellular populations. Second, Cell Hashing yields cell identities corresponding to eight donors which are independently analyzed by the jackstraw. Third, peripheral blood mononuclear cells are used to explore heterogeneous immune populations. The proposed P-values and PIPs lead to probabilistic feature selection of single cells that can be visualized using principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and others. By learning uncertainty in clustering high-dimensional data, the proposed methods enable unsupervised evaluation of cluster membership. AVAILABILITY AND IMPLEMENTATION https://cran.r-project.org/package=jackstraw. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Neo Christopher Chung
- Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland.,NHLBI Integrated Cardiovascular Data Science Training Program, University of California, Los Angeles, CA 90095, USA.,Departments of Physiology and Medicine (Cardiology), UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
788
|
Combes AJ, Courau T, Kuhn NF, Hu KH, Ray A, Chen WS, Cleary SJ, Chew NW, Kushnoor D, Reeder GC, Shen A, Tsui J, Hiam-Galvez KJ, Muñoz-Sandoval P, Zhu WS, Lee DS, Sun Y, You R, Magnen M, Rodriguez L, Leligdowicz A, Zamecnik CR, Loudermilk RP, Wilson MR, Ye CJ, Fragiadakis GK, Looney MR, Chan V, Ward A, Carrillo S, Matthay M, Erle DJ, Woodruff PG, Langelier C, Kangelaris K, Hendrickson CM, Calfee C, Rao AA, Krummel MF. Global Absence and Targeting of Protective Immune States in Severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140050 DOI: 10.1101/2020.10.28.359935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense. One Sentence Summary In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; antibodies in their serum actively prevents the successful production of those cells.
Collapse
|
789
|
Ognjenovic NB, Bagheri M, Mohamed GA, Xu K, Chen Y, Mohamed Saleem MA, Brown MS, Nagaraj SH, Muller KE, Gerber SA, Christensen BC, Pattabiraman DR. Limiting Self-Renewal of the Basal Compartment by PKA Activation Induces Differentiation and Alters the Evolution of Mammary Tumors. Dev Cell 2020; 55:544-557.e6. [PMID: 33120014 DOI: 10.1016/j.devcel.2020.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
Differentiation therapy utilizes our understanding of the hierarchy of cellular systems to pharmacologically induce a shift toward terminal commitment. While this approach has been a paradigm in treating certain hematological malignancies, efforts to translate this success to solid tumors have met with limited success. Mammary-specific activation of PKA in mouse models leads to aberrant differentiation and diminished self-renewing potential of the basal compartment, which harbors mammary repopulating cells. PKA activation results in tumors that are more benign, exhibiting reduced metastatic propensity, loss of tumor-initiating potential, and increased sensitivity to chemotherapy. Analysis of tumor histopathology revealed features of overt differentiation with papillary characteristics. Longitudinal single-cell profiling at the hyperplasia and tumor stages uncovered an altered path of tumor evolution whereby PKA curtails the emergence of aggressive subpopulations. Acting through the repression of SOX4, PKA activation promotes tumor differentiation and represents a possible adjuvant to chemotherapy for certain breast cancers.
Collapse
Affiliation(s)
- Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ke Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Meredith S Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kristen E Muller
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
790
|
Gan Y, Liang S, Wei Q, Zou G. Identification of Differential Gene Groups From Single-Cell Transcriptomes Using Network Entropy. Front Cell Dev Biol 2020; 8:588041. [PMID: 33195248 PMCID: PMC7649823 DOI: 10.3389/fcell.2020.588041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
A complex tissue contains a variety of cells with distinct molecular signatures. Single-cell RNA sequencing has characterized the transcriptomes of different cell types and enables researchers to discover the underlying mechanisms of cellular heterogeneity. A critical task in single-cell transcriptome studies is to uncover transcriptional differences among specific cell types. However, the intercellular transcriptional variation is usually confounded with high level of technical noise, which masks the important biological signals. Here, we propose a new computational method DiffGE for differential analysis, adopting network entropy to measure the expression dynamics of gene groups among different cell types and to identify the highly differential gene groups. To evaluate the effectiveness of our proposed method, DiffGE is applied to three independent single-cell RNA-seq datasets and to identify the highly dynamic gene groups that exhibit distinctive expression patterns in different cell types. We compare the results of our method with those of three widely applied algorithms. Further, the gene function analysis indicates that these detected differential gene groups are significantly related to cellular regulation processes. The results demonstrate the power of our method in evaluating the transcriptional dynamics and identifying highly differential gene groups among different cell types.
Collapse
Affiliation(s)
- Yanglan Gan
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Shanshan Liang
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Qingting Wei
- School of Software, Nanchang University, Nanchang, China
| | - Guobing Zou
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| |
Collapse
|
791
|
Rattner A, Terrillion CE, Jou C, Kleven T, Hu SF, Williams J, Hou Z, Aggarwal M, Mori S, Shin G, Goff LA, Witter MP, Pletnikov M, Fenton AA, Nathans J. Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. eLife 2020; 9:e62766. [PMID: 33084572 PMCID: PMC7577738 DOI: 10.7554/elife.62766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In the hippocampus, a widely accepted model posits that the dentate gyrus improves learning and memory by enhancing discrimination between inputs. To test this model, we studied conditional knockout mice in which the vast majority of dentate granule cells (DGCs) fail to develop - including nearly all DGCs in the dorsal hippocampus - secondary to eliminating Wntless (Wls) in a subset of cortical progenitors with Gfap-Cre. Other cells in the Wlsfl/-;Gfap-Cre hippocampus were minimally affected, as determined by single nucleus RNA sequencing. CA3 pyramidal cells, the targets of DGC-derived mossy fibers, exhibited normal morphologies with a small reduction in the numbers of synaptic spines. Wlsfl/-;Gfap-Cre mice have a modest performance decrement in several complex spatial tasks, including active place avoidance. They were also modestly impaired in one simpler spatial task, finding a visible platform in the Morris water maze. These experiments support a role for DGCs in enhancing spatial learning and memory.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia Jou
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - Tina Kleven
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Shun Felix Hu
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zhipeng Hou
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susumu Mori
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gloria Shin
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - André A Fenton
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
- Neuroscience Institute at the New York University Langone Medical Center, New York UniversityNew YorkUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
792
|
Ma A, Wang C, Chang Y, Brennan FH, McDermaid A, Liu B, Zhang C, Popovich PG, Ma Q. IRIS3: integrated cell-type-specific regulon inference server from single-cell RNA-Seq. Nucleic Acids Res 2020; 48:W275-W286. [PMID: 32421805 PMCID: PMC7319566 DOI: 10.1093/nar/gkaa394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
A group of genes controlled as a unit, usually by the same repressor or activator gene, is known as a regulon. The ability to identify active regulons within a specific cell type, i.e., cell-type-specific regulons (CTSR), provides an extraordinary opportunity to pinpoint crucial regulators and target genes responsible for complex diseases. However, the identification of CTSRs from single-cell RNA-Seq (scRNA-Seq) data is computationally challenging. We introduce IRIS3, the first-of-its-kind web server for CTSR inference from scRNA-Seq data for human and mouse. IRIS3 is an easy-to-use server empowered by over 20 functionalities to support comprehensive interpretations and graphical visualizations of identified CTSRs. CTSR data can be used to reliably characterize and distinguish the corresponding cell type from others and can be combined with other computational or experimental analyses for biomedical studies. CTSRs can, therefore, aid in the discovery of major regulatory mechanisms and allow reliable constructions of global transcriptional regulation networks encoded in a specific cell type. The broader impact of IRIS3 includes, but is not limited to, investigation of complex diseases hierarchies and heterogeneity, causal gene regulatory network construction, and drug development. IRIS3 is freely accessible from https://bmbl.bmi.osumc.edu/iris3/ with no login requirement.
Collapse
Affiliation(s)
- Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Adam McDermaid
- Imagenetics, Sanford Health, Sioux Falls, SD 57104, USA.,Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Chi Zhang
- Department of Medical & Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
793
|
Zarinsefat A, Hartoularos G, Chandran S, Yee CJ, Vincenti F, Sarwal MM. Single-cell RNA sequencing of Tocilizumab-treated peripheral blood mononuclear cells as an in vitro model of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.11.281782. [PMID: 32935096 PMCID: PMC7491509 DOI: 10.1101/2020.09.11.281782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
COVID-19 has posed a significant threat to global health. Early data has revealed that IL-6, a key regulatory cytokine, plays an important role in the cytokine storm of COVID-19. Multiple trials are therefore looking at the effects of Tocilizumab, an IL-6 receptor antibody that inhibits IL-6 activity, on treatment of COVID-19, with promising findings. As part of a clinical trial looking at the effects of Tocilizumab treatment on kidney transplant recipients with subclinical rejection, we performed single-cell RNA sequencing of comparing stimulated PBMCs before and after Tocilizumab treatment. We leveraged this data to create an in vitro cytokine storm model, to better understand the effects of Tocilizumab in the presence of inflammation. Tocilizumab-treated cells had reduced expression of inflammatory-mediated genes and biologic pathways, particularly amongst monocytes. These results support the hypothesis that Tocilizumab may hinder the cytokine storm of COVID-19, through a demonstration of biologic impact at the single-cell level.
Collapse
|
794
|
Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, Luo W, Chen R, Li Y, Kim S, Lu HS, Cassis LA, Coselli JS, Daugherty A, Shen YH, LeMaire SA. Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue. Circulation 2020; 142:1374-1388. [PMID: 33017217 DOI: 10.1161/circulationaha.120.046528] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is caused by the progressive weakening and dilatation of the aortic wall and can lead to aortic dissection, rupture, and other life-threatening complications. To improve our understanding of ATAA pathogenesis, we aimed to comprehensively characterize the cellular composition of the ascending aortic wall and to identify molecular alterations in each cell population of human ATAA tissues. METHODS We performed single-cell RNA sequencing analysis of ascending aortic tissues from 11 study participants, including 8 patients with ATAA (4 women and 4 men) and 3 control subjects (2 women and 1 man). Cells extracted from aortic tissue were analyzed and categorized with single-cell RNA sequencing data to perform cluster identification. ATAA-related changes were then examined by comparing the proportions of each cell type and the gene expression profiles between ATAA and control tissues. We also examined which genes may be critical for ATAA by performing the integrative analysis of our single-cell RNA sequencing data with publicly available data from genome-wide association studies. RESULTS We identified 11 major cell types in human ascending aortic tissue; the high-resolution reclustering of these cells further divided them into 40 subtypes. Multiple subtypes were observed for smooth muscle cells, macrophages, and T lymphocytes, suggesting that these cells have multiple functional populations in the aortic wall. In general, ATAA tissues had fewer nonimmune cells and more immune cells, especially T lymphocytes, than control tissues did. Differential gene expression data suggested the presence of extensive mitochondrial dysfunction in ATAA tissues. In addition, integrative analysis of our single-cell RNA sequencing data with public genome-wide association study data and promoter capture Hi-C data suggested that the erythroblast transformation-specific related gene(ERG) exerts an important role in maintaining normal aortic wall function. CONCLUSIONS Our study provides a comprehensive evaluation of the cellular composition of the ascending aortic wall and reveals how the gene expression landscape is altered in human ATAA tissue. The information from this study makes important contributions to our understanding of ATAA formation and progression.
Collapse
Affiliation(s)
- Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Waleed Ageedi
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Rui Chen
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Sangbae Kim
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Hong S Lu
- Saha Cardiovascular Research Center (H.S.L., A. Daugherty), University of Kentucky, Lexington.,Department of Physiology (H.S.L., A. Daugherty), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center (H.S.L., A. Daugherty), University of Kentucky, Lexington.,Department of Physiology (H.S.L., A. Daugherty), University of Kentucky, Lexington
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| |
Collapse
|
795
|
Song Y, Guerrero-Juarez CF, Chen Z, Tang Y, Ma X, Lv C, Bi X, Deng M, Bu L, Tian Y, Liu R, Zhao R, Xu J, Sheng X, Du S, Liu Y, Zhu Y, Shan SJ, Chen HD, Zhao Y, Zhou G, Shuai J, Ren F, Xue L, Ying Z, Dai X, Lengner CJ, Andersen B, Plikus MV, Nie Q, Yu Z. The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Res 2020; 30:854-872. [PMID: 32457396 PMCID: PMC7608215 DOI: 10.1038/s41422-020-0334-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Mammary and extramammary Paget's Diseases (PD) are a malignant skin cancer characterized by the appearance of Paget cells. Although easily diagnosed, its pathogenesis remains unknown. Here, single-cell RNA-sequencing identified distinct cellular states, novel biomarkers, and signaling pathways - including mTOR, associated with extramammary PD. Interestingly, we identified MSI1 ectopic overexpression in basal epithelial cells of human PD skin, and show that Msi1 overexpression in the epidermal basal layer of mice phenocopies human PD at histopathological, single-cell and molecular levels. Using this mouse model, we identified novel biomarkers of Paget-like cells that translated to human Paget cells. Furthermore, single-cell trajectory, RNA velocity and lineage-tracing analyses revealed a putative keratinocyte-to-Paget-like cell conversion, supporting the in situ transformation theory of disease pathogenesis. Mechanistically, the Msi1-mTOR pathway drives keratinocyte-Paget-like cell conversion, and suppression of mTOR signaling with Rapamycin significantly rescued the Paget-like phenotype in Msi1-overexpressing transgenic mice. Topical Rapamycin treatment improved extramammary PD-associated symptoms in humans, suggesting mTOR inhibition as a novel therapeutic treatment in PD.
Collapse
Affiliation(s)
- Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Jilin Agricultural Science and Technology College, Changchun, Jilin, 100132, China
| | - Christian F Guerrero-Juarez
- Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | | | - Yichen Tang
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Xianghui Ma
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Min Deng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lina Bu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Yunlu Zhu
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Shi-Jun Shan
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yiqiang Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, 361005, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Lixiang Xue
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhaoxia Ying
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xing Dai
- Departments of Biological Chemistry and Dermatology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Christopher J Lengner
- Department of Animal Biology, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19082, USA
| | - Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
796
|
Hall MS, Decker JT, Shea LD. Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. Biomaterials 2020; 255:120189. [PMID: 32569865 PMCID: PMC7396312 DOI: 10.1016/j.biomaterials.2020.120189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Biomaterial systems have enabled the in vitro production of complex, emergent tissue behaviors that were not possible with conventional two-dimensional culture systems, allowing for analysis of both normal development and disease processes. We propose that the path towards developing the design parameters for biomaterial systems lies with identifying the molecular drivers of emergent behavior through leveraging technological advances in systems biology, including single cell omics, genetic engineering, and high content imaging. This growing research opportunity at the intersection of the fields of tissue engineering and systems biology - systems tissue engineering - can uniquely interrogate the mechanisms by which complex tissue behaviors emerge with the potential to capture the contribution of i) dynamic regulation of tissue development and dysregulation, ii) single cell heterogeneity and the function of rare cell types, and iii) the spatial distribution and structure of individual cells and cell types within a tissue. By leveraging advances in both biological and materials data science, systems tissue engineering can facilitate the identification of biomaterial design parameters that will accelerate basic science discovery and translation.
Collapse
Affiliation(s)
- Matthew S Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
797
|
Nguyen AT, Wang K, Hu G, Wang X, Miao Z, Azevedo JA, Suh E, Van Deerlin VM, Choi D, Roeder K, Li M, Lee EB. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathol 2020; 140:477-493. [PMID: 32840654 PMCID: PMC7520051 DOI: 10.1007/s00401-020-02200-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Beta-amyloid deposition is a defining feature of Alzheimer's disease (AD). How genetic risk factors, like APOE and TREM2, intersect with cellular responses to beta-amyloid in human tissues is not fully understood. Using single-nucleus RNA sequencing of postmortem human brain with varied APOE and TREM2 genotypes and neuropathology, we identified distinct microglia subpopulations, including a subpopulation of CD163-positive amyloid-responsive microglia (ARM) that are depleted in cases with APOE and TREM2 risk variants. We validated our single-nucleus RNA sequencing findings in an expanded cohort of AD cases, demonstrating that APOE and TREM2 risk variants are associated with a significant reduction in CD163-positive amyloid-responsive microglia. Our results showcase the diverse microglial response in AD and underscore how genetic risk factors influence cellular responses to underlying pathologies.
Collapse
Affiliation(s)
- Aivi T Nguyen
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kui Wang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
- Department of Information Theory and Data Science, School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Gang Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Xuran Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhen Miao
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua A Azevedo
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Choi
- Heinz College of Public Policy and Information Systems, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
798
|
Silverman JD, Roche K, Mukherjee S, David LA. Naught all zeros in sequence count data are the same. Comput Struct Biotechnol J 2020; 18:2789-2798. [PMID: 33101615 PMCID: PMC7568192 DOI: 10.1016/j.csbj.2020.09.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Genomic studies feature multivariate count data from high-throughput DNA sequencing experiments, which often contain many zero values. These zeros can cause artifacts for statistical analyses and multiple modeling approaches have been developed in response. Here, we apply different zero-handling models to gene-expression and microbiome datasets and show models can disagree substantially in terms of identifying the most differentially expressed sequences. Next, to rationally examine how different zero handling models behave, we developed a conceptual framework outlining four types of processes that may give rise to zero values in sequence count data. Last, we performed simulations to test how zero handling models behave in the presence of these different zero generating processes. Our simulations showed that simple count models are sufficient across multiple processes, even when the true underlying process is unknown. On the other hand, a common zero handling technique known as "zero-inflation" was only suitable under a zero generating process associated with an unlikely set of biological and experimental conditions. In concert, our work here suggests several specific guidelines for developing and choosing state-of-the-art models for analyzing sparse sequence count data.
Collapse
Affiliation(s)
- Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, State College, PA 16802, United States
- Institute for Computational and Data Science, Pennsylvania State University, State College, PA 16802, United States
- Department of Medicine, Pennsylvania State University, Hershey, PA 17033, United States
| | - Kimberly Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, United States
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, United States
- Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, Durham, NC 27708, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States
| | - Lawrence A David
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
799
|
Suzuki S, Diaz VD, Hermann BP. What has single-cell RNA-seq taught us about mammalian spermatogenesis? Biol Reprod 2020; 101:617-634. [PMID: 31077285 DOI: 10.1093/biolre/ioz088] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermatogenesis is a complex developmental program that transforms mitotic testicular germ cells (spermatogonia) into mature male gametes (sperm) for production of offspring. For decades, it has been known that this several-weeks-long process involves a series of highly ordered and morphologically recognizable cellular changes as spermatogonia proliferate, spermatocytes undertake meiosis, and spermatids develop condensed nuclei, acrosomes, and flagella. Yet, much of the underlying molecular logic driving these processes has remained opaque because conventional characterization strategies often aggregated groups of cells to meet technical requirements or due to limited capability for cell selection. Recently, a cornucopia of single-cell transcriptome studies has begun to lift the veil on the full compendium of gene expression phenotypes and changes underlying spermatogenic development. These datasets have revealed the previously obscured molecular heterogeneity among and between varied spermatogenic cell types and are reinvigorating investigation of testicular biology. This review describes the extent of available single-cell RNA-seq profiles of spermatogenic and testicular somatic cells, how those data were produced and evaluated, their present value for advancing knowledge of spermatogenesis, and their potential future utility at both the benchtop and bedside.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Victoria D Diaz
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
800
|
Calcagno DM, Ng RP, Toomu A, Zhang C, Huang K, Aguirre AD, Weissleder R, Daniels LB, Fu Z, King KR. The myeloid type I interferon response to myocardial infarction begins in bone marrow and is regulated by Nrf2-activated macrophages. Sci Immunol 2020; 5:5/51/eaaz1974. [PMID: 32978242 DOI: 10.1126/sciimmunol.aaz1974] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
Sterile tissue injury is thought to locally activate innate immune responses via damage-associated molecular patterns (DAMPs). Whether innate immune pathways are remotely activated remains relatively unexplored. Here, by analyzing ~145,000 single-cell transcriptomes at steady state and after myocardial infarction (MI) in mice and humans, we show that the type I interferon (IFN) response, characterized by expression of IFN-stimulated genes (ISGs), begins far from the site of injury, in neutrophil and monocyte progenitors within the bone marrow. In the peripheral blood of patients, we observed defined subsets of ISG-expressing neutrophils and monocytes. In the bone marrow and blood of mice, ISG expression was detected in neutrophils and monocytes and their progenitors, intensified with maturation at steady-state and after MI, and was controlled by Tet2 and Irf3 transcriptional regulators. Within the infarcted heart, ISG-expressing cells were negatively regulated by Nrf2 activation in Ccr2- steady-state cardiac macrophages. Our results show that IFN signaling begins in the bone marrow, implicate multiple transcriptional regulators (Tet2, Irf3, and Nrf2) in governing ISG expression, and provide a clinical biomarker (ISG score) for studying IFN signaling in patients.
Collapse
Affiliation(s)
- David M Calcagno
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Richard P Ng
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Avinash Toomu
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Claire Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Huang
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aaron D Aguirre
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lori B Daniels
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhenxing Fu
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin R King
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA. .,Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|