801
|
Park JH, Kim SH, Lee MS, Kim MS. Epigenetic modification by dietary factors: Implications in metabolic syndrome. Mol Aspects Med 2017; 54:58-70. [PMID: 28216432 DOI: 10.1016/j.mam.2017.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023]
Abstract
Dietary factors play a role in normal biological processes and are involved in the regulation of pathological progression over a lifetime. Evidence has emerged indicating that dietary factor-dependent epigenetic modifications can significantly affect genome stability and the expression of mRNA and proteins, which are involved in metabolic dysfunction. Since metabolic syndrome is a progressive phenotype characterized by insulin resistance, obesity, hypertension, dyslipidemia, or type 2 diabetes, gene-diet interactions are important processes involved in the initiation of particular symptoms of metabolic syndrome and their progression. Some epigenetic risk markers can be initiated or reversed by diet and environmental factors. In this review, we discuss recent advances in our understanding of the interactions between dietary factors and epigenetic changes in metabolic syndrome. We discuss the contribution of nutritional factors in transgenerational inheritance of epigenetic markers and summarize the current knowledge of epigenetic modifications by dietary bioactive components in metabolic diseases. The intake of dietary components that regulate epigenetic modifications can provide significant health effects and, as an epigenetic diet, may prevent various pathological processes in the development of metabolic disease.
Collapse
Affiliation(s)
- Jae-Ho Park
- Division of Metabolism and Nutrition, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, Gyeonggi-do 13539, Republic of Korea
| | - Soon-Hee Kim
- Division of Metabolism and Nutrition, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea
| | - Myeong Soo Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Myung-Sunny Kim
- Division of Metabolism and Nutrition, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, Gyeonggi-do 13539, Republic of Korea.
| |
Collapse
|
802
|
Liang Y, Chang C, Lu Q. The Genetics and Epigenetics of Atopic Dermatitis-Filaggrin and Other Polymorphisms. Clin Rev Allergy Immunol 2017; 51:315-328. [PMID: 26385242 DOI: 10.1007/s12016-015-8508-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by a combination of genetic and environmental factors. Genetic evidences depict a complex network comprising by epidermal barrier dysfunctions and dysregulation of innate and adaptive immunity in the pathogenesis of AD. Mutations in the human filaggrin gene (FLG) are the most significant and well-replicated genetic mutation associated with AD, and other mutations associated with epidermal barriers such as SPINK5, FLG-2, SPRR3, and CLDN1 have all been linked to AD. Gene variants may also contribute to the abnormal innate and adaptive responses found in AD, including mutations in PRRs and AMPs, TSLP and TSLPR, IL-1 family cytokines and receptors genes, vitamin D pathway genes, FCER1A, and Th2 and other cytokines genes. GWAS and Immunochip analysis have identified a total of 19 susceptibility loci for AD. Candidate genes at these susceptibility loci identified by GWAS and Immunochip analysis also suggest roles for epidermal barrier functions, innate and adaptive immunity, interleukin-1 family signaling, regulatory T cells, the vitamin D pathway, and the nerve growth factor pathway in the pathogenesis of AD. Increasing evidences show the modern lifestyle (i.e., the hygiene hypothesis, Western diet) and other environmental factors such as pollution and environmental tobacco smoke (ETS) lead to the increasing prevalence of AD with the development of industrialization. Epigenetic alterations in response to these environmental factors, including DNA methylation and microRNA related to immune system and skin barriers, have been found to contribute to the pathogenesis of AD. Genetic variants and epigenetic alteration might be the key tools for the molecular taxonomy of AD and provide the background for the personalized management.
Collapse
Affiliation(s)
- Yunsheng Liang
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China.
| |
Collapse
|
803
|
Abstract
BACKGROUND Epigenetics refers to the study of heritable changes in gene expression not involving changes in DNA sequence and is presently an active area of research in biology and medicine. There is increasing evidence that epigenetics is involved in the pathogenesis of psychiatric disorders. AIMS AND METHODS Several studies conducted to date have suggested that psychosocial factors act by modifying epigenetic mechanisms of gene expression in the brain in the pathogenesis of psychiatric disorders. Such studies have been conducted both on brain tissues and also using peripheral tissues as substitutes for brain tissues. This article reviews such studies. RESULTS AND CONCLUSION Epigenetic mechanisms of gene expression in the brain appear to link one individual with another in the context of social psychiatry. Epigenetics appears to be of major importance to the field of social psychiatry.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College Vellore, Vellore, India
| |
Collapse
|
804
|
Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, Liu L, Zhang W, Gao T, Chang D, Osorio-Yanez C, Carmona JJ, Wang S, McCracken JP, Zhang X, Chervona Y, Díaz A, Bertazzi PA, Koutrakis P, Kang CM, Schwartz J, Baccarelli AA, Hou L. Traffic-derived particulate matter exposure and histone H3 modification: A repeated measures study. ENVIRONMENTAL RESEARCH 2017; 153:112-119. [PMID: 27918982 PMCID: PMC5605137 DOI: 10.1016/j.envres.2016.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/09/2016] [Accepted: 11/22/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Airborne particulate matter (PM) may induce epigenetic changes that potentially lead to chronic diseases. Histone modifications regulate gene expression by influencing chromatin structure that can change gene expression status. We evaluated whether traffic-derived PM exposure is associated with four types of environmentally inducible global histone H3 modifications. METHODS The Beijing Truck Driver Air Pollution Study included 60 truck drivers and 60 office workers examined twice, 1-2 weeks apart, for ambient PM10 (both day-of and 14-day average exposures), personal PM2.5, black carbon (BC), and elemental components (potassium, sulfur, iron, silicon, aluminum, zinc, calcium, and titanium). For both PM10 measures, we obtained hourly ambient PM10 data for the study period from the Beijing Municipal Environmental Bureau's 27 representatively distributed monitoring stations. We then calculated a 24h average for each examination day and a moving average of ambient PM10 measured in the 14 days prior to each examination. Examinations measured global levels of H3 lysine 9 acetylation (H3K9ac), H3 lysine 9 tri-methylation (H3K9me3), H3 lysine 27 tri-methylation (H3K27me3), and H3 lysine 36 tri-methylation (H3K36me3) in blood leukocytes collected after work. We used adjusted linear mixed-effect models to examine percent changes in histone modifications per each μg/m3 increase in PM exposure. RESULTS In all participants each μg/m3 increase in 14-day average ambient PM10 exposure was associated with lower H3K27me3 (β=-1.1%, 95% CI: -1.6, -0.6) and H3K36me3 levels (β=-0.8%, 95% CI: -1.4, -0.1). Occupation-stratified analyses showed associations between BC and both H3K9ac and H3K36me3 that were stronger in office workers (β=4.6%, 95% CI: 0.9, 8.4; and β=4.1%, 95% CI: 1.3; 7.0 respectively) than in truck drivers (β=0.1%, 95% CI: -1.3, 1.5; and β=0.9%, 95% CI: -0.9, 2.7, respectively; both pinteraction <0.05). Sex-stratified analyses showed associations between examination-day PM10 and H3K9ac, and between BC and H3K9me3, were stronger in women (β=10.7%, 95% CI: 5.4, 16.2; and β=7.5%, 95% CI: 1.2, 14.2, respectively) than in men (β=1.4%, 95% CI: -0.9, 3.7; and β=0.9%, 95% CI: -0.9, 2.7, respectively; both pinteraction <0.05). We observed no associations between personal PM2.5 or elemental components and histone modifications. CONCLUSIONS Our results suggest a possible role of global histone H3 modifications in effects of traffic-derived PM exposures, particularly BC exposure. Future studies should assess the roles of these modifications in human diseases and as potential mediators of air pollution-induced disease, in particular BC exposure.
Collapse
Affiliation(s)
- Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Health Sciences Integrated PhD Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marco Sanchez-Guerra
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian T Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, Chicago, IL, USA
| | - Jia Zhong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jacob K Kresovich
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, Chicago, IL, USA
| | - Lei Liu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dou Chang
- Department of Safety Engineering, China Institute of Industrial Relations, Beijing, China
| | - Citlalli Osorio-Yanez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Juan Jose Carmona
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheng Wang
- Department of Occupational and Environmental Health, Peking University Health Science Center, Beijing, China
| | - John P McCracken
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiao Zhang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yana Chervona
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY, USA
| | - Anaite Díaz
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Pier A Bertazzi
- Department of Clinical Sciences and Community Medicine, University of Milan and IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Choong-Min Kang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
805
|
Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:33-45. [PMID: 29276780 DOI: 10.1080/23808993.2017.1284557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Epigenetics is the study of reversible modifications to chromatin and their extensive and profound effects on gene regulation. To date, the role of epigenetics in personalized medicine has been under-explored. Therefore, this review aims to highlight the vast potential that epigenetics holds. Areas covered We first review the cell-specific nature of epigenetic states and how these can vary with developmental stage and in response to environmental factors. We then summarize epigenetic biomarkers of disease, with a focus on diagnostic tests, followed by a detailed description of current and pipeline drugs with epigenetic modes of action. Finally, we discuss epigenetic biomarkers of drug response. Expert commentary Epigenetic variation can yield information on cellular states and developmental histories in ways that genotype information cannot. Furthermore, in contrast to fixed genome sequence, epigenetic patterns are plastic, so correcting aberrant, disease-causing epigenetic marks holds considerable therapeutic promise. While just six epigenetic drugs are currently approved for use in the United States, a larger number is being developed. However, a drawback to current therapeutics is their non-specific effects. Development of locus-specific epigenetic modifiers, used in conjunction with epigenetic biomarkers of response, will enable truly precision interventions.
Collapse
Affiliation(s)
- Mohamad M Kronfol
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| |
Collapse
|
806
|
Leroux S, Gourichon D, Leterrier C, Labrune Y, Coustham V, Rivière S, Zerjal T, Coville JL, Morisson M, Minvielle F, Pitel F. Embryonic environment and transgenerational effects in quail. Genet Sel Evol 2017; 49:14. [PMID: 28125975 PMCID: PMC5270212 DOI: 10.1186/s12711-017-0292-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background Environmental exposures, for instance to chemicals, are known to impact plant and animal phenotypes on the long term, sometimes across several generations. Such transgenerational phenotypes were shown to be promoted by epigenetic alterations such as DNA methylation, an epigenetic mark involved in the regulation of gene expression. However, it is yet unknown whether transgenerational epigenetic inheritance of altered phenotypes exists in birds. The purpose of this study was to develop an avian model to investigate whether changes to the embryonic environment had a transgenerational effect that could alter the phenotypes of third-generation offspring. Given its impact on the mammalian epigenome and the reproductive system in birds, genistein was used as an environment stressor. Results We compared several third-generation phenotypes of two quail “epilines”, which were obtained from genistein-injected eggs (Epi+) or from untreated eggs (Epi−) from the same founders. A “mirrored” crossing strategy was used to minimize between-line genetic variability by maintaining similar ancestor contributions across generations in each line. Three generations after genistein treatment, a significant difference in the sexual maturity of the females, which, after three generations, could not be attributed to direct maternal effects, was observed between the lines, with Epi+ females starting to lay eggs later. Adult body weight was significantly affected by genistein treatment applied in a previous generation, and a significant interaction between line and sex was observed for body weight at 3 weeks. Behavioral traits, such as evaluating the birds’ reaction to social isolation, were also significantly affected by genistein treatment. Yet, global methylation analyses revealed no significant difference between the epilines. Conclusions These findings demonstrate that embryonic environment affects the phenotype of offspring three generations later in quail. While one cannot rule out the existence of some initial genetic variability between the lines, the mirrored animal design should have minimized its effects, and thus, the observed differences in animals of the third generation may be attributed, at least partly, to transgenerational epigenetic phenomena. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Leroux
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Christine Leterrier
- UMR INRA PRC, 37380, Nouzilly, France.,CNRS, 37380, Nouzilly, France.,UFR Tours, 37380, Nouzilly, France.,IFCE, 37380, Nouzilly, France
| | - Yann Labrune
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | | | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Luc Coville
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Francis Minvielle
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France.
| |
Collapse
|
807
|
Zhang J, Huang K. Pan-cancer analysis of frequent DNA co-methylation patterns reveals consistent epigenetic landscape changes in multiple cancers. BMC Genomics 2017; 18:1045. [PMID: 28198667 PMCID: PMC5310283 DOI: 10.1186/s12864-016-3259-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is the major form of epigenetic modifications through which the cell regulates the gene expression and silencing. There have been extensive studies on the roles of DNA methylation in cancers, and several cancer drugs were developed targeting this process. However, DNA co-methylation cluster has not been examined in depth, and co-methylation in multiple cancer types has never been studied previously. Results In this study, we applied newly developed lmQCM algorithm to mine co-methylation clusters using methylome data from 11 cancer types in TCGA database, and found frequent co-methylated gene clusters exist in these cancer types. Among the four identified frequent clusters, two of them separate the tumor sample from normal sample in 10 out of 11 cancer types, which indicates that consistent epigenetic landscape changes exist in multiple cancer types. Conclusion This discovery provides new insight on the epigenetic regulation in cancers and leads to potential new direction for epigenetic biomarker and cancer drug discovery. We also found that genes commonly believed to be silenced via hypermethylation in cancers may still display highly variable methylation levels among cancer cells, and should be considered while using them as epigenetic biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
808
|
Vitale AM, Matigian NA, Cristino AS, Nones K, Ravishankar S, Bellette B, Fan Y, Wood SA, Wolvetang E, Mackay-Sim A. DNA methylation in schizophrenia in different patient-derived cell types. NPJ SCHIZOPHRENIA 2017; 3:6. [PMID: 28560252 PMCID: PMC5441549 DOI: 10.1038/s41537-016-0006-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
DNA methylation of gene promoter regions represses transcription and is a mechanism via which environmental risk factors could affect cells during development in individuals at risk for schizophrenia. We investigated DNA methylation in patient-derived cells that might shed light on early development in schizophrenia. Induced pluripotent stem cells may reflect a “ground state” upon which developmental and environmental influences would be minimal. Olfactory neurosphere-derived cells are an adult-derived neuro-ectodermal stem cell modified by developmental and environmental influences. Fibroblasts provide a non-neural control for life-long developmental and environmental influences. Genome-wide profiling of DNA methylation and gene expression was done in these three cell types from the same individuals. All cell types had distinct, statistically significant schizophrenia-associated differences in DNA methylation and linked gene expression, with Gene Ontology analysis showing that the differentially affected genes clustered in networks associated with cell growth, proliferation, and movement, functions known to be affected in schizophrenia patient-derived cells. Only five gene loci were differentially methylated in all three cell types. Understanding the role of epigenetics in cell function in the brain in schizophrenia is likely to be complicated by similar cell type differences in intrinsic and environmentally induced epigenetic regulation. Schizophrenia-associated differences in the DNA methylation status of patient-derived cells suggest it could affect early brain development. Mechanisms that control gene expression without altering the genetic code, such as DNA methylation, could explain how environmental risk factors contribute to schizophrenia in genetically susceptible individuals. Alan Mackay-Sim and colleagues from Griffith University, Australia, carried out genome-wide comparisons of DNA methylation in induced pluripotent stem (iPS) cells, olfactory neurosphere-derived cells and fibroblasts from patients and controls. Differences in the DNA methylation pattern between patient and control iPS cells, which could reflect what happens in the embryo, suggest a disease-associated effect very early on in development. Only five genes were differentially methylated in all three patient-derived cell types compared to controls. None of these genes has previously been associated with schizophrenia and may represent new targets for future research.
Collapse
Affiliation(s)
- Alejandra M Vitale
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia.,Instituto de Biologia y Medicina Experimental-IBYME-CONICET, Buenos Aires, Argentina
| | - Nicholas A Matigian
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Alexandre S Cristino
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD Australia
| | - Sugandha Ravishankar
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| | - Bernadette Bellette
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| | - Yongjun Fan
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD Australia
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| |
Collapse
|
809
|
Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics 2017; 9:6. [PMID: 28149334 PMCID: PMC5270210 DOI: 10.1186/s13148-016-0307-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
Background Panic disorder (PD) is considered to be a multifactorial disorder emerging from interactions among multiple genetic and environmental factors. To date, although genetic studies reported several susceptibility genes with PD, few of them were replicated and the pathogenesis of PD remains to be clarified. Epigenetics is considered to play an important role in etiology of complex traits and diseases, and DNA methylation is one of the major forms of epigenetic modifications. In this study, we performed an epigenome-wide association study of PD using DNA methylation arrays so as to investigate the possibility that different levels of DNA methylation might be associated with PD. Methods The DNA methylation levels of CpG sites across the genome were examined with genomic DNA samples (PD, N = 48, control, N = 48) extracted from peripheral blood. Methylation arrays were used for the analysis. β values, which represent the levels of DNA methylation, were normalized via an appropriate pipeline. Then, β values were converted to M values via the logit transformation for epigenome-wide association study. The relationship between each DNA methylation site and PD was assessed by linear regression analysis with adjustments for the effects of leukocyte subsets. Results Forty CpG sites showed significant association with PD at 5% FDR correction, though the differences of the DNA methylation levels were relatively small. Most of the significant CpG sites (37/40 CpG sites) were located in or around CpG islands. Many of the significant CpG sites (27/40 CpG sites) were located upstream of genes, and all such CpG sites with the exception of two were hypomethylated in PD subjects. A pathway analysis on the genes annotated to the significant CpG sites identified several pathways, including “positive regulation of lymphocyte activation.” Conclusions Although future studies with larger number of samples are necessary to confirm the small DNA methylation abnormalities associated with PD, there is a possibility that several CpG sites might be associated, together as a group, with PD. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0307-1) contains supplementary material, which is available to authorized users.
Collapse
|
810
|
Winsvold BS, Palta P, Eising E, Page CM, van den Maagdenberg AMJM, Palotie A, Zwart JA. Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia 2017; 38:312-322. [DOI: 10.1177/0333102417690111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache. Methods Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis. Results None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways. Conclusion In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease.
Collapse
Affiliation(s)
- Bendik S Winsvold
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Else Eising
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christian M Page
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - John-Anker Zwart
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
811
|
Ronovsky M, Berger S, Molz B, Berger A, Pollak DD. Animal Models of Maternal Immune Activation in Depression Research. Curr Neuropharmacol 2017; 14:688-704. [PMID: 26666733 PMCID: PMC5050397 DOI: 10.2174/1570159x14666151215095359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/24/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023] Open
Abstract
Abstract: Background Depression and schizophrenia are debilitating mental illnesses with significant socio-economic impact. The high degree of comorbidity between the two disorders, and shared symptoms and risk factors, suggest partly common pathogenic mechanisms. Supported by human and animal studies, maternal immune activation (MIA) has been intimately associated with the development of schizophrenia. However, the link between MIA and depression has remained less clear, in part due to the lack of appropriate animal models. Objective Here we aim to summarize findings obtained from studies using MIA animal models and discuss their relevance for preclinical depression research. Methods Results on molecular, cellular and behavioral phenotypes in MIA animal models were collected by literature search (PubMed) and evaluated for their significance for depression. Results Several reports on offspring depression-related behavioral alterations indicate an involvement of MIA in the development of depression later in life. Depression-related behavioral phenotypes were frequently paralleled by neurogenic and neurotrophic deficits and modulated by several genetic and environmental factors. Conclusion Literature evidence analyzed in this review supports a relevance of MIA as animal model for a specific early life adversity, which may prime an individual for the development of distinct psychopathologies later life. MIA animal models may present a unique tool for the identification of additional exogenous and endogenous factors, which are required for the manifestation of a specific neuropsychiatric disorder, such as depression, later in life. Hereby, novel insights into the molecular mechanisms involved in the pathophysiology of depression may be obtained, supporting the identification of alternative therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
812
|
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36:3359-3374. [PMID: 28092669 PMCID: PMC5485177 DOI: 10.1038/onc.2016.485] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer.
Collapse
|
813
|
Guo XY, Liu XM, Jin L, Wang TT, Ullah K, Sheng JZ, Huang HF. Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil Steril 2017; 107:622-631.e5. [PMID: 28104241 DOI: 10.1016/j.fertnstert.2016.12.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To evaluate cardiovascular and metabolic features of offspring conceived by in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI). DESIGN Literature review and meta-analysis. SETTING Not applicable. PATIENT(S) Offspring from IVF-ICSI versus natural conception. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Systolic and diastolic blood pressure (SBP and DBP), cardiovascular function, body mass index (BMI), and lipid and glucose profiles. RESULT(S) We included 19 studies that had recruited 2,112 IVF-ICSI and 4,096 naturally conceived offspring, ranging from childhood to early adulthood. The blood pressure levels of IVF-ICSI offspring were statistically significantly higher than those of naturally conceived offspring (weighted mean differences and confidence intervals: 1.88 mm Hg [95% CI, 0.27, 3.49] for SBP and 1.51 mm Hg [95% CI, 0.33, 2.70] for DBP). In addition, cardiac diastolic function was suboptimal and vessel thickness was higher among IVF-ICSI offspring. Compared with the metabolism of naturally conceived offspring, IVF-ICSI offspring displayed comparable BMI, lower low-density lipoprotein cholesterol levels, and higher fasting insulin levels. CONCLUSION(S) Children conceived by IVF-ICSI manifested a minor yet statistically significant increase in blood pressure without the clustering of increased BMI or impaired lipid metabolism by early adulthood. Our findings indicate a risk of cardiovascular disease among IVF-ICSI offspring, which calls for longer-term follow-ups and further investigation.
Collapse
Affiliation(s)
- Xiao-Yan Guo
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Zhejiang, People's Republic of China
| | - Xin-Mei Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Li Jin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting-Ting Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kamran Ullah
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Jian-Zhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Zhejiang, People's Republic of China; International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Institute of Embryo-Fetal Original Adult Disease, Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
814
|
Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reprod Fertil Dev 2017; 28:25-40. [PMID: 27062872 DOI: 10.1071/rd15365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.
Collapse
Affiliation(s)
- Pablo Juan Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramación Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Campanillas, Malaga 29590, Spain
| |
Collapse
|
815
|
Galanter JM, Gignoux CR, Oh SS, Torgerson D, Pino-Yanes M, Thakur N, Eng C, Hu D, Huntsman S, Farber HJ, Avila PC, Brigino-Buenaventura E, LeNoir MA, Meade K, Serebrisky D, Rodríguez-Cintrón W, Kumar R, Rodríguez-Santana JR, Seibold MA, Borrell LN, Burchard EG, Zaitlen N. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. eLife 2017; 6:e20532. [PMID: 28044981 PMCID: PMC5207770 DOI: 10.7554/elife.20532] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation.
Collapse
Affiliation(s)
- Joshua M Galanter
- Department of Medicine, University of California, San Francisco, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | | | - Sam S Oh
- Department of Medicine, University of California, San Francisco, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - Dara Torgerson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Maria Pino-Yanes
- Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Neeta Thakur
- Department of Medicine, University of California, San Francisco, United States
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, United States
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, United States
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, United States
| | - Harold J Farber
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Pedro C Avila
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | - Kelly Meade
- Department of Pediatrics, Children’s Hospital and Research Center, Oakland, United States
| | | | | | - Rajesh Kumar
- Division of Allergy and Immunology, The Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, United States
| | | | - Max A Seibold
- Center for Genes, Environment, and Health, Department of Pediatrics, National Jewish Health, Denver, United States
| | - Luisa N Borrell
- Graduate School of Public Health and Health Policy, City University of New York, New York, United States
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Noah Zaitlen
- Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
816
|
Fabres PJ, Collins C, Cavagnaro TR, Rodríguez López CM. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2017; 8:1065. [PMID: 28676813 PMCID: PMC5477006 DOI: 10.3389/fpls.2017.01065] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple 'omics' can give us the opportunity to better understand how plants modulate their response to different environments. However, 'omics' technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different 'omic' results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.
Collapse
Affiliation(s)
- Pastor Jullian Fabres
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Cassandra Collins
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Carlos M. Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Carlos M. Rodríguez López,
| |
Collapse
|
817
|
Shoeb M, Kodali VK, Farris BY, Bishop LM, Meighan TG, Salmen R, Eye T, Friend S, Schwegler-Berry D, Roberts JR, Zeidler-Erdely PC, Erdely A, Antonini JM. Oxidative Stress, DNA Methylation, and Telomere Length Changes in Peripheral Blood Mononuclear Cells after Pulmonary Exposure to Metal-Rich Welding Nanoparticles. NANOIMPACT 2017; 5:61-69. [PMID: 30734006 PMCID: PMC6363128 DOI: 10.1016/j.impact.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Welding fume is a complex mixture of different potentially cytotoxic and genotoxic metals, such as chromium (Cr), manganese (Mn), nickel (Ni), and iron (Fe). Documented health effects have been observed in workers exposed to welding fume. The objective of the study was to use an animal model to identify potential biomarkers of epigenetic changes (e.g., changes in telomere length, DNA methylation) in isolated peripheral blood mononuclear cells (PBMCs) after exposure to different welding fumes. Male Sprague-Dawley rats were exposed by intratracheal instillation (ITI) of 2.0 mg/rat of gas metal arc-mild steel (GMA-MS) or manual metal arc-stainless steel (MMA-SS) welding fume. Vehicle controls received sterile saline by ITI. At 4 h, 14 h, 1 d, 3 d, 10 d, and 30 d, bronchoalveolar lavage (BAL) was performed to assess lung inflammation. Whole blood was collected, and PBMCs were isolated. Dihydroethidium (DHE) fluorescence and 4-hydroxylnonenal protein adduct (P-HNE) formation were measured in PBMCs to assess reactive oxygen species (ROS) production. DNA alterations in PBMCs were determined by evaluating changes in DNA methylation and telomere length. Metal composition of the two fumes was different: MMA-SS (41 % Fe, 29 % Cr, 17 % Mn, 3 % Ni) versus GMA-MS (85 % Fe, 14 % Mn). The more soluble and chemically complex MMA-SS sample induced a more persistent and greater inflammatory response compared to the other groups. Also, oxidative stress markers increased at 24 h in the PBMCs recovered from the MMA-SS group compared to other group. No significant differences were observed when comparing DNA methylation between the welding fume and control groups at any of the time points, whereas the MMA-SS sample significantly increased telomere length at 1 and 30 d after a single exposure compared to the other groups. These findings suggest that genotoxic metals in MMA-SS fume (e.g., Cr and Ni), that are absent in the GMA-MS fume, may enhance lung toxicity, as well as induce markers of oxidative stress and increase telomere length in PBMCs. Importantly, the measurement of telomere length in cells isolated from peripheral blood may serve as a potential biomarker of response in the assessment of toxicity associated with welding fumes.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Vamsi K Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Breanne Y Farris
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Lindsey M Bishop
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Terence G Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| |
Collapse
|
818
|
Epigenetics: Biological, Medical, Social, and Ethical Challenges. Epigenetics 2017. [DOI: 10.1007/978-3-658-14460-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
819
|
Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl Psychiatry 2017; 7:e989. [PMID: 28045465 PMCID: PMC5545719 DOI: 10.1038/tp.2016.249] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) represents a major social and economic health issue and constitutes a major risk factor for suicide. The molecular pathology of suicidal depression remains poorly understood, although it has been hypothesised that regulatory genomic processes are involved in the pathology of both MDD and suicidality. In this study, genome-wide patterns of DNA methylation were assessed in depressed suicide completers (n=20) and compared with non-psychiatric, sudden-death controls (n=20) using tissue from two cortical brain regions (Brodmann Area 11 (BA11) and Brodmann Area 25 (BA25)). Analyses focused on identifying differentially methylated regions (DMRs) associated with suicidal depression and epigenetic variation were explored in the context of polygenic risk scores for major depression and suicide. Weighted gene co-methylation network analysis was used to identify modules of co-methylated loci associated with depressed suicide completers and polygenic burden for MDD and suicide attempt. We identified a DMR upstream of the PSORS1C3 gene, subsequently validated using bisulfite pyrosequencing and replicated in a second set of suicide samples, which is characterised by significant hypomethylation in both cortical brain regions in MDD suicide cases. We also identified discrete modules of co-methylated loci associated with polygenic risk burden for suicide attempt, but not major depression. Suicide-associated co-methylation modules were enriched among gene networks implicating biological processes relevant to depression and suicidality, including nervous system development and mitochondria function. Our data suggest that there are coordinated changes in DNA methylation associated with suicide that may offer novel insights into the molecular pathology associated with depressed suicide completers.
Collapse
|
820
|
Zawadzka M, Jagodziński PP. Exercise-induced epigenetic regulations in inflammatory related cells. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
821
|
Heilig M, Barbier E, Johnstone AL, Tapocik J, Meinhardt MW, Pfarr S, Wahlestedt C, Sommer WH. Reprogramming of mPFC transcriptome and function in alcohol dependence. GENES, BRAIN, AND BEHAVIOR 2017; 16:86-100. [PMID: 27657733 PMCID: PMC5555395 DOI: 10.1111/gbb.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 01/07/2023]
Abstract
Despite its limited immediate reinforcement value, alcohol has a potent ability to induce neuroadaptations that promote its incentive salience, escalation of voluntary alcohol intake and aversion-resistant alcohol seeking. A constellation of these traits, collectively called 'post-dependent', emerges following brain exposure to repeated cycles of intoxication and withdrawal. The medial prefrontal cortex (mPFC) and its subdivisions exert top-down regulation of approach and avoidance behaviors, including those that lead to alcohol intake. Here, we review an emerging literature which indicates that a reprogramming of mPFC function occurs with prolonged exposure of the brain to cycles of alcohol intoxication and withdrawal. This reprogramming results in molecular dysregulations that contribute to the post-dependent syndrome. Convergent evidence has identified neuroadaptations resulting in altered glutamatergic and BDNF-mediated signaling, and for these pathways, direct evidence for a mechanistic role has been obtained. Additional evidence points to a dysregulation of pathways involving calcium homeostasis and neurotransmitter release. Recent findings indicate that global DNA hypermethylation is a key factor in reprogramming the mPFC genome after a history of dependence. As one of the results of this epigenetic remodeling, several histone modifying epigenetic enzymes are repressed. Among these, PR-domain zinc-finger protein 2, a methyltransferase that selectively mono-methylates histone H3 at lysine 9 has been functionally validated to drive several of the molecular and behavioral long-term consequences of alcohol dependence. Information processing within the mPFC involves formation of dynamic neuronal networks, or functional ensembles that are shaped by transcriptional responses. The epigenetic dysregulations identified by our molecular studies are likely to alter this dynamic processing in multiple ways. In summary, epigenetic molecular switches in the mPFC appear to be turned on as alcoholism develops. Strategies to reverse these processes may offer targets for disease-modifying treatments.
Collapse
Affiliation(s)
- M. Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - E. Barbier
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A. L. Johnstone
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J. Tapocik
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M. W. Meinhardt
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - S. Pfarr
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - C. Wahlestedt
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W. H. Sommer
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
822
|
Abstract
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.
Collapse
Affiliation(s)
- Amaryllis Vidalis
- Population Epigenetics and Epigenomics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany
| | - Daniel Živković
- Population Genetics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany
| | - René Wardenaar
- Groningen Bioinformatics Centre, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - David Roquis
- Population Epigenetics and Epigenomics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany
| | - Aurélien Tellier
- Population Genetics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany.
| | - Frank Johannes
- Population Epigenetics and Epigenomics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
823
|
Samanta S, Rajasingh S, Cao T, Dawn B, Rajasingh J. Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1863:518-528. [PMID: 27919711 DOI: 10.1016/j.bbadis.2016.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Even though the discovery of the term 'epigenetics' was in the 1940s, it has recently become one of the most promising and expanding fields to unravel the gene expression pattern in several diseases. The most well studied example is cancer, but other diseases like metabolic disorders, autism, or inflammation-associated diseases such as lung injury, autoimmune disease, asthma, and type-2 diabetes display aberrant gene expression and epigenetic regulation during their occurrence. The change in the epigenetic pattern of a gene may also alter gene function because of a change in the DNA status. Constant environmental pressure, lifestyle, as well as food habits are the other important parameters responsible for transgenerational inheritance of epigenetic traits. Discovery of epigenetic modifiers targeting DNA methylation and histone deacetylation enzymes could be an alternative source to treat or manipulate the pathogenesis of diseases. Particularly, the combination of epigenetic drugs such as 5-aza-2-deoxycytidine (Aza) and trichostatin A (TSA) are well studied to reduce inflammation in an acute lung injury model. It is important to understand the epigenetic machinery and the function of its components in specific diseases to develop targeted epigenetic therapy. Moreover, it is equally critical to know the specific inhibitors other than the widely used pan inhibitors in clinical trials and explore their roles in regulating specific genes in a more defined way during infection.
Collapse
Affiliation(s)
- Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thuy Cao
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
824
|
Carslake D, Pinger PR, Romundstad P, Davey Smith G. Early-Onset Paternal Smoking and Offspring Adiposity: Further Investigation of a Potential Intergenerational Effect Using the HUNT Study. PLoS One 2016; 11:e0166952. [PMID: 27911909 PMCID: PMC5135283 DOI: 10.1371/journal.pone.0166952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/06/2016] [Indexed: 01/09/2023] Open
Abstract
Recently it has been suggested that rearing conditions during preadolescence in one generation may affect health outcomes in subsequent generations. Such parental effects, potentially induced by epigenetic modifications in the germ line, have attracted considerable attention because of their implications for public health and social policies. Yet, to date, evidence in humans has been rare due to data limitations and much further investigation in large studies is required. The aim of this paper is to reproduce and extend a recent study which found that paternal smoking before age 11 was associated with elevated body mass index (BMI) among male offspring in the Avon Longitudinal Study of Parents and Children (ALSPAC). Using the Nord-Trøndelag Health (HUNT) Study, we find that paternal smoking during pre-adolescence (<age 11) is not reliably or strongly associated with BMI among sons, with an estimated association close to zero (mean difference in kg m-2 (95% CI) was -0.18 (-1.75, 1.39) for sons aged 12–19 and 0.22 (-0.53, 0.97) for all ages). Among daughters, early-onset paternal smoking was imprecisely associated with an elevated BMI (mean difference was 1.50 (0.00, 3.00) for daughters aged 12–19 and 0.97 (0.06, 1.87) for all ages). Our results do not support a son-specific association of the magnitude reported in the ALSPAC study and we consider it improbable that early onset paternal smoking should influence specifically sons' BMI in one population and daughters' BMI in another. However, despite our considerable sample size (>45,000 offspring), we cannot rule out a weaker association, perhaps common to sons and daughters, which would be consistent with the ALSPAC study. Alternatively, we discuss whether confounding, chance in parallel tests, or sample selection effects might explain the observed associations of early paternal smoking with offspring BMI.
Collapse
Affiliation(s)
- David Carslake
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom.,School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Pia R Pinger
- Department of Economics, University of Bonn, Bonn, Germany
| | - Pål Romundstad
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom.,School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
825
|
Stålberg P, Westin G, Thirlwell C. Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med 2016; 280:584-594. [PMID: 27306880 DOI: 10.1111/joim.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroendocrine tumour of the small intestine (SI-NET), formerly known as midgut carcinoid tumour, is the most common small intestinal malignancy. The incidence is rising, with recent reports of 0.67 per 100 000 in the USA and 1.12 per 100 000 in Sweden. SI-NETs often present a challenge in terms of diagnosis and treatment, as patients often have widespread disease and are beyond cure by surgery. Somatostatin analogues provide the mainstay of medical treatment to control hormonal excess and increase the time to progression. Despite overall favourable prognosis (5-year overall survival of 65%), there is a need to find markers to identify both patients with worse outcome and new targets for therapy. Loss on chromosome 18 has been reported in 60-90% of SI-NETs, but mutated genes on this chromosome have failed detection. Recently, a putative tumour suppressor role has been suggested for TCEB3C occurring at 18q21 (encoding elongin A3), which may undergo epigenetic repression. CDKN1B has recently been revealed as the only recurrently mutated gene in SI-NETs but, with a frequency as low as 8%, its role as a driver in SI-NET development may be questioned. Integrated genomewide analysis including exome and whole-genome sequencing, gene expression, DNA methylation and copy number analysis has identified three novel molecular subtypes of SI-NET with differing clinical outcome. DNA methylation analysis has demonstrated that SI-NETs have significant epigenetic dysregulation in 70-80% of tumours. In this review, we focus on understanding of the genetic, epigenetic and molecular events that lead to development and progression of SI-NETs.
Collapse
Affiliation(s)
- P Stålberg
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - G Westin
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - C Thirlwell
- Cancer Institute, University College London, London, UK
| |
Collapse
|
826
|
Wang Y, Hollis-Hansen K, Ren X, Qiu Y, Qu W. Do environmental pollutants increase obesity risk in humans? Obes Rev 2016; 17:1179-1197. [PMID: 27706898 DOI: 10.1111/obr.12463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/01/2016] [Accepted: 07/31/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Obesity has become a global epidemic and threat to public health. A good understanding of the causes can help attenuate the risk and spread. Environmental pollutants may have contributed to the rising global obesity rates. Some research reported associations between chemical pollutants and obesity, but findings are mixed. This study systematically examined associations between chemical pollutants and obesity in human subjects. METHODS Systematic review of relevant studies published between 1 January 1995 and 1 June 2016 by searching PubMed and MEDLINE®. RESULTS Thirty-five cross-sectional (n = 17) and cohort studies (n = 18) were identified that reported on associations between pollutants and obesity measures. Of them, 16 studies (45.71%) reported a positive association; none reported a sole inverse association; three (8.57%) reported a null association only; six (17.14%) reported both a positive and null association; seven (20.00%) reported a positive and inverse association; and three studies (8.57%) reported all associations (positive, inverse and null). Most studies examined the association between multiple different pollutants, different levels of concentration and in subsamples, which results in mixed results. Thirty-three studies reported at least one positive association between obesity and chemicals, such as polychlorinated biphenyls, biphenyl A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene and more. Certain chemicals, such as biphenyl A, were more likely to have high ORs ranging from 1.0 to 3.0, whereas highly chlorinated polychlorinated biphenyls were more likely to have negative ORs. Effects of chemicals on the endocrine system and obesity might vary by substance, exposure level, measure of adiposity and subject characteristics (e.g. sex and age). CONCLUSIONS Accumulated evidences show positive associations between pollutants and obesity in humans. Future large, long-term, follow-up studies are needed to assess impact of chemical pollutants on obesity risk and related mechanisms.
Collapse
Affiliation(s)
- Y Wang
- Systems-oriented Global Childhood Obesity Intervention Program, Department of Epidemiology and Environmental Health, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Community Health and Health Behavior, State University of New York at Buffalo, Buffalo, NY, USA
| | - K Hollis-Hansen
- Systems-oriented Global Childhood Obesity Intervention Program, Department of Epidemiology and Environmental Health, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Community Health and Health Behavior, State University of New York at Buffalo, Buffalo, NY, USA
| | - X Ren
- Systems-oriented Global Childhood Obesity Intervention Program, Department of Epidemiology and Environmental Health, State University of New York at Buffalo, Buffalo, NY, USA
| | - Y Qiu
- Systems-oriented Global Childhood Obesity Intervention Program, Department of Epidemiology and Environmental Health, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - W Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, Fudan University, Shanghai, China.,Institute of Water and Health Strategy Research, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
827
|
Augustyniak M, Płachetka-Bożek A, Kafel A, Babczyńska A, Tarnawska M, Janiak A, Loba A, Dziewięcka M, Karpeta-Kaczmarek J, Zawisza-Raszka A. Phenotypic Plasticity, Epigenetic or Genetic Modifications in Relation to the Duration of Cd-Exposure within a Microevolution Time Range in the Beet Armyworm. PLoS One 2016; 11:e0167371. [PMID: 27907095 PMCID: PMC5131940 DOI: 10.1371/journal.pone.0167371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022] Open
Abstract
In the case of the pests inhabiting metal polluted or fields where the use of pesticides is common, a natural selection of resistant individuals can occur. This may pose serious problems for humans, agriculture, as well as the economies of many countries. In this study, the hypothesis that multigenerational (120 generations) exposure to cadmium of a beet armyworm population could be a selecting factor toward a more efficient DNA protection was verified. The hemocytes of individuals from two culture strains (control and Cd-exposed) were treated with H2O2 (a DNA-damaging agent) or PBS (reference). The level of DNA damage was assessed using the Comet assay immediately and 5, 15 and 30 min. after the treatment. The immediate result of the contact with H2O2 was that the level of DNA damage in the hemocytes of the insects from both strains increased significantly. However, in the cells of the Cd-exposed individuals, the level of DNA damage decreased over time, while in the cells from the control insects it remained at the same level with no evidence of repair. These results suggest that efficient defense mechanisms may exist in the cells of insects that have prolonged contact with cadmium. Some evolutionary and trade-off aspects of the phenomenon are discussed. In a wider context, comparing the results obtained in the laboratory with field studies may be beneficial for understanding basic mechanisms of the resistance of an organism. To summarize, the high potential for the repair of DNA damage that was observed in the insects from the cadmium strain may confirm the hypothesis that multigenerational exposure to that metal may possibly contribute to the selection of insects that have a wider tolerance to oxidative stress. However, our investigations of polymorphism using AFLP did not reveal differences between the two main insect strains.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
- * E-mail:
| | - Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | - Anna Loba
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
828
|
Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. JOURNAL OF FISH BIOLOGY 2016; 89:2519-2556. [PMID: 27687146 DOI: 10.1111/jfb.13145] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/23/2016] [Indexed: 05/18/2023]
Abstract
The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some circumstances. Although more empirical support is needed, several recent studies suggest that epigenetic variation could account for this apparent paradox. Therefore, epigenetic variation should be fully integrated with considerations pertaining to role of soft sweeps, polygenic and balancing selection, as well as repeated adaptation involving different genetic basis towards improving models predicting the evolutionary potential of species to cope with a changing world.
Collapse
Affiliation(s)
- L Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1Y 2T8, Canada
| |
Collapse
|
829
|
Sierra MI, Valdés A, Fernández AF, Torrecillas R, Fraga MF. The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. Int J Nanomedicine 2016; 11:6297-6306. [PMID: 27932878 PMCID: PMC5135284 DOI: 10.2147/ijn.s120104] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human exposure to nanomaterials and nanoparticles is increasing rapidly, but their effects on human health are still largely unknown. Epigenetic modifications are attracting ever more interest as possible underlying molecular mechanisms of gene–environment interactions, highlighting them as potential molecular targets following exposure to nanomaterials and nanoparticles. Interestingly, recent research has identified changes in DNA methylation, histone post-translational modifications, and noncoding RNAs in mammalian cells exposed to nanomaterials and nanoparticles. However, the challenge for the future will be to determine the molecular pathways driving these epigenetic alterations, the possible functional consequences, and the potential effects on health.
Collapse
Affiliation(s)
- M I Sierra
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo
| | - A Valdés
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo
| | - R Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - M F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| |
Collapse
|
830
|
Lizarraga D, Huen K, Combs M, Escudero-Fung M, Eskenazi B, Holland N. miRNAs differentially expressed by next-generation sequencing in cord blood buffy coat samples of boys and girls. Epigenomics 2016; 8:1619-1635. [PMID: 27882772 DOI: 10.2217/epi-2016-0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Differences in children's development and susceptibility to diseases and exposures have been observed by sex, yet human studies of sex differences in miRNAs are limited. MATERIALS & METHODS The genome-wide miRNA expression was characterized by sequencing-based EdgeSeq assay in cord blood buffy coats from 89 newborns, and 564 miRNAs were further analyzed. RESULTS Differential expression of most miRNAs was higher in boys. Neurodevelopment, RNA metabolism and metabolic ontology terms were enriched among miRNA targets. The majority of upregulated miRNAs (86%) validated by nCounter maintained positive-fold change values; however, only 21% reached statistical significance by false discovery rate. CONCLUSION Accounting for host factors like sex may improve the sensitivity of epigenetic analyses for epidemiological studies in early childhood.
Collapse
Affiliation(s)
- Daneida Lizarraga
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Karen Huen
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Mary Combs
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Maria Escudero-Fung
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Brenda Eskenazi
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Nina Holland
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| |
Collapse
|
831
|
Kao PYP, Leung KH, Chan LWC, Yip SP, Yap MKH. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta Gen Subj 2016; 1861:335-353. [PMID: 27888147 DOI: 10.1016/j.bbagen.2016.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) is a major method for studying the genetics of complex diseases. Finding all sequence variants to explain fully the aetiology of a disease is difficult because of their small effect sizes. To better explain disease mechanisms, pathway analysis is used to consolidate the effects of multiple variants, and hence increase the power of the study. While pathway analysis has previously been performed within GWAS only, it can now be extended to examining rare variants, other "-omics" and interaction data. SCOPE OF REVIEW 1. Factors to consider in the choice of software for GWAS pathway analysis. 2. Examples of how pathway analysis is used to analyse rare variants, other "-omics" and interaction data. MAJOR CONCLUSIONS To choose appropriate software tools, factors for consideration include covariate compatibility, null hypothesis, one- or two-step analysis required, curation method of gene sets, size of pathways, and size of flanking regions to define gene boundaries. For rare variants, analysis performance depends on consistency between assumed and actual effect distribution of variants. Integration of other "-omics" data and interaction can better explain gene functions. GENERAL SIGNIFICANCE Pathway analysis methods will be more readily used for integration of multiple sources of data, and enable more accurate prediction of phenotypes.
Collapse
Affiliation(s)
- Patrick Y P Kao
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kim Hung Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Maurice K H Yap
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
832
|
Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Gieger C, Waldenberger M, Falchi M, Suhre K. Mendelian inheritance of trimodal CpG methylation sites suggests distal cis-acting genetic effects. Clin Epigenetics 2016; 8:124. [PMID: 27895808 PMCID: PMC5120560 DOI: 10.1186/s13148-016-0295-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background Environmentally influenced phenotypes, such as obesity and insulin resistance, can be transmitted over multiple generations. Epigenetic modifications, such as methylation of DNA cytosine-guanine (CpG) pairs, may be carriers of inherited information. At the population level, the methylation state of such “heritable” CpG sites is expected to follow a trimodal distribution, and their mode of inheritance should be Mendelian. Methods Using the Illumina Infinium 450 K DNA methylation array, we determined DNA CpG-methylation in blood cells from a family cohort 123 individuals of Arab ethnicity, including 18 elementary father-mother-child trios, we asked whether Mendelian inheritance of CpG methylation is observed, and most importantly, whether it is independent of any genetic signals. Using 40× whole genome sequencing, we therefore excluded all CpG sites with possibly confounding genetic variants (SNP) within the binding regions of the Illumina probes. Results We identified a total of 955 CpG sites that displayed a trimodal distribution and confirmed trimodality in a study of 1805 unrelated Caucasians. Of 955 CpG sites, 99.9% observed a strict Mendelian pattern of inheritance and had no SNP within +/−110 nucleotides of the CpG site by design. However, in 97% of these cases a distal cis-acting SNP within a +/−1 Mbp window was found that explained the observed CpG distribution, excluding the hypothesis of epigenetic inheritance for these clear-cut trimodal sites. Using power analysis, we showed that in 46% of all cases, the closest CpG-associated SNP was located more than 1000 bp from the CpG site. Conclusions Our findings suggest that CpG methylation is maintained over larger genomic distances. Furthermore, nearly half of the SNPs associated with these trimodal sites were also associated with the expression of nearby genes (P = 4.08 × 10−6), implying a regulatory effect of these trimodal CpG sites. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0295-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, PO Box 24144, Doha, Qatar ; Computer Engineering Department, Virginia Tech, Blacksburg, VA 24060 USA
| | - Mashael Al-Shafai
- Department of Genomics of Common Disease, Imperial College London, London, UK ; Research Division, Qatar Science Leadership Program, Qatar Foundation, Doha, Qatar ; Department of Biomedical Sciences, College of Health Sciences at Qatar University, Doha, Qatar
| | - Wadha A Al Muftah
- Department of Genomics of Common Disease, Imperial College London, London, UK ; Research Division, Qatar Science Leadership Program, Qatar Foundation, Doha, Qatar
| | - Pankaj Kumar
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, PO Box 24144, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH UK
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, PO Box 24144, Doha, Qatar
| |
Collapse
|
833
|
Dirks RAM, Stunnenberg HG, Marks H. Genome-wide epigenomic profiling for biomarker discovery. Clin Epigenetics 2016; 8:122. [PMID: 27895806 PMCID: PMC5117701 DOI: 10.1186/s13148-016-0284-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| |
Collapse
|
834
|
Boer K, de Wit LEA, Peters FS, Hesselink DA, Hofland LJ, Betjes MGH, Looman CWN, Baan CC. Variations in DNA methylation of interferon gamma and programmed death 1 in allograft rejection after kidney transplantation. Clin Epigenetics 2016; 8:116. [PMID: 27891189 PMCID: PMC5112717 DOI: 10.1186/s13148-016-0288-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background The role of DNA methylation in the regulation of the anti-donor-directed immune response after organ transplantation is unknown. Here, we studied the methylation of two mediators of the immune response: the pro-inflammatory cytokine interferon γ (IFNγ) and the inhibitory receptor programmed death 1 (PD1) in naïve and memory CD8+ T cell subsets in kidney transplant recipients receiving immunosuppressive medication. Both recipients experiencing an episode of acute allograft rejection (rejectors) as well as recipients without rejection (non-rejectors) were included. Results CpGs in the promoter regions of both IFNγ and PD1 were significantly (p < 0.001) higher methylated in the naïve CD8+ T cells compared to the memory T cell subsets. The methylation status of both IFNγ and PD1 inversely correlated with the percentage of IFNγ or PD1-producing cells. Before transplantation, the methylation status of both IFNγ and PD1 was not significantly different from healthy donors. At 3 months after transplantation, irrespective of rejection and subsequent anti-rejection therapy, the IFNy methylation was significantly higher in the differentiated effector memory CD45RA+ (EMRA) CD8+ T cells (p = 0.01) whereas the PD1 methylation was significantly higher in all memory CD8+ T cell subsets (CD27+ memory; p = 0.02: CD27− memory; p = 0.02: EMRA; p = 0.002). Comparing the increase in methylation in the first 3 months after transplantation between rejectors and non-rejectors demonstrated a significantly more prominent increase in the PD1 methylation in the CD27− memory CD8+ T cells in rejectors (increase in rejectors 14%, increase in non-rejectors 1.9%, p = 0.04). The increase in DNA methylation in the other memory CD8+ T cells was not significantly different between rejectors and non-rejectors. At 12 months after transplantation, the methylation of both IFNγ and PD1 returned to baseline levels. Conclusions The DNA methylation of both IFNγ and PD1 increases the first 3 months after transplantation in memory CD8+ T cells in kidney transplant recipients. This increase was irrespective of a rejection episode indicating that general factors of the kidney transplantation procedure, including the use of immunosuppressive medication, contribute to these variations in DNA methylation.
Collapse
Affiliation(s)
- Karin Boer
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - L Elly A de Wit
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Fleur S Peters
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Section Endocrinology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Caspar W N Looman
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
835
|
Baillon L, Pierron F, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M. Gene transcription profiling in wild and laboratory-exposed eels: Effect of captivity and in situ chronic exposure to pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:92-102. [PMID: 27470668 DOI: 10.1016/j.scitotenv.2016.07.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Aquatic ecosystems are subjected to a variety of man-induced stressors but also vary spatially and temporally due to variation in natural factors. In such complex environments, it remains difficult to detect, dissociate and evaluate the effects of contaminants in wild organisms. In this context, the aim of this study was to test whether the hepatic transcriptome profile of fish may be used to detect in situ exposure to a particular contaminant. Transcriptomic profiles from laboratory-exposed and wild eels sampled along a contamination gradient were compared. During laboratory experiments, fish were exposed during 45days to different pollutants (Hg, PCBs, OCPs or Cd) or natural factors (temperature, salinity or low food supply) at levels close to those found in the sampling sites. A strong difference was observed between the transcriptomic profiles obtained from wild and laboratory-exposed animals (whatever the sites or experimental conditions), suggesting a general stress induced by captivity in the laboratory. Among the biological functions that were up-regulated in laboratory eels in comparison to wild eels, histone modification was the most represented. This finding suggests that laboratory conditions could affect the epigenome of fish and thus modulate the transcriptional responses developed by fish in response to pollutant exposure. Among experimental conditions, only the transcription profiles of laboratory animals exposed to cold temperature were correlated with those obtained from wild fish, and more significantly with fish from contaminated sites. Common regulated genes were mainly involved in cell differentiation and liver development, suggesting that stem/progenitor liver cells could be involved in the adaptive response developed by fish chronically exposed to pollutant mixtures.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France.
| | - Pauline Pannetier
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612 Cestas, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| |
Collapse
|
836
|
Xu J, Tanino KK, Horner KN, Robinson SJ. Quantitative trait variation is revealed in a novel hypomethylated population of woodland strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2016; 16:240. [PMID: 27809774 PMCID: PMC5095969 DOI: 10.1186/s12870-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/27/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phenotypic variation is determined by a combination of genotype, environment and their interactions. The realization that allelic diversity can be both genetic and epigenetic allows the environmental component to be further separated. Partitioning phenotypic variation observed among inbred lines with an altered epigenome can allow the epigenetic component controlling quantitative traits to be estimated. To assess the contribution of epialleles on phenotypic variation and determine the fidelity with which epialleles are inherited, we have developed a novel hypomethylated population of strawberry (2n = 2x = 14) using 5-azacytidine from which individuals with altered phenotypes can be identified, selected and characterized. RESULTS The hypomethylated population was generated using an inbred strawberry population in the F. vesca ssp. vesca accession Hawaii 4. Analysis of whole genome sequence data from control and hypomethylated lines indicate that 5-azacytidine exposure does not increase SNP above background levels. The populations contained only Hawaii 4 alleles, removing introgression of alternate F. vesca alleles as a potential source of variation. Although genome sequencing and genetic marker data are unable to rule out 5-azacytidine induced chromosomal rearrangements as a potential source of the trait variation observed, none were detected in our survey. Quantitative trait variation focusing on flowering time and rosette diameter was scored in control and treated populations where expanded levels of variation were observed among the hypomethylated lines. Methylation sensitive molecular markers indicated that 5-azacytidine induced alterations in DNA methylation patterns and inheritance of methylation patterns were confirmed by bisulfite sequencing of targeted regions. It is possible that methylation polymorphisms might underlie or have induced genetic changes underlying the observable differences in quantitative phenotypes. CONCLUSIONS This population developed in a uniform genetic background provides a resource for the discovery of new variation controlling quantitative traits. Genome sequence analysis indicates that 5-azacytidine did not induce point mutations and the induced variation is largely restricted to DNA methylation. Using this resource, we have identified new variation and demonstrated the inheritance of both variant trait and methylation patterns. Although direct associations remain to be determined, these data suggest epigenetic variation might be subject to selection.
Collapse
Affiliation(s)
- Jihua Xu
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan Canada
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan Canada
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan Canada
| | - Kyla N. Horner
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan Canada
| | - Stephen J. Robinson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan Canada
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan Canada
| |
Collapse
|
837
|
Thomson JM. Impacts of environment on gene expression and epigenetic modification in grazing animals. J Anim Sci 2016. [DOI: 10.2527/jas.2016-0556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
838
|
Colacino JA. 3D human tissue culture: modeling environmental effects on the stem cell epigenome. Epigenomics 2016; 8:1453-1457. [DOI: 10.2217/epi-2016-0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
839
|
|
840
|
Naninck EFG, Oosterink JE, Yam K, Vries LP, Schierbeek H, Goudoever JB, Verkaik‐Schakel R, Plantinga JA, Plosch T, Lucassen PJ, Korosi A. Early micronutrient supplementation protects against early stress‐induced cognitive impairments. FASEB J 2016; 31:505-518. [DOI: 10.1096/fj.201600834r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Eva F. G. Naninck
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. Efraim Oosterink
- Department of Mother and Child, Emma Children's HospitalAcademic Medical CenterAmsterdamThe Netherlands
| | - Kit‐Yi Yam
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lennart P. Vries
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Henk Schierbeek
- Department of Mother and Child, Emma Children's HospitalAcademic Medical CenterAmsterdamThe Netherlands
| | - Johannes B. Goudoever
- Department of Mother and Child, Emma Children's HospitalAcademic Medical CenterAmsterdamThe Netherlands
| | - Rikst‐Nynke Verkaik‐Schakel
- Department of Obstetrics and GynecologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Josèe A. Plantinga
- Department of Obstetrics and GynecologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Torsten Plosch
- Department of Obstetrics and GynecologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
841
|
Bolondi A, Caldarelli F, Di Felice F, Durano D, Germani G, Michetti L, Tramutolo A, Micheli G, Camilloni G. What is a Gene? A Two Sided View. Evol Biol 2016. [DOI: 10.1007/s11692-016-9392-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
842
|
Qiu W, Wan E, Morrow J, Cho MH, Crapo JD, Silverman EK, DeMeo DL. The impact of genetic variation and cigarette smoke on DNA methylation in current and former smokers from the COPDGene study. Epigenetics 2016; 10:1064-73. [PMID: 26646902 DOI: 10.1080/15592294.2015.1106672] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DNA methylation can be affected by systemic exposures, such as cigarette smoking and genetic sequence variation; however, the relative impact of each on the epigenome is unknown. We aimed to assess if cigarette smoking and genetic variation are associated with overlapping or distinct sets of DNA methylation marks and pathways. We selected 85 Caucasian current and former smokers with genome-wide single nucleotide polymorphism (SNP) genotyping available from the COPDGene study. Genome-wide methylation was obtained on DNA from whole blood using the Illumina HumanMethylation27 platform. To determine the impact of local sequence variation on DNA methylation (mQTL), we examined the association between methylation and SNPs within 50 kb of each CpG site. To examine the impact of cigarette smoking on DNA methylation, we examined the differences in methylation by current cigarette smoking status. We detected 770 CpG sites annotated to 708 genes associated at an FDR < 0.05 in the cis-mQTL analysis and 1,287 CpG sites annotated to 1,242 genes, which were nominally associated in the smoking-CpG association analysis (P(unadjusted) < 0.05). Forty-three CpG sites annotated to 40 genes were associated with both SNP variation and current smoking; this overlap was not greater than that expected by chance. Our results suggest that cigarette smoking and genetic variants impact distinct sets of DNA methylation marks, the further elucidation of which may partially explain the variable susceptibility to the health effects of cigarette smoking. Ascertaining how genetic variation and systemic exposures differentially impact the human epigenome has relevance for both biomarker identification and therapeutic target development for smoking-related diseases.
Collapse
Affiliation(s)
- Weiliang Qiu
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Emily Wan
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Jarrett Morrow
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Michael H Cho
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | | | - Edwin K Silverman
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| |
Collapse
|
843
|
Amenya HZ, Tohyama C, Ohsako S. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver. Sci Rep 2016; 6:34989. [PMID: 27713569 PMCID: PMC5054525 DOI: 10.1038/srep34989] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.
Collapse
Affiliation(s)
- Hesbon Z Amenya
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Experimental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
844
|
Lighten J, Incarnato D, Ward BJ, van Oosterhout C, Bradbury I, Hanson M, Bentzen P. Adaptive phenotypic response to climate enabled by epigenetics in a K-strategy species, the fish Leucoraja ocellata (Rajidae). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160299. [PMID: 27853546 PMCID: PMC5098971 DOI: 10.1098/rsos.160299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The relative importance of genetic versus epigenetic changes in adaptive evolution is a hotly debated topic, with studies showing that some species appear to be able to adapt rapidly without significant genetic change. Epigenetic mechanisms may be particularly important for the evolutionary potential of species with long maturation times and low reproductive potential ('K-strategists'), particularly when faced with rapidly changing environmental conditions. Here we study the transcriptome of two populations of the winter skate (Leucoraja ocellata), a typical 'K-strategist', in Atlantic Canada; an endemic population in the southern Gulf of St Lawrence and a large population on the Scotian Shelf. The endemic population has been able to adapt to a 10°C higher water temperature over short evolutionary time (7000 years), dramatically reducing its body size (by 45%) significantly below the minimum maturation size of Scotian Shelf and other populations of winter skate, as well as exhibiting other adaptations in life history and physiology. We demonstrate that the adaptive response to selection has an epigenetic basis, cataloguing 3653 changes in gene expression that may have enabled this species to rapidly respond to the novel environment. We argue that the epigenetic augmentation of species evolutionary potential (its regulation though gene expression) can enable K-strategists to survive and adapt to different environments, and this mechanism may be particularly important for the persistence of sharks, skates and rays in the light of future climate change.
Collapse
Affiliation(s)
- Jackie Lighten
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Danny Incarnato
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Ben J. Ward
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ian Bradbury
- Department of Fisheries and Oceans, 80 White Hills Road, St John's, Newfoundland, CanadaA1C 5X1
| | - Mark Hanson
- Department of Fisheries and Oceans, Gulf Region, 343 Université Avenue, Moncton, New Brunswick, CanadaE1C 9B6
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| |
Collapse
|
845
|
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166:106-22. [DOI: 10.1016/j.pharmthera.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 01/30/2023]
|
846
|
Putnam HM, Davidson JM, Gates RD. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl 2016; 9:1165-1178. [PMID: 27695524 PMCID: PMC5039329 DOI: 10.1111/eva.12408] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/27/2016] [Indexed: 12/13/2022] Open
Abstract
As climate change challenges organismal fitness by creating a phenotype-environment mismatch, phenotypic plasticity generated by epigenetic mechanisms (e.g., DNA methylation) can provide a temporal buffer for genetic adaptation. Epigenetic mechanisms may be crucial for sessile benthic marine organisms, such as reef-building corals, where ocean acidification (OA) and warming reflect in strong negative responses. We tested the potential for scleractinian corals to exhibit phenotypic plasticity associated with a change in DNA methylation in response to OA. Clonal coral fragments of the environmentally sensitive Pocillopora damicornis and more environmentally robust Montipora capitata were exposed to fluctuating ambient pH (7.9-7.65) and low pH (7.6-7.35) conditions in common garden tanks for ~6 weeks. M. capitata responded weakly, or acclimated more quickly, to OA, with no difference in calcification, minimal separation of metabolomic profiles, and no change in DNA methylation between treatments. Conversely, P. damicornis exhibited diminished calcification at low pH, stronger separation in metabolomic profiles, and responsiveness of DNA methylation to treatment. Our data suggest corals differ in their temporal dynamics and sensitivity for environmentally triggered real-time epigenetic reprogramming. The generation of potentially heritable plasticity via environmental induction of DNA methylation provides an avenue for assisted evolution applications in corals under rapid climate change.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheHIUSA
| | | | - Ruth D. Gates
- Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheHIUSA
| |
Collapse
|
847
|
Alelú-Paz R, Carmona FJ, Sanchez-Mut JV, Cariaga-Martínez A, González-Corpas A, Ashour N, Orea MJ, Escanilla A, Monje A, Guerrero Márquez C, Saiz-Ruiz J, Esteller M, Ropero S. Epigenetics in Schizophrenia: A Pilot Study of Global DNA Methylation in Different Brain Regions Associated with Higher Cognitive Functions. Front Psychol 2016; 7:1496. [PMID: 27746755 PMCID: PMC5044511 DOI: 10.3389/fpsyg.2016.01496] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Attempts to discover genes that are involved in the pathogenesis of major psychiatric disorders have been frustrating and often fruitless. Concern is building about the need to understand the complex ways in which nature and nurture interact to produce mental illness. We analyze the epigenome in several brain regions from schizophrenic patients with severe cognitive impairment using high-resolution (450K) DNA methylation array. We identified 139 differentially methylated CpG sites included in known and novel candidate genes sequences as well as in and intergenic sequences which functions remain unknown. We found that altered DNA methylation is not restricted to a particular region, but includes others such as CpG shelves and gene bodies, indicating the presence of different DNA methylation signatures depending on the brain area analyzed. Our findings suggest that epimutations are not relatables between different tissues or even between tissues' regions, highlighting the need to adequately study brain samples to obtain reliable data concerning the epigenetics of schizophrenia.
Collapse
Affiliation(s)
- Raúl Alelú-Paz
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of AlcaláMadrid, Spain; Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, University of AlcaláMadrid, Spain; Department of Psychiatry, CIBERSAM, IRYCIS, Hospital Ramón y CajalMadrid, Spain
| | - Francisco J Carmona
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat Barcelona, Spain
| | - José V Sanchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat Barcelona, Spain
| | - Ariel Cariaga-Martínez
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, University of Alcalá Madrid, Spain
| | - Ana González-Corpas
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| | - Nadia Ashour
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| | - Maria J Orea
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| | - Ana Escanilla
- Neurological Brain Bank, Parc Sanitari Sant Joan de Déu Barcelona, Spain
| | - Alfonso Monje
- Neurological Brain Bank, Parc Sanitari Sant Joan de Déu Barcelona, Spain
| | | | - Jerónimo Saiz-Ruiz
- Department of Psychiatry, CIBERSAM, IRYCIS, Hospital Ramón y Cajal Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de LlobregatBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain; Department of Physiological Sciences II, School of Medicine, University of BarcelonaBarcelona, Spain
| | - Santiago Ropero
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| |
Collapse
|
848
|
Casanello P, Krause BJ, Castro-Rodríguez JA, Uauy R. [Epigenetics and obesity]. ACTA ACUST UNITED AC 2016; 87:335-342. [PMID: 27692574 DOI: 10.1016/j.rchipe.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022]
Abstract
Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations.
Collapse
Affiliation(s)
- Paola Casanello
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo J Krause
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A Castro-Rodríguez
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
849
|
Herman JJ, Sultan SE. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 2016; 283:20160988. [PMID: 27629032 PMCID: PMC5031651 DOI: 10.1098/rspb.2016.0988] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Environmental stresses experienced by individual parents can influence offspring phenotypes in ways that enhance survival under similar conditions. Although such adaptive transgenerational plasticity is well documented, its transmission mechanisms are generally unknown. One possible mechanism is environmentally induced DNA methylation changes. We tested this hypothesis in the annual plant Polygonum persicaria, a species known to express adaptive transgenerational plasticity in response to parental drought stress. Replicate plants of 12 genetic lines (sampled from natural populations) were grown in dry versus moist soil. Their offspring were exposed to the demethylating agent zebularine or to control conditions during germination and then grown in dry soil. Under control germination conditions, the offspring of drought-stressed parents grew longer root systems and attained greater biomass compared with offspring of well-watered parents of the same genetic lines. Demethylation removed these adaptive developmental effects of parental drought, but did not significantly alter phenotypic expression in offspring of well-watered parents. The effect of demethylation on the expression of the parental drought effect varied among genetic lines. Differential seed provisioning did not contribute to the effect of parental drought on offspring phenotypes. These results demonstrate that DNA methylation can mediate adaptive, genotype-specific effects of parental stress on offspring phenotypes.
Collapse
Affiliation(s)
- Jacob J Herman
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
850
|
Genetics of the human placenta: implications for toxicokinetics. Arch Toxicol 2016; 90:2563-2581. [DOI: 10.1007/s00204-016-1816-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|