901
|
Hong KS, Naseer N. Reduction of Delay in Detecting Initial Dips from Functional Near-Infrared Spectroscopy Signals Using Vector-Based Phase Analysis. Int J Neural Syst 2016; 26:1650012. [DOI: 10.1142/s012906571650012x] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we present a systematic method to reduce the time lag in detecting initial dips using a vector-based phase diagram and an autoregressive moving average with exogenous signals (ARMAX) model-based [Formula: see text]-step-ahead prediction algorithm. With functional near-infrared spectroscopy (fNIRS), signals related to mental arithmetic and right-hand clenching are acquired from the prefrontal and left primary motor cortices, respectively. The interrelationship between oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin and cerebral oxygen exchange are related to initial dips. Specifically, a threshold value from the resting state hemodynamics is incorporated, as a decision criterion, into the vector-based phase diagram to determine the occurrence of initial dips. To further reduce the time lag, a [Formula: see text]-step-ahead prediction method is applied to predict the occurrence of the dips. A combination of the threshold criterion and the prediction method resulted in the delay time of about 0.9[Formula: see text]s. The results demonstrate that rapid detection of initial dip is possible and therefore can be used for real-time brain–computer interfacing.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Noman Naseer
- Department of Cogno-Mechatronics Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
902
|
Jalil B, Salvetti O, Potì L, Hartwig V, Marinelli M, L'Abbate A. Near infrared image processing to quantitate and visualize oxygen saturation during vascular occlusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 126:35-45. [PMID: 26725781 DOI: 10.1016/j.cmpb.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
The assessment of microcirculation spatial heterogeneity on the hand skin is the main objective of this work. Near-infrared spectroscopy based 2D imaging is a non-invasive technique for the assessment of tissue oxygenation. The haemoglobin oxygen saturation images were acquired by a dedicated camera (Kent Imaging) during baseline, ischaemia (brachial artery cuff occlusion) and reperfusion. Acquired images underwent a preliminary restoration process aimed at removing degradations occurring during signal capturing. Then, wavelet transform based multiscale analysis was applied to identify edges by detecting local maxima and minima across successive scales. Segmentation of test areas during different conditions was obtained by thresholding-based region growing approach. The method identifies the differences in microcirculatory control of blood flow in different regions of the hand skin. The obtained results demonstrate the potential use of NIRS images for the clinical evaluation of skin disease and microcirculatory dysfunction.
Collapse
Affiliation(s)
- B Jalil
- Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" CNR, Pisa, Italy.
| | - O Salvetti
- Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" CNR, Pisa, Italy
| | - L Potì
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNR, Pisa, Italy
| | - V Hartwig
- Istituto di Fisiologia Clinica, CNR, Pisa, Italy
| | - M Marinelli
- Istituto di Fisiologia Clinica, CNR, Pisa, Italy
| | - A L'Abbate
- Istituto di Fisiologia Clinica, CNR, Pisa, Italy; Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
903
|
Aarabi A, Huppert TJ. Characterization of the relative contributions from systemic physiological noise to whole-brain resting-state functional near-infrared spectroscopy data using single-channel independent component analysis. NEUROPHOTONICS 2016; 3:025004. [PMID: 27335886 PMCID: PMC4893204 DOI: 10.1117/1.nph.3.2.025004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/10/2016] [Indexed: 05/07/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique used to measure changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) in the brain. In this study, we present a decomposition approach based on single-channel independent component analysis (scICA) to investigate the contribution of physiological noise to fNIRS signals during rest. Single-channel ICA is an underdetermined decomposition method, which separates a single time series into components containing nonredundant spectral information. Using scICA, fNIRS signals from a total of 17 subjects were decomposed into the constituent physiological components. The percentage contribution of the classes of physiology to the fNIRS signals including low-frequency (LF) fluctuations, respiration, and cardiac oscillations was estimated using spectral domain classification methods. Our results show that LF oscillations accounted for 40% to 55% of total power of both the oxy-Hb and deoxy-Hb signals. Respiration and its harmonics accounted for 10% to 30% of the power, and cardiac pulsations and cardio-respiratory components accounted for 10% to 30%. We describe this scICA method for decomposing fNIRS signals, which unlike other approaches to spatial covariance reduction is applicable to both single- or multiple-channel fNIRS signals and discuss how this approach allows functionally distinct sources of noise with disjoint spectral support to be separated from obscuring systemic physiology.
Collapse
Affiliation(s)
- Ardalan Aarabi
- University of Picardie Jules Verne, Faculty of Medicine, Amiens 80036, France
- University Research Center (CURS), University Hospital, GRAMFC-Inserm U1105, Amiens 80054, France
| | - Theodore J. Huppert
- University of Pittsburgh, Department of Radiology, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
- Address all correspondence to: Theodore J. Huppert, E-mail:
| |
Collapse
|
904
|
Kashou NH, Giacherio BM. Stimulus and optode placement effects on functional near-infrared spectroscopy of visual cortex. NEUROPHOTONICS 2016; 3:025005. [PMID: 27335887 PMCID: PMC4909057 DOI: 10.1117/1.nph.3.2.025005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/30/2015] [Indexed: 05/03/2023]
Abstract
Functional near-infrared spectroscopy has yet to be implemented as a stand-alone technique within an ophthalmology clinical setting, despite its promising advantages. The present study aims to further investigate reliability of visual cortical signals. This was achieved by: (1) assessing the effects of optode placements using the 10-20 International System of Electrode Placement consisting of 28 channels, (2) determining effects of stimulus size on response, and (3) evaluating response variability as a result of cap placement across three sessions. Ten participants with mean age [Formula: see text] years (five male) and varying types of hair color and thickness were recruited. Visual stimuli of black-and-white checkerboards, reversing at a frequency of 7.5 Hz were presented. Visual angles of individual checker squares included 1 deg, 2 deg, 5 deg, 9 deg, and 18 deg. The number of channels that showed response was analyzed for each participant, stimulus size, and session. 1-deg stimulus showed the greatest activation. One of three data collection sessions for each participant gave different results ([Formula: see text]). Hair color and thickness each had an effect upon the overall HbO ([Formula: see text]), while only color had a significant effect for HbD ([Formula: see text]). A reliable level of robustness and consistency is still required for clinical implementation and assessment of visual dysfunction.
Collapse
Affiliation(s)
- Nasser H. Kashou
- Wright State University, Biomedical Imaging Laboratory, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| | - Brenna M. Giacherio
- Wright State University, Biomedical Imaging Laboratory, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| |
Collapse
|
905
|
Phillips AA, Chan FH, Zheng MMZ, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab 2016; 36:647-64. [PMID: 26661243 PMCID: PMC4821024 DOI: 10.1177/0271678x15617954] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
Neurovascular coupling reflects the close temporal and regional linkage between neural activity and cerebral blood flow. Although providing mechanistic insight, our understanding of neurovascular coupling is largely limited to non-physiologicalex vivopreparations and non-human models using sedatives/anesthetics with confounding cerebrovascular implications. Herein, with particular focus on humans, we review the present mechanistic understanding of neurovascular coupling and highlight current approaches to assess these responses and the application in health and disease. Moreover, we present new guidelines for standardizing the assessment of neurovascular coupling in humans. To improve the reliability of measurement and related interpretation, the utility of new automated software for neurovascular coupling is demonstrated, which provides the capacity for coalescing repetitive trials and time intervals into single contours and extracting numerous metrics (e.g., conductance and pulsatility, critical closing pressure, etc.) according to patterns of interest (e.g., peak/minimum response, time of response, etc.). This versatile software also permits the normalization of neurovascular coupling metrics to dynamic changes in arterial blood gases, potentially influencing the hyperemic response. It is hoped that these guidelines, combined with the newly developed and openly available software, will help to propel the understanding of neurovascular coupling in humans and also lead to improved clinical management of this critical physiological function.
Collapse
Affiliation(s)
- Aaron A Phillips
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada Experimental Medicine Program, Faculty of Medicine, UBC, Vancouver, Canada
| | - Franco Hn Chan
- International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada
| | - Mei Mu Zi Zheng
- International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada Experimental Medicine Program, Faculty of Medicine, UBC, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada Experimental Medicine Program, Faculty of Medicine, UBC, Vancouver, Canada Department of Physical Therapy, UBC, Vancouver, Canada GF Strong Rehabilitation Center, Vancouver, Canada Department of Medicine, Division of Physical Medicine and Rehabilitation, UBC, Vancouver, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
906
|
Pagano R, Libertino S, Sanfilippo D, Fallica G, Lombardo S. Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers. BIOMEDICAL OPTICS EXPRESS 2016; 7:1183-92. [PMID: 27486551 PMCID: PMC4929631 DOI: 10.1364/boe.7.001183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 05/15/2023]
Abstract
We experimentally analyze the signal-to-noise ratio of continuous wave (CW) near infrared spectroscopy (NIRS) reflectance systems based on light emitting diodes and silicon photomultipliers for high performance low cost NIRS biomedical systems. We show that under suitable experimental conditions such systems exhibit a high SNR, which allows an SDS of 7 cm, to our knowledge the largest ever demonstrated in a CW-NIRs system.
Collapse
Affiliation(s)
| | | | - Delfo Sanfilippo
- IMS R&D, STMicroelectronics, Stradale Primosole 50, Catania, 95121, Italy
| | - Giorgio Fallica
- IMS R&D, STMicroelectronics, Stradale Primosole 50, Catania, 95121, Italy
| | | |
Collapse
|
907
|
Hosseini SMH, Pritchard-Berman M, Sosa N, Ceja A, Kesler SR. Task-based neurofeedback training: A novel approach toward training executive functions. Neuroimage 2016; 134:153-159. [PMID: 27015711 DOI: 10.1016/j.neuroimage.2016.03.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/29/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100min total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions.
Collapse
Affiliation(s)
- S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5795, USA.
| | - Mika Pritchard-Berman
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5795, USA
| | - Natasha Sosa
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5795, USA
| | - Angelica Ceja
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5795, USA
| | - Shelli R Kesler
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
908
|
Moro SB, Carrieri M, Avola D, Brigadoi S, Lancia S, Petracca A, Spezialetti M, Ferrari M, Placidi G, Quaresima V. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study. J Neural Eng 2016; 13:036002. [PMID: 27001948 DOI: 10.1088/1741-2560/13/3/036002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. APPROACH A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). MAIN RESULTS A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. SIGNIFICANCE The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.
Collapse
Affiliation(s)
- Sara Basso Moro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
909
|
Tak S, Uga M, Flandin G, Dan I, Penny WD. Sensor space group analysis for fNIRS data. J Neurosci Methods 2016; 264:103-112. [PMID: 26952847 PMCID: PMC4840017 DOI: 10.1016/j.jneumeth.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) is a method for monitoring hemoglobin responses using optical probes placed on the scalp. fNIRS spatial resolution is limited by the distance between channels defined as a pair of source and detector, and channel positions are often inconsistent across subjects. These challenges can lead to less accurate estimate of group level effects from channel-specific measurements. NEW METHOD This paper addresses this shortcoming by applying random-effects analysis using summary statistics to interpolated fNIRS topographic images. Specifically, we generate individual contrast images containing the experimental effects of interest in a canonical scalp surface. Random-effects analysis then allows for making inference about the regionally specific effects induced by (potentially) multiple experimental factors in a population. RESULTS We illustrate the approach using experimental data acquired during a colour-word matching Stroop task, and show that left frontopolar regions are significantly activated in a population during Stroop effects. This result agrees with previous neuroimaging findings. COMPARED WITH EXISTING METHODS The proposed methods (i) address potential misalignment of sensor locations between subjects using spatial interpolation; (ii) produce experimental effects of interest either on a 2D regular grid or on a 3D triangular mesh, both representations of a canonical scalp surface; and (iii) enables one to infer population effects from fNIRS data using a computationally efficient summary statistic approach (random-effects analysis). Significance of regional effects is assessed using random field theory. CONCLUSIONS In this paper, we have shown how fNIRS data from multiple subjects can be analysed in sensor space using random-effects analysis.
Collapse
Affiliation(s)
- S Tak
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | - M Uga
- Jichi Medical University, Center for Development of Advanced Medical Technology, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan; Chuo University, Applied Cognitive Neuroscience Laboratory, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - G Flandin
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - I Dan
- Jichi Medical University, Center for Development of Advanced Medical Technology, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan; Chuo University, Applied Cognitive Neuroscience Laboratory, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - W D Penny
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
910
|
Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS). Neural Plast 2016; 2016:7453149. [PMID: 27042360 PMCID: PMC4793139 DOI: 10.1155/2016/7453149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 12/29/2022] Open
Abstract
Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.
Collapse
|
911
|
Verriotis M, Fabrizi L, Lee A, Cooper RJ, Fitzgerald M, Meek J. Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording. eNeuro 2016; 3:ENEURO.0026-16.2016. [PMID: 27200413 PMCID: PMC4867026 DOI: 10.1523/eneuro.0026-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in the study of touch and pain processing in the newborn. To address this, we have recorded NIRS and EEG responses simultaneously for the first time in the human infant following noxious (time-locked clinically required heel lances) and innocuous tactile cutaneous stimulation in 30 newborn infants. The results show that both techniques can be used to record quantifiable and distinct innocuous and noxious evoked activity at a group level in the newborn cortex. Noxious stimulation elicits a peak hemodynamic response that is 10-fold larger than that elicited by an innocuous stimulus (HbO2: 2.0 vs 0.3 µM) and a distinct nociceptive-specific N3P3 waveform in electrophysiological recordings. However, a novel single-trial analysis revealed that hemodynamic and electrophysiological responses do not always co-occur at an individual level, although when they do (64% of noxious test occasions), they are significantly correlated in magnitude. These data show that, while hemodynamic and electrophysiological touch and pain brain activity in newborn infants are comparable in group analyses, important individual differences remain. These data indicate that integrated and multimodal brain monitoring is required to understand central touch and pain processing in the newborn.
Collapse
Affiliation(s)
- Madeleine Verriotis
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Amy Lee
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College Hospital, University College London Hospitals, London, WC1E 6DB, United Kingdom
| |
Collapse
|
912
|
Di Sieno L, Wabnitz H, Pifferi A, Mazurenka M, Hoshi Y, Dalla Mora A, Contini D, Boso G, Becker W, Martelli F, Tosi A, Macdonald R. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:035118. [PMID: 27036830 DOI: 10.1063/1.4944562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 05/20/2023]
Abstract
We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.
Collapse
Affiliation(s)
- Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Mikhail Mazurenka
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Yoko Hoshi
- Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Gianluca Boso
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Wolfgang Becker
- Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Fabrizio Martelli
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Rainer Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
913
|
Sun L, Peräkylä J, Kovalainen A, Ogawa KH, Karhunen PJ, Hartikainen KM. Human Brain Reacts to Transcranial Extraocular Light. PLoS One 2016; 11:e0149525. [PMID: 26910350 PMCID: PMC4767140 DOI: 10.1371/journal.pone.0149525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain.
Collapse
Affiliation(s)
- Lihua Sun
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
| | - Anselmi Kovalainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
| | - Keith H. Ogawa
- John Magaddino Neuroscience Laboratory, Saint Mary’s College of California, Moraga, California, United States of America
| | - Pekka J. Karhunen
- Department of Forensic Medicine, School of Medicine, Tampere University, Tampere University Hospital and Fimlab Laboratories, Tampere, Finland
| | - Kaisa M. Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland
- Department of Neuroscience and Rehabilitation, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
914
|
Saliba J, Bortfeld H, Levitin DJ, Oghalai JS. Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients. Hear Res 2016; 338:64-75. [PMID: 26883143 DOI: 10.1016/j.heares.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
Functional neuroimaging can provide insight into the neurobiological factors that contribute to the variations in individual hearing outcomes following cochlear implantation. To date, measuring neural activity within the auditory cortex of cochlear implant (CI) recipients has been challenging, primarily because the use of traditional neuroimaging techniques is limited in people with CIs. Functional near-infrared spectroscopy (fNIRS) is an emerging technology that offers benefits in this population because it is non-invasive, compatible with CI devices, and not subject to electrical artifacts. However, there are important considerations to be made when using fNIRS to maximize the signal to noise ratio and to best identify meaningful cortical responses. This review considers these issues, the current data, and future directions for using fNIRS as a clinical application in individuals with CIs. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
Affiliation(s)
- Joe Saliba
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA; Department of Otolaryngology - Head and Neck Surgery, McGill University, 1001 Boul. Decarie, Montreal, QC, Canada
| | - Heather Bortfeld
- Psychological Sciences, University of California-Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Daniel J Levitin
- Department of Psychology, McGill University, 1205 Avenue Penfield, H3A 1B1, Montreal, QC, Canada
| | - John S Oghalai
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
915
|
Huang F, Hirano D, Shi Y, Taniguchi T. Comparison of cortical activation in an upper limb added-purpose task versus a single-purpose task: a near-infrared spectroscopy study. J Phys Ther Sci 2016; 27:3891-4. [PMID: 26834375 PMCID: PMC4713814 DOI: 10.1589/jpts.27.3891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to compare prefrontal activations during an
added-purpose task with those during a single-purpose task using functional near-infrared
spectroscopy. [Subjects] Six healthy right-handed adults were included in this study.
[Methods] The participants were instructed to complete both added-purpose and
single-purpose activities separately with each hand. The near-infrared spectroscopy probes
were placed on the scalp overlying the prefrontal cortex, according to the International
10–20 system (Fz). Changes in the oxygenated hemoglobin and deoxygenated hemoglobin
concentrations in the prefrontal cortex were measured during performance of the
activities. We then compared the number of activation channels with significant increase
in oxygenated hemoglobin, during added-purpose activity to single-purpose activity using
both hands separately. [Results] A greater number of widespread activations were observed
in the prefrontal cortex during the added-purpose task than during the single-purpose
task. These results were noted with both right and left hands. [Conclusion] According to
our findings, added-purpose activity can bring about more activation in the prefrontal
cortex, which may provide occupational therapists with effective guides in therapeutic
practice.
Collapse
Affiliation(s)
- Fubiao Huang
- Department of Occupational Therapy, China Rehabilitation Research Center, China; Faculty of Rehabilitation, Capital Medical University, China; Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Japan; Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| | - Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Japan; Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| | - Yun Shi
- Department of Occupational Therapy, New York University, USA
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Japan; Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
916
|
Hsieh M, Kuo L, Huang Y, Chen J. Investigating hyperoxic effects in the rat brain using quantitative susceptibility mapping based on MRI phase. Magn Reson Med 2016; 77:592-602. [DOI: 10.1002/mrm.26139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/25/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Meng‐Chi Hsieh
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan UniversityTaipei 106 Taiwan
- Molecular Imaging Center, National Taiwan UniversityTaipei 106 Taiwan
- Department of Electrical EngineeringNational Taiwan UniversityTaipei 106 Taiwan
| | - Li‐Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research InstitutesMiaoli County 350 Taiwan
| | - Yun‐An Huang
- Department of Electrical EngineeringNational Taiwan UniversityTaipei 106 Taiwan
| | - Jyh‐Horng Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan UniversityTaipei 106 Taiwan
- Molecular Imaging Center, National Taiwan UniversityTaipei 106 Taiwan
- Department of Electrical EngineeringNational Taiwan UniversityTaipei 106 Taiwan
| |
Collapse
|
917
|
Chen W, Wang X, Wang B, Wang Y, Zhang Y, Zhao H, Gao F. Lock-in-photon-counting-based highly-sensitive and large-dynamic imaging system for continuous-wave diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:499-511. [PMID: 26977358 PMCID: PMC4771467 DOI: 10.1364/boe.7.000499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 05/25/2023]
Abstract
We implemented a novel lock-in photon-counting detection architecture that combines the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique. Based on this technique, a dual-wavelength simultaneous measurement continuous wave diffuse optical tomography system was developed with a configuration of 16 sources and 16 detectors that works in a tandem serial-to-parallel fashion. Methodology validation and performance assessment of the system were conducted using phantom experiments that demonstrate excellent measurement linearity, moderate-term system stability, robustness to noise and negligible inter-wavelength crosstalk. 2-D imaging experiments further validate high sensitivity of the lock-in photon-counting methodology as well as high reliability of the proposed system. The advanced detection principle can be adapted to achieving a fully parallelized instrumentation for the extended applications.
Collapse
Affiliation(s)
- Weiting Chen
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bingyuan Wang
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yihan Wang
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanqi Zhang
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Huijuan Zhao
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| | - Feng Gao
- Collage of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| |
Collapse
|
918
|
Quaresima V, Ferrari M. Medical near Infrared Spectroscopy: A Prestigious History and a Bright Future. ACTA ACUST UNITED AC 2016. [DOI: 10.1255/nirn.1575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This article provides an overview of the present and the bright future of near infrared (NIR) spectroscopy applications in the medical field with special regard to brain oximetry and functional NIR spectroscopy (fNIRS).
Collapse
Affiliation(s)
- Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L'Aquila, Italy
| |
Collapse
|
919
|
Crespi F, Cattini S, Donini M, Bandera A, Rovati L. In vivo real time non invasive monitoring of brain penetration of chemicals with near-infrared spectroscopy: Concomitant PK/PD analysis. J Neurosci Methods 2016; 258:79-86. [PMID: 26549641 DOI: 10.1016/j.jneumeth.2015.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) is a non-invasive technique that monitors changes in oxygenation of haemoglobin. The absorption spectra of near-infrared light differ for the oxygenation-deoxygenation states of haemoglobin (oxygenate (HbO2) and deoxygenate (Hb), respectively) so that these two states can be directly monitored. COMPARISON WITH EXISTING METHOD(S) Different methodologies report different basal values of HbO2 and Hb absolute concentrations in brain. Here, we attempt to calculate basal HbO2 levels in rat CNS via evaluation of the influence of exogenous oxygen or exogenous carbon dioxide on the NIRS parameters measured in vivo. NEW METHOD Furthermore the possibility that changes of haemoglobin oxygenation in rat brain as measured by NIRS might be a useful index of brain penetration of chemical entities has been investigated. Different compounds from different chemical classes were selected on the basis of parallel ex vivo and in vivo pharmacokinetic (PK/PD) studies of brain penetration and overall pharmacokinetic profile. RESULTS It appeared that NIRS might contribute to assess brain penetration of chemical entities, i.e. significant changes in NIRS signals could be related to brain exposure, conversely the lack of significant changes in relevant NIRS parameters could be indicative of low brain exposure. CONCLUSIONS This work is proposing a further innovation on NIRS preclinical applications i.e. a "chemical" NIRS [chNIRS] approach for determining penetration of drugs in animal brain. Therefore, chNIRS could became a non invasive methodology for studies on neurobiological processes and psychiatric diseases in preclinical but also a translational strategy from preclinical to clinical investigations.
Collapse
Affiliation(s)
| | - Stefano Cattini
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy.
| | - Maurizio Donini
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy.
| | - Andrea Bandera
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy.
| | - Luigi Rovati
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
920
|
Hartwig V, Marinelli M, Rocco F, L’Abbate A. Assessment of Microvascular Function Using Near-Infrared Spectroscopic 2D Imaging of Whole Hand Combined with Vascular Occlusion Test. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
921
|
Hong KS, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res 2016; 333:157-166. [PMID: 26828741 DOI: 10.1016/j.heares.2016.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/13/2023]
Abstract
The ability of the auditory cortex in the brain to distinguish different sounds is important in daily life. This study investigated whether activations in the auditory cortex caused by different sounds can be distinguished using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses (HRs) in both hemispheres using fNIRS were measured in 18 subjects while exposing them to four sound categories (English-speech, non-English-speech, annoying sounds, and nature sounds). As features for classifying the different signals, the mean, slope, and skewness of the oxy-hemoglobin (HbO) signal were used. With regard to the language-related stimuli, the HRs evoked by understandable speech (English) were observed in a broader brain region than were those evoked by non-English speech. Also, the magnitudes of the HbO signals evoked by English-speech were higher than those of non-English speech. The ratio of the peak values of non-English and English speech was 72.5%. Also, the brain region evoked by annoying sounds was wider than that by nature sounds. However, the signal strength for nature sounds was stronger than that for annoying sounds. Finally, for brain-computer interface (BCI) purposes, the linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were applied to the four sound categories. The overall classification performance for the left hemisphere was higher than that for the right hemisphere. Therefore, for decoding of auditory commands, the left hemisphere is recommended. Also, in two-class classification, the annoying vs. nature sounds comparison provides a higher classification accuracy than the English vs. non-English speech comparison. Finally, LDA performs better than SVM.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hendrik Santosa
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
922
|
Tian F, Hase SN, Gonzalez-Lima F, Liu H. Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med 2016; 48:343-9. [PMID: 26817446 PMCID: PMC5066697 DOI: 10.1002/lsm.22471] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/31/2022]
Abstract
Background and Objective Transcranial laser stimulation of the brain with near‐infrared light is a novel form of non‐invasive photobiomodulation or low‐level laser therapy (LLLT) that has shown therapeutic potential in a variety of neurological and psychological conditions. Understanding of its neurophysiological effects is essential for mechanistic study and treatment evaluation. This study investigated how transcranial laser stimulation influences cerebral hemodynamics and oxygenation in the human brain in vivo using functional near‐infrared spectroscopy (fNIRS). Materials and Methods Two separate experiments were conducted in which 1,064‐nm laser stimulation was administered at (1) the center and (2) the right side of the forehead, respectively. The laser emitted at a power of 3.4 W and in an area of 13.6 cm2, corresponding to 0.25 W/cm2 irradiance. Stimulation duration was 10 minutes. Nine healthy male and female human participants of any ethnic background, in an age range of 18–40 years old were included in each experiment. Results In both experiments, transcranial laser stimulation induced an increase of oxygenated hemoglobin concentration (Δ[HbO2]) and a decrease of deoxygenated hemoglobin concentration (Δ[Hb]) in both cerebral hemispheres. Improvements in cerebral oxygenation were indicated by a significant increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] − Δ[Hb]). These effects increased in a dose‐dependent manner over time during laser stimulation (10 minutes) and persisted after laser stimulation (6 minutes). The total hemoglobin concentration (Δ[HbT] = Δ[HbO2] + Δ[Hb]) remained nearly unchanged in most cases. Conclusion Near‐infrared laser stimulation applied to the forehead can transcranially improve cerebral oxygenation in healthy humans. Lasers Surg. Med. 48:343–349, 2016. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fenghua Tian
- Department of Bioengineering, University of Texas, Arlington, Texas, 76010
| | - Snehal N Hase
- Department of Bioengineering, University of Texas, Arlington, Texas, 76010
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas, Austin, Texas, 78712
| | - Hanli Liu
- Department of Bioengineering, University of Texas, Arlington, Texas, 76010
| |
Collapse
|
923
|
Borycki D, Kholiqov O, Chong SP, Srinivasan VJ. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media. OPTICS EXPRESS 2016; 24:329-54. [PMID: 26832264 PMCID: PMC4741353 DOI: 10.1364/oe.24.000329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality.
Collapse
Affiliation(s)
- Dawid Borycki
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun,
Poland
| | - Oybek Kholiqov
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
| | - Shau Poh Chong
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
| | - Vivek J. Srinivasan
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
| |
Collapse
|
924
|
Stuart S, Lord S, Hill E, Rochester L. Gait in Parkinson's disease: A visuo-cognitive challenge. Neurosci Biobehav Rev 2016; 62:76-88. [PMID: 26773722 DOI: 10.1016/j.neubiorev.2016.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Vision and cognition have both been related to gait impairment in Parkinson's disease (PD) through separate strands of research. The cumulative and interactive effect of both (which we term visuo-cognition) has not been previously investigated and little is known about the influence of cognition on vision with respect to gait. Understanding the role of vision, cognition and visuo-cognition in gait in PD is critical for data interpretation and to infer and test underlying mechanisms. The purpose of this comprehensive narrative review was to examine the interdependent and interactive role of cognition and vision in gait in PD and older adults. Evidence from a broad range of research disciplines was reviewed and summarised. A key finding was that attention appears to play a pivotal role in mediating gait, cognition and vision, and should be considered emphatically in future research in this field.
Collapse
Affiliation(s)
- Samuel Stuart
- Institute of Neuroscience/Newcastle University Institute of Ageing, Clinical Ageing Research Unit, Campus for Ageing and Vitality Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sue Lord
- Institute of Neuroscience/Newcastle University Institute of Ageing, Clinical Ageing Research Unit, Campus for Ageing and Vitality Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Hill
- Institute of Neuroscience/Newcastle University Institute of Ageing, Clinical Ageing Research Unit, Campus for Ageing and Vitality Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lynn Rochester
- Institute of Neuroscience/Newcastle University Institute of Ageing, Clinical Ageing Research Unit, Campus for Ageing and Vitality Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
925
|
Byun K, Hyodo K, Suwabe K, Fukuie T, Soya H. Possible neurophysiological mechanisms for mild-exercise-enhanced executive function: An fNIRS neuroimaging study. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kyeongho Byun
- Laboratory of Exercise Biochemistry and Neuroendocrinology
- Department of Neurobiology and Behavior, University of California, Irvine
| | - Kazuki Hyodo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare
| | - Kazuya Suwabe
- Laboratory of Exercise Biochemistry and Neuroendocrinology
| | | | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University Faculty of Health and Sport Sciences, University of Tsukuba
| |
Collapse
|
926
|
Jones S, Chiesa ST, Chaturvedi N, Hughes AD. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res 2016; 16:25-33. [PMID: 27942271 PMCID: PMC5134760 DOI: 10.1016/j.artres.2016.09.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose of review Continuous wave near infrared spectroscopy (CW NIRS) provides non-invasive technology to measure relative changes in oxy- and deoxy-haemoglobin in a dynamic environment. This allows determination of local skeletal muscle O2 saturation, muscle oxygen consumption (V˙O2) and blood flow. This article provides a brief overview of the use of CW NIRS to measure exercise-limiting factors in skeletal muscle. Recent findings NIRS parameters that measure O2 delivery and capacity to utilise O2 in the muscle have been developed based on response to physiological interventions and exercise. NIRS has good reproducibility and agreement with gold standard techniques and can be used in clinical populations where muscle oxidative capacity or oxygen delivery (or both) are impaired. CW NIRS has limitations including: the unknown contribution of myoglobin to the overall signals, the impact of adipose tissue thickness, skin perfusion during exercise, and variations in skin pigmentation. These, in the main, can be circumvented through appropriate study design or measurement of absolute tissue saturation. Summary CW NIRS can assess skeletal muscle O2 delivery and utilisation without the use of expensive or invasive procedures and is useable in large population-based samples, including older adults. An overview of CW NIRS to measure O2 utilisation and delivery is presented. CW NIRS is cheap, non-invasive, portable and useable in population-based samples. It is useful for understanding underlying mechanisms of deterioration in capacity.
Collapse
Affiliation(s)
- Siana Jones
- Corresponding author. UCL Institute of Cardiovascular Science, 10th Floor, 1-19 Torrington Place, London WC1E 7HB, UK. Fax: +44 207 594 1706.UCL Institute of Cardiovascular Science10th Floor, 1-19 Torrington PlaceLondonWC1E 7HEUK
| | | | | | | |
Collapse
|
927
|
Nourhashemi M, Mahmoudzadeh M, Wallois F. Thermal impact of near-infrared laser in advanced noninvasive optical brain imaging. NEUROPHOTONICS 2016; 3:015001. [PMID: 27115020 PMCID: PMC4802390 DOI: 10.1117/1.nph.3.1.015001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/03/2015] [Indexed: 05/04/2023]
Abstract
The propagation of laser light in human tissues is an important issue in functional optical imaging. We modeled the thermal effect of different laser powers with various spot sizes and different head tissue characteristics on neonatal and adult quasirealistic head models. The photothermal effect of near-infrared laser (800 nm) was investigated by numerical simulation using finite-element analysis. Our results demonstrate that the maximum temperature increase on the brain for laser irradiance between 0.127 (1 mW) and [Formula: see text] (100 mW) at a 1 mm spot size, ranged from 0.0025°C to 0.26°C and from 0.03°C to 2.85°C at depths of 15.9 and 4.9 mm in the adult and neonatal brain, respectively. Due to the shorter distance of the head layers from the neonatal head surface, the maximum temperature increase was higher in the neonatal brain than in the adult brain. Our results also show that, at constant power, spot size changes had a lesser heating effect on deeper tissues. While the constraints for safe laser irradiation to the brain are dictated by skin safety, these results can be useful to optimize laser parameters for a variety of laser applications in the brain. Moreover, combining simulation and adequate in vitro experiments could help to develop more effective optical imaging to avoid possible tissue damage.
Collapse
Affiliation(s)
- Mina Nourhashemi
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
| | - Mahdi Mahmoudzadeh
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
| | - Fabrice Wallois
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
- Address all correspondence to: Fabrice Wallois, E-mail:
| |
Collapse
|
928
|
Volkening N, Unni A, Löffler BS, Fudickar S, Rieger JW, Hein A. Characterizing the Influence of Muscle Activity in fNIRS Brain Activation Measurements. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ifacol.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
929
|
Sutoko S, Sato H, Maki A, Kiguchi M, Hirabayashi Y, Atsumori H, Obata A, Funane T, Katura T. Tutorial on platform for optical topography analysis tools. NEUROPHOTONICS 2016; 3:010801. [PMID: 26788547 PMCID: PMC4707558 DOI: 10.1117/1.nph.3.1.010801] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/02/2015] [Indexed: 05/15/2023]
Abstract
Optical topography/functional near-infrared spectroscopy (OT/fNIRS) is a functional imaging technique that noninvasively measures cerebral hemoglobin concentration changes caused by neural activities. The fNIRS method has been extensively implemented to understand the brain activity in many applications, such as neurodisorder diagnosis and treatment, cognitive psychology, and psychiatric status evaluation. To assist users in analyzing fNIRS data with various application purposes, we developed a software called platform for optical topography analysis tools (POTATo). We explain how to handle and analyze fNIRS data in the POTATo package and systematically describe domain preparation, temporal preprocessing, functional signal extraction, statistical analysis, and data/result visualization for a practical example of working memory tasks. This example is expected to give clear insight in analyzing data using POTATo. The results specifically show the activated dorsolateral prefrontal cortex is consistent with previous studies. This emphasizes analysis robustness, which is required for validating decent preprocessing and functional signal interpretation. POTATo also provides a self-developed plug-in feature allowing users to create their own functions and incorporate them with established POTATo functions. With this feature, we continuously encourage users to improve fNIRS analysis methods. We also address the complications and resolving opportunities in signal analysis.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Hiroki Sato
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Atsushi Maki
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Masashi Kiguchi
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Yukiko Hirabayashi
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Hirokazu Atsumori
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Akiko Obata
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Tsukasa Funane
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Takusige Katura
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
- Address all correspondence to: Takusige Katura, E-mail:
| |
Collapse
|
930
|
Huppert TJ. Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy. NEUROPHOTONICS 2016; 3:010401. [PMID: 26989756 PMCID: PMC4773699 DOI: 10.1117/1.nph.3.1.010401] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/22/2016] [Indexed: 05/18/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of light to measure changes in cerebral blood oxygenation levels. In the majority of NIRS functional brain studies, analysis of this data is based on a statistical comparison of hemodynamic levels between a baseline and task or between multiple task conditions by means of a linear regression model: the so-called general linear model. Although these methods are similar to their implementation in other fields, particularly for functional magnetic resonance imaging, the specific application of these methods in fNIRS research differs in several key ways related to the sources of noise and artifacts unique to fNIRS. In this brief communication, we discuss the application of linear regression models in fNIRS and the modifications needed to generalize these models in order to deal with structured (colored) noise due to systemic physiology and noise heteroscedasticity due to motion artifacts. The objective of this work is to present an overview of these noise properties in the context of the linear model as it applies to fNIRS data. This work is aimed at explaining these mathematical issues to the general fNIRS experimental researcher but is not intended to be a complete mathematical treatment of these concepts.
Collapse
Affiliation(s)
- Theodore J. Huppert
- University of Pittsburgh, Center for the Neural Basis of Cognition, Clinical Science Translational Institute, Departments of Radiology and Bioengineering, Pittsburgh, Pennsylvania 15260, United States
- Address all correspondence to: Theodore J. Huppert, E-mail:
| |
Collapse
|
931
|
Thibault RT, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex 2016; 74:247-61. [PMID: 26706052 DOI: 10.1016/j.cortex.2015.10.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Amir Raz
- McGill University, Montreal, QC, Canada; The Lady Davis Institute for Medical Research, Montreal, QC, Canada.
| |
Collapse
|
932
|
Zhang X, Noah JA, Hirsch J. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. NEUROPHOTONICS 2016; 3:015004. [PMID: 26866047 PMCID: PMC4742567 DOI: 10.1117/1.nph.3.1.015004] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/12/2016] [Indexed: 05/05/2023]
Abstract
Global systemic effects not specific to a task can be prominent in functional near-infrared spectroscopy (fNIRS) signals and the separation of task-specific fNIRS signals and global nonspecific effects is challenging due to waveform correlations. We describe a principal component spatial filter algorithm for separation of the global and local effects. The effectiveness of the approach is demonstrated using fNIRS signals acquired during a right finger-thumb tapping task where the response patterns are well established. Both the temporal waveforms and the spatial pattern consistencies between oxyhemoglobin and deoxyhemoglobin signals are significantly improved, consistent with the basic physiological basis of fNIRS signals and the expected pattern of activity associated with the task.
Collapse
Affiliation(s)
- Xian Zhang
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut 06511, United States
- Address all correspondence to: Xian Zhang, E-mail:
| | - Jack Adam Noah
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut 06511, United States
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut 06511, United States
- Yale School of Medicine, Department of Neuroscience, New Haven, Connecticut 06511, United States
- Yale School of Medicine, Department of Comparative Medicine, New Haven, Connecticut 06511, United States
- University College London, Department of Medical Physics and Biomedical Engineering, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
933
|
Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS. Neural Plast 2015; 2016:4382656. [PMID: 26819766 PMCID: PMC4706950 DOI: 10.1155/2016/4382656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
Abstract
Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.
Collapse
|
934
|
Balconi M, Cortesi L. Brain Activity (fNIRS) in Control State Differs from the Execution and Observation of Object-Related and Object-Unrelated Actions. J Mot Behav 2015; 48:289-96. [PMID: 26675979 DOI: 10.1080/00222895.2015.1092936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors explored cortical correlates of action execution and observation, directly comparing control condition condition and execution-observation, using functional near-infrared spectroscopy. Transitive actions (meaningful gestures produced in presence of an object) or intransitive actions (meaningful gestures produced in absence of an object) were performed. Increased oxygenated hemoglobin levels were revealed for both action execution and action observation in premotor cortex, and sensorimotor cortex compared to control condition. However, a higher activity in motor areas was observed for action execution than motor observation. In contrast the posterior parietal cortex was similarly activated in case of both execution and observation task. Finally, it was shown that action execution and observation of transitive more than intransitive gestures was supported by similar parietal posterior areas. These findings support the hypothesis of a partial common network for observation and execution of action, and significant implications related to action types (transitive vs. intransitive).
Collapse
Affiliation(s)
- Michela Balconi
- a Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart , Milan , Italy.,b Department of Psychology , Catholic University of the Sacred Heart , Milan , Italy
| | - Livia Cortesi
- a Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart , Milan , Italy
| |
Collapse
|
935
|
Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity. Sci Rep 2015; 5:17471. [PMID: 26632763 PMCID: PMC4668373 DOI: 10.1038/srep17471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/29/2015] [Indexed: 11/08/2022] Open
Abstract
Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.
Collapse
|
936
|
Pinti P, Aichelburg C, Lind F, Power S, Swingler E, Merla A, Hamilton A, Gilbert S, Burgess P, Tachtsidis I. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks. J Vis Exp 2015:53336. [PMID: 26651025 PMCID: PMC4692764 DOI: 10.3791/53336] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks.
Collapse
Affiliation(s)
- Paola Pinti
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London; Infrared Imaging Lab, Institute for Advanced Biomedical Technology (ITAB), Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara
| | - Clarisse Aichelburg
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Frida Lind
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Sarah Power
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London
| | - Elizabeth Swingler
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Arcangelo Merla
- Infrared Imaging Lab, Institute for Advanced Biomedical Technology (ITAB), Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara
| | - Antonia Hamilton
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Sam Gilbert
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Paul Burgess
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London;
| |
Collapse
|
937
|
Pifferi A, Torricelli A, Cubeddu R, Quarto G, Re R, Sekar SKV, Spinelli L, Farina A, Martelli F, Wabnitz H. Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2015. [PMID: 26220211 DOI: 10.1117/1.jbo.20.12.121304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A mechanically switchable solid inhomogeneous phantom simulating localized absorption changes was developed and characterized. The homogeneous host phantom was made of epoxy resin with black toner and titanium dioxide particles added as absorbing and scattering components, respectively. A cylindrical rod, movable along a hole in the block and made of the same material, has a black polyvinyl chloride cylinder embedded in its center. By varying the volume and position of the black inclusion, absorption perturbations can be generated over a large range of magnitudes. The phantom has been characterized by various time-domain diffuse optics instruments in terms of absorption and scattering spectra, transmittance images, and reflectance contrast. Addressing a major application of the phantom for performance characterization for functional near-infrared spectroscopy of the brain, the contrast was measured in reflectance mode while black cylinders of volumes from ≈20 mm3 to ≈270 mm3 were moved in lateral and depth directions, respectively. The new type of solid inhomogeneous phantom is expected to become a useful tool for routine quality check of clinical instruments or implementation of industrial standards provided an experimental characterization of the phantom is performed in advance.
Collapse
Affiliation(s)
- Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Rinaldo Cubeddu
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, ItalybIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Giovanna Quarto
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Rebecca Re
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Sanathana K V Sekar
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Firenze, Sesto Fiorentino 50019, Italy
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, Berlin 10587, Germany
| |
Collapse
|
938
|
Yao P, Guo W, Sheng X, Zhang D, Zhu X. A portable multi-channel wireless NIRS device for muscle activity real-time monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:3719-22. [PMID: 25570799 DOI: 10.1109/embc.2014.6944431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Near-infrared spectroscopy (NIRS) is a relative new technology in monitoring muscle oxygenation and hemo-dynamics. This paper presents a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The NIRS sensor is designed miniaturized and modularized, to make multi-site monitoring convenient. Wireless communication is applied to data transmission avoiding of cumbersome wires and the whole system is highly integrated. Special care is taken to eliminate motion artifact when designing the NIRS sensor and attaching it to human skin. Besides, the system is designed with high sampling rate so as to monitor rapid oxygenation changes during muscle activities. Dark noise and long-term drift tests have been carried out, and the result indicates the device has a good performance of accuracy and stability. In vivo experiments including arterial occlusion and isometric voluntary forearm muscle contraction were performed, demonstrating the system has the ability to monitor muscle oxygenation parameters effectively even in exercise.
Collapse
|
939
|
A New Approach for Automatic Removal of Movement Artifacts in Near-Infrared Spectroscopy Time Series by Means of Acceleration Data. ALGORITHMS 2015. [DOI: 10.3390/a8041052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
940
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
941
|
Martelli F, Del Bianco S, Spinelli L, Cavalieri S, Di Ninni P, Binzoni T, Jelzow A, Macdonald R, Wabnitz H. Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115001. [PMID: 26524677 DOI: 10.1117/1.jbo.20.11.115001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 05/02/2023]
Abstract
In this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg–Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain. The absorption coefficient of the layers was varied in a range of values typical for biological tissues. The reconstructions performed demonstrate the substantial improvements achievable with the OE provided a priori information is available. We note the extreme reliability, robustness, and accuracy of the retrieved absorption coefficient of the second layer obtained with the OE that was found for up to six fit parameters, with an error in the retrieved values of less than 10%. A priori information on fit parameters and fixed forward model parameters clearly improves robustness and accuracy of the inversion procedure.
Collapse
Affiliation(s)
- Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Sesto Fiorentino 50019, Firenze, Italy
| | - Samuele Del Bianco
- Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Stefano Cavalieri
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Sesto Fiorentino 50019, Firenze, Italy
| | - Paola Di Ninni
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Via G. Sansone 1, Sesto Fiorentino 50019, Firenze, Italy
| | - Tiziano Binzoni
- University of Geneva, Département de Neurosciences Fondamentales, 1, rue Michel-Servet 1211 Genève 4, SwitzerlandeUniversity Hospital, Département de l'Imagerie et des Sciences de l'Information Médicale, 1, 4 rue Gabrielle-Perret-Gentil, 1211 Geneva 14, S
| | - Alexander Jelzow
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Rainer Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
942
|
Pu S, Nakagome K, Itakura M, Yamanashi T, Sugie T, Miura A, Satake T, Iwata M, Nagata I, Kaneko K. Self-reported social functioning and prefrontal hemodynamic responses during a cognitive task in schizophrenia. Psychiatry Res 2015; 234:121-9. [PMID: 26382107 DOI: 10.1016/j.pscychresns.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/10/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Impaired social functioning is a characteristic of schizophrenia that affects patients' quality of life. The aim of the study was to assess prefrontal hemodynamic responses during a cognitive task and establish its influence on psychiatric symptoms, cognitive function, global functioning, and self-reported social functioning in patients with schizophrenia. Thirty-three patients with schizophrenia and 30 age-and sex-matched healthy controls participated in the study. We measured hemodynamic responses in the prefrontal and superior temporal cortical surface areas with 52-channel near-infrared spectroscopy (NIRS) during a verbal fluency task (VFT). Self-reported social functioning was assessed using the Social Functioning Scale (SFS). Regional hemodynamic responses were significantly smaller in the prefrontal and temporal regions in subjects with schizophrenia than in the controls, and prefrontal hemodynamic responses during the VFT showed a strong correlation with SFS total scores. These results suggest an association between self-reported social functioning and prefrontal activation in subjects with schizophrenia. The present study provides evidence that NIRS imaging could be helpful in understanding the neural basis of social functioning.
Collapse
Affiliation(s)
- Shenghong Pu
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Kazuyuki Nakagome
- National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Masashi Itakura
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Takehiko Yamanashi
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Takuya Sugie
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Akehiko Miura
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Takahiro Satake
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Masaaki Iwata
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Izumi Nagata
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Koichi Kaneko
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| |
Collapse
|
943
|
Tan Q, Zhang M, Wang Y, Zhang M, Wang B, Xin Q, Li Z. Age-related alterations in phase synchronization of oxyhemoglobin concentration changes in prefrontal tissues as measured by near-infrared spectroscopy signals. Microvasc Res 2015; 103:19-25. [PMID: 26525098 DOI: 10.1016/j.mvr.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/24/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022]
Abstract
The prefrontal cortex plays an important role in planning complex cognitive behavior, personality expression, and decision making. This study aims to assess the phase synchronization of signals of the oxyhemoglobin concentration changes (Δ[HbO2]) in the left and right prefrontal tissues through near-infrared spectroscopy (NIRS) with wavelet phase coherence (WPCO) method. The NIRS signals were continuously recorded from the left and right prefrontal lobes in 43 healthy elderly subjects (age: 69.6 ± 8.4 years) and 40 young healthy subjects (age: 24.5 ± 1.7 years) during the resting state. Phase synchronization between the left and right prefrontal oscillations in six frequency intervals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz; and VI, 0.005-0.0095 Hz) was analyzed using the WPCO method. The WPCO values of elderly subjects were significantly lower in frequency intervals I (F=7.376, p=0.010) and III (F=6.418, p=0.016) than those of the young subjects. Low phase coherence in intervals I and III indicates reduced synchronization of cardiac activity in the prefrontal area and weakened prefrontal functional connectivity, respectively.
Collapse
Affiliation(s)
- Qitao Tan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, PR China
| | - Yi Wang
- Department of Dermatology, Ji'nan Central Hospital, 250013, PR China
| | - Manyu Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China
| | - Bitan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, PR China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China.
| |
Collapse
|
944
|
Venclove S, Daktariunas A, Ruksenas O. Functional near-infrared spectroscopy: a continuous wave type based system for human frontal lobe studies. EXCLI JOURNAL 2015; 14:1145-52. [PMID: 26869869 PMCID: PMC4746999 DOI: 10.17179/excli2015-614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 11/22/2022]
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) is an optical non-invasive brain monitoring technology that registers changes in hemodynamic responses within the cortex of the human brain. Over the last decades fNIRS became a promising method in neurosciences: it is non-invasive, portable and can be used in long term studies. All these advantages make it suitable for educational purposes as well. This paper presents basic methodological concept of optical engineering principles and suitable applications of fNIRS. We represent a continuous wave (cw-fNIRS) system that could be used for frontal lobe studies in human adults or as demonstration equipment for physiological measurements. This system has been validated by comparing it with commercial device fNIR400 from Biopac. A comparison of geometry, data and statistical analyses suggests similar hemodynamic responses recorded by both devices. Our study suggests that this system can be used for further development and as a guideline for researchers to develop a specific tool for applications in human brain studies.
Collapse
Affiliation(s)
- Sigita Venclove
- Department of Neurobiology and Biophysics, Faculty of Natural Sciences, Vilnius University, Ciurlionio 21/27, LT-03101 Vilnius, Lithuania
| | - Algis Daktariunas
- Department of Neurobiology and Biophysics, Faculty of Natural Sciences, Vilnius University, Ciurlionio 21/27, LT-03101 Vilnius, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Faculty of Natural Sciences, Vilnius University, Ciurlionio 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
945
|
Balconi M, Molteni E. Past and future of near-infrared spectroscopy in studies of emotion and social neuroscience. JOURNAL OF COGNITIVE PSYCHOLOGY 2015. [DOI: 10.1080/20445911.2015.1102919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
946
|
FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data. BIOMED RESEARCH INTERNATIONAL 2015; 2015:248724. [PMID: 26539473 PMCID: PMC4619753 DOI: 10.1155/2015/248724] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called “functional connectivity analysis tool for near-infrared spectroscopy data” (FC-NIRS). This package includes the main functions of fNIRS data preprocessing, quality control, FC calculation, and network analysis. Because this software has a friendly graphical user interface (GUI), FC-NIRS allows researchers to perform data analysis in an easy, flexible, and quick way. Furthermore, FC-NIRS can accomplish batch processing during data processing and analysis, thereby greatly reducing the time cost of addressing a large number of datasets. Extensive experimental results using real human brain imaging confirm the viability of the toolbox. This novel toolbox is expected to substantially facilitate fNIRS-data-based human functional connectome studies.
Collapse
|
947
|
Milej D, Janusek D, Gerega A, Wojtkiewicz S, Sawosz P, Treszczanowicz J, Weigl W, Liebert A. Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106013. [PMID: 26509415 DOI: 10.1117/1.jbo.20.10.106013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/06/2015] [Indexed: 05/24/2023]
Abstract
The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.
Collapse
Affiliation(s)
- Daniel Milej
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Dariusz Janusek
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Anna Gerega
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Joanna Treszczanowicz
- Warsaw Praski Hospital, Department of Intensive Care and Anesthesiology, 67 Al. Solidarnosci Street, 03-401 Warsaw, Poland
| | - Wojciech Weigl
- Warsaw Praski Hospital, Department of Intensive Care and Anesthesiology, 67 Al. Solidarnosci Street, 03-401 Warsaw, PolandcUppsala University, Department of Surgical Sciences/Anesthesiology and Intensive Care, 751 85 Uppsala, Sweden
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| |
Collapse
|
948
|
Khan MJ, Hong KS. Passive BCI based on drowsiness detection: an fNIRS study. BIOMEDICAL OPTICS EXPRESS 2015; 6:4063-78. [PMID: 26504654 PMCID: PMC4605063 DOI: 10.1364/boe.6.004063] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/22/2015] [Accepted: 09/15/2015] [Indexed: 05/06/2023]
Abstract
We use functional near-infrared spectroscopy (fNIRS) to discriminate the alert and drowsy states for a passive brain-computer interface (BCI). The passive brain signals for the drowsy state are acquired from the prefrontal and dorsolateral prefrontal cortex. The experiment is performed on 13 healthy subjects using a driving simulator, and their brain activity is recorded using a continuous-wave fNIRS system. Linear discriminant analysis (LDA) is employed for training and testing, using the data from the prefrontal, left- and right-dorsolateral prefrontal regions. For classification, eight features are tested: mean oxyhemoglobin, mean deoxyhemoglobin, skewness, kurtosis, signal slope, number of peaks, sum of peaks, and signal peak, in 0~5, 0~10, and 0~15 second time windows, respectively. The results show that the best performance for classification is achieved using mean oxyhemoglobin, the signal peak, and the sum of peaks as features. The average accuracies in the right dorsolateral prefrontal cortex (83.1, 83.4 and 84.9% in the 0~5, 0~10 and 0~15 second time windows, respectively) show that the proposed method has an effective utility for detection of drowsiness for a passive BCI.
Collapse
Affiliation(s)
- M. Jawad Khan
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, South Korea
| |
Collapse
|
949
|
Ono Y, Noah JA, Zhang X, Nomoto Y, Suzuki T, Shimada S, Tachibana A, Bronner S, Hirsch J. Motor learning and modulation of prefrontal cortex: an fNIRS assessment. J Neural Eng 2015; 12:066004. [DOI: 10.1088/1741-2560/12/6/066004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
950
|
Wang S, Hoshi Y, Yamada Y. Influences of blood flow changes in cerebrospinal fluid and skin layers on optical mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:2632-5. [PMID: 24110267 DOI: 10.1109/embc.2013.6610080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In optical mapping for imaging brain activity, the effect of blood flow changes in superficial tissues such as the cerebrospinal fluid (CSF) and skin layers should be considered. However, it is difficult to know those changes in in vivo experiments. To investigate the influence of blood flow changes in CSF and skin layers on optical mapping, we perform numerical simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). The results show that mapping images of activated region in the gray matter layer are affected by the existence of blood vessels in CSF layer and by the blood flow changes in the skin layer. The increases in both the vessel size and vessel absorption coefficient reduce the sensitivity of the mapping images to the brain activity in the gray matter. On the other hand, the increase in the vessel volume fraction in the skin layer increases the sensitivity of the mapping images.
Collapse
|