51
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
52
|
Limbu KR, Chhetri RB, Kim S, Shrestha J, Oh YS, Baek DJ, Park EY. Targeting sphingosine 1-phosphate and sphingosine kinases in pancreatic cancer: mechanisms and therapeutic potential. Cancer Cell Int 2024; 24:353. [PMID: 39462385 PMCID: PMC11514880 DOI: 10.1186/s12935-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Pancreatic cancer is known to be the most lethal cancer. Fewer new treatments are being developed for pancreatic cancer as compared to other cancers. The bioactive lipid S1P, which is mainly regulated by sphingosine kinase 1 (SK1) and sphingosine kinase 2 (SK2) enzymes, plays significant roles in pancreatic cancer initiation and exacerbation. S1P controls many signaling pathways to modulate the progression of pancreatic cancer through the G-coupled receptor S1PR1-5. Several papers reporting amelioration of pancreatic cancer via modulation of S1P levels or downstream signaling pathways have previously been published. In this paper, for the first time, we have reviewed the results of previous studies to understand how S1P and its receptors contribute to the development of pancreatic cancer, and whether S1P can be a therapeutic target. In addition, we have also reviewed papers dealing with the effects of SK1 and SK2, which are kinases that regulate the level of S1P, on the pathogenesis of pancreatic cancer. We have also listed available drugs that particularly focus on S1P, S1PRs, SK1, and SK2 for the treatment of pancreatic cancer. Through this review, we would like to suggest that the SK/S1P/S1PR signaling system can be an important target for treating pancreatic cancer, where a new treatment target is desperately warranted.
Collapse
Affiliation(s)
- Khem Raj Limbu
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | | | - Subin Kim
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Boston, MA, 02114, USA
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, South Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| |
Collapse
|
53
|
Dugbartey GJ, Alornyo KK, Dapaa-Addo CO, Botchway E, Kwashie EK, Harley Y. Alpha-lipoic acid: A promising pharmacotherapy seen through the lens of kidney diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100206. [PMID: 39524210 PMCID: PMC11550178 DOI: 10.1016/j.crphar.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney diseases have rapidly increased in prevalence over the past few decades, and have now become a major global public health concern. This has put economic burden on the public healthcare system and causing significant morbidity and mortality worldwide. Unfortunately, drugs currently in use for the management of kidney diseases have long-term major adverse effects that negatively impact the quality of life of these patients, hence making these drugs a "necessary evil". In recent times, antioxidant therapy has been explored as a potential pharmacological avenue for treatment of kidney diseases, and could offer a better therapeutic option with less adverse effect profile. One of such antioxidants is alpha-lipoic acid (ALA), a sulphur-containing multifunctional antioxidant that is endogenously produced by lipoic acid synthase in the mitochondria of many tissues, including the kidney. Burgeoning evidence indicates that ALA is showing clinical promise in the treatment and pharmacological management of many kidney diseases through its antioxidant and other therapeutic properties by activating several protective mechanisms while inhibiting deleterious signaling pathways. In this review, we present ALA as a potent naturally occurring antioxidant, its mitochondrial biosynthesis and pharmacological properties. In addition, we also discuss within the limit of present literature, ALA and its underlying molecular mechanisms implicated in experimental and clinical treatment of various kidney conditions, and thus, may offer nephrologists an additional and/or alternative avenue in the pharmacological management and treatment of kidney diseases while giving hope to these patients.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
| | - Karl K. Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Emmanuel Botchway
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Emmanuel K. Kwashie
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Yvonne Harley
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| |
Collapse
|
54
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
55
|
Mou Y, Wen S, Sha HK, Zhao Y, Gui LJ, Wang Y, Jiang ZY. Discovery and Development of Caffeic Acid Analogs as Versatile Therapeutic Agents. Pharmaceuticals (Basel) 2024; 17:1403. [PMID: 39459042 PMCID: PMC11510674 DOI: 10.3390/ph17101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenolic acid compound widely distributed in plant seeds. As natural compounds with high research interest, caffeic acid and its derivatives show good activity in the treatment of tumors and inflammation and have antibacterial properties. In recent years, caffeic acid derivatives have been studied extensively, and these derivatives fall roughly into three categories: (1) caffeic acid ester derivatives, (2) caffeic acid amide derivatives, (3) caffeic acid hybrids. These caffeic acid analogues exert mainly antibacterial and antioxidant activities. Among the caffeic acid analogues summarized in this paper, compounds 1g and CAP10 have good activity against Candida albicans, and their MIC50 is 32 µg/mL and 13 μM, respectively. In a DPPH assay, compounds 3k, 5a, CS2, Phellinsin A and 8j showed strong antioxidant activity, and their IC50 values are 18.6 μM, 67.85 μM, 40.29 μM, 0.29 ± 0.004 mM, 4774.37 ± 137.20 μM, respectively. Overall, compound CAP10 had the best antibacterial activity and compound 3k had the best antioxidant activity. This paper mainly summarizes and discusses some representative caffeic acid analogs, hoping to provide better drug design strategies for the subsequent development of caffeic acid analogs.
Collapse
Affiliation(s)
- Yi Mou
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (S.W.); (H.-K.S.); (Y.Z.); (L.-J.G.); (Y.W.)
| | - Shuai Wen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (S.W.); (H.-K.S.); (Y.Z.); (L.-J.G.); (Y.W.)
| | - Hong-Kai Sha
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (S.W.); (H.-K.S.); (Y.Z.); (L.-J.G.); (Y.W.)
| | - Yao Zhao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (S.W.); (H.-K.S.); (Y.Z.); (L.-J.G.); (Y.W.)
| | - Li-Juan Gui
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (S.W.); (H.-K.S.); (Y.Z.); (L.-J.G.); (Y.W.)
| | - Yan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (S.W.); (H.-K.S.); (Y.Z.); (L.-J.G.); (Y.W.)
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
56
|
Atoum MF, Padma KR, Don KR. Curcumin is a potential therapeutic agent that ameliorates diabetes among non-alcoholic fatty liver disease coexist with type 2 diabetes. NUTRITION AND HEALTHY AGING 2024; 9:77-90. [DOI: 10.3233/nha-231504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) harmonize and act synergistically in clinical practices. About 70–80% of diabetic patients develop NAFLD. At the same time, NAFLD existence increases T2DM development. Meanwhile, the presence of T2DM increases the progression to liver disease such as NAFLD, and to non-alcoholic steatohepatitis (NASH). The most prevalent chronic liver disease worldwide is a NAFLD. NAFLD and (T2DM) have a two-way pathophysiologic relationship, with the latter driving the development of the former into NASH. Nonetheless, NASH enhances the threat of cirrhosis as well as hepatocellular carcinoma (HCC), both cases in turn need transplantation of the liver. The only treatment for NAFLD is still lifestyle management because there are no FDA-approved drugs for the condition. In the current study, we review how curcumin (a naturally occurring phytopolyphenol pigment) treats NAFLD. Also we showed broad insights on curcumin-based therapy, by severe reduction of hepatic inflammation. Thus, our review showed that curcumin ingestion considerably decreased glycemic parameters (fasting blood glucose, glycosylated hemoglobin, insulin resistance index (HOMA-IR), and free fatty acids) and adipocyte-fatty acid binding protein (A-FABP), and adipokine released from adipocytes. Clinical trials are needed to evaluate the effects of curcumin and its specific dosage on liver enzymes, glycemic consequences, among NAFLD coexist with T2DM patients.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Kanchi Ravi Padma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s) University, Tirupati, AP, India
| | - Kanchi Ravi Don
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research (BIHER) Bharath University, Chennai, Tamil Nadu, India
| |
Collapse
|
57
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
58
|
Barone V, Surico PL, Cutrupi F, Mori T, Gallo Afflitto G, Di Zazzo A, Coassin M. The Role of Immune Cells and Signaling Pathways in Diabetic Eye Disease: A Comprehensive Review. Biomedicines 2024; 12:2346. [PMID: 39457658 PMCID: PMC11505591 DOI: 10.3390/biomedicines12102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic eye disease (DED) encompasses a range of ocular complications arising from diabetes mellitus, including diabetic retinopathy, diabetic macular edema, diabetic keratopathy, diabetic cataract, and glaucoma. These conditions are leading causes of visual impairments and blindness, especially among working-age adults. Despite advancements in our understanding of DED, its underlying pathophysiological mechanisms remain incompletely understood. Chronic hyperglycemia, oxidative stress, inflammation, and neurodegeneration play central roles in the development and progression of DED, with immune-mediated processes increasingly recognized as key contributors. This review provides a comprehensive examination of the complex interactions between immune cells, inflammatory mediators, and signaling pathways implicated in the pathogenesis of DED. By delving in current research, this review aims to identify potential therapeutic targets, suggesting directions of research for future studies to address the immunopathological aspects of DED.
Collapse
Affiliation(s)
- Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| |
Collapse
|
59
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
60
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
61
|
Yaikwawong M, Jansarikit L, Jirawatnotai S, Chuengsamarn S. Curcumin extract improves beta cell functions in obese patients with type 2 diabetes: a randomized controlled trial. Nutr J 2024; 23:119. [PMID: 39354480 PMCID: PMC11445938 DOI: 10.1186/s12937-024-01022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic condition characterized by insulin resistance and impaired insulin production, leading to elevated blood glucose levels. Curcumin, a polyphenolic compound from Curcuma longa, has shown potential in improving insulin sensitivity and reducing blood glucose levels, which may help mitigate type 2 diabetes progression. OBJECTIVE To assess the efficacy of improving type 2 diabetes (T2DM). STUDY DESIGN This randomized, double-blind, placebo-controlled trial included subjects (n = 272) with criteria for type 2 diabetes. METHODS All subjects were randomly assigned to receive curcumin (1500 mg/day) or placebo with blind labels for 12 months. To assess the improvement of T2DM after curcumin treatments body weight and body mass index, fasting plasma glucose, glycosylated hemoglobin A1c, β-cell function (homeostasis model assessment [HOMA-β]), insulin resistance (HOMA-IR), insulin, adiponectin, and leptin were monitored at the baseline and at 3-, 6-, 9-, and 12-month visits during the course of intervention. RESULTS After 12 months of treatment, the curcumin-treated group showed a significant decrease in fasting blood glucose (115.49 vs.130.71; P < 0.05), HbA1c (6.12 vs. 6.47; P < 0.05). In addition, the curcumin-treated group showed a better overall function of β-cells, with higher HOMA-β (136.20 vs. 105.19; P < 0.01) The curcumin-treated group showed a lower level of HOMA-IR (4.86 vs. 6.04; P < 0.001) and higher adiponectin (14.51 vs. 10.36; P < 0.001) when compared to the placebo group. The curcumin-treated group also showed a lower level of leptin (9.42 vs. 20.66; P < 0.001). Additionally, body mass index was lowered (25.9 4 vs.29.34), with a P value of 0.001. CONCLUSIONS A 12-month curcumin intervention in type 2 diabetes patients shows a significant glucose-lowering effect. Curcumin treatment appeared to improve the overall function of β-cells and reduce both insulin resistance and body weight, with very minor adverse effects. Curcumin intervention in obese patients with type 2 diabetes may be beneficial. TRIAL REGISTRATION Thai clinical trials regentrify no.20140303003.
Collapse
Affiliation(s)
- Metha Yaikwawong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Laddawan Jansarikit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems, Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Pharmacy, Silpakorn University, Mueang District, Nakhon Prathom, Thailand
| | - Somlak Chuengsamarn
- Division of Endocrinology and Metabolism, Faculty of Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Nakhon Nayok, Thailand.
| |
Collapse
|
62
|
Ma H, Wang P, Hou Z, Zhou H, Lv D, Cui F, Shuang W. Preoperative Serum Cystatin C as an Independent Prognostic Factor for Survival in Patients with Renal Cell Carcinoma. J Cancer 2024; 15:5978-5985. [PMID: 39440052 PMCID: PMC11493004 DOI: 10.7150/jca.97711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose: This study aims to evaluate the prognostic significance of preoperative serum cystatin C (Cys-C) in patients with renal cell carcinoma (RCC). Methods: We analyzed clinicopathological data and follow-up information of 624 RCC patients who underwent partial or radical nephrectomy at our institution. The optimal cutoff value of Cys-C was determined using X-tile software. Survival outcomes, including overall survival (OS) and cancer-specific survival (CSS), were evaluated using the Kaplan-Meier method and log-rank test. To avoid overfitting and collinearity, we used LASSO-based multivariable Cox regression analysis to identify independent predictors of OS and CSS. The predictive accuracy of the established model, including preoperative serum Cys-C, was evaluated using the time-dependent receiver operating characteristic (ROC) curves and the area under the curve (AUC). Results: The median follow-up period was 40 months. The optimal cutoff value of preoperative serum Cys-C levels was 0.95 mg/L. Compared with the low Cys-C group, patients in the high Cys-C group had significantly shorter OS and CSS. Multivariable Cox regression analysis indicated that elevated preoperative serum Cys-C level was an independent adverse predictor for RCC patients post-nephrectomy. After adjusting for all covariates, high preoperative serum Cys-C level was associated with worse OS (hazard ratio [HR]: 2.254; 95% confidence interval [CI]: 1.144, 4.439; P = 0.019) and CSS (HR: 3.621; 95% CI: 1.386, 9.456; P = 0.009). Time-dependent ROC analysis demonstrated that our model, including preoperative serum Cys-C, performed well in predicting accuracy of survival. Conclusions: Preoperative serum Cys-C level is an effective prognostic indicator for OS and CSS in RCC patients undergoing nephrectomy.
Collapse
Affiliation(s)
- Hui Ma
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Grand Hospital of Shuozhou, Shuozhou 036000, China
- Department of Urology, The First Hospital of Shanxi Medical University, No. 85, JieFang South Road, Yingze District, Taiyuan 030001, China
| | - Peipei Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhao Hou
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huiyu Zhou
- First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Dingyang Lv
- First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Fan Cui
- Assisted Reproductive Center, Taiyuan Hospital of Peking University First Hospital, Taiyuan 030032, Shanxi, China
| | - Weibing Shuang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Urology, The First Hospital of Shanxi Medical University, No. 85, JieFang South Road, Yingze District, Taiyuan 030001, China
| |
Collapse
|
63
|
Papavassiliou KA, Sofianidi AA, Spiliopoulos FG, Gogou VA, Gargalionis AN, Papavassiliou AG. YAP/TAZ Signaling in the Pathobiology of Pulmonary Fibrosis. Cells 2024; 13:1519. [PMID: 39329703 PMCID: PMC11430237 DOI: 10.3390/cells13181519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe, irreversible lung disease characterized by progressive scarring, with idiopathic pulmonary fibrosis (IPF) being the most prevalent form. IPF's pathogenesis involves repetitive lung epithelial injury leading to fibroblast activation and excessive extracellular matrix (ECM) deposition. The prognosis for IPF is poor, with limited therapeutic options like nintedanib and pirfenidone offering only modest benefits. Emerging research highlights the dysregulation of the yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling pathway as a critical factor in PF. YAP and TAZ, components of the Hippo pathway, play significant roles in cell proliferation, differentiation, and fibrosis by modulating gene expression through interactions with TEA domain (TEAD) transcription factors. The aberrant activation of YAP/TAZ in lung tissue promotes fibroblast activation and ECM accumulation. Targeting the YAP/TAZ pathway offers a promising therapeutic avenue. Preclinical studies have identified potential treatments, such as trigonelline, dopamine receptor D1 (DRD1) agonists, and statins, which inhibit YAP/TAZ activity and demonstrate antifibrotic effects. These findings underscore the importance of YAP/TAZ in PF pathogenesis and the potential of novel therapies aimed at this pathway, suggesting a new direction for improving IPF treatment outcomes. Further research is needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, ‘Sotiria’ Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.S.); (F.G.S.)
| | - Fotios G. Spiliopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.S.); (F.G.S.)
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, Medical School, ‘Sotiria’ Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, ‘Attikon’ University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.S.); (F.G.S.)
| |
Collapse
|
64
|
Mirjanić-Azarić B, Stanković S, Radić-Savić Z, Malčić-Zanić D, Ninić A, Vuković M, Nezić L, Skrbić R, Bogavac-Stanojević N. Assessment of the diagnostic value of serum cathepsin S and its correlation with HDL subclasses in patients with non-Hodgkin's lymphoma. J Med Biochem 2024; 43:711-719. [PMID: 39712508 PMCID: PMC11662951 DOI: 10.5937/jomb0-48959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 12/24/2024] Open
Abstract
Background Recent findings point to the key role of cathepsin S (CTSS) in the survival of malignant cells, as well as the significance of the anti-apoptotic properties of high-density lipoprotein (HDL) that contribute to enhanced cell survival. The purpose of this study is to analyse CTSS as a potential biomarker in lymphoma. Also, in order to better understand the role of CTSS in the origin and development of lymphoma, its association with cystatin C (Cys C), lipids, and inflammatory markers was analysed. Methods The study included 90 subjects: 11 Hodgkin (HL) and 44 B-cell non-Hodgkin lymphoma (NHL) patients, as well as 35 healthy subjects. CTSS was determined using the Invitrogen ELISA kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The non-denaturing 3%-31% polyacrylamide gradient gel electrophoresis method was used to separate plasma HDL particles. Results The level of CTSS was significantly higher in NHL patients than in control subjects: 12.20 (9.75-14.57) vs 9.97 (8.44-10.99), P<0.001. In NHL patients, there was a positive correlation between CTSS and the proportions of HDL3a, HDL3b, and the sum of the HDL3 subclasses (r=0.506, P<0.001; r=0.411, P=0.006, r=0.335, P=0.026, respectively). In addition, the area under the receiver operating characteristic curve (AUC curve) of CTSS was 0.766 (CI: 0.655-0.856) for NHL patients. There was no significant difference in CTSS values between the control group and patients with HL, nor significant correlations between CTSS and HDL subclasses in the HL group. Conclusions CTSS is significantly elevated in patients with NHL and has the potential to be a new diagnostic bio - marker for the detection of NHL. Also, this study was the first to unveil the association between serum CTSS levels and the proportions of anti-apoptotic HDL3a and HDL3b subclasses in NHL patients.
Collapse
Affiliation(s)
- Bosa Mirjanić-Azarić
- University of Banja Luka, Faculty of Medicine, Department of Medical Biochemistry, Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Siniša Stanković
- University Clinical Centre of the Republic of Srpska, Department of Nuclear Medicine, Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Zana Radić-Savić
- University of Banja Luka, Faculty of Medicine, Department of Medical Biochemistry, Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Dragana Malčić-Zanić
- University of Banja Luka, Faculty of Medicine, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Ana Ninić
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade, Serbia
| | - Marija Vuković
- University Clinical Centre of the Republic of Srpska, Institute of Laboratory Diagnostic, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Lana Nezić
- University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Ranko Skrbić
- University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | | |
Collapse
|
65
|
Xu J, Liu Z, Yang Q, Ma Q, Zhou Y, Cai Y, Zhao D, Zhao G, Lu T, Ouyang K, Hong M, Kim HW, Shi H, Zhang J, Fulton D, Miller C, Malhotra R, Weintraub NL, Huo Y. Adenosine kinase inhibition protects mice from abdominal aortic aneurysm via epigenetic modulation of VSMC inflammation. Cardiovasc Res 2024; 120:1202-1217. [PMID: 38722818 PMCID: PMC11368124 DOI: 10.1093/cvr/cvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of the intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing, and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The heterozygous deficiency of ADK protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of ADK in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization, and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. The metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis, and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation, and AAA formation. CONCLUSION Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Adenosine/metabolism
- Adenosine/analogs & derivatives
- Adenosine Kinase/antagonists & inhibitors
- Angiotensin II/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortitis/prevention & control
- Aortitis/enzymology
- Aortitis/pathology
- Aortitis/metabolism
- Aortitis/chemically induced
- Aortitis/genetics
- Calcium Chloride
- Cells, Cultured
- Disease Models, Animal
- DNA Methylation
- Epigenesis, Genetic
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Morpholines
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines
- Signal Transduction
Collapse
Affiliation(s)
- Jiean Xu
- Department of Physiology, Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, University Town, Guangzhou, 510006, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Dingwei Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tammy Lu
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- Emory University, Atlanta, GA 30322, USA
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Clint Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
66
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
67
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
68
|
Lubis M, Darmadi D, Samuel Surja S, Pakpahan C. Diagnostic value of Midkine and AFP in the detection of hepatocellular carcinoma: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:559-569. [PMID: 39359432 PMCID: PMC11444100 DOI: 10.22088/cjim.15.4.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2024]
Abstract
Background Hepatocellular carcinoma (HCC) posed significant health problems and deaths. There are various challenges in the management of HCC, including the late detection or diagnosis. The ongoing diagnostic method in HCC also hinders the detection on the early stages of the disease, thus biomarkers need to be explored further for HCC detection. Serum alpha fetoprotein (AFP) and Midkine (MDK) are two proteins which might be the biomarker of choice in the detection of HCC. This meta-analysis aims to analyze the accuracy of Midkine and AFP in the detection of HCC. Methods The systematic review and meta-analysis was conducted by adhering to the Preferred Reporting System for Systematic Review and Meta-Analysis (PRISMA) guidelines. We conduct literature screening and selection followed by quality assessment from various databases such as PubMed, MEDLINE, SpringerLink, ProQuest, EBSCOhost, Cochrane, and EMBASE. The included studies were then extracted and analyzed cumulatively using MedCalc and MetaDTA with forest plot and ROC curve as outcome. Results 12 studies were included in this study. The AFP biomarker yields sensitivity value of 62.5% (97.5% CI 0.442 - 0.778) and specificity value of 95% (97.5% CI 0.842 - 0.986), while the Midkine biomarker denotes sensitivity value of 91.6% (97.5% CI 0.83 - 0.961) and specificity value of 82.2% (97.5% CI 0.83 - 0.96). Conclusions Both AFP and MDK are proven to be a good diagnostic tool or biomarker in the detection of HCC. The use of both in combination should provide high quality diagnostic marker for HCC suspected patients. Further studies on this should be conducted.
Collapse
Affiliation(s)
- Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sem Samuel Surja
- Department of Parasitology, School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Medan, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Medan, Indonesia
| |
Collapse
|
69
|
Mehboob Z, Sharif S, Lodhi MS, Shah AB, Romman M, Nayila I. Phytochemical profiling and anticancer potential of gardenia latifolia extracts against arsenic trioxide induced liver fibrosis in rat model. Front Pharmacol 2024; 15:1389024. [PMID: 39281276 PMCID: PMC11395838 DOI: 10.3389/fphar.2024.1389024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Arsenic trioxide (As2O3) is an environmental contaminant that may cause hepatic injuries. As2O3-induced liver injuries are detected as an underlying cause of hepatocellular carcinoma (HCC) around the globe. The present study aimed to investigate the potential of Gardenia latifolia (GL) extracts against oxidative stress and apoptotic activity in HCC-induced rats and to explore in silico molecular docking analysis of phytocompounds of G. latifolia. Methods The present study was designed to investigate the hepato-protective effect of ethanol and n-hexane extract of G. latifolia. Phytochemical analysis was performed using gas-chromatography-mass spectrometry (GC-MS), and the identified metabolites were used for computational docking analysis. The binding potential and inhibitory effect of the identified metabolites against inflammatory markers were assessed. Fifty male albino rats were selected for the in vivo study and were randomly divided into five groups, with 10 rats in each group. Group I is the control group. Hepatotoxicity was induced in groups II, III, IV, and V with 350 mg/kg/day of As2O3. Group II was taken as positive control, Group III and IV were treated with ethanol and n-hexane extract of G. latifolia, respectively, and Group V was treated with cisplatin 3.0 mg/kg/day. At the end of treatment, different stress and liver biomarkers were also analyzed. Results and Discussion The quantitative phytochemical profiling revealed a high content of total flavonoid and tannins found at 5.731 ± 0.1856 mg quercetin equivalent (QE)/g and 86.31 ± 14.20 mg tannic acid equivalent (TAE)/g in G. latifolia n-hexane extract, while a significant concentration of TFC was 276.821 ± 2.19 mg gallic acid equivalent (GAE)/g, in ethanolic extract. GC-MS analysis resulted in the identification of 26 metabolites in ethanol extract while 32 metabolites in n-hexane extract, respectively. Both the extracts restored the abnormal levels of stress markers (p < 0.05) in Groups III and IV, and were comparable to the comparative control group V, which was given cisplatin as the standard drug. The histopathological examination revealed the regeneration of hepatocytes, dilated sinusoidal cells, necrosis, and distorted hepatic architecture observed in arsenic trioxide hepatotoxic liver. Among the top most identified metabolites from GC-MS analysis, stigmasterol exhibited -8.3 and -7.1 kcal/mol in silico binding affinities against cyclooxygenase-2 (COX-2), and interleukin (IL-6), respectively, while Dasycarpidan-1-methanol exhibited the best binding affinities of -6.8 and -7.2 kcal/mole against matrixmetalloprotinease (MMP)-3 and heat shock protein-90 (HSP-90), respectively. 6-AH-cAMP showed the best docking score of -7.5 kcal/mol for the vascular endothelial growth factor (VEGF) macromolecule. Metabolite Dasycarpidan-1-methanol, acetate represented drug like properties so it was further analyzed by MD simulation and stable dynamic nature of protein ligand complex was evaluated. Conclusion In conclusion, the effective therapeutic potential of G. latifolia extracts targeted oxidative stress, increasing antioxidant activities and inhibiting inflammation and liver complications at early stages. Further research on the molecular level may further explore the anticancer potential of this plant against various types of cancers.
Collapse
Affiliation(s)
- Zahid Mehboob
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Romman
- Department of Botany, University of Chitral, Chitral, Pakistan
| | - Iffat Nayila
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Department of Pharmacy, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| |
Collapse
|
70
|
Zhang T, Mi J, Qin X, Ouyang Z, Wang Y, Li Z, He S, Hu K, Wang R, Huang W. Rosmarinic Acid Alleviates Radiation-Induced Pulmonary Fibrosis by Downregulating the tRNA N7-Methylguanosine Modification-Regulated Fibroblast-to-Myofibroblast Transition Through the Exosome Pathway. J Inflamm Res 2024; 17:5567-5586. [PMID: 39188632 PMCID: PMC11346487 DOI: 10.2147/jir.s458794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Radiation-induced pulmonary fibrosis (RIPF) is a common complication after radiotherapy in thoracic cancer patients, and effective treatment methods are lacking. The purpose of this study was to investigate the protective effect of rosmarinic acid (RA) on RIPF in mice as well as the mechanism involved. Methods m7G-tRNA-seq and tRNA-seq analyses were conducted to identify m7G-modified tRNAs. Western blotting, immunohistochemistry, northwestern blotting, northern blotting, immunofluorescence, wound-healing assays and EdU experiments were performed to explore the molecular mechanism by which RA regulates fibroblast-to-myofibroblast transformation (FMT) by affecting the exosomes of lung epithelial cells. Ribo-seq and mRNA-seq analyses were used to explore the underlying target mRNAs. Seahorse assays and immunoprecipitation were carried out to elucidate the effects of RA on glycolysis and FMT processes via the regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) acetylation. Results We found that RA had an antifibrotic effect on the lung tissues of RIPF model mice and inhibited the progression of FMT through exosomes derived from lung epithelial cells. Mechanistically, RA reduced the transcription and translation efficiency of sphingosine kinase 1 in lung fibroblasts by decreasing N7-methylguanosine modification of tRNA, downregulating the expression of tRNAs in irradiated lung epithelial cell-derived exosomes, and inhibiting the interaction between sphingosine kinase 1 and the N-acetyltransferase 10 protein in fibroblasts. Furthermore, the acetylation and cytoplasmic translocation of PFKFB3 were reduced by exosomes derived from irradiated lung epithelial cells, which following RA intervention. This suppression of the FMT process, which is triggered by glycolysis, and ultimately decelerating the progression of RIPF. Conclusion These findings suggest that RA is a potential therapeutic agent for RIPF.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Jinglin Mi
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Xinling Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Zhechen Ouyang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Yiru Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Zhixun Li
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Siyi He
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Kai Hu
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Weimei Huang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
71
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
72
|
Bautista-Elivar N, Avilés-Trigueros M, Bueno JM. Quantification of Photoreceptors' Changes in a Diabetic Retinopathy Model with Two-Photon Imaging Microscopy. Int J Mol Sci 2024; 25:8756. [PMID: 39201444 PMCID: PMC11354294 DOI: 10.3390/ijms25168756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Emerging evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR), preceding the development of microvascular abnormalities. Here, we assessed the impact of neuroinflammation on the retina of diabetic-induced rats. For this aim we have used a two-photon microscope to image the photoreceptors (PRs) at different eccentricities in unstained retinas obtained from both control (N = 4) and pathological rats (N = 4). This technique provides high-resolution images where individual PRs can be identified. Within each image, every PR was located, and its transversal area was measured and used as an objective parameter of neuroinflammation. In control samples, the size of the PRs hardly changed with retinal eccentricity. On the opposite end, diabetic retinas presented larger PR transversal sections. The ratio of PRs suffering from neuroinflammation was not uniform across the retina. Moreover, the maximum anatomical resolving power (in cycles/deg) was also calculated. This presents a double-slope pattern (from the central retina towards the periphery) in both types of specimens, although the values for diabetic retinas were significantly lower across all retinal locations. The results show that chronic retinal inflammation due to diabetes leads to an increase in PR transversal size. These changes are not uniform and depend on the retinal location. Two-photon microscopy is a useful tool to accurately characterize and quantify PR inflammatory processes and retinal alterations.
Collapse
Affiliation(s)
- Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica y Electrónica, Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Pachuca 42082, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, 30100 Murcia, Spain
| | - Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
73
|
Eisa A, Hanafy SM, Khalil H, Elshal MF. Sitagliptin synergizes 5-fluorouracil efficacy in colon cancer cells through MDR1-mediated flux impairment and down regulation of NFκB2 and p-AKT survival proteins. J Biochem Mol Toxicol 2024; 38:e23796. [PMID: 39087923 DOI: 10.1002/jbt.23796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
5-fluorouracil (5-FU) is an inexpensive treatment for colon cancer; however, its efficacy is limited by chemoresistance. This study investigates the combination therapy approach of 5-FU with Sitagliptin (Sita), a diabetic drug with potential cancer-modulating effects. The combination was evaluated in vitro and in silico, focusing on the effects of Sita and 5-FU on colon cancer cells. The results showed that the addition of Sita significantly decreased the IC50 of 5-FU compared to 5-Fu monotherapy. The study also found that Sita and 5-FU interact synergistically, with a combination index below 1. Sita successfully lowered the 5-FU dosage reduction index, decreasing the expression of MDR1 mRNA and p-AKT and NFκB2 subunits p100/p52 protein. Molecular docking analyses confirmed Sita's antagonistic action on MDR1 and thymidylate synthase proteins. The study concludes that sitagliptin can target MDR1, increase apoptosis, and significantly reduce the expression of p-AKT and NFκB2 cell-survival proteins. These effects sensitize colon cancer cells to 5-FU. Repurposing sitagliptin may enhance the anticancer effects of 5-FU at lower dosages.
Collapse
Affiliation(s)
- Asmaa Eisa
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| | - Shaden M Hanafy
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed F Elshal
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
74
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
75
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
76
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
77
|
Aboismaiel MG, Amin MN, Eissa LA. Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α. Biol Res 2024; 57:47. [PMID: 39033184 PMCID: PMC11265012 DOI: 10.1186/s40659-024-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1β, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.
Collapse
Affiliation(s)
- Merna G Aboismaiel
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
78
|
Zhang S, Yang G, Zhang Q, Fan Y, Tang M, Shen L, Zhu D, Zhang G, Yard B. PEGylation renders carnosine resistant to hydrolysis by serum carnosinase and increases renal carnosine levels. Amino Acids 2024; 56:44. [PMID: 38960916 PMCID: PMC11222247 DOI: 10.1007/s00726-024-03405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.
Collapse
Affiliation(s)
- Shiqi Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China.
| | - Guang Yang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Qinqin Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuying Fan
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingna Tang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Liuhai Shen
- Department of Nuclear Medicine, Provincial Peoplès Hospital, Anhui No. 2, Hefei, 230041, China
| | - Dongchun Zhu
- Department of Pharmacy, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Benito Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| |
Collapse
|
79
|
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, Robin, Kaur P, Jasrotia S, Kumar P, Rajat, Singh V, Tuli HS. Sesamol as a potent anticancer compound: from chemistry to cellular interactions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4961-4979. [PMID: 38180556 DOI: 10.1007/s00210-023-02919-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.
Collapse
Affiliation(s)
- Ajay Kumar
- University Center for Research & Development (UCRD), Biotechnology Engineering & Food Technology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Payal Bajaj
- Advanced Eye Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kapil Paul
- Kanya Maha Vidyalaya, Jalandhar, 144004, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukanya Mehra
- P.G. Department of Science, Khalsa College For Women, Amritsar, 143001, Punjab, India
| | - Robin
- Regional Water Testing Laboratory, Department of Water Supply and Sanitation, Agilent Technologies India Pvt. Ltd., Amritsar, Punjab, India
| | - Pardeep Kaur
- Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Shivam Jasrotia
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Parveen Kumar
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Rajat
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Vipourpreet Singh
- Coast Mountain College, Prince Rupert, British Columbia, V8J3S8, Canada
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| |
Collapse
|
80
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
81
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
82
|
He S, Chen H, Yi Y, Hou D, Fu X, Xie J, Zhang J, Liu C, Ru X, Wang J. A novel bioinformatics strategy to uncover the active ingredients and molecular mechanisms of Bai Shao in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1406188. [PMID: 39005933 PMCID: PMC11239447 DOI: 10.3389/fphar.2024.1406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-β, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.
Collapse
Affiliation(s)
- Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Hantao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, Huzhou, China
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Chongbin Liu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
83
|
Han Y, Dong C, Hu M, Wang X, Wang G. Unlocking the adenosine receptor mechanism of the tumour immune microenvironment. Front Immunol 2024; 15:1434118. [PMID: 38994361 PMCID: PMC11236561 DOI: 10.3389/fimmu.2024.1434118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.
Collapse
Affiliation(s)
- Yecheng Han
- General Affairs Office of Shenyang Hongqiao Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mingwang Hu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
84
|
Zhang F, Yue H, Dong R, He J, Zhou L, Dou X, Wang L, Zheng P, Mao Z, Zhu X, Wang Y, Liu H, Zhang H. Trigonelline hydrochloride attenuates silica-induced pulmonary fibrosis by orchestrating fibroblast to myofibroblast differentiation. Respir Res 2024; 25:242. [PMID: 38877465 PMCID: PMC11179236 DOI: 10.1186/s12931-024-02876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-β/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.
Collapse
Affiliation(s)
- Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ruihan Dong
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jianhan He
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinran Dou
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
85
|
Althobaiti F, Taher ES, Ahmed Alkeridis L, Ibrahim AM, El-Shafai N, A Al-Shuraym L, Fericean L, Imbrea F, A Kassab M, Farrag FA, Abdeen A, Almalki DA, AL-Farga A, Afifi M, Shukry M. Exploring the NRF2/HO-1 and NF-κB Pathways: Spirulina Nanoparticles as a Novel Approach to Combat Diabetic Nephropathy. ACS OMEGA 2024; 9:23949-23962. [PMID: 38854532 PMCID: PMC11154939 DOI: 10.1021/acsomega.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ehab S. Taher
- Department
of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Lamya Ahmed Alkeridis
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ateya M. Ibrahim
- Department
of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nagi El-Shafai
- Nanotechnology
Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Laila A Al-Shuraym
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O.
Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Department
of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I”
from Timişoara, 300645 Timisoara, Romania
| | - Florin Imbrea
- Department
of Crop Science Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania
| | - Mohamed A Kassab
- Department
of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Foad A. Farrag
- Department
of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Basic veterinary sciences,
Faculty of Veterinary Medicine, Delta University
for Science and Technology, Dakahlia 7730103, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty
of Veterinary
Medicine, Benha University, Toukh 13736, Egypt
| | - Daklallah A. Almalki
- Biology Department,
Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al Baha 1988, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of
Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mustafa Shukry
- Department
of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
86
|
Li L, Chen J, Wang Z, Xu Y, Yao H, Lei W, Zhou X, Zheng M. NECA alleviates inflammatory responses in diabetic retinopathy through dendritic cell toll-like receptor signaling pathway. Front Immunol 2024; 15:1415004. [PMID: 38895119 PMCID: PMC11182989 DOI: 10.3389/fimmu.2024.1415004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction This study examined the impact of 5'-(N- ethylcarboxamido)adenosine (NECA) in the peripheral blood of healthy individuals, those with diabetes mellitus, diabetic retinopathy (DR), and C57BL/6 mice, both in vivo and in vitro. Methods Enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FCM) were used to evaluate the effects of NECA on dendritic cells (DCs) and mouse bone marrow-derived dendritic cells (BMDCs) and the effects of NECA-treated DCs on Treg and Th17 cells. The effect of NECA on the Toll-like receptor (TLR) pathway in DCs was evaluated using polymerase chain reaction (PCR) and western blotting (WB). Results FCM and ELISA showed that NECA inhibited the expression of surface markers of DCs and BMDCs, increased anti-inflammatory cytokines and decreased proinflammatory cytokines. PCR and WB showed that NCEA decreased mRNA transcription and protein expression in the TLR-4-MyD88-NF-kβ pathway in DCs and BMDCs. The DR severity in streptozocin (STZ) induced diabetic mice was alleviated. NECA-treated DCs and BMDCs were co-cultivated with CD4+T cells, resulting in modulation of Treg and Th17 differentiation, along with cytokine secretion alterations. Conclusion NECA could impair DCs' ability to present antigens and mitigate the inflammatory response, thereby alleviating the severity of DR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiyuan Zhou
- *Correspondence: Xiyuan Zhou, ; Minming Zheng,
| | | |
Collapse
|
87
|
Hanna PE, Ouyang T, Tahir I, Katz‐Agranov N, Wang Q, Mantz L, Strohbehn I, Moreno D, Harden D, Dinulos JE, Cosar D, Seethapathy H, Gainor JF, Shah SJ, Gupta S, Leaf DE, Fintelmann FJ, Sise ME. Sarcopenia, adiposity and large discordance between cystatin C and creatinine-based estimated glomerular filtration rate in patients with cancer. J Cachexia Sarcopenia Muscle 2024; 15:1187-1198. [PMID: 38646842 PMCID: PMC11154767 DOI: 10.1002/jcsm.13469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Creatinine-based estimated glomerular filtration rate (eGFRCRE) may overestimate kidney function in patients with sarcopenia. While cystatin C-based eGFR (eGFRCYS) is less affected by muscle mass, it may underestimate kidney function in patients with obesity. We sought to evaluate the relationship between body composition defined by computed tomography (CT) scans and discordance between creatinine, eGFRCRE and eGFRCYS in adult patients with cancer. METHODS This study is a cross-sectional study of consecutive adults with cancer with an abdominal CT scan performed within 90 days of simultaneous eGFRCRE and eGFRCYS measurements between May 2010 and January 2022. Muscle and adipose tissue cross-sectional areas were measured at the level of the third lumbar vertebral body using a validated deep-learning pipeline. CT-defined sarcopenia was defined using independent sex-specific cut-offs for skeletal muscle index (<39 cm2/m2 for women and <55 cm2/m2 for men). High adiposity was defined as the highest sex-specific quartile of the total (visceral plus subcutaneous) adiposity index in the cohort. The primary outcome was eGFR discordance, defined by eGFRCYS > 30% lower than eGFRCRE; the secondary outcome was eGFRCYS > 50% lower than eGFRCRE. The odds of eGFR discordance were estimated using multivariable logistic regression modelling. Unadjusted spline regression was used to evaluate the relationship between skeletal muscle index and the difference between eGFRCYS and eGFRCRE. RESULTS Of the 545 included patients (mean age 63 ± 14 years, 300 [55%] females, 440 [80.7%] non-Hispanic white), 320 (58.7%) met the criteria for CT-defined sarcopenia, and 136 (25%) had high adiposity. A total of 259 patients (48%) had >30% eGFR discordance, and 122 (22.4%) had >50% eGFR discordance. After adjustment for potential confounders, CT-defined sarcopenia and high adiposity were both associated with >30% eGFR discordance (adjusted odds ratio [aOR] 1.90, 95% confidence interval [CI] 1.12-3.24; aOR 2.01, 95% CI 1.15-3.52, respectively) and >50% eGFR discordance (aOR 2.34, 95% CI 1.21-4.51; aOR 2.23, 95% CI 1.19-4.17, respectively). A spline model demonstrated that as skeletal muscle index decreases, the predicted difference between eGFRCRE and eGFRCYS widens considerably. CONCLUSIONS CT-defined sarcopenia and high adiposity are both independently associated with large eGFR discordance. Incorporating valuable information from body composition analysis derived from CT scans performed as a part of routine cancer care can impact the interpretation of GFR estimates.
Collapse
Affiliation(s)
- Paul E. Hanna
- Division of Nephrology, Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
| | - Tianqi Ouyang
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Ismail Tahir
- Department of RadiologyMassachusetts General HospitalBostonMAUSA
| | - Nurit Katz‐Agranov
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Qiyu Wang
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Lea Mantz
- Department of RadiologyMassachusetts General HospitalBostonMAUSA
- Department of Diagnostic and Interventional RadiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Ian Strohbehn
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Daiana Moreno
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Destiny Harden
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - James E. Dinulos
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Duru Cosar
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Harish Seethapathy
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Justin F. Gainor
- Division of Hematology and Oncology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Sachin J. Shah
- Division of General Internal Medicine, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Shruti Gupta
- Division of Renal Medicine, Department of MedicineBrigham and Women's HospitalBostonMAUSA
- Adult Survivorship ProgramDana‐Farber Cancer InstituteBostonMAUSA
| | - David E. Leaf
- Division of General Internal Medicine, Department of MedicineMassachusetts General HospitalBostonMAUSA
| | | | - Meghan E. Sise
- Division of Nephrology, Department of MedicineMassachusetts General HospitalBostonMAUSA
| |
Collapse
|
88
|
Wang Q, Tripodi N, Valiukas Z, Bell SM, Majid A, de Courten B, Apostolopoulos V, Feehan J. The protective role of carnosine against type 2 diabetes-induced cognitive impairment. Food Sci Nutr 2024; 12:3819-3833. [PMID: 38873448 PMCID: PMC11167184 DOI: 10.1002/fsn3.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have grown exponentially over the last 30 years. Together with its associated complications, the mortality rates have increased. One important complication in those living with T2DM is the acceleration of age-related cognitive decline. T2DM-induced cognitive impairment seriously affects memory, executive function, and quality of life. However, there is a lack of effective treatment for both diabetes and cognitive decline. Thus, finding novel treatments which are cheap, effective in both diabetes and cognitive impairment, are easily accessible, are needed to reduce impact on patients with diabetes and health-care systems. Carnosine, a histidine containing dipeptide, plays a protective role in cognitive diseases due to its antioxidant, anti-inflammation, and anti-glycation properties, all of which may slow the development of neurodegenerative diseases and ischemic injury. Furthermore, carnosine is also involved in regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective role of carnosine and its mechanisms in T2DM-induced cognitive impairment, which may provide a theoretical basis and evidence base to evaluate whether carnosine has therapeutic effects in alleviating cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Zachary Valiukas
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Simon M. Bell
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Barbora de Courten
- STEM college, RMIT UniversityMelbourneVictoriaAustralia
- School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
- Australian Institute for Musculoskeletal Sciences, Immunology Program, Western HealthThe University of Melbourne and Victoria UniversityMelbourneVictoriaAustralia
| | - Jack Feehan
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| |
Collapse
|
89
|
Okada R, Otsuka Y, Kajiwara Y, Maeda T, Ishii J, Kimura K, Matsumoto Y, Ito Y, Funahashi K, Shimada H. Prognostic and diagnostic effects of high serum midkine levels in patients with hepatocellular carcinoma. Oncol Lett 2024; 27:283. [PMID: 38736738 PMCID: PMC11082639 DOI: 10.3892/ol.2024.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Midkine (MK) is a soluble cytokine, and its serum levels strongly correspond to protein expression levels in tumors. The present study aimed to clarify the clinicopathological and prognostic significance of serum MK (s-MK) in patients with hepatocellular carcinoma (HCC). Serum samples were obtained before surgery from 123 patients with HCC who had undergone surgery between January 2012 and December 2020. The receiver operating characteristic curve revealed that the best cut-off value for s-MK in differentiating HCC from healthy cases was 426 pg/ml. The clinicopathological variables and overall survival of patients were compared between the s-MK-positive group and s-MK-negative group. The sensitivity, specificity and accuracy of s-MK were 82.1, 97.4 and 88.0%, respectively. An s-MK-positive status was significantly associated with the number of tumors (≥2). The positivity rate of s-MK was significantly higher compared with that of α-fetoprotein and protein-induced by vitamin K absence-II. In total, only 28% of the patients were positive for s-MK. The s-MK-positive group showed significantly worse overall survival compared with the s-MK-negative group. Moreover, multivariate analysis revealed that an s-MK-positive status was independently associated with poor prognosis. s-MK was useful in detecting early HCC. The findings of this study indicated that the s-MK-positive status is associated with the number of tumors and can act as an independent prognostic risk factor.
Collapse
Affiliation(s)
- Rei Okada
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Yuichiro Otsuka
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Yoji Kajiwara
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Tetsuya Maeda
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Jun Ishii
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Kazutaka Kimura
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Yu Matsumoto
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Yuko Ito
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Kimihiko Funahashi
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
- Department of Gastroenterological Surgery and Clinical Oncology, Graduate School of Medicine, Toho University, Ota City, Tokyo 143-8541, Japan
| |
Collapse
|
90
|
Lin J, Chen Z, Lu Y, Shi H, Lin P. Bruton tyrosine kinase degrader BP001 attenuates the inflammation caused by high glucose in raw264.7 cell. In Vitro Cell Dev Biol Anim 2024; 60:667-677. [PMID: 38775977 DOI: 10.1007/s11626-024-00919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 07/31/2024]
Abstract
BP001 is a promising small molecule compound that has been specifically designed to target and degrade Bruton's tyrosine kinases (BTK), which is known to play a crucial role in lymphoma development. Macrophages are important immune cells in inflammation regulation and immune response. In this study, we aimed to investigate the effect of BP001 on RAW264.7 macrophage activation stimulated by a high glucose environment. Our findings revealed that treatment with BP001 significantly inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages exposed to high glucose conditions. Furthermore, we observed that BP001 treatment also down-regulated the expression of BTK in these activated macrophages. To elucidate the underlying mechanism behind these observations, we investigated the phosphorylation level of NF-κB. Our results demonstrated that BP001 treatment led to decreased phosphorylation levels of NF-κB, thereby inhibiting the level of inflammation. In addition, we also found that BP001 could restore RAW264.7 macrophages from the pro-inflammatory state to the normal phenotype and reduce the occurrence of inflammation. The regulatory function of BP001 in autoimmunity is mediated through the degradation of BTK protein, thereby attenuating macrophage activation. Additionally, BTK plays a pivotal role in transcriptional regulation by inducing NF-κB activity. Consequently, it is not difficult to understand that BP001 effectively inhibits inflammation. In conclusion, the present study provides evidence that BP001, a BTK degrader, can serve as a novel immunomodulator of inflammation induced by high glucose, making it an attractive candidate for further investigation.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhendong Chen
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yinying Lu
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hongyu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
91
|
Wang H, Sun F. UNC-45A: A potential therapeutic target for malignant tumors. Heliyon 2024; 10:e31276. [PMID: 38803956 PMCID: PMC11128996 DOI: 10.1016/j.heliyon.2024.e31276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/31/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Uncoordinated mutant number-45 myosin chaperone A (UNC-45A), a protein highly conserved throughout evolution, is ubiquitously expressed in somatic cells. It is correlated with tumorigenesis, proliferation, metastasis, and invasion of multiple malignant tumors. The current understanding of the role of UNC-45A in tumor progression is mainly related to the regulation of non-muscle myosin II (NM-II). However, many studies have suggested that the mechanisms by which UNC-45A is involved in tumor progression are far greater than those of NM-II regulation. UNC-45A can also promote tumor cell proliferation by regulating checkpoint kinase 1 (ChK1) phosphorylation or the transcriptional activity of nuclear receptors, and induces chemoresistance to paclitaxel in tumor cells by destabilizing microtubule activity. In this review, we discuss the recent advances illuminating the role of UNC-45A in tumor progression. We also put forward therapeutic strategies targeting UNC-45A, in the hope of paving the way the development of UNC-45A-targeted therapies for patients with malignant tumors.
Collapse
Affiliation(s)
- Hong Wang
- School of Nursing, Binzhou Medical University, Yantai, 264003, PR China
| | - Fude Sun
- Department of Anesthesiology, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, 265699, PR China
| |
Collapse
|
92
|
Lee SJ, Noh SE, Jo DH, Cho CS, Park KS, Kim JH. IL-10-induced modulation of macrophage polarization suppresses outer-blood-retinal barrier disruption in the streptozotocin-induced early diabetic retinopathy mouse model. FASEB J 2024; 38:e23638. [PMID: 38713098 DOI: 10.1096/fj.202400053r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.
Collapse
Affiliation(s)
- Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Eun Noh
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
93
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
94
|
Qian F, Li Q, Chang H, Wei K, Chen X, Huang T, Li Y. Identification of DNA methylation characteristics associated with metastasis and prognosis in colorectal cancer. BMC Med Genomics 2024; 17:127. [PMID: 38730335 PMCID: PMC11088068 DOI: 10.1186/s12920-024-01898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recurrence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemical analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC metastasis and improving the treatment and prognosis of CRC.
Collapse
Affiliation(s)
- Fang Qian
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Qiang Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huidan Chang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyi Chen
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China.
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
95
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
96
|
Zhang Y, Zhou A. Macrophage activation contributes to diabetic retinopathy. J Mol Med (Berl) 2024; 102:585-597. [PMID: 38429382 DOI: 10.1007/s00109-024-02437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
97
|
Darwish AB, Mohsen AM, ElShebiney S, Elgohary R, Younis MM. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats. Sci Rep 2024; 14:8247. [PMID: 38589438 PMCID: PMC11002014 DOI: 10.1038/s41598-024-58601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Shaimaa ElShebiney
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mostafa Mohamed Younis
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
98
|
Zakaria S, Elshazly AM, Alaa R, Elsebaey S. Dantrolene and coenzyme Q10 as a suggested combination therapy to statin-induced myopathy in high fat diet rats: A possible interference with ROS/ TGF-β / Smad4 signaling pathway. Toxicol Appl Pharmacol 2024; 485:116900. [PMID: 38508403 DOI: 10.1016/j.taap.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
One of the major hitches for statins' utilization is the development of myotoxicity. Versatile studies reported that the underlining molecular mechanisms including coenzyme Q10 (CoQ10)/ubiquinone depletion, as well as the disturbance in the cytoplasmic Ca2+ homeostasis. Therefore, we investigated the consequences of supplementing CoQ10 and dantrolene, a cytoplasmic Ca2+ reducing agent, in combination with simvastatin. This adjuvant therapy normalized the simvastatin-mediated elevation in serum ALT, AST, CK-MM, as well as tissue Ca2+ content, in addition to suppressing the simvastatin-mediated oxidative stress in simvastatin-treated rats, while having no effect upon statin-induced antihyperlipidemic effect. Additionally, the combination inhibited the simvastatin-induced TGF-β/ Smad4 pathway activation. Collectively, the current study emphasizes on the potential utilization of dantrolene and CoQ10 as an adjuvant therapy to statins treatment for improving their side effect profile.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ahmed M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA.
| | - Reem Alaa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University, Mansoura 15955, Egypt
| | - Samer Elsebaey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
99
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
100
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|