51
|
Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat. Psychopharmacology (Berl) 2014; 231:919-28. [PMID: 24190586 PMCID: PMC3945211 DOI: 10.1007/s00213-013-3317-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Intra-striatal infusions of the muscarinic antagonist, scopolamine, markedly suppress feeding; however, the underlying mechanisms are unclear. Recent findings suggest that scopolamine influences opioid-dependent mechanisms of feeding modulation. Robust mu-opioid-mediated feeding responses are obtained in anterior, ventral sectors of the striatum with progressively weaker effects posteriorly and dorsally. One might therefore expect the effects of scopolamine to conform to similar boundaries, but a systematic mapping of scopolamine-induced feeding suppression has not yet been undertaken. OBJECTIVE This study aimed to assess the overlap between the striatal sites mediating scopolamine-induced feeding suppression and mu-opioid-induced hyperphagia. METHODS Dose-effect functions for scopolamine (0, 1, 5, and 10 μg) were obtained in the nucleus accumbens (Acb), anterior dorsal striatum (ADS), and posterior dorsal striatum (PDS) in three different groups of rats. In the same subjects, the mu-opioid receptor agonist (D-Ala2-N-MePhe4, Glyol)-enkephalin (DAMGO; 0.25 μg) was infused on a separate test day. The dependent variables were food and water intake, ambulation, and rearing. RESULTS The greatest dose sensitivity for scopolamine-induced feeding suppression was observed in the Acb. Only the highest dose was effective in the ADS, and no effects were seen in the PDS. Water intake and general motor activity were not altered by scopolamine in any site. DAMGO infusions produced hyperphagia only in the Acb. CONCLUSIONS These results support a model in which the behavioral effects of muscarinic blockade are limited by the same anatomical constraints that govern mu-opioid receptor-mediated control of feeding. These constraints are likely imposed by the topographic arrangement of feeding-related afferent inputs and efferent projections of the striatum.
Collapse
|
52
|
Iwabuchi S, Koh JY, Wang K, Ho KWD, Harata NC. Minimal Change in the cytoplasmic calcium dynamics in striatal GABAergic neurons of a DYT1 dystonia knock-in mouse model. PLoS One 2013; 8:e80793. [PMID: 24260480 PMCID: PMC3834333 DOI: 10.1371/journal.pone.0080793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/07/2013] [Indexed: 11/25/2022] Open
Abstract
DYT1 dystonia is the most common hereditary form of primary torsion dystonia. This autosomal-dominant disorder is characterized by involuntary muscle contractions that cause sustained twisting and repetitive movements. It is caused by an in-frame deletion in the TOR1A gene, leading to the deletion of a glutamic acid residue in the torsinA protein. Heterozygous knock-in mice, which reproduce the genetic mutation in human patients, have abnormalities in synaptic transmission at the principal GABAergic neurons in the striatum, a brain structure that is involved in the execution and modulation of motor activity. However, whether this mutation affects the excitability of striatal GABAergic neurons has not been investigated in this animal model. Here, we examined the excitability of cultured striatal neurons obtained from heterozygous knock-in mice, using calcium imaging as indirect readout. Immunofluorescence revealed that more than 97% of these neurons are positive for a marker of GABAergic neurons, and that more than 92% are also positive for a marker of medium spiny neurons, indicating that these are mixed cultures of mostly medium spiny neurons and a few (~5%) GABAergic interneurons. When these neurons were depolarized by field stimulation, the calcium concentration in the dendrites increased rapidly and then decayed slowly. The amplitudes of calcium transients were larger in heterozygous neurons than in wild-type neurons, resulting in ~15% increase in cumulative calcium transients during a train of stimuli. However, there was no change in other parameters of calcium dynamics. Given that calcium dynamics reflect neuronal excitability, these results suggest that the mutation only slightly increases the excitability of striatal GABAergic neurons in DYT1 dystonia.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Jin-Young Koh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Kai Wang
- Department of Biostatistics, University of Iowa, College of Public Health, Iowa City, Iowa, United States of America
| | - K. W. David Ho
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - N. Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
53
|
Yamamoto K, Ebihara K, Koshikawa N, Kobayashi M. Reciprocal regulation of inhibitory synaptic transmission by nicotinic and muscarinic receptors in rat nucleus accumbens shell. J Physiol 2013; 591:5745-63. [PMID: 24018951 DOI: 10.1113/jphysiol.2013.258558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Medium spiny neurones (MSNs) in the nucleus accumbens (NAc) are the principal neurones whose activities are regulated by GABAergic inputs from MSNs and fast-spiking interneurones (FSNs). Cholinergic interneurones play important roles in the regulation of activity in MSNs; however, how acetylcholine modulates inhibitory synaptic transmission from MSNs/FSNs to MSNs remains unknown. We performed paired whole-cell patch-clamp recordings from MSNs and FSNs in rat NAc shell slice preparations and examined cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs). Carbachol (1 μM) suppressed uIPSC amplitude by 58.3 ± 8.0% in MSN→MSN connections, accompanied by increases in paired-pulse ratio and failure rate, suggesting that acetylcholine reduces the probability of GABA release from the synaptic terminals of MSNs. Carbachol-induced uIPSC suppression was antagonised by 100 μM atropine, and was mimicked by pilocarpine (1 μM) and acetylcholine (1 μM) but not nicotine (1 μM). Application of AM251 slightly reduced carbachol-induced uIPSC suppression (30.8 ± 8.9%), suggesting an involvement of endocannabinoid signalling in muscarinic suppression of uIPSCs. In contrast, FSN→MSN connections showed that pilocarpine had little effect on the uIPSC amplitude, whereas both nicotine and acetylcholine facilitated uIPSC amplitude, with decreases in failure rate and paired-pulse ratio, suggesting that nicotine-induced uIPSC facilitation is mediated by presynaptic mechanisms. Miniature IPSC recordings support these hypotheses of presynaptic cholinergic mechanisms. These results suggest a differential role for muscarinic and nicotinic receptors in GABA release, which depends on presynaptic neuronal subtypes in the NAc shell.
Collapse
Affiliation(s)
- Kiyofumi Yamamoto
- M. Kobayashi: Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | | | | | | |
Collapse
|
54
|
Gonzales KK, Pare JF, Wichmann T, Smith Y. GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 2013; 521:2502-22. [PMID: 23296794 PMCID: PMC3983787 DOI: 10.1002/cne.23295] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/14/2012] [Accepted: 12/27/2012] [Indexed: 01/30/2023]
Abstract
Striatal cholinergic interneurons (ChIs) are involved in reward-dependent learning and the regulation of attention. The activity of these neurons is modulated by intrinsic and extrinsic γ-aminobutyric acid (GABA)ergic and glutamatergic afferents, but the source and relative prevalence of these diverse regulatory inputs remain to be characterized. To address this issue, we performed a quantitative ultrastructural analysis of the GABAergic and glutamatergic innervation of ChIs in the postcommissural putamen of rhesus monkeys. Postembedding immunogold localization of GABA combined with peroxidase immunostaining for choline acetyltransferase showed that 60% of all synaptic inputs to ChIs originate from GABAergic terminals, whereas 21% are from putatively glutamatergic terminals that establish asymmetric synapses, and 19% from other (non-GABAergic) sources of symmetric synapses. Double pre-embedding immunoelectron microscopy using substance P and Met-/Leu-enkephalin antibodies to label GABAergic terminals from collaterals of "direct" and "indirect" striatal projection neurons, respectively, revealed that 47% of the indirect pathway terminals and 36% of the direct pathway terminals target ChIs. Together, substance P- and enkephalin-positive terminals represent 24% of all synapses onto ChIs in the monkey putamen. These findings show that ChIs receive prominent GABAergic inputs from multiple origins, including a significant contingent from axon collaterals of direct and indirect pathway projection neurons.
Collapse
Affiliation(s)
- Kalynda Kari Gonzales
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
55
|
Nieh EH, Kim SY, Namburi P, Tye KM. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res 2013; 1511:73-92. [PMID: 23142759 PMCID: PMC4099056 DOI: 10.1016/j.brainres.2012.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/26/2022]
Abstract
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. This article is part of a Special Issue entitled Optogenetics (7th BRES).
Collapse
Affiliation(s)
- Edward H. Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sung-Yon Kim
- Department of Bioengineering, Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Praneeth Namburi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay M. Tye
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
56
|
Pereira PA, Santos D, Neves J, Madeira MD, Paula-Barbosa MM. Nerve growth factor retrieves neuropeptide Y and cholinergic immunoreactivity in the nucleus accumbens of old rats. Neurobiol Aging 2013; 34:1988-95. [PMID: 23540942 DOI: 10.1016/j.neurobiolaging.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/01/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The nucleus accumbens (NAc) contains high levels of neuropeptide Y (NPY), which is involved in the regulation of functions and behaviors that deteriorate with aging. We sought to determine if aging alters NPY expression in this nucleus and, in the affirmative, if those changes are attributable to the cholinergic innervation of the NAc. The total number and the somatic volume of NPY- and choline acetyltransferase-immunoreactive neurons, and the density of cholinergic varicosities were estimated in the NAc of adult (6 months old) and aged (24 months old) rats. In aged rats, the number of NPY neurons was reduced by 20% and their size was unaltered. The number of cholinergic neurons and the density of the cholinergic varicosities were unchanged, but their somas were hypertrophied. Nerve growth factor administration to aged rats further increased the volume of cholinergic neurons, augmented the density of the cholinergic varicosities, and reversed the age-related decrease in the number of NPY neurons. Our data show that the age-related changes in NPY levels in the NAc cannot be solely ascribed to the cholinergic innervation of the nucleus.
Collapse
Affiliation(s)
- Pedro A Pereira
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.
| | | | | | | | | |
Collapse
|
57
|
Ebihara K, Yamamoto K, Ueda K, Koshikawa N, Kobayashi M. Cholinergic interneurons suppress action potential initiation of medium spiny neurons in rat nucleus accumbens shell. Neuroscience 2013; 236:332-44. [PMID: 23380504 DOI: 10.1016/j.neuroscience.2013.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
Abstract
Acetylcholine plays a crucial role in the regulation of neural functions, including dopamine release, synaptic activity, and intrinsic electrophysiological properties of the nucleus accumbens (NAc) shell. Although the effects of acetylcholine on the action potential properties of NAc medium spiny (MS) neurons have been reported, how intrinsic acetylcholine released from NAc cholinergic interneurons regulates the neural activity of MS neurons is still an open issue. To explore the cholinergic effects on the subthreshold responses and action potential properties of MS neurons in the NAc shell, we first tested the effects of carbachol, a non-selective cholinergic agonist, on MS neuronal activity. Then, we tested the effects of the activation of cholinergic interneurons on the electrophysiological properties of MS neurons via multiple whole-cell patch-clamp recordings. Bath application of carbachol induced resting membrane potential depolarization accompanied by an increase in the voltage response to negative current injection. These increases were blocked by the pre-application of pirenzepine, an M1 muscarinic receptor antagonist. In spite of the facilitative effect on voltage responses of negative current injection, carbachol diminished the characteristic slowly-depolarizing ramp potentials, which respond to positive current pulse injection. Thus, carbachol increased the rheobase and shifted the frequency-current curve toward the right. Repetitive spike firing of a cholinergic interneuron following positive current injection induced a similar increase in the rheobase, which delayed the action potential initiation in 38.9% MS neurons. In contrast to the bath application of carbachol, cholinergic interneuronal stimulation had little effect on the resting membrane potential in MS neurons. These results suggest that the acetylcholine released from a cholinergic interneuron is sufficient to suppress the repetitive spike firing of the adjacent MS neurons, although the depolarization of the resting membrane potential may require simultaneous activation of multiple cholinergic interneurons.
Collapse
Affiliation(s)
- K Ebihara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | |
Collapse
|
58
|
Ostroff LE, Cain CK, Jindal N, Dar N, Ledoux JE. Stability of presynaptic vesicle pools and changes in synapse morphology in the amygdala following fear learning in adult rats. J Comp Neurol 2012; 520:295-314. [PMID: 21674493 DOI: 10.1002/cne.22691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in synaptic strength in the lateral amygdala (LA) that occur with fear learning are believed to mediate memory storage, and both presynaptic and postsynaptic mechanisms have been proposed to contribute. In a previous study we used serial section transmission electron microscopy (ssTEM) to observe differences in dendritic spine morphology in the adult rat LA after fear conditioning, conditioned inhibition (safety conditioning), or naïve control handling (Ostroff et al. [2010] Proc Natl Acad Sci U S A 107:9418-9423). We have now reconstructed axons from the same dataset and compared their morphology and relationship to the postsynaptic spines between the three training groups. Relative to the naïve control and conditioned inhibition groups, the ratio of postsynaptic density (PSD) area to docked vesicles at synapses was greater in the fear-conditioned group, while the size of the synaptic vesicle pools was unchanged. There was significant coherence in synapse size between neighboring boutons on the same axon in the naïve control and conditioned inhibition groups, but not in the fear-conditioned group. Within multiple-synapse boutons, both synapse size and the PSD-to-docked vesicle ratio were variable between individual synapses. Our results confirm that synaptic connectivity increases in the LA with fear conditioning. In addition, we provide evidence that boutons along the same axon and even synapses on the same bouton are independent in their structure and learning-related morphological plasticity.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
59
|
Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 2012; 37:16-42. [PMID: 21956443 PMCID: PMC3238081 DOI: 10.1038/npp.2011.199] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs) are emerging as important targets for the development of novel treatments for the symptoms associated with schizophrenia. Preclinical and early proof-of-concept clinical studies have provided strong evidence that activators of specific mAChR (M(1) and M(4)) and nAChR (α(7) and α(2)β(4)) subtypes are effective in animal models of antipsychotic-like activity and/or cognitive enhancement, and in the treatment of positive and cognitive symptoms in patients with schizophrenia. While early attempts to develop selective mAChR and nAChR agonists provided important preliminary findings, these compounds have ultimately failed in clinical development due to a lack of true subtype selectivity and subsequent dose-limiting adverse effects. In recent years, there have been major advances in the discovery of highly selective activators for the different mAChR and nAChR subtypes with suitable properties for optimization as potential candidates for clinical trials. One novel strategy has been to identify ligands that activate a specific receptor subtype through actions at sites that are distinct from the highly conserved ACh-binding site, termed allosteric sites. These allosteric activators, both allosteric agonists and positive allosteric modulators, of mAChR and nAChR subtypes demonstrate unique mechanisms of action and high selectivity in vivo, and may provide innovative treatment strategies for schizophrenia.
Collapse
|
60
|
Abstract
Striatal cholinergic interneurons are pivotal modulators of the striatal circuitry involved in action selection and decision making. Although nicotinic receptors are important transducers of acetylcholine release in the striatum, muscarinic receptors are more pervasive and have been more thoroughly studied. In this review, the effects of muscarinic receptor signaling on the principal cell types in the striatum and its canonical circuits will be discussed, highlighting new insights into their role in synaptic integration and plasticity. These studies, and those that have identified new circuit elements driven by activation of nicotinic receptors, make it clear that temporally patterned activity in cholinergic interneurons must play an important role in determining the effects on striatal circuitry. These effects could be critical to the response to salient environmental stimuli that serve to direct behavior.
Collapse
Affiliation(s)
- Joshua A Goldberg
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
61
|
Bubser M, Byun N, Wood MR, Jones CK. Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Handb Exp Pharmacol 2012:121-66. [PMID: 22222698 DOI: 10.1007/978-3-642-23274-9_7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The muscarinic cholinergic system constitutes an important part of the neuronal circuitry that modulates normal cognition. Muscarinic receptor antagonists are well known to produce or exacerbate impairments in attention, learning, and memory. Conversely, both direct-acting muscarinic receptor agonists and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase inhibitors, have shown cognition-enhancing properties, including improvements in normal cognitive function, reversal of cognitive deficits induced by muscarinic receptor antagonists, and attenuation of cognitive deficits in psychiatric and neurological disorders, such as Alzheimer's disease and schizophrenia. However, until recently, the lack of small molecule ligands that antagonize or activate specific muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has been a major obstacle in defining the relative contributions of individual mAChRs to different aspects of cognitive function and for the development of novel therapeutic agents. These limitations may be potentially overcome by the recent discovery of novel mAChR subtype-selective compounds, notably allosteric agonists and positive allosteric modulators, which exhibit greater selectivity for individual mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies, these novel ligands have shown promising efficacy in several models for the enhancement of cognition. In this chapter, we will review the muscarinic cholinergic circuitry and pharmacology of mAChR agonists and antagonists relevant to the modulation of different aspects of cognition in animals and clinical populations.
Collapse
Affiliation(s)
- Michael Bubser
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
62
|
Goldberg J, Reynolds J. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 2011; 198:27-43. [DOI: 10.1016/j.neuroscience.2011.08.067] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
63
|
Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission. Front Behav Neurosci 2011; 5:71. [PMID: 22028687 PMCID: PMC3199545 DOI: 10.3389/fnbeh.2011.00071] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 11/13/2022] Open
Abstract
Dyskinesia is a serious motor complication caused by prolonged administration of l-DOPA to patients affected by Parkinson's disease. Accumulating evidence indicates that l-DOPA-induced dyskinesia (LID) is primarily caused by the development of sensitized dopamine D1 receptor (D1R) transmission in the medium spiny neurons (MSNs) of the striatum. This phenomenon, combined with chronic administration of l-DOPA, leads to persistent and intermittent hyper-activation of the cAMP signaling cascade. Activation of cAMP signaling results in increased activity of the cAMP-dependent protein kinase (PKA) and of the dopamine- and cAMP-dependent phosphoprotein of 32 kDa (DARPP-32), which regulate several downstream effector targets implicated in the control of the excitability of striatal MSNs. Dyskinesia is also accompanied by augmented activity of the extracellular signal-regulated kinases (ERK) and the mammalian target of rapamycin complex 1 (mTORC1), which are involved in the control of transcriptional and translational efficiency. Pharmacological or genetic interventions aimed at reducing abnormal signal transduction at the level of these various intracellular cascades have been shown to attenuate LID in different animal models. For instance, LID is reduced in mice deficient for DARPP-32, or following inhibition of PKA. Blockade of ERK obtained genetically or using specific inhibitors is also able to attenuate dyskinetic behavior in rodents and non-human primates. Finally, administration of rapamycin, a drug which blocks mTORC1, results in a strong reduction of LID. This review focuses on the abnormalities in signaling affecting the D1R-expressing MSNs and on their potential relevance for the design of novel anti-dyskinetic therapies.
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
64
|
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011; 5:53. [PMID: 21887131 PMCID: PMC3157016 DOI: 10.3389/fnana.2011.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.
Collapse
Affiliation(s)
- Matthew W Rice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
65
|
Cholinergic systems mediate action from movement to higher consciousness. Behav Brain Res 2011; 221:488-98. [DOI: 10.1016/j.bbr.2009.12.046] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/26/2009] [Indexed: 02/06/2023]
|
66
|
Parallel associative processing in the dorsal striatum: segregation of stimulus-response and cognitive control subregions. Neurobiol Learn Mem 2011; 96:95-120. [PMID: 21704718 DOI: 10.1016/j.nlm.2011.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022]
Abstract
Although evidence suggests that the dorsal striatum contributes to multiple learning and memory functions, there nevertheless remains considerable disagreement on the specific associative roles of different neuroanatomical subregions. We review evidence indicating that the dorsolateral striatum (DLS) is a substrate for stimulus-response habit formation - incremental strengthening of simple S-R bonds - via input from sensorimotor neocortex while the dorsomedial striatum (DMS) contributes to behavioral flexibility - the cognitive control of behavior - via prefrontal and limbic circuits engaged in relational and spatial information processing. The parallel circuits through dorsal striatum interact with incentive/affective motivational processing in the ventral striatum and portions of the prefrontal cortex leading to overt responding under specific testing conditions. Converging evidence obtained through a detailed task analysis and neurobehavioral assessment is beginning to illuminate striatal subregional interactions and relations to the rest of the mammalian brain.
Collapse
|
67
|
Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, Ponterio G, Pisani A. Centrality of striatal cholinergic transmission in Basal Ganglia function. Front Neuroanat 2011; 5:6. [PMID: 21344017 PMCID: PMC3036975 DOI: 10.3389/fnana.2011.00006] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/21/2011] [Indexed: 01/24/2023] Open
Abstract
Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.
Collapse
Affiliation(s)
- Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia IRCCS Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Sizemore RJ, Reynolds JNJ, Oorschot DE. Number and type of synapses on the distal dendrite of a rat striatal cholinergic interneuron: a quantitative, ultrastructural study. J Anat 2010; 217:223-35. [PMID: 20629984 DOI: 10.1111/j.1469-7580.2010.01264.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Knowledge of the innervation of interneurons within the striatum is critical to determining their role in the functioning of the striatal network. To this end, the synaptic innervation of a distal dendrite of a rat striatal cholinergic interneuron was quantified for the first time. These synaptic data were compared to three other dendrites from rat striatal interneurons and to published data from dendrites in the mammalian cerebral cortex. To label the cholinergic interneurons and their distal dendrites, a male Wistar rat was perfused and the striatum was double-immunolabelled with an antibody to choline acetyltransferase (ChAT) and an antibody to m2 muscarinic receptor. After processing for transmission electron microscopy, a cholinergic interneuron was located and an m2-labelled distal dendrite identified by tracing it through serial ultrathin sections to this double-immunolabelled soma. Two interneuronal distal dendrites in the same tissue, and another from a second rat, were used for comparison. The widths and lengths of the four distal dendrites, the total number and type of synapses, and the number of synapses per mum for each distal dendrite were measured. Symmetric synapses were the most common type on all four dendrites. There were 0.73 synapses per mum on the distal dendrite of the identified striatal cholinergic interneuron. Two other interneuronal dendrites that were positive for the m2 muscarinic receptor antibody showed similar synaptic densities of 0.62 and 0.83 synapses per microm of distal dendrite, respectively. On a third unlabelled interneuronal distal dendrite located in the lateral striatum, there were 2.17 synapses per microm. This interneuron was thought to be a parvalbumin interneuron rather than a calretinin interneuron, which would more likely be medially located. These data suggest that the number of synapses per microm on the distal dendrite of the cholinergic interneuron, and possibly two other cholinergic interneurons, is three times lower than that of a likely parvalbumin interneuron in the rat striatum. The number of synapses per microm of distal dendrite for a striatal cholinergic interneuron is also lower than the published 1.22-3.3 synapses per microm of dendrite for neurons in the mammalian cerebral cortex. Such anatomical data are important for the construction of new generation computer models that are better able to emulate the operation of striatal cholinergic interneurons.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
70
|
Goldberg JA, Wilson CJ. The Cholinergic Interneurons of the Striatum. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
71
|
Ford KA, Everling S. Neural activity in primate caudate nucleus associated with pro- and antisaccades. J Neurophysiol 2009; 102:2334-41. [PMID: 19692516 DOI: 10.1152/jn.00125.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal ganglia (BG) play a central role in movement and it has been demonstrated that the discharge rate of neurons in these structures are modulated by the behavioral context of a given task. Here we used the antisaccade task, in which a saccade toward a flashed visual stimulus must be inhibited in favor of a saccade to the opposite location, to investigate the role of the caudate nucleus, a major input structure of the BG, in flexible behavior. In this study, we recorded extracellular neuronal activity while monkeys performed pro- and antisaccade trials. We identified two populations of neurons: those that preferred contralateral saccades (CSNs) and those that preferred ipsilateral saccades (ISNs). CSNs increased their firing rates for prosaccades, but not for antisaccades, and ISNs increased their firing rates for antisaccades, but not for prosaccades. We propose a model in which CSNs project to the direct BG pathway, facilitating saccades, and ISNs project to the indirect pathway, suppressing saccades. This model suggests one possible mechanism by which these neuronal populations could be modulating activity in the superior colliculus.
Collapse
Affiliation(s)
- Kristen A Ford
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | |
Collapse
|
72
|
Aoki C, Kabak S. Cholinergic terminals in the cat visual cortex: Ultrastructural basis for interaction with glutamate-immunoreactive neurons and other cells. Vis Neurosci 2009; 8:177-91. [PMID: 1347700 DOI: 10.1017/s0952523800002832] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAcetylcholine (ACh) is one of the transmitters utilized by extrathalamic afferents to modulate stimulus-driven neurotransmission and experience-dependent plasticity in the visual cortex. Since these processes also depend on the activation of glutamatergic receptors, cholinergic terminals may exert their effects via direct modulation of excitatory neurotransmission. The objective of this study was to determine whether the ultrastructural relationships between cholinergic terminals, glutamate-immunoreactive neurons, and other unlabeled cells support this idea. Sections from aldehyde-fixed visual cortex (area 17) of adult cats were immunolabled for the following molecules: (1) choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme; (2) L-glutamate; or (3) ChAT simultaneously with L-glutamate by combining electron-microscopic immunogold and immunoperoxidase techniques. None of the cortical terminals were dually labeled, suggesting that (1) the labeling procedure was free of chemical or immunological cross reactions; and (2) glutamate immunoreactivity probably reflects the transmitter, and not metabolic, pool of L-glutamate. Comparisons between cholinergic and noncholinergic axons revealed that (1) ChAT-immunoreactive axons formed fewer identifiable synaptic contacts within single ultrathin sections (P < 0.01 using chi-square test); and (2) more of the cholinergic axons occurred directly opposed to other terminals (P < 0.0015 by chi-square test), including 21% of which resided directly across asymmetric, axo-spinous junctions. Dual labeling showed that a third of the synaptic targets for cholinergic terminals contained detectable levels of glutamate immunoreactivity. Some of the axo-spinous junctions juxtaposed to cholinergic axons also exhibited glutamate immunoreactivity presynaptically. These observations provide ultrastructural evidence for direct, cholinergic modulation of glutamatergic pyramidal neurons within the mammalian neocortex. Prevalence of juxtapositions between cholinergic terminals and axo-spinous synapses supports the following ideas: (1) ACh may modulate the release of noncholinergic transmitters, including Glu; (2) Glu may modulate ACh release; and (3) these processes may be concurrent with cholinergic modulation of glutamatergic synapses at postsynaptic sites.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, NY 10003
| | | |
Collapse
|
73
|
Abstract
The basal ganglia occupy the core of the forebrain and consist of evolutionarily conserved motor nuclei that form recurrent circuits critical for motivation and motor planning. The striatum is the main input nucleus of the basal ganglia and a key neural substrate for procedural learning and memory. The vast majority of striatal neurons are spiny GABAergic projection neurons, which exhibit slow but temporally precise spiking in vivo. Contributing to this precision are several different types of interneurons that constitute only a small fraction of total neuron number but play a critical role in regulating striatal output. This review examines the cellular physiology and modulation of striatal neurons that give rise to their unique properties and function.
Collapse
Affiliation(s)
- Anatol C Kreitzer
- Gladstone Institute of Neurological Disease and Departments of Physiology and Neurology, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
74
|
Shatzmiller R, Goldman J, Simard-Émond L, Rymar V, Manitt C, Sadikot A, Kennedy T. Graded expression of netrin-1 by specific neuronal subtypes in the adult mammalian striatum. Neuroscience 2008; 157:621-36. [DOI: 10.1016/j.neuroscience.2008.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 09/09/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
|
75
|
Effects of ethanol and 3,4-methylenedioxymethamphetamine (MDMA) alone or in combination on spontaneous and evoked overflow of dopamine, serotonin and acetylcholine in striatal slices of the rat brain. Int J Neuropsychopharmacol 2008; 11:743-63. [PMID: 18248690 DOI: 10.1017/s1461145708008481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol (EtOH) potentiates the locomotor effects of 3,4-methylenedioxymetamphetamine (MDMA) in rats. This potentiation might involve pharmacokinetic and/or pharmacodynamic mechanisms. We explored whether the latter could be local. Using a slice superfusion approach, we assessed the effects of MDMA (0.3, 3microm) and/or EtOH (2mm) on the spontaneous outflow and electrically evoked release of serotonin (5-HT), dopamine (DA) and acetylcholine (ACh) in the striatum, and for comparison, on 5-HT release in hippocampal and neocortical tissue. MDMA and less effectively EtOH, augmented the outflow of 5-HT in all regions. The electrically evoked 5-HT release was increased by MDMA at 3microm in striatal slices only. With nomifensine throughout, EtOH significantly potentiated the 0.3microm MDMA-induced outflow of 5-HT, but only in striatal slices. EtOH or MDMA also enhanced the spontaneous outflow of DA, but MDMA reduced the electrically evoked DA release. With fluvoxamine throughout superfusion, EtOH potentiated the effect of MDMA on the spontaneous outflow of DA. Finally, 3microm MDMA diminished the electrically evoked release of ACh, an effect involving several receptors (D2, 5-HT2, NMDA, nicotinic, NK1), with some interactions with EtOH. Among other results, we show for the first time a local synergistic interaction of EtOH and MDMA on the spontaneous outflow of striatal DA and 5-HT, which could be relevant to the EtOH-induced potentiation of hyperlocomotion in MDMA-treated rats. These data do not preclude the contribution of other pharmacodynamic and/or pharmacokinetic mechanisms in vivo but support the hypothesis that EtOH may affect the abuse liability of MDMA.
Collapse
|
76
|
Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat 2008; 37:33-45. [PMID: 18773952 DOI: 10.1016/j.jchemneu.2008.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/08/2008] [Accepted: 08/09/2008] [Indexed: 11/23/2022]
Abstract
Cholinergic interneurons are the only known source of acetylcholine in the rat nucleus accumbens (nAcb); yet there is little anatomical data about their mode of innervation and the origin of their excitatory drive. We characterized the cholinergic and thalamic innervations of nAcb with choline acetyltransferase (ChAT) immunocytochemistry and anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L) from the midline/intralaminar/paraventricular thalamic nuclei. The use of a monoclonal ChAT antiserum against whole rat ChAT protein allowed for an optimal visualization of the small dendritic branches and fine varicose axons of cholinergic interneurons. PHA-L-labeled thalamic afferents were heterogeneously distributed throughout the core and shell regions of nAcb, overlapping regionally with cholinergic somata and dendrites. At the ultrastructural level, several hundred single-section profiles of PHA-L and ChAT-labeled axon terminals were analyzed for morphology, synaptic frequency, and the nature of their synaptic targets. The cholinergic profiles were small and apposed to various neuronal elements, but rarely exhibited a synaptic membrane specialization (5% in single ultrathin sections). Stereological extrapolation indicated that less than 15% of these cholinergic varicosities were synaptic. The PHA-L-labeled profiles were comparatively large and often synaptic (37% in single ultrathin sections), making asymmetrical contacts primarily with dendritic spines (>90%). Stereological extrapolation indicated that all PHA-L-labeled terminals were synaptic. In double-labeled material, some PHA-L-labeled terminals were directly apposed to ChAT-labeled somata or dendrites, but synapses were never seen between the two types of elements. These observations demonstrate that the cholinergic innervation of rat nAcb is largely asynaptic. They confirm that the afferents from midline/intralaminar/paraventricular thalamic nuclei to rat nAcb synapse mostly on dendritic spines, presumably of medium spiny neurons, and suggest that the excitatory drive of nAcb cholinergic interneurons from thalamus is indirect, either via substance P release from recurrent collaterals of medium spiny neurons and/or by extrasynaptic diffusion of glutamate.
Collapse
|
77
|
Sakuma M, Hyakawa N, Kato H, Araki T. Time dependent changes of striatal interneurons after focal cerebral ischemia in rats. J Neural Transm (Vienna) 2008; 115:413-22. [PMID: 18301954 DOI: 10.1007/s00702-007-0860-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 11/04/2007] [Indexed: 11/29/2022]
Abstract
The cellular damage over time and the alterations of neuronal subtypes was characterized in the striatum after 90-min middle cerebral artery occlusion and reperfusion in rats. We investigated the immunohistochemical alterations of choline acetyltransferase (ChAT)-positive (cholinergic-positive), gamma-aminobutyric acid (GABA)ergic parvalbumin (PV)-positive, GABAergic nNOS (neuronal nitric oxide synthase)-positive interneurons, neuronal nuclei (NeuN)-positive spiny projection neurons, glial fibrillary acidic protein (GFAP)-positive strocytes and microglial response factor-1 (MRF-1)-positive microglia in the striatum after focal cerebral ischemia in rats. In the present study, transient focal cerebral ischemia in rats caused severe damage against interneurons as well as spiny projection neurons in the striatum. In contrast, a significant increase in the number of GFAP-immunopositive astrocytes was observed in the ipsilateral striatum 15 days after focal cerebral ischemia. Furthermore, a significant increase of MRF-1 immunoreactivity was observed in microglia of the ipsilateral striatum 7 days and 15 days after focal cerebral ischemia. Among three types of cholinergic interneurons, GABAergic PV-positive interneurons and GABAergic nNOS-positive interneurons, the severe damage of cholinergic and GABAergic PV-positive interneurons was more pronounced than that of GABAergic nNOS-positive interneurons after transient focal cerebral ischemia in rats. Furthermore, the present results suggest that GABAergic nNOS-positive interneurons in the striatum after focal cerebral ischemia undergo cellular death in a delayed manner.
Collapse
Affiliation(s)
- M Sakuma
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
78
|
Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 2007; 153 Suppl 1:S283-97. [PMID: 18037926 DOI: 10.1038/sj.bjp.0707510] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effects of nicotine on dopamine transmission from mesostriatal dopamine neurons are central to its reinforcing properties. Only recently however, has the influence of presynaptic nicotinic receptors (nAChRs) on dopaminergic axon terminals within striatum begun to be understood. Here, rather than simply enhancing (or inhibiting) dopamine release, nAChRs perform the role of a presynaptic filter, whose influence on dopamine release probability depends on presynaptic activity in dopaminergic as well as cholinergic neurons. Both mesostriatal dopaminergic neurons and striatal cholinergic interneurons play key roles in motivational and sensorimotor processing by the basal ganglia. Moreover, it appears that the striatal influence of dopamine and ACh cannot be fully appreciated without an understanding of their reciprocal interactions. We will review the powerful filtering by nAChRs of striatal dopamine release and discuss its dependence on activity in dopaminergic and cholinergic neurons. We will also review how nicotine, acting via nAChR desensitization, promotes the sensitivity of dopamine synapses to activity. This filtering action might provide a mechanism through which nicotine promotes how burst activity in dopamine neurons facilitates goal-directed behaviour and reinforcement processing. More generally, it indicates that we should not restrict our view of presynaptic nAChRs to simply enhancing neurotransmitter release. We will also summarize current understanding of the forms and functions of the diverse nAChRs purported to exist on dopaminergic axons. A greater understanding of nAChR form and function is imperative to guide the design of ligands with subtype-selective efficacy for improved therapeutic interventions in nicotine addiction as well as Parkinson's disease.
Collapse
|
79
|
Bloomfield C, O'Donnell P, French SJ, Totterdell S. Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience 2007; 150:639-46. [PMID: 17961930 DOI: 10.1016/j.neuroscience.2007.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/11/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Cholinergic neurons of the striatum play a crucial role in controlling output from this region. Their firing is under the control of a relatively limited glutamatergic input, deriving principally from the thalamus. Glutamate transmission is effected via three major subtypes of receptors, including those with affinity for N-methyl-d-aspartate (NMDA) and the properties of individual receptors reflect their precise subunit composition. We examined the distribution of NMDA2C and NMDA2D subunits in the rat striatum using immunocytochemistry and show that a population of large neurons is strongly immunoreactive for NMDA2D subunits. From their morphology and ultrastructure, these neurons were presumed to be cholinergic and this was confirmed with double immunofluorescence. We also show that NMDA2C is present in a small number of septal and olfactory cortical neurons but absent from the striatum. Receptors that include NMDA2D subunits are relatively insensitive to magnesium ion block making neurons more likely to fire at more negative membrane potentials. Their localization to cholinergic neurons may enable very precise regulation of firing of these neurons by relatively small glutamatergic inputs.
Collapse
Affiliation(s)
- C Bloomfield
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford, OX1 3QT UK
| | | | | | | |
Collapse
|
80
|
Abstract
How the extent and time course of presynaptic inhibition depend on the action potentials of the neuron controlling the terminals is unknown. We investigated this issue in the striatum using paired recordings from cholinergic interneurons and projection neurons. Glutamatergic EPSCs were evoked in projection neurons and cholinergic interneurons by stimulation of afferent fibers in the cortex and the striatum, respectively. A single spike in a cholinergic interneuron caused significant depression of the evoked glutamatergic EPSC in 34% of projection neurons located within 100 microm and 41% of cholinergic interneurons located within 200 microm. The time course of these effects was similar in the two cases, with EPSC inhibition peaking 20-30 ms after the spike and disappearing after 40-80 ms. Maximal depression of EPSC amplitude was up to 27% in projection neurons and to 19% in cholinergic interneurons. These effects were reversibly blocked by muscarinic receptor antagonists (atropine or methoctramine), which also significantly increased baseline EPSC (evoked without a preceding spike in the cholinergic interneuron), suggesting that some tonic cholinergic presynaptic inhibition was present. This was confirmed by the fact that lowering extracellular potassium, which silenced spontaneously active cholinergic interneurons, also increased baseline EPSC amplitude, and these effects were occluded by previous application of muscarinic receptor antagonists. Collectively, these results show that a single spike in a cholinergic interneuron exerts a fast and powerful inhibitory control over the glutamatergic input to striatal neurons.
Collapse
Affiliation(s)
- Pavel Pakhotin
- Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Enrico Bracci
- Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, United Kingdom
| |
Collapse
|
81
|
De Souza Silva MA, Dolga A, Pieri I, Marchetti L, Eisel ULM, Huston JP, Dere E. Cholinergic cells in the nucleus basalis of mice express the N-methyl-d-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels. GENES BRAIN AND BEHAVIOR 2006; 5:552-60. [PMID: 17010101 DOI: 10.1111/j.1601-183x.2006.00206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-d-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the nucleus basalis has not yet been investigated. Here, by means of choline acetyl transferase and NR2B or NR2C double staining, we demonstrate that mice express both the NR2C and NR2B subunits in nucleus basalis cholinergic cells. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether a subunit exchange in cholinergic neurons would affect acetylcholine (ACh) content in several brain structures. We found increased ACh levels in the frontal cortex and amygdala in the brains of NR2C-2B mutant mice. Brain ACh has been implicated in neuroplasticity, novelty-induced arousal and encoding of novel stimuli. We therefore assessed behavioral habituation to novel environments and objects as well as object recognition in NR2C-2B subunit exchange mice. The behavioral analysis did not indicate any gross behavioral alteration in the mutant mice compared with the wildtype mice. Our results show that the NR2C by NR2B subunit exchange in mice affects ACh content in two target areas of the nucleus basalis.
Collapse
Affiliation(s)
- M A De Souza Silva
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
82
|
Osanai M, Yamada N, Yagi T. Long-lasting spontaneous calcium transients in the striatal cells. Neurosci Lett 2006; 402:81-5. [PMID: 16714081 DOI: 10.1016/j.neulet.2006.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 03/23/2006] [Accepted: 04/05/2006] [Indexed: 11/27/2022]
Abstract
The striatum plays an important role in linking cortical activity to basal ganglia output. We conducted the calcium (Ca2+) imaging to investigate the spontaneous activities of the striatum using acute slice preparations. Corticostriatal slices of rat brain were stained with Fura-PE3-AM. Long-lasting spontaneous intracellular Ca2+ ([Ca2+]i) transients, which lasted up to about 250 s, were observed. The amplitudes of the transients were variable even in a single cell. Most cells exhibited irregular frequencies, but some exhibited oscillatory features. These [Ca2+]i transients were not induced by action potentials because they were not inhibited by tetrodotoxin. Antagonists of the ionotropic glutamate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione and D,L-2-amino-5-phosphonovaleric acid, did not block these transients. These results suggested that the action potentials and the excitatory synaptic inputs in these striatal network were not involved in the induction of the [Ca2+]i transients. In contrast, the number of the active cells, which exhibited the [Ca2+]i transients, was greatly reduced by the intracellular Ca2+ store depletor, thapsigargin. Therefore, the intracellular Ca2+ store is likely to contribute to the [Ca2+]i transients.
Collapse
Affiliation(s)
- Makoto Osanai
- Department of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
83
|
Berlanga ML, Simpson TK, Alcantara AA. Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 2006; 492:34-49. [PMID: 16175554 DOI: 10.1002/cne.20684] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson's disease, Alzheimer's disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.
Collapse
Affiliation(s)
- Monica Lisa Berlanga
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
84
|
Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol Dis 2005; 20:562-73. [PMID: 15922606 DOI: 10.1016/j.nbd.2005.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 03/08/2005] [Accepted: 04/07/2005] [Indexed: 11/29/2022] Open
Abstract
The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i.
Collapse
Affiliation(s)
- Zhong-Qin Liang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, P.R. China
| | | | | | | | | | | | | |
Collapse
|
85
|
Goto S, Lee LV, Munoz EL, Tooyama I, Tamiya G, Makino S, Ando S, Dantes MB, Yamada K, Matsumoto S, Shimazu H, Kuratsu JI, Hirano A, Kaji R. Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism. Ann Neurol 2005; 58:7-17. [PMID: 15912496 DOI: 10.1002/ana.20513] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dystonia is a neurological syndrome characterized by sustained muscle contractions that produce repetitive twisting movements or abnormal postures. X-linked recessive dystonia parkinsonism (XDP; DYT3; Lubag) is an adult-onset disorder that manifests severe and progressive dystonia with a high frequency of generalization. In search for the anatomical basis for dystonia, we performed postmortem analyses of the functional anatomy of the basal ganglia based on the striatal compartments (ie, the striosomes and the matrix compartment) in XDP. Here, we provide anatomopathological evidence that, in the XDP neostriatum, the matrix compartment is relatively spared in a unique fashion, whereas the striosomes are severely depleted. We also document that there is a differential loss of striatal neuron subclasses in XDP. In view of the three-pathway basal ganglia model, we postulate that the disproportionate involvement of neostriatal compartments and their efferent projections may underlie the manifestation of dystonia in patients with XDP. This study is the first to our knowledge to show specific basal ganglia pathology that could explain the genesis of dystonia in human heredodegenerative movement disorders, suggesting that dystonia may result from an imbalance in the activity between the striosomal and matrix-based pathways.
Collapse
Affiliation(s)
- Satoshi Goto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zackheim J, Abercrombie ED. Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum. Neuroscience 2005; 131:423-36. [PMID: 15708484 DOI: 10.1016/j.neuroscience.2004.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/17/2022]
Abstract
Striatal cholinergic interneurons play a pivotal role in the integrative sensorimotor functions of the basal ganglia. The major excitatory input to these interneurons arises from glutamatergic neurons of the parafascicular nucleus of the thalamus (Pf). Thalamic regulation of cholinergic interneurons, however, may also include an indirect inhibitory component mediated by the axon collaterals of GABAergic medium spiny neurons that are also innervated by Pf. The present study examined thalamic regulation of striatal cholinergic interneurons by employing dual probe in vivo microdialysis in freely moving animals to determine the effect of pharmacological manipulation of Pf on acetylcholine (ACh) efflux in intact and dopamine-lesioned striata. In intact animals, reverse dialysis application of the GABA(A) antagonist bicuculline (50 microM) into Pf, likely disinhibiting Pf neurons, significantly decreased striatal ACh efflux. When striatal GABA(A) receptors were blocked by simultaneous reverse dialysis application of bicuculline (10 microM), however, the same manipulation significantly increased ACh efflux. Qualitatively similar results were obtained in experiments employing a higher concentration of bicuculline (200 microM). Application of the GABA agonist muscimol (500 microM) into Pf, likely inhibiting Pf neurons, decreased ACh efflux only when the experiment was conducted under blockade of striatal GABA(A) receptors. These data are consistent with the existence of an indirect, inhibitory, GABA(A) receptor-mediated component of ACh regulation that is most clearly manifested when Pf is disinhibited and with the existence of a direct excitatory component of ACh regulation, evident when Pf is inhibited. Manipulation of Pf using very high concentrations of drug (500 microM bicuculline, 2 mM muscimol), however, yielded data consistent only with direct excitatory thalamic regulation. In contrast to results obtained in intact animals, in animals with prior (3 weeks) unilateral lesion of the dopaminergic nigrostriatal pathway, bicuculline application (50 muM) in Pf significantly increased striatal ACh efflux, irrespective of simultaneous blockade of striatal GABA(A) receptors. The results of experiments in which muscimol (500 microM) was applied in Pf were similar to those obtained in intact animals, however. Baseline ACh efflux was not significantly elevated in dopamine-lesioned animals. These results indicate a qualitative alteration in the effectiveness of an inhibitory component of the thalamic regulation of ACh efflux in the dopamine depleted striatum, evident during increased thalamostriatal input. Such altered regulation of striatal ACh output is likely to have profound consequences for integrative function in the parkinsonian basal ganglia.
Collapse
Affiliation(s)
- J Zackheim
- Aidekman Research Center, Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
87
|
Farries MA, Meitzen J, Perkel DJ. Electrophysiological properties of neurons in the basal ganglia of the domestic chick: conservation and divergence in the evolution of the avian basal ganglia. J Neurophysiol 2005; 94:454-67. [PMID: 15772239 DOI: 10.1152/jn.00539.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the basal ganglia of birds and mammals share an enormous number of anatomical, histochemical, and electrophysiological characteristics, studies in songbirds have revealed some important differences. Specifically, a specialized region of songbird striatum (the input structure of the basal ganglia) has an anatomical projection and a physiologically defined cell type that are characteristic of the globus pallidus. At present, it is not clear if these differences result from adaptations specific to songbirds and perhaps a few other avian taxa or are common to all birds. We shed some light on this issue by characterizing the morphology and electrophysiological properties of basal ganglia neurons in an avian species that is only distantly related to songbirds: the domestic chick. We recorded neurons in chick basal ganglia in a brain slice preparation, using the whole cell technique. We found that chick striatum, like songbird striatum, contains a pallidum-like cell type never reported in mammalian striatum, supporting the hypothesis that this feature is common to all birds. We also discovered that spiny neurons, the most common cell type in the striatum of all amniotes, possess a diverse set of physiological properties in chicks that distinguish them from both mammals and songbirds. This study revealed an unexpectedly complex pattern of conservation and divergence in the properties of neurons recorded in avian striatum.
Collapse
Affiliation(s)
- Michael A Farries
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
88
|
Wirtshafter D, Osborn CV. The distribution of m4 muscarinic acetylcholine receptors in the islands of Calleja and striatum of rats and cynomolgus monkeys. J Chem Neuroanat 2005; 28:107-16. [PMID: 15482898 DOI: 10.1016/j.jchemneu.2004.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 04/09/2004] [Accepted: 05/21/2004] [Indexed: 11/28/2022]
Abstract
The distribution of m4 muscarinic acetylcholine receptors, and their relation to a number other markers, was examined using immunocytochemical techniques. Staining in the dorsal striatum tended to be more pronounced in the striosomal than the matrix compartment of both rats and cynomolgus monkeys. Within the ventral striatum, immunoreactivity was more pronounced within the olfactory tubercle and the shell region of the nucleus accumbens than in the nucleus accumbens core and was especially marked within the lateral striatal stripe. Modest staining was also seen in the external plexiform layer of the olfactory bulb. By far, the most intense staining in the forebrain of both rats and cynomolgus monkeys was found in islands of Calleja, where it appeared to be a selective marker for the core or hilus regions of the islands, or an analogous region found adjacent to them. The core regions of different islands appear to be continuous with each other so as to form a complex three-dimensional structure, which is largely encased by layers of granule cells. The neuronal elements in the islands of Calleja, which express m4 receptors, remain to be identified, but it is unlikely that cholinergic neurons are a major locus of these receptors. Although there are certain similarities between the islands of Calleja and other components of the striatal complex, the current studies emphasize the extent to which the islands are unique in terms of their architecture and chemical anatomy.
Collapse
Affiliation(s)
- David Wirtshafter
- Laboratory of Integrative Neuroscience, Department of Psychology, M/C 285, University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607-7137, USA.
| | | |
Collapse
|
89
|
Hernández LF, Segovia G, Mora F. Effects of activation of NMDA and AMPA glutamate receptors on the extracellular concentrations of dopamine, acetylcholine, and GABA in striatum of the awake rat: a microdialysis study. Neurochem Res 2004; 28:1819-27. [PMID: 14649723 DOI: 10.1023/a:1026115607216] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of activation of the AMPA and NMDA ionotropic glutamate receptors on the extracellular concentration of dopamine, acetylcholine, (ACh) and GABA in striatum of the awake rat was investigated. Also the levels of DOPAC, HVA, and choline (Ch) were included in this study. Seven to eight days after stereotaxical implantation of a guide-cannulae assembly, microdialysis experiments were performed. The dopamine and ACh content of samples were measured by HPLC coupled to electrochemical detection. GABA was measured using fluorometric detection. Perfusion of AMPA (1, 20, 100 microM) produced a dose-related increase of dopamine and a dose-related decrease of DOPAC and HVA. AMPA 100 microM decreased extracellular concentrations of ACh and increased the extracellular concentration of Ch and GABA. Perfusion of NMDA 500 microM increased the concentration of dopamine and decreased DOPAC and HVA. Also, NMDA 100 microM decreased DOPAC. NMDA 500 microM decreased the extracellular concentrations of ACh and increased the concentrations of Ch and GABA. Perfusion of the AMPA/kainate-antagonist DNQX (100 microM) blocked the effects of AMPA (100 microM) on dopamine, DOPAC, HVA, ACh, and GABA concentrations. Perfusion of the NMDA-antagonist CPP (100 microM) blocked the effects of NMDA 500 microM on dopamine, DOPAC, HVA, ACh, Ch, and GABA concentrations. These results suggest an interaction between glutamate-dopamine-ACh-GABA in striatum of the awake rat.
Collapse
Affiliation(s)
- L F Hernández
- Department of Physiology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | |
Collapse
|
90
|
Alcantara AA, Chen V, Herring BE, Mendenhall JM, Berlanga ML. Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res 2003; 986:22-9. [PMID: 12965226 DOI: 10.1016/s0006-8993(03)03165-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Striatal cholinergic interneurons located in the dorsal striatum and nucleus accumbens are amenable to influences of the dopaminergic mesolimbic pathway, which is a pathway involved in reward and reinforcement and targeted by several drugs of abuse. Dopamine and acetylcholine neurotransmission and their interactions are essential to striatal function, and disruptions to these systems lead to a variety of clinical disorders. Dopamine regulates acetylcholine release through dopamine receptors that are localized directly on striatal cholinergic interneurons. The dopamine D2 receptor, which attenuates acetylcholine release, has been implicated in drug relapse and is targeted by therapeutic drugs that are used to treat a variety of neurological disorders including Tourette Syndrome, Parkinson's disease and schizophrenia. The present study provides the first direct evidence for the localization of dopamine D2 receptors on striatal cholinergic interneurons of the rat brain using dual labeling immunocytochemistry procedures. Using light microscopy, dopamine D2 receptors were localized on the cell somata and dendritic and axonal processes of striatal cholinergic interneurons in the dorsal striatum and nucleus accumbens of the rat brain. These findings provide a foundation for understanding the specific roles that cholinergic neuronal network systems and interacting dopaminergic signaling pathways play in striatal function and in a variety of clinical disorders including drug abuse and addiction.
Collapse
Affiliation(s)
- Adriana A Alcantara
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
91
|
Hattori S, Murakami F, Song WJ. Rundown of a transient potassium current is attributable to changes in channel voltage dependence. Synapse 2003; 48:57-65. [PMID: 12619039 DOI: 10.1002/syn.10185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many ionic currents undergo significant rundown during whole-cell recording. Although rundown is an artifact associated with the recording method, studying the mechanism of rundown may lead to understanding mechanisms regulating channel functions in physiological conditions. The mechanisms for rundown, however, remain obscure for many channels. Here we have studied the mechanism for rundown of an A-type K(+) current in mouse striatal cholinergic interneurons. The interneuron expressed a prominent component of A-type current which exhibited significant rundown during whole-cell recording. When the current was assessed with a highly hyperpolarized prepotential (-140 mV), however, the rundown was virtually fully suppressed, suggesting its being dependent on voltage. Estimation of channel voltage dependence revealed that both activation and inactivation curves shifted towards hyperpolarized potentials during rundown. The shift was suppressed by intracellular ATP, but was affected neither by phosphatase inhibitors nor by antioxidative reagents. The gradual shift of inactivation curve towards negative potentials would make the holding potential progressively inactivate the channel, resulting in apparent loss of activity of the channels. Our results thus provide a biophysical explanation for rundown of A-type current. .
Collapse
Affiliation(s)
- Satoko Hattori
- Department of Electronic Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | |
Collapse
|
92
|
Muller JF, Mascagni F, McDonald AJ. Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus. J Comp Neurol 2003; 456:217-36. [PMID: 12528187 DOI: 10.1002/cne.10435] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although it is well established that the activity of pyramidal projection neurons in the basolateral amygdala (ABL) is controlled by gamma-aminobutyric acid (GABA)ergic inhibitory interneurons, very little is known about the connections of specific interneuronal subpopulations in this region. In the present study, immunohistochemical techniques were used at the light and electron microscopic levels to identify specific populations of interneurons and to analyze their connections with each other and with unlabeled presumptive pyramidal neurons. Double-labeling immunofluorescence experiments revealed that antibodies to vasoactive intestinal peptide (VIP) and calbindin-D28K (CB) labeled two separate interneuronal subpopulations in the ABL. Light microscopic double-labeling immunoperoxidase experiments demonstrated that many VIP-positive (VIP+) axon terminals formed intimate synaptic-like contacts with the CB-positive (CB+) neurons and that both CB+ and VIP+ terminals often contributed to the formation of pericellular baskets that surrounded unlabeled perikarya of pyramidal neurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, it was found that 30% of VIP+ terminals in the anterior subdivision of the basolateral nucleus innervated interneurons that were either CB+ (25%) or VIP+ (5%). A smaller percentage (15%) of CB+ terminals formed synapses with labeled interneurons. Both VIP+ and CB+ terminals also innervated unlabeled perikarya, dendrites, and spines, most of which probably belonged to pyramidal neurons. The interconnections between interneurons may be important for disinhibitory mechanisms and the mediation of rhythmic oscillations in the ABL.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia 29208, USA
| | | | | |
Collapse
|
93
|
Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 2003; 9:23-36. [PMID: 12580337 DOI: 10.1177/1073858402239588] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The striatum and its dense dopaminergic innervation originating in the midbrain, primarily from the substantia nigra pars compacta and the ventral tegmental area, compose the mesostriatal dopamine (DA) systems. The nigrostriatal system is involved mainly in motor coordination and in disorders such as Tourette's syndrome, Huntington's disease, and Parkinson's disease. The dopaminergic projections from the ventral tegmental area to the striatum participate more in the processes that shape behaviors leading to reward, and addictive drugs act upon this mesolimbic system. The midbrain DA areas receive cholinergic innervation from the pedunculopontine tegmentum and the laterodorsal pontine tegmentum, whereas the striatum receives dense cholinergic innervation from local interneurons. The various neurons of the mesostriatal systems express multiple types of muscarinic and nicotinic acetylcholine receptors as well as DA receptors. Especially in the striatum, the dense mingling of dopaminergic and cholinergic constituents enables potent interactions. Evidence indicates that cholinergic and dopaminergic systems work together to produce the coordinated functioning of the striatum. Loss of that cooperative activity contributes to the dysfunction underlying Parkinson's disease.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | |
Collapse
|
94
|
Momiyama T. Parallel decrease in omega-conotoxin-sensitive transmission and dopamine-induced inhibition at the striatal synapse of developing rats. J Physiol 2003; 546:483-90. [PMID: 12527734 PMCID: PMC2342531 DOI: 10.1113/jphysiol.2002.031773] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole-cell patch-clamp recordings of GABAergic IPSCs were made from cholinergic interneurones in slices of striatum from developing rats aged 21-60 days postnatal. In addition, the Ca(2+) channel subtypes involved in synaptic transmission, as well as dopamine (DA)-induced presynaptic inhibition, were investigated pharmacologically with development by bath application of Ca(2+) channel blockers and DA receptor agonists. The IPSC amplitude was reduced by omega-conotoxin GVIA (omega-CgTX) or omega-agatoxin TK (omega-Aga-TK) across the whole age range, suggesting that multiple types of Ca(2+) channels mediate transmission of the synapse. The IPSC fraction reduced by omega-CgTX significantly decreased, whereas that reduced by omega-Aga-TK remained unchanged with development. DA or quinpirole, a D(2)-like receptor agonist, presynaptically reduced the IPSC amplitude throughout development. The DA-induced inhibition decreased with age in parallel with the decrease in N-type Ca(2+) channels. DA showed no further inhibition of IPSCs after the inhibitory effect of omega-CgTX had reached steady state throughout development. These results demonstrate that there is a functional link between presynaptic N-type Ca(2+) channels and D(2)-like DA receptors at inhibitory synapses in the striatum. They also demonstrate that the suppression of GABAergic transmission by D(2)-like receptors is mediated by modulation of N-type Ca(2+) channels and decreases in parallel with the developmental decline in the contribution of N-type Ca(2+) channels to exocytosis.
Collapse
Affiliation(s)
- Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| |
Collapse
|
95
|
Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. JOURNAL OF NEUROBIOLOGY 2002; 53:590-605. [PMID: 12436423 DOI: 10.1002/neu.10150] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
96
|
Zhang L, Warren RA. Muscarinic and nicotinic presynaptic modulation of EPSCs in the nucleus accumbens during postnatal development. J Neurophysiol 2002; 88:3315-30. [PMID: 12466449 DOI: 10.1152/jn.01025.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the modulatory effects of cholinergic agonists on excitatory postsynaptic currents (EPSCs) in nucleus accumbens (nAcb) neurons during postnatal development. Recordings were obtained in slices from postnatal day 1 (P1) to P27 rats using the whole cell patch-clamp technique. EPSCs were evoked by local electrical stimulation, and all experiments were conducted in the presence of bicuculline methchloride in the bathing medium and with QX-314 in the recording pipette. Under these conditions, postsynaptic currents consisted of glutamatergic EPSCs typically consisting of two components mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcholine (ACh) or carbachol (CCh) to the superfusing medium resulted in a decrease of 30-60% of both AMPA/KA- and NMDA-mediated EPSCs. In contrast, ACh produced an increase ( approximately 35%) in both AMPA/KA and NMDA receptor-mediated EPSCs when administered in the presence of the muscarinic antagonist atropine. These excitatory effects were mimicked by the nicotinic receptor agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic receptor antagonist mecamylamine, showing the presence of a cholinergic modulation mediated by nicotinic receptors in the nAcb. The antagonistic effects of atropine were mimicked by pirenzepine, suggesting that the muscarinic depression of the EPSCs was mediated by M(1)/M(4) receptors. In addition, the inhibitory effects of ACh on NMDA but not on AMPA/KA receptor-mediated EPSC significantly increased during the first two postnatal weeks. We found that, under our experimental conditions, cholinergic agonists produced no changes on membrane holding currents, on the decay time of the AMPA/KA EPSC, or on responses evoked by exogenous application of glutamate in the presence of tetrodotoxin, but they produced significant changes in paired pulse ratio, suggesting that their action was mediated by presynaptic mechanisms. In contrast, CCh produced consistent changes in the membrane and firing properties of medium spiny (MS) neurons when QX-314 was omitted from the recording pipette solution, suggesting that this substance actually blocked postsynaptic cholinergic modulation. Together, these results suggest that ACh can decrease or increase glutamatergic neurotransmission in the nAcb by, respectively, acting on muscarinic and nicotinic receptors located on excitatory terminals. The cholinergic modulation of AMPA/KA and NMDA receptor-mediated neurotransmission in the nAcb during postnatal development could play an important role in activity-dependent developmental processes in refining the excitatory drive on MS neurons by gating specific inputs.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de Recherche Fernand-Seguin, University of Montréal, Montreal, Quebec H1N 3V2, Canada
| | | |
Collapse
|
97
|
Abstract
Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.
Collapse
|
98
|
Abstract
The natural incentives that shape behavior reach the central circuitry of motivation trans-synaptically, via the five senses, whereas the laboratory rewards of intracranial stimulation or drug injections activate reward circuitry directly, bypassing peripheral sensory pathways. The unsensed incentives of brain stimulation and intracranial drug injections thus give us tools to identify reward circuit elements within the associational portions of the CNS. Such studies have implicated the mesolimbic dopamine system and several of its afferents and efferents in motivational function. Comparisons of natural and laboratory incentives suggest hypotheses as to why some habits become compulsive and give insights into the roles of reinforcement and of prediction of reinforcement in habit formation.
Collapse
Affiliation(s)
- Roy A Wise
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
99
|
Jolkkonen E, Miettinen R, Pikkarainen M, Pitkänen A. Projections from the amygdaloid complex to the magnocellular cholinergic basal forebrain in rat. Neuroscience 2002; 111:133-49. [PMID: 11955718 DOI: 10.1016/s0306-4522(01)00578-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The amygdaloid complex has a key role in the modulation of behavioral responses in life-threatening situations, including the direction of attentional responses to sensory stimuli. The pathways from the amygdala to the basal forebrain cholinergic system, which projects to the cortex, are proposed to contribute to the modulation. To further explore the topography and postsynaptic targets of these pathways, we investigated the projections from the different divisions of the lateral, basal, accessory basal, and central nuclei of the amygdala to the cholinergic basal forebrain in rat using a sensitive anterograde tracer, Phaseolus vulgaris leucoagglutinin. The most substantial projections from the amygdala to the basal forebrain are directed to the ventrolateral and dorsomedial aspects of the substantia innominata and the fundus of the striatum. The heaviest projections originate in the capsular, lateral, and intermediate divisions of the central nucleus as well as in the magnocellular and parvicellular divisions of the basal nucleus. Light microscopic analysis of double-stained preparations revealed that the distribution of amygdaloid efferents and cholinergic neurons overlaps most prominently in the ventrolateral substantia innominata. Despite the fact that the central nucleus efferents and cholinergic elements overlap in the ventrolateral substantia innominata, electron microscopic analysis revealed, first, that the postsynaptic targets of the central nucleus efferents are non-cholinergic, probably GABAergic, neurons. Second, 80% of the synaptic contacts were symmetric. The present data extend previous observations showing that the different amygdaloid nuclei provide projections to the selective basal forebrain areas. Further, the central nucleus efferents modulate cholinergic neurons in the basal forebrain indirectly via the GABAergic interneurons.
Collapse
Affiliation(s)
- E Jolkkonen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | |
Collapse
|
100
|
Abstract
To correlate clonal patterns in the rat striatum with adult neuronal phenotypes, we labeled striatal progenitors between embryonic day 14 (E14) and E19 with a retroviral library encoding alkaline phosphatase. In the adult striatum, the majority of E14-labeled neurons (87%) were members of discrete horizontal or radial cell clusters. Radial clusters accounted for only 23% of cell clusters but >34% of labeled cells. Striatal clones also demonstrated an unexpected widespread pattern of clonal dispersion. The majority of striatal clones were widely dispersed within the striatum, and 80% of clones were part of even larger clones that included cortical interneurons. Finally, we observed that PCR-positive cortical interneurons were members of clones containing both interneurons and pyramids (44%), exclusively interneuron clones (24%), or combined striatal-cortical clones (16%), consistent with the view that cortical interneurons have multiple origins in differentially behaving progenitor cells. Our data are also consistent with the notion that similar mechanisms underpin striatal and cortical development.
Collapse
|