51
|
Pasin Neto H, Bicalho E, Bortolazzo G. Interoception and Emotion: A Potential Mechanism for Intervention With Manual Treatment. Cureus 2021; 13:e15923. [PMID: 34336427 PMCID: PMC8312802 DOI: 10.7759/cureus.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
Interoception is considered a perception pathway as important as the exteroceptive pathways for determining responses to maintain homeostasis. There is evidence about the influence of the interoception on emotional responses as these expressions are considered to be a combination of physical, environmental and individual beliefs. A large percentage of afferent fibers in the body are related to free nerve endings which, when stimulated, reach the insular cortex that participates in the process of emotions. The viscera afferent fibers represent 5% to 15% of all these inputs. Evidence emerges that demonstrates the importance of visceral health as part of the treatment of patients with emotional imbalances. It can be postulated that manual treatment applied to visceral fasciae can assist in interoceptive balance and have a positive impact on emotions. Therefore, the objective of the present study is to discuss the concepts of interoception, central sensitization, emotional health and visceral manual treatment.
Collapse
Affiliation(s)
- Hugo Pasin Neto
- Osteopathy, Brazilian College of Osteopathy, Sorocaba, BRA.,Physiotherapy, University of Sorocaba, Sorocaba, BRA
| | | | | |
Collapse
|
52
|
Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach. Auton Neurosci 2021; 233:102811. [PMID: 33932866 DOI: 10.1016/j.autneu.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Vagal afferents form the primary gut-to-brain neural axis, communicating signals that regulate gastrointestinal (GI) function and promote satiation, appetition and reward. Neurotrophin-4 (NT-4) is essential for the survival of vagal smooth muscle afferents of the small intestine, but not the stomach. Here we took advantage of near-complete labeling of GI vagal mucosal afferents in Nav1.8cre-Rosa26tdTomato transgenic mice to determine whether these afferents depend on NT-4 for survival. We quantified the density and distribution of vagal afferent terminals in the stomach and small intestine mucosa and their central terminals in the solitary tract nucleus (NTS) and area postrema in NT-4 knockout (KO) and control mice. NT-4KO mice exhibited a 75% reduction in vagal afferent terminals in proximal duodenal villi and a 55% decrease in the distal ileum, whereas, those in the stomach glands remained intact. Vagal crypt afferents were also reduced in some regions of the small intestine, but to a lesser degree. Surprisingly, NT-4KO mice exhibited an increase in labeled terminals in the medial NTS. These findings, combined with previous results, suggest NT-4 is essential for survival of a large proportion of all classes of vagal afferents that innervate the small intestine, but not those that supply the stomach. Thus, NT-4KO mice could be valuable for distinguishing gastric and intestinal vagal afferent regulation of GI function and feeding. The apparent plasticity of central vagal afferent terminals - an increase in their density - could have compensated for loss of peripheral terminals by maintaining near-normal levels of satiety signaling.
Collapse
|
53
|
Taxini CL, Marques DA, Bícego KC, Gargaglioni LH. A5 noradrenergic neurons and breathing control in neonate rats. Pflugers Arch 2021; 473:859-872. [PMID: 33855632 DOI: 10.1007/s00424-021-02550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
The pontine A5 noradrenergic group contributes to the maturation of the respiratory system before birth in rats. These neurons are connected to the neural network responsible for respiratory rhythmogenesis. In the present study, we investigated the participation of A5 noradrenergic neurons in neonates (P7-8 and P14-15) in the control of ventilation during hypoxia and hypercapnia in in vivo experiments using conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP) to specifically ablate noradrenergic neurons. Thus, DβH-SAP (420 ng/μL) or saporin (SAP, control) was injected into the A5 region of neonatal male Wistar rats. Hypoxia reduced respiratory variability in control animals; however, A5 lesion prevented this effect in P7-8 rats. Our data suggest that noradrenergic neurons of the A5 region in neonate rats do not participate in the control of ventilation under baseline and hypercapnic conditions, but exert an inhibitory modulation on breathing variability under hypoxic challenge in early life (P7-8).
Collapse
Affiliation(s)
- Camila L Taxini
- Department of Morphology and Animal Physiology - FCAV, São Paulo State University (UNESP), Via de acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-900, Brazil
| | - Danuzia A Marques
- Department of Pediatrics, Centre de Recherche de L'Institut Universitaire de Cardiologie Et de Pneumologie de Québec, Université Laval, Québec, G1V 4G5, Canada
| | - Kênia C Bícego
- Department of Morphology and Animal Physiology - FCAV, São Paulo State University (UNESP), Via de acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-900, Brazil
| | - Luciane H Gargaglioni
- Department of Morphology and Animal Physiology - FCAV, São Paulo State University (UNESP), Via de acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-900, Brazil.
| |
Collapse
|
54
|
Activation of Transient Receptor Potential Vanilloid 1 Channels in the Nucleus of the Solitary Tract and Activation of Dynorphin Input to the Median Preoptic Nucleus Contribute to Impaired BAT Thermogenesis in Diet-Induced Obesity. eNeuro 2021; 8:ENEURO.0048-21.2021. [PMID: 33707202 PMCID: PMC8174036 DOI: 10.1523/eneuro.0048-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
The impairment of cold-evoked activation of brown adipose tissue (BAT) in rats fed a high-fat diet (HFD) requires the activity of a vagal afferent to the medial nucleus of the solitary tract (mNTS). We determined the role of transient receptor potential vanilloid 1 (TRPV1) activation in the mNTS, and of a dynorphin input to the median preoptic nucleus (MnPO) in the impaired BAT thermogenic response to cold in HFD-fed rats. The levels of some linoleic acid (LA) metabolites, which can act as endogenous TRPV1 agonists, were elevated in the NTS of HFD rats compared with chow-fed rats. In HFD rats, nanoinjections of the TRPV1 antagonist, capsazepine (CPZ) in the NTS rescued the impaired BAT sympathetic nerve activity (BAT SNA) and thermogenic responses to cold. In contrast, in chow-fed rats, cold-evoked BAT SNA and BAT thermogenesis were not changed by nanoinjections of CPZ into the NTS. Axon terminals of NTS neurons that project to the dorsal lateral parabrachial nucleus (LPBd) were closely apposed to LPBd neurons that project to the MnPO. Many of the neurons in the LPBd that expressed c-fos during cold challenge were dynorphinergic. In HFD rats, nanoinjections of the κ opioid receptor (KOR) antagonist, nor-binaltorphimine (nor-BNI), in the MnPO rescued the impaired BAT SNA and thermogenic responses to cold. These data suggest that HFD increases the content of endogenous ligands of TRPV1 in the NTS, which increases the drive to LPBd neurons that in turn release dynorphin in the MnPO to impair activation of BAT.
Collapse
|
55
|
Huang D, Grady FS, Peltekian L, Laing JJ, Geerling JC. Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J Comp Neurol 2021; 529:2911-2957. [PMID: 33715169 DOI: 10.1002/cne.25136] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa, USA
| | | | | | | | | |
Collapse
|
56
|
Pitts T, Huff A, Reed M, Iceman K, Mellen N. Evidence of intermediate reticular formation involvement in swallow pattern generation, recorded optically in the neonate rat sagittally sectioned hindbrain. J Neurophysiol 2021; 125:993-1005. [PMID: 33566745 DOI: 10.1152/jn.00623.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Swallow is a primitive behavior regulated by medullary networks, responsible for movement of food/liquid from the oral cavity to the esophagus. To investigate how functionally heterogeneous networks along the medullary intermediate reticular formation (IRt) and ventral respiratory column (VRC) control swallow, we electrically stimulated the nucleus tractus solitarius to induce fictive swallow between inspiratory bursts, with concurrent optical recordings using a synthetic Ca2+ indicator in the neonatal sagittally sectioned rat hindbrain (SSRH) preparation. Simultaneous recordings from hypoglossal nerve rootlet (XIIn) and ventral cervical spinal root C1-C2 enabled identification of the system-level correlates of 1) swallow (identified as activation of the XIIn but not the cervical root) and 2) Breuer-Hering expiratory reflex (BHE; lengthened expiration in response to stimuli during expiration). Optical recording revealed reconfiguration of respiration-modulated networks in the ventrolateral medulla during swallow and the BHE reflex. Recordings identified novel spatially compact networks in the IRt near the facial nucleus (VIIn) that were active during fictive swallow, suggesting that the swallow network is not restricted to the caudal medulla. These findings also establish the utility of using this in vitro preparation to investigate how functionally heterogeneous medullary networks interact and reconfigure to enable a repertoire of orofacial behaviors.NEW & NOTEWORTHY For the first time, medullary networks that control breathing and swallow are recorded optically. Episodic swallows are induced via electrical stimulation along the dorsal medulla, in and near the NTS, during spontaneously occurring fictive respiration. These findings establish that networks regulating both orofacial behaviors and breathing are accessible for optical recording at the surface of the sagittally sectioned rodent hindbrain preparation.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Mitchell Reed
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Kimberly Iceman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Nicholas Mellen
- Department of Neurology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
57
|
Tsutsumi Y, Mizuno Y, Haque T, Sato F, Furuta T, Oka A, Moritani M, Bae YC, Yamashiro T, Tachibana Y, Yoshida A. Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Struct Funct 2021; 226:1115-1133. [PMID: 33543335 DOI: 10.1007/s00429-021-02228-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
The oval paracentral nucleus (OPC) was initially isolated from the paracentral nucleus (PC) within the intralaminar thalamic nuclei in rats. We have recently shown that the rat OPC receives proprioceptive inputs from jaw-closing muscle spindles (JCMSs). However, it remains unknown which cortical areas receive thalamic inputs from the OPC, and whether the cortical areas receiving the OPC inputs are distinct from those receiving inputs from the other intralaminar nuclei and sensory thalamic nuclei. To address this issue, we injected an anterograde tracer, biotinylated dextranamine (BDA), into the OPC, which was electrophysiologically identified by recording of proprioceptive inputs from the JCMSs. Many BDA-labeled axonal fibers and terminals from the OPC were ipsilaterally observed in the rostral and rostroventral regions of the primary somatosensory cortex (S1), the rostral region of the secondary somatosensory cortex (S2), and the most rostrocaudal levels of the granular insular cortex (GI). In contrast, a BDA injection into the caudal PC, which was located slightly rostral to the OPC, resulted in ipsilateral labeling of axonal fibers and terminals in the rostrolateral region of the medial agranular cortex and the rostromedial region of the lateral agranular cortex. Furthermore, injections of a retrograde tracer, Fluorogold, into these S1, S2, and GI regions, resulted in preferential labeling of neurons in the ipsilateral OPC among the intralaminar and sensory thalamic nuclei. These findings reveal that the rat OPC has widespread, but strong corticopetal projections, indicating that there exist divergent corticopetal pathways from the intralaminar thalamic nucleus, which process JCMS proprioceptive sensation.
Collapse
Affiliation(s)
- Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yuka Mizuno
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Tahsinul Haque
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.,Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, 11545, Saudi Arabia
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Masayuki Moritani
- Department of Physical Therapy, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka, 559-8611, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
58
|
Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). J Comp Neurol 2021; 529:2558-2575. [PMID: 33458823 DOI: 10.1002/cne.25109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - McKenzie E Prillaman
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Elif N Keskinoz
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
59
|
Uddin O, Anderson M, Smith J, Masri R, Keller A. Parabrachial complex processes dura inputs through a direct trigeminal ganglion-to-parabrachial connection. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100060. [PMID: 33537510 PMCID: PMC7840999 DOI: 10.1016/j.ynpai.2021.100060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 11/11/2022]
Abstract
Migraines cause significant disability and contribute heavily to healthcare costs. Irritation of the meninges' outermost layer (the dura mater), and trigeminal ganglion activation contribute to migraine initiation. Maladaptive changes in central pain-processing regions are also important in maintaining pain. The parabrachial complex (PB) is a central region that mediates chronic pain. PB receives diverse sensory information, including a direct input from the trigeminal ganglion. We hypothesized that PB processes inputs from the dura. Using in vivo electrophysiology recordings from single units in anesthetized rats we identified 58 neurons in lateral PB that respond reliably and with short latency to electrical dura stimulation. After injecting tracer into PB, anatomical examination reveals retrogradely labeled cell bodies in the trigeminal ganglion. Neuroanatomical tract-tracing revealed a population of neurons in the trigeminal ganglion that innervate the dura and project directly to PB. These findings indicate that PB is strategically placed to process dura inputs and suggest that it is directly involved in the pathogenesis of migraine headaches.
Collapse
Affiliation(s)
- Olivia Uddin
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Michael Anderson
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jesse Smith
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
60
|
Gabrielyan L, Liang H, Minalyan A, Hatami A, John V, Wang L. Behavioral Deficits and Brain α-Synuclein and Phosphorylated Serine-129 α-Synuclein in Male and Female Mice Overexpressing Human α-Synuclein. J Alzheimers Dis 2021; 79:875-893. [PMID: 33361597 PMCID: PMC8577576 DOI: 10.3233/jad-200983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is involved in pathology of Parkinson's disease, and 90% of α-syn in Lewy bodies is phosphorylated at serine 129 (pS129 α-syn). OBJECTIVE To assess behavior impairments and brain levels of α-syn and pS129 α-syn in mice overexpressing human α-syn under Thy1 promoter (Thy1-α-syn) and wild type (wt) littermates. METHODS Motor and non-motor behaviors were monitored, brain human α-syn levels measured by ELISA, and α-syn and pS129 α-syn mapped by immunohistochemistry. RESULTS Male and female wt littermates did not show differences in the behavioral tests. Male Thy1-α-syn mice displayed more severe impairments than female counterparts in cotton nesting, pole tests, adhesive removal, finding buried food, and marble burying. Concentrations of human α-syn in the olfactory regions, cortex, nigrostriatal system, and dorsal medulla were significantly increased in Thy1-α-syn mice, higher in males than females. Immunoreactivity of α-syn was not simply increased in Thy1-α-syn mice but had altered localization in somas and fibers in a few brain areas. Abundant pS129 α-syn existed in many brain areas of Thy1-α-syn mice, while there was none or only a small amount in a few brain regions of wt mice. The substantia nigra, olfactory regions, amygdala, lateral parabrachial nucleus, and dorsal vagal complex displayed different distribution patterns between wt and transgenic mice, but not between sexes. CONCLUSION The severer abnormal behaviors in male than female Thy1-α-syn mice may be related to higher brain levels of human α-syn, in the absence of sex differences in the altered brain immunoreactivity patterns of α-syn and pS129 α-syn.
Collapse
Affiliation(s)
- Lilit Gabrielyan
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Honghui Liang
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Artem Minalyan
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Asa Hatami
- Drug Discovery Lab, Department of Neurology, UCLA
| | | | - Lixin Wang
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
- VA Great Los Angeles Health System
| |
Collapse
|
61
|
Momose-Sato Y, Sato K. Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity. IBRO Rep 2020; 9:14-23. [PMID: 32642591 PMCID: PMC7334560 DOI: 10.1016/j.ibror.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/28/2022] Open
Abstract
Correlated spontaneous activity propagating over a wide region of the central nervous system is expressed during a specific period of embryonic development. We previously demonstrated using an optical imaging technique with a voltage-sensitive dye that this wave-like activity, which we referred to as the depolarization wave, is fundamentally involved in the early process of synaptic network formation. We found that the in ovo application of bicuculline/strychnine or d-tubocurarine, which blocked the neurotransmitters mediating the wave, significantly reduced functional synaptic expression in the brainstem sensory nucleus. This result, particularly for d-tubocurarine, an antagonist of nicotinic acetylcholine receptors, suggested that prenatal nicotine exposure associated with maternal smoking affects the development of neural circuit formation by interfering with the correlated wave. In the present study, we tested this hypothesis by examining the effects of nicotine on the correlated activity and assessing the chronic action of nicotine in ovo on functional synaptic expression along the vagal sensory pathway. In ovo observations of chick embryo behavior and electrical recording using in vitro preparations showed that the application of nicotine transiently increased embryonic movements and electrical bursts associated with the wave, but subsequently inhibited these activities, suggesting that the dominant action of the drug was to inhibit the wave. Optical imaging with the voltage-sensitive dye showed that the chronic exposure to nicotine in ovo markedly reduced functional synaptic expression in the higher-order sensory nucleus of the vagus nerve, the parabrachial nucleus. The results suggest that prenatal nicotine exposure disrupts the initial formation of the neural circuitry by inhibiting correlated spontaneous wave activity.
Collapse
Key Words
- APV, DL-2-amino-5-phosphonovaleric acid
- CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione
- E, embryonic day (days of incubation in avians and days of pregnancy in mammals)
- EPSP, excitatory postsynaptic potential
- GABA, γ-aminobutyric acid
- In ovo
- NMDA, N-methyl-D-aspartate
- NTS, nucleus of the tractus solitarius
- Nicotine
- Optical recording
- PBN, parabrachial nucleus
- Spontaneous activity
- Synaptic network formation
- Voltage-sensitive dye
- nAChR, nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, 236-8501, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women’s University, Inagi-shi, Tokyo, 206-8511, Japan
| |
Collapse
|
62
|
Bales MB, Spector AC. Chemospecific deficits in taste sensitivity following bilateral or right hemispheric gustatory cortex lesions in rats. J Comp Neurol 2020; 528:2729-2747. [PMID: 32671857 PMCID: PMC8008699 DOI: 10.1002/cne.24928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Our prior studies showed bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts (NaCl and KCl) and quinine ("bitter") but not to sucrose ("sweet"). The range of qualitative tastants tested here has been extended in a theoretically relevant way to include the maltodextrin, Maltrin, a preferred stimulus by rats thought to represent a unique taste quality, and the "sour" stimulus citric acid; NaCl was also included as a positive control. Male rats (Sprague-Dawley) with histologically confirmed neurotoxin-induced bilateral (BGCX, n = 13), or right (RGCX, n = 13) or left (LGCX, n = 9) unilateral GC lesions and sham-operated controls (SHAM, n = 16) were trained to discriminate a tastant from water in an operant two-response detection task. A mapping system was used to determine placement, size, and symmetry (when bilateral) of the lesion. BGCX significantly impaired taste sensitivity to NaCl, as expected, but not to Maltrin or citric acid, emulating our prior results with sucrose. However, in the case of citric acid, there was some disruption in performance at higher concentrations. Interestingly, RGCX, but not LGCX, also significantly impaired taste sensitivity, but only to NaCl, suggesting some degree of lateralized function. Taken together with our prior findings, extensive bilateral lesions in GC do not disrupt basic taste signal detection to all taste stimuli uniformly. Moreover, GC lesions do not preclude the ability of rats to learn and perform the task, clearly demonstrating that, in its absence, other brain regions are able to maintain sensory-discriminative taste processing, albeit with attenuated sensitivity for select stimuli.
Collapse
Affiliation(s)
- Michelle B Bales
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
63
|
Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020; 132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lynda Whiting
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
64
|
Boccia L, Le Foll C, Lutz TA. Noradrenaline signaling in the LPBN mediates amylin's and salmon calcitonin's hypophagic effect in male rats. FASEB J 2020; 34:15448-15461. [PMID: 32985027 DOI: 10.1096/fj.202001456rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/11/2022]
Abstract
The LPBN (lateral parabrachial nucleus) plays an important role in feeding control. CGRP (calcitonin gene-related peptide) LPBN neurons activation mediates the anorectic effects of different gut-derived peptides, including amylin. Amylin and its long acting analog sCT (salmon calcitonin) exert their anorectic actions primarily by directly activating neurons located in the area postrema (AP). A large proportion of projections from the AP and the adjacent nucleus of the solitary tractNTS to the LPBN, are noradrenergic (NA), and amylin-activated NAAP neurons are critical in mediating amylin's hypophagic effects. Here, we determine the functional role of NAAP amylin activated neurons to activate CGRP and non-CGRP LPBN neurons. To this end, NA was specifically depleted in the rat LPBN through a stereotaxic microinfusion of 6-OHDA, a neurotoxic agent that destroys NA terminals. While amylin (50 μg/kg) and sCT (5 μg/kg) reduced eating in sham-lesioned rats, no reduction in feeding occurred in NA-depleted animals. Further, the amylin-induced c-Fos response in the LPBN and c-Fos/CGRP colocalization were reduced in NA-depleted animals compared to controls. We conclude that AP → LPBN NA signaling, through the activation of LPBN CGRP neurons, mediates part of amylin's hypophagic effect.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
65
|
Huang D, Grady FS, Peltekian L, Geerling JC. Efferent projections of Vglut2, Foxp2, and Pdyn parabrachial neurons in mice. J Comp Neurol 2020; 529:657-693. [PMID: 32621762 DOI: 10.1002/cne.24975] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB. In this study, we compared the projection patterns of glutamatergic neurons here with a subpopulation expressing the transcription factor Foxp2 and a further subpopulation expressing the neuropeptide Pdyn. To do this, we injected an AAV into the PB region to deliver a Cre-dependent anterograde tracer (synaptophysin-mCherry) in three different strains of Cre-driver mice. We then analyzed 147 neuroanatomical regions for labeled boutons in every brain (n = 11). Overall, glutamatergic neurons in the PB region project to a wide variety of sites in the cerebral cortex, basal forebrain, bed nucleus of the stria terminalis, amygdala, diencephalon, and brainstem. Foxp2 and Pdyn subpopulations project heavily to the hypothalamus, but not to the cortex, basal forebrain, or amygdala. Among the few differences between Foxp2 and Pdyn cases was a notable lack of Pdyn projections to the ventromedial hypothalamic nucleus. Our results indicate that genetic identity determines connectivity (and therefore, function), providing a framework for mapping all PB output projections based on the genetic identity of its neurons. Using genetic markers to systematically classify PB neurons and their efferent projections will enhance the translation of research findings from experimental animals to humans.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Fillan S Grady
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Lila Peltekian
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
66
|
Dunigan AI, Swanson AM, Olson DP, Roseberry AG. Whole-brain efferent and afferent connectivity of mouse ventral tegmental area melanocortin-3 receptor neurons. J Comp Neurol 2020; 529:1157-1183. [PMID: 32856297 DOI: 10.1002/cne.25013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
The mesolimbic dopamine (DA) system is involved in the regulation of multiple behaviors, including feeding, and evidence demonstrates that the melanocortin system can act on the mesolimbic DA system to control feeding and other behaviors. The melanocortin-3 receptor (MC3R) is an important component of the melanocortin system, but its overall role is poorly understood. Because MC3Rs are highly expressed in the ventral tegmental area (VTA) and are likely to be the key interaction point between the melanocortin and mesolimbic DA systems, we set out to identify both the efferent projection patterns of VTA MC3R neurons and the location of the neurons providing afferent input to them. VTA MC3R neurons were broadly connected to neurons across the brain but were strongly connected to a discrete set of brain regions involved in the regulation of feeding, reward, and aversion. Surprisingly, experiments using monosynaptic rabies virus showed that proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons in the arcuate nucleus made few direct synapses onto VTA MC3R neurons or any of the other major neuronal subtypes in the VTA, despite being extensively labeled by general retrograde tracers injected into the VTA. These results greatly contribute to our understanding of the anatomical interactions between the melanocortin and mesolimbic systems and provide a foundation for future studies of VTA MC3R neurons and the circuits containing them in the control of feeding and other behaviors.
Collapse
Affiliation(s)
- Anna I Dunigan
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Andrew M Swanson
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - David P Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
67
|
Lockhart SM, Saudek V, O’Rahilly S. GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocr Rev 2020; 41:bnaa007. [PMID: 32310257 PMCID: PMC7299427 DOI: 10.1210/endrev/bnaa007] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
GDF15 has recently gained scientific and translational prominence with the discovery that its receptor is a GFRAL-RET heterodimer of which GFRAL is expressed solely in the hindbrain. Activation of this receptor results in reduced food intake and loss of body weight and is perceived and recalled by animals as aversive. This information encourages a revised interpretation of the large body of previous research on the protein. GDF15 can be secreted by a wide variety of cell types in response to a broad range of stressors. We propose that central sensing of GDF15 via GFRAL-RET activation results in behaviors that facilitate the reduction of exposure to a noxious stimulus. The human trophoblast appears to have hijacked this signal, producing large amounts of GDF15 from early pregnancy. We speculate that this encourages avoidance of potential teratogens in pregnancy. Circulating GDF15 levels are elevated in a range of human disease states, including various forms of cachexia, and GDF15-GFRAL antagonism is emerging as a therapeutic strategy for anorexia/cachexia syndromes. Metformin elevates circulating GDF15 chronically in humans and the weight loss caused by this drug appears to be dependent on the rise in GDF15. This supports the concept that chronic activation of the GDF15-GFRAL axis has efficacy as an antiobesity agent. In this review, we examine the science of GDF15 since its identification in 1997 with our interpretation of this body of work now being assisted by a clear understanding of its highly selective central site of action.
Collapse
Affiliation(s)
- Samuel M Lockhart
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vladimir Saudek
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
68
|
Mirzaei-Damabi N, Hatam M, Yeganeh F, Ketabchi F, Nasimi A. Roles of glutamate and GABA of the Kölliker-Fuse nucleus in generating the cardiovascular chemoreflex. Pflugers Arch 2020; 472:1051-1063. [DOI: 10.1007/s00424-020-02422-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
|
69
|
Gasparini S, Howland JM, Thatcher AJ, Geerling JC. Central afferents to the nucleus of the solitary tract in rats and mice. J Comp Neurol 2020; 528:2708-2728. [PMID: 32307700 DOI: 10.1002/cne.24927] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
The nucleus of the solitary tract (NTS) regulates life-sustaining functions ranging from appetite and digestion to heart rate and breathing. It is also the brain's primary sensory nucleus for visceral sensations relevant to symptoms in medical and psychiatric disorders. To better understand which neurons may exert top-down control over the NTS, here we provide a brain-wide map of all neurons that project axons directly to the caudal, viscerosensory NTS, focusing on a medial subregion with aldosterone-sensitive HSD2 neurons. Injecting an axonal tracer (cholera toxin b) into the NTS produces a similar pattern of retrograde labeling in rats and mice. The paraventricular hypothalamic nucleus (PVH), lateral hypothalamic area, and central nucleus of the amygdala (CeA) contain the densest concentrations of NTS-projecting neurons. PVH afferents are glutamatergic (express Slc17a6/Vglut2) and are distinct from neuroendocrine PVH neurons. CeA afferents are GABAergic (express Slc32a1/Vgat) and are distributed largely in the medial CeA subdivision. Other retrogradely labeled neurons are located in a variety of brain regions, including the cerebral cortex (insular and infralimbic areas), bed nucleus of the stria terminalis, periaqueductal gray, Barrington's nucleus, Kölliker-Fuse nucleus, hindbrain reticular formation, and rostral NTS. Similar patterns of retrograde labeling result from tracer injections into different NTS subdivisions, with dual retrograde tracing revealing that many afferent neurons project axon collaterals to both the lateral and medial NTS subdivisions. This information provides a roadmap for studying descending axonal projections that may influence visceromotor systems and visceral "mind-body" symptoms.
Collapse
Affiliation(s)
- Silvia Gasparini
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| | - Jacob M Howland
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| | - Andrew J Thatcher
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa city, Iowa, USA
| |
Collapse
|
70
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
71
|
Paulus MP, Feinstein JS, Khalsa SS. An Active Inference Approach to Interoceptive Psychopathology. Annu Rev Clin Psychol 2020; 15:97-122. [PMID: 31067416 DOI: 10.1146/annurev-clinpsy-050718-095617] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interoception refers to the process by which the nervous system senses and integrates signals originating from within the body, providing a momentary mapping of the body's internal landscape and its relationship to the outside world. Active inference is based on the premise that afferent sensory input to the brain is constantly shaped and modified by prior expectations. In this review we propose that interoceptive psychopathology results from two primary interoceptive dysfunctions: First, individuals have abnormally strong expectations of the situations that elicit bodily change (i.e., hyperprecise priors), and second, they have great difficulty adjusting these expectations when the environment changes (i.e., context rigidity). Here we discuss how these dysfunctions potentially manifest in mental illness and how interventions aimed at altering interoceptive processing can help the brain create a more realistic model of its internal state.
Collapse
Affiliation(s)
- Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma 74136, USA;
| | - Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, Oklahoma 74136, USA; .,Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma 74119, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma 74136, USA; .,Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma 74119, USA
| |
Collapse
|
72
|
Grady F, Peltekian L, Iverson G, Geerling JC. Direct Parabrachial-Cortical Connectivity. Cereb Cortex 2020; 30:4811-4833. [PMID: 32383444 DOI: 10.1093/cercor/bhaa072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The parabrachial nucleus (PB) in the upper brain stem tegmentum includes several neuronal subpopulations with a wide variety of connections and functions. A subpopulation of PB neurons projects axons directly to the cerebral cortex, and limbic areas of the cerebral cortex send a return projection directly to the PB. We used retrograde and Cre-dependent anterograde tracing to identify genetic markers and characterize this PB-cortical interconnectivity in mice. Cortical projections originate from glutamatergic PB neurons that contain Lmx1b (81%), estrogen receptor alpha (26%), and Satb2 (20%), plus mRNA for the neuropeptides cholecystokinin (Cck, 48%) and calcitonin gene-related peptide (Calca, 13%), with minimal contribution from FoxP2+ PB neurons (2%). Axons from the PB produce an extensive terminal field in an unmyelinated region of the insular cortex, extending caudally into the entorhinal cortex, and arcing rostrally through the dorsolateral prefrontal cortex, with a secondary terminal field in the medial prefrontal cortex. In return, layer 5 neurons in the insular cortex and other prefrontal areas, along with a dense cluster of cells dorsal to the claustrum, send a descending projection to subregions of the PB that contain cortically projecting neurons. This information forms the neuroanatomical basis for testing PB-cortical interconnectivity in arousal and interoception.
Collapse
Affiliation(s)
- Fillan Grady
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Lila Peltekian
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Gabrielle Iverson
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
73
|
Yokota T, Katakura N, Morita T, Matsunaga T, Hiraba K. Two neuronal groups for NaCl with differential taste response properties and topographical distributions in the rat parabrachial nucleus. Physiol Rep 2020; 8:e14443. [PMID: 32441441 PMCID: PMC7243197 DOI: 10.14814/phy2.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 11/24/2022] Open
Abstract
It is crucial for animals to discriminate between palatable (safe) and aversive (toxic) tastants. The mechanisms underlying neuronal discrimination of taste stimuli remain unclear. We examined relations between taste response properties (spike counts, response duration, and coefficient of variation [CV]) and location of taste-sensitive neurons in the pontine parabrachial nucleus (PBN). Extracellular single units' activity in the PBN of Wistar rats was recorded using multibarrel glass micropipettes under urethane anesthesia. Forty taste-sensitive neurons were classified as NaCl (N)-best (n = 15), NaCl/HCl (NH)-best (n = 14), HCl (H)-best (n = 8), and sucrose (S)-best (n = 3) neurons. The net response to NaCl (15.2 ± 2.3 spikes/s) among the N-best neurons was significantly larger than that among the NH-best (4.5 ± 0.8 spikes/s) neurons. The response duration (4.5 ± 0.2 s) of the N-best neurons to NaCl was significantly longer than that of the NH-best (2.2 ± 0.3 s) neurons. These differences in the spike counts and the response durations between the two neuronal types in the PBN were similar to that previously reported in the rostral nucleus of the solitary tract (rNST). The CVs in the N-best and the NH-best neurons were significantly smaller in the PBN than those in the rNST. Histologically, most N-best neurons (12/13, 92%) were localized to the medial region, while NH-best neurons (11/13, 85%) were primarily found within the brachium conjunctivum. These results suggest that NaCl-specific taste information is transmitted by two distinct neuronal groups (N-best and NH-best), with different taste properties and locations within rNST to PBN tractography. Future studies on the higher order nuclei for taste could reveal more palatable and aversive taste pathways.
Collapse
Affiliation(s)
- Tatsuko Yokota
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Nubuo Katakura
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Takumi Morita
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Tomoko Matsunaga
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Katsunari Hiraba
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| |
Collapse
|
74
|
Harris RBS. Loss of leptin receptor-expressing cells in the hindbrain decreases forebrain leptin sensitivity. Am J Physiol Endocrinol Metab 2020; 318:E806-E816. [PMID: 32228323 PMCID: PMC7272723 DOI: 10.1152/ajpendo.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023]
Abstract
Previous studies indicate that inhibition of food intake by leptin is mediated by an integrated response to activation of hypothalamic and hindbrain receptors. This study tested whether loss of hindbrain leptin receptor signaling changed sensitivity to forebrain leptin. Injections of leptin-conjugated saporin (Lep-Sap) into the medial nucleus of the solitary tract (NTS) were used to destroy hindbrain leptin receptor-expressing neurons of male Sprague-Dawley rats. Controls were injected with saporin conjugated with a nonsense peptide (Blk-Sap). Lep-Sap had no effect on daily food intake or body weight, but expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) in the NTS following a peripheral injection of leptin was abolished 26 days after Lep-Sap injections. To test forebrain leptin sensitivity, Lep-Sap and Blk-Sap rats received third-ventricle injections of 0, 0.05, 0.1, 0.25, or 0.5 μg leptin. Food intake was inhibited by 0.25 and 0.5 μg leptin in Blk-Sap rats, but there was no significant effect of leptin on food intake of Lep-Sap rats. There was no difference in hypothalamic pSTAT3 in unstimulated conditions, but pSTAT3 was lower in the dorsomedial region of the ventromedial nucleus of the hypothalamus (VMH) of Lep-Sap rats compared with Blk-Sap rats following a third-ventricle injection of 0.25 μg leptin. These results are consistent with previous data showing that loss of VMH leptin receptor-expressing cells prevents weight loss caused by fourth-ventricle leptin infusion and show that the integrated response between the hindbrain and forebrain is heavily dependent on leptin activity in the VMH.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
75
|
Sato F, Kado S, Tsutsumi Y, Tachibana Y, Ikenoue E, Furuta T, Uchino K, Bae YC, Uzawa N, Yoshida A. Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Res 2020; 1739:146830. [PMID: 32278724 DOI: 10.1016/j.brainres.2020.146830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
An invasive intralaminar thalamic stimulation and a non-invasive application of oral splint are both effective in treating tic symptoms of patients with Tourette syndrome (TS). Therefore, these two treatments may exert some influence on the same brain region in TS patients. We thus hypothesized that the proprioceptive input arising from the muscle spindles of jaw-closing muscles (JCMSs), known to be increased by the application of oral splint, is transmitted to the intralaminar thalamic nuclei. To test this issue, we morphologically and electrophysiologically examined the thalamic projections of proprioceptive input from the JCMSs to the intralaminar thalamic nuclei of rats. We first injected an anterograde tracer, biotinylated dextranamine, into the electrophysiologically identified supratrigeminal nucleus, which is known to receive proprioceptive inputs from the JCMSs via the trigeminal mesencephalic neurons. A moderate number of biotinylated dextranamine-labeled axon terminals were bilaterally distributed in the oval paracentral nucleus (OPC) of the intralaminar thalamic nuclei. We also detected electrophysiological responses to the electrical stimulation of bilateral masseter nerves and to sustained jaw-opening in the OPC. After injection of retrograde tracer (cholera toxin B subunit or Fluorogold) into the OPC, neuronal cell bodies were retrogradely labeled in the rostrodorsal portion of the bilateral supratrigeminal nucleus. Here, we show that proprioceptive inputs from the JCMSs are conveyed to the OPC in the intralaminar nuclei via the supratrigeminal nucleus. This study can help to understand previously unrecognized pathways of proprioception ascending inputs from the brainstem to the thalamus, which may contribute to treatments of TS patients.
Collapse
Affiliation(s)
- Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Seiya Kado
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Department of Oral and Maxillofacial Surgery 2, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Etsuko Ikenoue
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuro Uchino
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Department of Acupuncture, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo 666-0162, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery 2, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
76
|
Fortaleza EAT, Busnardo C, Fassini A, Belém-Filho IJA, Almeida-Pereira G, Antunes-Rodrigues J, Morgan Aguiar Corrêa F. Mechanisms involved in the cardiovascular effects caused by acute osmotic stimulation in conscious rats. Stress 2020; 23:221-232. [PMID: 31451018 DOI: 10.1080/10253890.2019.1660771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Both the autonomic nervous system and the neuroendocrine system are activated by osmotic stimulation (OS) evoking cardiovascular effects. The current study investigated the mechanisms involved in the cardiovascular responses evoked by an acute osmotic stimulus with intraperitoneal (i.p.) injection of either isotonic (0.15 M NaCl) or hypertonic saline (0.6 M NaCl) in conscious rats. Hypertonic saline increased mean arterial pressure (MAP) and heart rate (HR) for 30 min, as well as plasma osmolality and sodium content. Urinary sodium and urinary volume were also increased. Pretreatment with the ganglion blocker pentolinium (i.v.) did not affect the pressor response, but significantly decreased the tachycardic response caused by OS. Pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (i.v.) reduced the pressor response, without affecting the tachycardic response evoked by the hypertonic OS. Neither the pressor nor the tachycardic response to OS was affected by pretreatment with either the oxytocin receptor antagonist atosiban or the α1-antagonist prazosin. Pretreatment with the β1-antagonist atenolol had no effect on the pressor response, but markedly decreased the tachycardic response evoked by OS. Results indicate that i.p. hypertonic OS-evoked pressor response is mediated by the release of vasopressin, with a minor influence of the vascular sympathetic input.LAY SUMMARYIncreased plasma osmolality, such as that observed during dehydration or salt intake, is a potent stimulus yielding to marked cardiovascular and neuroendocrine responses. The intraperitoneal (i.p.) injection of hypertonic saline solution is a commonly used animal model to cause a sustained increase in plasma osmolality, leading to a cardiovascular response characterized by sustained blood pressure and heart increases, whose systemic mechanisms were presently studied. Our findings indicate that the pressor response to the i.p. osmotic stimulus (OS) is mediated mainly by the release of vasopressin into the blood circulation with a minor or even the noninvolvement of the vascular sympathetic nervous system, whereas activation of the sympathetic-cardiac system mediates the tachycardic response to OS.
Collapse
Affiliation(s)
| | - Cristiane Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, São Paulo, Brazil
| | - Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
77
|
Katagiri A, Kato T. Multi-dimensional role of the parabrachial nucleus in regulating pain-related affective disturbances in trigeminal neuropathic pain. J Oral Sci 2020; 62:160-164. [DOI: 10.2334/josnusd.19-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| |
Collapse
|
78
|
Mirzaei-Damabi N, Rostami B, Hatam M. Role of the Kölliker-Fuse nucleus in cardiovascular responses to hypoxia and baroreceptor activation in anesthetized rats. BIOIMPACTS : BI 2020; 10:55-61. [PMID: 31988857 PMCID: PMC6977589 DOI: 10.15171/bi.2020.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 11/09/2022]
Abstract
Introduction: Parabrachial Kölliker-Fuse (KF) complex, located in dorsolateral part of the pons, is involved in the respiratory control, however, its role in the baroreflex and chemoreflex responses has not been established yet. This study was performed to test the contribution of the KF to chemoreflex and baroreflex and the effect of microinjection of a reversible synaptic blocker (Cocl2) into the KF in urethane anesthetized rats. Methods: Activation of chemoreflex was induced by systemic hypoxia caused by N2 breathing for 30 seconds "hypoxic- hypoxia methods" and baroreflex was evoked by intravenous injection (i.v.) of phenylephrine (Phe, 20 µg /kg/0.05-0.1 mL). N2 induced generalized vasodilatation followed by tachycardia reflex and Phe evoked vasoconstriction followed by bradycardia. Results: Microinjection of Cocl2 (5 mM/100 nL/side) produced no significant changes in the Phe-induced hypertension and bradycardia, whereas the cardiovascular effect of N2 was significantly attenuated by the injection of CoCl2 to the KF. Conclusion: The KF played no significant role in the baroreflex, but could account for cardiovascular chemoreflex in urethane anesthetized rats.
Collapse
|
79
|
Horvathova L, Tillinger A, Padova A, Bizik J, Mravec B. Changes in gene expression in brain structures related to visceral sensation, autonomic functions, food intake, and cognition in melanoma-bearing mice. Eur J Neurosci 2019; 51:2376-2393. [PMID: 31883212 DOI: 10.1111/ejn.14661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
The brain exerts complex effects on the initiation and progression of cancer in the body. However, the influence of cancer localized in peripheral tissues on the brain has been only partially described. Therefore, we investigated gene expression in brain structures that participate in transmitting viscerosensory signals, regulating autonomic functions and food intake, as well as cognition in C57Bl/6J mice with B16-F10 melanoma. In addition, we investigated the relationship between peripheral inflammation and neuroinflammation. We found increased neuronal activity in the nucleus of the solitary tract of tumor-bearing mice, whereas neuronal activity in the A1/C1 catecholaminergic cell group, parabrachial nucleus, lateral hypothalamic area, ventromedial nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, and hippocampus was decreased. In the majority of investigated brain structures, we found increased gene expression of IL-1β, whereas gene expression of IL-6 and NF-κB was reduced or unchanged compared with controls. Melanoma-bearing mice also showed increased gene expression of tyrosine hydroxylase in the A1/C1 catecholaminergic cell group, nucleus of the solitary tract, and locus coeruleus, as well as reduced mRNA levels of hypocretin neuropeptide precursor protein in the lateral hypothalamic area, and proopiomelanocortin in the arcuate nucleus. In addition, we found reduced mRNA levels of Bcl-2, brain-derived neurotrophic factor, and doublecortin in the hippocampus. Our data indicate that skin melanoma induces complex changes in the brain, and these changes are most probably caused by cancer-related signals mediated by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Padova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Bizik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
80
|
Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat. Front Syst Neurosci 2019; 13:69. [PMID: 31798423 PMCID: PMC6868058 DOI: 10.3389/fnsys.2019.00069] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
The distribution of locomotor-activated neurons in the brainstem of the cat was studied by c-Fos immunohistochemistry in combination with antibody-based cellular phenotyping following electrical stimulation of the mesencephalic locomotor region (MLR) – the anatomical constituents of which remain debated today, primarily between the cuneiform (CnF) and the pedunculopontine tegmental nuclei (PPT). Effective MLR sites were co-extensive with the CnF nucleus. Animals subject to the locomotor task showed abundant Fos labeling in the CnF, parabrachial nuclei of the subcuneiform region, periaqueductal gray, locus ceruleus (LC)/subceruleus (SubC), Kölliker–Fuse, magnocellular and lateral tegmental fields, raphe, and the parapyramidal region. Labeled neurons were more abundant on the side of stimulation. In some animals, Fos-labeled cells were also observed in the ventral tegmental area, medial and intermediate vestibular nuclei, dorsal motor nucleus of the vagus, n. tractus solitarii, and retrofacial nucleus in the ventrolateral medulla. Many neurons in the reticular formation were innervated by serotonergic fibers. Numerous locomotor-activated neurons in the parabrachial nuclei and LC/SubC/Kölliker–Fuse were noradrenergic. Few cholinergic neurons within the PPT stained for Fos. In the medulla, serotonergic neurons within the parapyramidal region and the nucleus raphe magnus were positive for Fos. Control animals, not subject to locomotion, showed few Fos-labeled neurons in these areas. The current study provides positive evidence for a role for the CnF in the initiation of locomotion while providing little evidence for the participation of the PPT. The results also show that MLR-evoked locomotion involves the parallel activation of reticular and monoaminergic neurons in the pons/medulla, and provides the anatomical and functional basis for spinal monoamine release during evoked locomotion. Lastly, the results indicate that vestibular, cardiovascular, and respiratory centers are centrally activated during MLR-evoked locomotion. Altogether, the results show a complex pattern of neuromodulatory influences of brainstem neurons by electrical activation of the MLR.
Collapse
Affiliation(s)
- Ioan Opris
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaohong Dai
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn M G Johnson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cecelia R Lee-Hauser
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephano Chang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
81
|
Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM. Parabrachial Complex: A Hub for Pain and Aversion. J Neurosci 2019; 39:8225-8230. [PMID: 31619491 PMCID: PMC6794922 DOI: 10.1523/jneurosci.1162-19.2019] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023] Open
Abstract
The parabrachial nucleus (PBN) has long been recognized as a sensory relay receiving an array of interoceptive and exteroceptive inputs relevant to taste and ingestive behavior, pain, and multiple aspects of autonomic control, including respiration, blood pressure, water balance, and thermoregulation. Outputs are known to be similarly widespread and complex. How sensory information is handled in PBN and used to inform different outputs to maintain homeostasis and promote survival is only now being elucidated. With a focus on taste and ingestive behaviors, pain, and thermoregulation, this review is intended to provide a context for analysis of PBN circuits involved in aversion and avoidance, and consider how information of various modalities, interoceptive and exteroceptive, is processed within PBN and transmitted to distinct targets to signal challenge, and to engage appropriate behavioral and physiological responses to maintain homeostasis.
Collapse
Affiliation(s)
- Michael C Chiang
- Department Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Anna Bowen
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, 98195
| | - Lindsey A Schier
- Department Biological Sciences, University of Southern California, Los Angeles, California, 90089
| | - Domenico Tupone
- Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Department Neurological Surgery, Oregon Health and Science University, Portland, Oregon, 97239, and
| | - Olivia Uddin
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland, 21201
| | - Mary M Heinricher
- Department Neurological Surgery, Oregon Health and Science University, Portland, Oregon, 97239, and
- Department Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, 97239
| |
Collapse
|
82
|
Holanda VAD, Oliveira MC, Souza LS, Lobão-Soares B, André E, Da Silva Junior ED, Guerrini R, Calo G, Ruzza C, Gavioli EC. Dopamine D 1 and D 2 receptors mediate neuropeptide S-induced antinociception in the mouse formalin test. Eur J Pharmacol 2019; 859:172557. [PMID: 31326375 DOI: 10.1016/j.ejphar.2019.172557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor named NPS receptor. The NPS system controls several biological functions, including anxiety, wakefulness, locomotor activity, food intake, and pain transmission. A growing body of evidence supports facilitatory effects for NPS over dopaminergic neurotransmission. The present study was aimed to investigate the role of dopamine receptors signaling in the antinociceptive effects of NPS in the mouse formalin test. The following dopamine receptor antagonists were employed: SCH 23390 (selective dopamine D1 antagonist, 0.05 mg/kg, ip), haloperidol (non-selective dopamine D2-like receptor antagonist; 0.03 mg/kg, ip), and sulpiride (selective dopamine D2-like receptor antagonist; 25 mg/kg, ip). Mice were pretreated with dopamine antagonists before the supraspinal administration of NPS (0.1 nmol, icv). Morphine (5 mg/kg, sc) and indomethacin (10 mg/kg, ip) were used as positive controls to set up the experimental conditions. Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was only active at phase 2. Central NPS significantly reduced formalin-induced nociception during both phases. The systemic administration of SCH 23390 slightly blocked the effects of NPS only during phase 2. Haloperidol prevented NPS-induced antinociceptive effects. Similar to haloperidol, sulpiride also counteracted the antinociceptive effects of NPS in both phases of the formalin test. In conclusion, the present findings suggest that the analgesic effects of NPS are linked with dopaminergic neurotransmission mainly through dopamine D2-like receptor signaling.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Lisiane S Souza
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edilson D Da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
83
|
Momose-Sato Y, Sato K. Voltage-sensitive dye recording of glossopharyngeal nerve-related synaptic networks in the embryonic mouse brainstem. IBRO Rep 2019; 6:176-184. [PMID: 31193501 PMCID: PMC6531809 DOI: 10.1016/j.ibror.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
The glossopharyngeal nerve (N.IX) transfers motor and sensory information related to visceral and somatic functions, such as salivary secretion, gustation and the control of blood pressure. N.IX-related neural circuits are indispensable for these essential functions. Compared with the strenuous analysis of morphogenesis, we are only just starting to elucidate the functiogenesis of these neural circuits during ontogenesis. In the present study, we applied voltage-sensitive dye recording to the embryonic mouse brainstem, and examined the functional development of the N.IX-related neural circuits. First, we optically identified the motor nucleus (the inferior salivatory nucleus (ISN)) and the first-order sensory nucleus (the nucleus of the tractus solitarius (NTS)). We also succeeded in recording optical responses in the second/higher-order sensory nuclei via the NTS, including the parabrachial nucleus. Second, we pursued neuronal excitability and the onset of synaptic function in the N.IX-related nuclei. The neurons in the ISN were excitable at least at E11, and functional synaptic transmission in the NTS was first expressed at E12. In the second/higher-order sensory nuclei, synaptic function emerged at around E12-13. Third, by mapping optical responses to N.IX and vagus nerve (N.X) stimulation, we showed that the distribution patterns of neural activity in the NTS were different between the N.IX and the N.X from the early stage of ontogenesis. We discuss N.IX-related neural circuit formation in the brainstem, in comparison with our previous results obtained from chick and rat embryos.
Collapse
Key Words
- APV, dl-2-amino-5-phosphonovaleric acid
- CNQX, 6-cyano-7- nitroquinoxaline-2,3-dione
- CNS, central nervous system
- Development
- EPSP, excitatory postsynaptic potential
- Glossopharyngeal nerve
- ISN, inferior salivatory nucleus
- N.IX, glossopharyngeal nerve
- N.X, vagus nerve
- NTS, nucleus of the tractus solitarius
- Neural circuit formation
- Optical recording
- PBN, parabrachial nucleus
- Synaptogenesis
- VSD, voltage-sensitive dye
- Voltage-sensitive dye
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women’s University Faculty of Human Health, Inagi-shi, Tokyo 206-8511, Japan
| |
Collapse
|
84
|
Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Auton Neurosci 2019; 218:54-63. [DOI: 10.1016/j.autneu.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
|
85
|
Kaur S, Saper CB. Neural Circuitry Underlying Waking Up to Hypercapnia. Front Neurosci 2019; 13:401. [PMID: 31080401 PMCID: PMC6497806 DOI: 10.3389/fnins.2019.00401] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea is a sleep and breathing disorder, in which, patients suffer from cycles of atonia of airway dilator muscles during sleep, resulting in airway collapse, followed by brief arousals that help re-establish the airway patency. These repetitive arousals which can occur hundreds of times during the course of a night are the cause of the sleep-disruption, which in turn causes cognitive impairment as well as cardiovascular and metabolic morbidities. To prevent this potential outcome, it is important to target preventing the arousal from sleep while preserving or augmenting the increase in respiratory drive that reinitiates breathing, but will require understanding of the neural circuits that regulate the cortical and respiratory responses to apnea. The parabrachial nucleus (PB) is located in rostral pons. It receives chemosensory information from medullary nuclei that sense increase in CO2 (hypercapnia), decrease in O2 (hypoxia) and mechanosensory inputs from airway negative pressure during apneas. The PB area also exerts powerful control over cortical arousal and respiration, and therefore, is an excellent candidate for mediating the EEG arousal and restoration of the airway during sleep apneas. Using various genetic tools, we dissected the neuronal sub-types responsible for relaying the stimulus for cortical arousal to forebrain arousal circuits. The present review will focus on the circuitries that regulate waking-up from sleep in response to hypercapnia.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Clifford B Saper
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
86
|
Saper CB, Kaur S. Brain Circuitry for Arousal from Apnea. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:63-69. [PMID: 31015281 DOI: 10.1101/sqb.2018.83.038125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We wanted to understand the brain circuitry that awakens the individual when there is elevated CO2 or low O2 (e.g., during sleep apnea or asphyxia). The sensory signals for high CO2 and low O2 all converge on the parabrachial nucleus (PB) of the pons, which contains neurons that project to the forebrain. So, we first deleted the vesicular glutamate transporter 2, necessary to load glutamate into synaptic vesicles, from neurons in the PB, and showed that this prevents awakening to high CO2 or low O2 We then showed that PB neurons that express calcitonin gene-related peptide (CGRP) show cFos staining during high CO2 Using CGRP-Cre-ER mice, we expressed the inhibitory opsin archaerhodopsin just in the PBCGRP neurons. Photoinhibition of the PBCGRP neurons effectively prevented awakening to high CO2, as did photoinhibition of their terminals in the basal forebrain, amygdala, and lateral hypothalamus. The PBCGRP neurons are a key mediator of the wakening response to apnea.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
87
|
Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019; 224:1097-1117. [PMID: 30612231 PMCID: PMC6500474 DOI: 10.1007/s00429-018-01820-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/16/2018] [Indexed: 12/25/2022]
Abstract
The basal forebrain (BF) contains at least three distinct populations of neurons (cholinergic, glutamatergic, and GABA-ergic) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Much attention has focused on the BF's ascending projections to cortex, but less is known about descending projections to subcortical regions. Given the neurochemical and anatomical heterogeneity of the BF, we used conditional anterograde tracing to map the patterns of subcortical projections from multiple BF regions and neurochemical cell types using mice that express Cre recombinase only in cholinergic, glutamatergic, or GABAergic neurons. We confirmed that different BF regions innervate distinct subcortical targets, with more subcortical projections arising from neurons in the caudal and lateral BF (substantia innominata and magnocellular preoptic area). Additionally, glutamatergic and GABAergic BF neurons have distinct patterns of descending projections, while cholinergic descending projections are sparse. Considering the intensity of glutamatergic and GABAergic descending projections, the BF likely acts through subcortical targets to promote arousal, motivation, and other behaviors.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
88
|
Madden CJ, Morrison SF. Central nervous system circuits that control body temperature. Neurosci Lett 2019; 696:225-232. [PMID: 30586638 PMCID: PMC6397692 DOI: 10.1016/j.neulet.2018.11.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 02/01/2023]
Abstract
Maintenance of mammalian core body temperature within a narrow range is a fundamental homeostatic process to optimize cellular and tissue function, and to improve survival in adverse thermal environments. Body temperature is maintained during a broad range of environmental and physiological challenges by central nervous system circuits that process thermal afferent inputs from the skin and the body core to control the activity of thermoeffectors. These include thermoregulatory behaviors, cutaneous vasomotion (vasoconstriction and, in humans, active vasodilation), thermogenesis (shivering and brown adipose tissue), evaporative heat loss (salivary spreading in rodents, and human sweating). This review provides an overview of the central nervous system circuits for thermoregulatory reflex regulation of thermoeffectors.
Collapse
Affiliation(s)
- Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States.
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
89
|
Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, Resch JM, Conley NJ, Garfield AS, Lowell BB. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits. Neuron 2019; 102:653-667.e6. [PMID: 30879785 DOI: 10.1016/j.neuron.2019.02.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/02/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVHSIM1 population, melanocortin-4 receptor-expressing (PVHMC4R) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVHSIM1 neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVHPDYN) neurons, which notably lack MC4Rs, function independently and additively with PVHMC4R neurons to account for the totality of PVHSIM1 neuron-mediated satiety. Moreover, PVHPDYN neurons are necessary for prevention of obesity in an independent but equipotent manner to PVHMC4R neurons. While PVHPDYN and PVHMC4R neurons both project to the parabrachial complex (PB), they synaptically engage distinct efferent nodes, the pre-locus coeruleus (pLC), and central lateral parabrachial nucleus (cLPBN), respectively. PB-projecting PVHPDYN neurons, like PVHMC4R neurons, receive input from interoceptive ARCAgRP neurons, respond to caloric state, and are sufficient and necessary to control food intake. This expands the CNS satiety circuitry to include two non-overlapping PVH to hindbrain circuits.
Collapse
Affiliation(s)
- Monica M Li
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer S Steger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Balthasar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John N Campbell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas J Conley
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alastair S Garfield
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
90
|
Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci Rep 2019; 9:2830. [PMID: 30808976 PMCID: PMC6391479 DOI: 10.1038/s41598-019-39063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/16/2019] [Indexed: 01/31/2023] Open
Abstract
Orexin (ORX) neurons in the hypothalamus send their axons to arousal-promoting areas. We have previously shown that glutamatergic neurons in the lateral parabrachial nucleus (LPB) innervate ORX neurons. In this study, we examined potential pathways from the LPB to ORX neurons projecting to arousal-promoting areas in the brainstem by a combination of tract-tracing techniques in male Wistar rats. We injected the anterograde tracer biotinylated dextranamine (BDA) into the LPB and the retrograde tracer cholera toxin B subunit (CTb) into the ventral tegmental area, dorsal raphe nucleus, pedunculopontine tegmental nucleus, laterodorsal tegmental area, or locus coeruleus (LC). We then analyzed the BDA-labeled fibers and ORX-immunoreactive neurons in the hypothalamus. We found that double-labeled ORX and CTb neurons were the most abundant after CTb was injected into the LC. We also observed prominently overlapping distribution of BDA-labeled fibers, arising from neurons located in the lateral-most part of the dorsomedial nucleus and adjacent dorsal perifornical area. In these areas, we confirmed by confocal microscopy that BDA-labeled synaptophysin-immunoreactive axon terminals were in contiguity with cell bodies and dendrites of CTb-labeled ORX-immunoreactive neurons. These results suggest that the LPB innervates arousal-promoting areas via ORX neurons and is likely to promote arousal responses to stimuli.
Collapse
|
91
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
92
|
Mouse Parabrachial Neurons Signal a Relationship between Bitter Taste and Nociceptive Stimuli. J Neurosci 2019; 39:1631-1648. [PMID: 30606758 DOI: 10.1523/jneurosci.2000-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
Taste and somatosensation both mediate protective behaviors. Bitter taste guides avoidance of ingestion of toxins while pain sensations, such as noxious heat, signal adverse conditions to ward off harm. Although brain pathways for taste and somatosensation are typically studied independently, prior data suggest that they intersect, potentially reflecting their common protective role. To investigate this, we applied electrophysiologic and optogenetic techniques in anesthetized mice of both sexes to evaluate relationships between oral somatosensory and taste activity in the parabrachial nucleus (PbN), implicated for roles in gustation and pain. Spikes were recorded from taste-active PbN neurons tested with oral delivery of thermal and chemesthetic stimuli, including agonists of nocisensitive transient receptor potential (TRP) ion channels on somatosensory fibers. Gustatory neurons were also tested to follow electrical pulse stimulation of an oral somatosensory region of the spinal trigeminal subnucleus caudalis (Vc), which projects to the PbN. Neurons composed classic taste groups, including sodium, electrolyte, appetitive, or bitter cells. Across groups, most neurons spiked to Vc pulse stimulation, implying that trigeminal projections reach PbN gustatory neurons. Among such cells, a subpopulation responsive to the bitter taste stimuli quinine and cycloheximide, and aversive concentrations of sodium, cofired to agonists of nocisensitive TRP channels, including capsaicin, mustard oil, and noxious heat. Such neurons populated the lateral PbN. Further, nociceptive activity in PbN bitter taste neurons was suppressed during optogenetic-assisted inhibition of the Vc, implying convergent trigeminal input contributed to such activity. Our results reveal a novel role for PbN gustatory cells in cross-system signaling related to protection.SIGNIFICANCE STATEMENT Prior data suggest that gustatory and trigeminal neural pathways intersect and overlap in the parabrachial area. However, no study has directly examined such overlap and why it may exist. Here we found that parabrachial gustatory neurons can receive afferent projections from trigeminal nuclei and fire to oral nociceptive stimuli that excite somatosensory receptors and fibers. Activation to aversive nociceptive stimuli in gustatory cells was associated with responding to behaviorally avoided bitter tastants. We were further able to show that silencing trigeminal projections inhibited nociceptive activity in parabrachial bitter taste neurons. Our results imply that in the parabrachial area, there is predictable overlap between taste and somatosensory processing related to protective coding and that classically defined taste neurons contribute to this process.
Collapse
|
93
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
94
|
Denman AJ, Sammons JD, Victor JD, Di Lorenzo PM. Heterogeneity of neuronal responses in the nucleus of the solitary tract suggests sensorimotor integration in the neural code for taste. J Neurophysiol 2018; 121:634-645. [PMID: 30565959 DOI: 10.1152/jn.00578.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Theories of neural coding in the taste system typically rely exclusively on data gleaned from taste-responsive cells. However, even in the nucleus tractus solitarius (NTS), the first stage of central processing, neurons with taste selectivity coexist with neurons whose activity is linked to motor behavior related to ingestion. We recorded from a large ( n = 324) sample of NTS neurons recorded in awake rats, examining both their taste selectivity and the association of their activity with licking. All subjects were implanted with a bundle of microelectrodes aimed at the NTS and allowed to recover. Following moderate water deprivation, rats were placed in an experimental chamber where tastants or artificial saliva (AS) were delivered from a lick spout. Electrophysiological responses were recorded, and waveforms from single cells were isolated offline. Results showed that only a minority of NTS cells responded to taste stimuli as determined by conventional firing-rate measures. In contrast, most cells, including taste-responsive cells, tracked the lick pattern, as evidenced by significant lick coherence in the 5- to 7-Hz range. Several quantitative measures of taste selectivity and lick relatedness showed that the population formed a continuum, ranging from cells dominated by taste responses to those dominated by lick relatedness. Moreover, even neurons whose responses were highly correlated with lick activity could convey substantial information about taste quality. In all, data point to a blurred boundary between taste-dominated and lick-related cells in NTS, suggesting that information from the taste of food and from the movements it evokes are seamlessly integrated. NEW & NOTEWORTHY Neurons in the rostral nucleus of the solitary tract (NTS) are known to encode information about taste. However, recordings from awake rats reveal that only a minority of NTS cells respond exclusively to taste stimuli. The majority of neurons track behaviors associated with food consumption, and even strongly lick-related neurons could convey information about taste quality. These findings suggest that the NTS integrates information from both taste and behavior to identify food.
Collapse
Affiliation(s)
| | - Joshua D Sammons
- Department of Psychology, Binghamton University , Binghamton, New York
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College , New York, New York
| | | |
Collapse
|
95
|
Szereda-Przestaszewska M, Kaczyńska K. Pharmacologically evoked apnoeas. Receptors and nervous pathways involved. Life Sci 2018; 217:237-242. [PMID: 30553870 DOI: 10.1016/j.lfs.2018.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023]
Abstract
This review analyses the knowledge about the incidence of transient apnoeic spells, induced by substances which activate vagal chemically sensitive afferents. It considers the specificity and expression of appropriate receptors, and relevant research on pontomedullary circuits contributing to a cessation of respiration. Insight is gained into an excitatory drive of 5-HT1A serotonin receptors in overcoming opioid-induced respiratory inhibition.
Collapse
Affiliation(s)
- Małgorzata Szereda-Przestaszewska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
96
|
Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 2018; 91:958-966. [PMID: 30355703 DOI: 10.1212/wnl.0000000000006537] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
97
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
98
|
Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 2018; 159:3458-3472. [PMID: 30052854 DOI: 10.1210/en.2018-00453] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon adjacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and long-projecting neurons, which play imperative roles in the regulation of energy balance and various endocrinological activities. In this review, we focus mainly on recent findings about the early development of the hypothalamus and the PVH, the functions of the PVH in the modulation of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the investigations of the PVH will benefit not only understanding of the development of the central nervous system but also the etiology of and therapy for human diseases.
Collapse
Affiliation(s)
- Cheng Qin
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiaheng Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| |
Collapse
|
99
|
The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression: Current Conceptualizations. Psychiatr Clin North Am 2018; 41:395-407. [PMID: 30098653 DOI: 10.1016/j.psc.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of the left cervical vagus nerve, or vagus nerve stimulation (VNS), brings about an antidepressant response in a subset of treatment-resistant depression (TRD) patients. How this occurs is poorly understood; however, knowledge of the neuroanatomic vagal pathways, in conjunction with functional brain imaging studies, suggests several brain regions associated with mood regulation are critical: brainstem nuclei (locus coeruleus, dorsal raphe, and ventral tegmental area), thalamus, and insular and prefrontal cortex. Furthermore, animal studies suggest that VNS enhances neuroplasticity and changes in neuronal firing patterns. Continued study to better understand the mechanism of action of VNS in TRD is warranted.
Collapse
|
100
|
Kawai Y. Differential Ascending Projections From the Male Rat Caudal Nucleus of the Tractus Solitarius: An Interface Between Local Microcircuits and Global Macrocircuits. Front Neuroanat 2018; 12:63. [PMID: 30087599 PMCID: PMC6066510 DOI: 10.3389/fnana.2018.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
To integrate and broadcast neural information, local microcircuits and global macrocircuits interact within certain specific nuclei of the central nervous system. The structural and functional architecture of this interaction was determined for the caudal nucleus of the tractus solitarius (NTS) at the level of the area postrema (AP), a relay station of peripheral viscerosensory information that is processed and conveyed to brain regions concerned with autonomic-affective and other interoceptive reflexive functions. Axon collaterals of most small NTS cells (soma <150 μm2) establish excitatory or inhibitory local microcircuits likely to control the activity of nearby NTS cells and to transfer peripheral signals to efferent projection neurons. At least two types of cells that constitute efferent pathways from the caudal NTS (cNTS) were distinguished: (1) a greater numbers of small cells, seemingly forming local excitatory microcircuits via recurrent axon collaterals, that project specifically and unidirectionally to the lateral parabrachial nucleus; and (2) a much smaller numbers of cells likely to establish multiple global connections, mostly via the medial forebrain bundle (MFB) or the dorsal longitudinal fascicle (DLF), with a wide range of brain regions, including the ventrolateral medulla (VLM), hypothalamus, central nucleus of the amygdala (ACe), bed nucleus of the stria terminalis (BNST), spinal cord dorsal horn, brainstem reticular formation, locus coeruleus (LC), periaqueductal gray (PAG) and periventricular diencephalon (including the epithalamus). The evidence presented here suggests that distinct cNTS cell types distinguished by projection pattern and related structural and functional features participate differentially in the computation of viscerosensory information and coordination of global macro-networks in a highly organized manner.
Collapse
Affiliation(s)
- Yoshinori Kawai
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|