51
|
Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q, Rubin A, Joshi AU, He JQ, Gauba E, Liu L, Wang C, Linde M, Sugiura Y, Moon PK, Majeti R, Suematsu M, Mochly-Rosen D, Weissman IL, Longo FM, Rabinowitz JD, Andreasson KI. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 2021; 590:122-128. [PMID: 33473210 PMCID: PMC8274816 DOI: 10.1038/s41586-020-03160-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/08/2020] [Indexed: 01/30/2023]
Abstract
Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.
Collapse
Affiliation(s)
- Paras S. Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Amira Latif-Hernandez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,These authors contributed equally: Amira Latif-Hernandez, Melanie R. McReynolds
| | - Melanie R. McReynolds
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,These authors contributed equally: Amira Latif-Hernandez, Melanie R. McReynolds
| | - Aarooran S. Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda Rubin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Amit U. Joshi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Joy Q. He
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Gauba
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling Liu
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Congcong Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Miles Linde
- Department of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Peter K. Moon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ravi Majeti
- Department of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA.,Correspondence and requests for materials should be addressed to K.I.A.
| |
Collapse
|
52
|
Zhou HJ, Qin L, Jiang Q, Murray KN, Zhang H, Li B, Lin Q, Graham M, Liu X, Grutzendler J, Min W. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun 2021; 12:504. [PMID: 33495460 PMCID: PMC7835246 DOI: 10.1038/s41467-020-20774-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular abnormalities that primarily occur in adulthood and cause cerebral hemorrhage, stroke, and seizures. CCMs are thought to be initiated by endothelial cell (EC) loss of any one of the three Ccm genes: CCM1 (KRIT1), CCM2 (OSM), or CCM3 (PDCD10). Here we report that mice with a brain EC-specific deletion of Pdcd10 (Pdcd10BECKO) survive up to 6-12 months and develop bona fide CCM lesions in all regions of brain, allowing us to visualize the vascular dynamics of CCM lesions using transcranial two-photon microscopy. This approach reveals that CCMs initiate from protrusion at the level of capillary and post-capillary venules with gradual dissociation of pericytes. Microvascular beds in lesions are hyper-permeable, and these disorganized structures present endomucin-positive ECs and α-smooth muscle actin-positive pericytes. Caveolae in the endothelium of Pdcd10BECKO lesions are drastically increased, enhancing Tie2 signaling in Ccm3-deficient ECs. Moreover, genetic deletion of caveolin-1 or pharmacological blockade of Tie2 signaling effectively normalizes microvascular structure and barrier function with attenuated EC-pericyte disassociation and CCM lesion formation in Pdcd10BECKO mice. Our study establishes a chronic CCM model and uncovers a mechanism by which CCM3 mutation-induced caveolae-Tie2 signaling contributes to CCM pathogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Brain/metabolism
- Brain/pathology
- Brain/ultrastructure
- Caveolae/metabolism
- Caveolae/ultrastructure
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Pericytes/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Signal Transduction
- Survival Analysis
- Mice
Collapse
Affiliation(s)
- Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lingfeng Qin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Quan Jiang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Katie N Murray
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Busu Li
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qun Lin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
53
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
54
|
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2020; 143:935-948. [PMID: 33307764 DOI: 10.1161/circulationaha.120.051877] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect β3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Mario Looso
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany (A.W.)
| | - Corina Ratiu
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Maria Kyriaki Drekolia
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Matthias S Leisegang
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Philipp Goymann
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Anastasia Kyselova
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Juliana Heidler
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ralf P Brandes
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens Medical School, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Department of Pharmacology (S.O.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ilka Wittig
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany
| | | | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ingrid Fleming
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| |
Collapse
|
55
|
Castiglione M, Jiang Y, Mazzeo C, Lee S, Chen J, Kaushansky K, Yin W, Lin RZ, Zheng H, Zhan H. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm. J Thromb Haemost 2020; 18:3359-3370. [PMID: 32920974 PMCID: PMC7756295 DOI: 10.1111/jth.15095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cardiovascular complications are the leading cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). The acquired kinase mutation JAK2V617F plays a central role in these disorders. Mechanisms responsible for cardiovascular dysfunction in MPNs are not fully understood, limiting the effectiveness of current treatment. Vascular endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in patients with MPNs. The goal of this study was to test the hypothesis that the JAK2V617F mutation alters endothelial function to promote cardiovascular complications in patients with MPNs. APPROACH AND RESULTS We employed murine models of MPN in which the JAK2V617F mutation is expressed in specific cell lineages. When JAK2V617F is expressed in both blood cells and vascular ECs, the mice developed MPN and spontaneous, age-related dilated cardiomyopathy with an increased risk of sudden death as well as a prothrombotic and vasculopathy phenotype on histology evaluation. In contrast, despite having significantly higher leukocyte and platelet counts than controls, mice with JAK2V617F-mutant blood cells alone did not demonstrate any cardiac dysfunction, suggesting that JAK2V617F-mutant ECs are required for this cardiovascular disease phenotype. Furthermore, we demonstrated that the JAK2V617F mutation promotes a pro-adhesive, pro-inflammatory, and vasculopathy EC phenotype, and mutant ECs respond to flow shear differently than wild-type ECs. CONCLUSIONS These findings suggest that the JAK2V617F mutation can alter vascular endothelial function to promote cardiovascular complications in MPNs. Therefore, targeting the MPN vasculature represents a promising new therapeutic strategy for patients with MPNs.
Collapse
Affiliation(s)
| | - Ya‐Ping Jiang
- Department of Physiology and BiophysicsInstitute of Molecular CardiologyStony Brook UniversityStony BrookNYUSA
| | | | - Sandy Lee
- Department of Molecular and Cellular PharmacologyStony Brook UniversityStony BrookNYUSA
| | - Juei‐Suei Chen
- Department of MedicineStony Brook School of MedicineStony BrookNYUSA
| | - Kenneth Kaushansky
- Office of the Sr. Vice PresidentHealth SciencesStony Brook MedicineStony BrookNYUSA
| | - Wei Yin
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNYUSA
| | - Richard Z. Lin
- Department of Physiology and BiophysicsInstitute of Molecular CardiologyStony Brook UniversityStony BrookNYUSA
- Medical ServiceNorthport VA Medical CenterNorthportNYUSA
| | - Haoyi Zheng
- Cardiac ImagingThe Heart CenterSaint Francis HospitalRoslynNYUSA
| | - Huichun Zhan
- Department of MedicineStony Brook School of MedicineStony BrookNYUSA
- Medical ServiceNorthport VA Medical CenterNorthportNYUSA
| |
Collapse
|
56
|
Li N, Rignault-Clerc S, Bielmann C, Bon-Mathier AC, Déglise T, Carboni A, Ducrest M, Rosenblatt-Velin N. Increasing heart vascularisation after myocardial infarction using brain natriuretic peptide stimulation of endothelial and WT1 + epicardial cells. eLife 2020; 9:61050. [PMID: 33245046 PMCID: PMC7695454 DOI: 10.7554/elife.61050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Brain natriuretic peptide (BNP) treatment increases heart function and decreases heart dilation after myocardial infarction (MI). Here, we investigated whether part of the cardioprotective effect of BNP in infarcted hearts related to improved neovascularisation. Infarcted mice were treated with saline or BNP for 10 days. BNP treatment increased vascularisation and the number of endothelial cells in all areas of infarcted hearts. Endothelial cell lineage tracing showed that BNP directly stimulated the proliferation of resident endothelial cells via NPR-A binding and p38 MAP kinase activation. BNP also stimulated the proliferation of WT1+ epicardium-derived cells but only in the hypoxic area of infarcted hearts. Our results demonstrated that these immature cells have a natural capacity to differentiate into endothelial cells in infarcted hearts. BNP treatment increased their proliferation but not their differentiation capacity. We identified new roles for BNP that hold potential for new therapeutic strategies to improve recovery and clinical outcome after MI.
Collapse
Affiliation(s)
- Na Li
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Rignault-Clerc
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Christelle Bielmann
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Anne-Charlotte Bon-Mathier
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Tamara Déglise
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexia Carboni
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mégane Ducrest
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
57
|
Liu H, Qiu Y, Pei X, Chitteti R, Steiner R, Zhang S, Jin ZG. Endothelial specific YY1 deletion restricts tumor angiogenesis and tumor growth. Sci Rep 2020; 10:20493. [PMID: 33235311 PMCID: PMC7686504 DOI: 10.1038/s41598-020-77568-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is a physiological process for the formation of new blood vessels from the pre-existing vessels and it has a vital role in the survival and growth of neoplasms. During tumor angiogenesis, the activation of the gene transcriptions in vascular endothelial cells (ECs) plays an essential role in the promotion of EC proliferation, migration, and vascular network development. However, the molecular mechanisms underlying transcriptional regulation of EC and tumor angiogenesis remains to be fully elucidated. Here we report that the transcription factor Yin Yang 1 (YY1) in ECs is critically involved in tumor angiogenesis. First, we utilized a tamoxifen-inducible EC-specific YY1 deficient mouse model and showed that YY1 deletion in ECs inhibited the tumor growth and tumor angiogenesis. Using the in vivo matrigel plug assay, we then found that EC-specific YY1 ablation inhibited growth factor-induced angiogenesis. Furthermore, vascular endothelial growth factor (VEGF)-induced EC migration was diminished in YY1-depleted human umbilical vein endothelial cells (HUVECs). Finally, a rescue experiment revealed that YY1-regulated BMP6 expression in ECs was involved in EC migration. Collectively, our results demonstrate that endothelial YY1 has a crucial role in tumor angiogenesis and suggest that targeting endothelial YY1 could be a potential therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Yikai Qiu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Ramamurthy Chitteti
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Rebbeca Steiner
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Shuya Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China. .,Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
58
|
Pasupneti S, Tian W, Tu AB, Dahms P, Granucci E, Gandjeva A, Xiang M, Butcher EC, Semenza GL, Tuder RM, Jiang X, Nicolls MR. Endothelial HIF-2α as a Key Endogenous Mediator Preventing Emphysema. Am J Respir Crit Care Med 2020; 202:983-995. [PMID: 32515984 DOI: 10.1164/rccm.202001-0078oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Endothelial injury may provoke emphysema, but molecular pathways of disease development require further discernment. Emphysematous lungs exhibit decreased expression of HIF-2α (hypoxia-inducible factor-2α)-regulated genes, and tobacco smoke decreases pulmonary HIF-2α concentrations. These findings suggest that decreased HIF-2α expression is important in the development of emphysema.Objectives: The objective of this study was to evaluate the roles of endothelial-cell (EC) HIF-2α in the pathogenesis of emphysema in mice.Methods: Mouse lungs were examined for emphysema after either the loss or the overexpression of EC Hif-2α. In addition, SU5416, a VEGFR2 inhibitor, was used to induce emphysema. Lungs were evaluated for HGF (hepatocyte growth factor), a protein involved in alveolar development and homeostasis. Lungs from patients with emphysema were measured for endothelial HIF-2α expression.Measurements and Main Results: EC Hif-2α deletion resulted in emphysema in association with fewer ECs and pericytes. After SU5416 exposure, EC Hif-2α-knockout mice developed more severe emphysema, whereas EC Hif-2α-overexpressing mice were protected. EC Hif-2α-knockout mice demonstrated lower levels of HGF. Human emphysema lung samples exhibited reduced EC HIF-2α expression.Conclusions: Here, we demonstrate a unique protective role for pulmonary endothelial HIF-2α and how decreased expression of this endogenous factor causes emphysema; its pivotal protective function is suggested by its ability to overcome VEGF antagonism. HIF-2α may maintain alveolar architecture by promoting vascular survival and associated HGF production. In summary, HIF-2α may be a key endogenous factor that prevents the development of emphysema, and its upregulation has the potential to foster lung health in at-risk patients.
Collapse
Affiliation(s)
- Shravani Pasupneti
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Wen Tian
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Allen B Tu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Petra Dahms
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Eric Granucci
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Aneta Gandjeva
- School of Medicine, University of Colorado, Colorado; and
| | - Menglan Xiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Eugene C Butcher
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering.,Sidney Kimmel Comprehensive Cancer Center.,Department of Genetic Medicine.,Department of Pediatrics.,Department of Medicine.,Department of Oncology.,Department of Radiation Oncology, and.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rubin M Tuder
- School of Medicine, University of Colorado, Colorado; and
| | - Xinguo Jiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| | - Mark R Nicolls
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
59
|
Zhao G, Weiner AI, Neupauer KM, de Mello Costa MF, Palashikar G, Adams-Tzivelekidis S, Mangalmurti NS, Vaughan AE. Regeneration of the pulmonary vascular endothelium after viral pneumonia requires COUP-TF2. SCIENCE ADVANCES 2020; 6:6/48/eabc4493. [PMID: 33239293 PMCID: PMC7688336 DOI: 10.1126/sciadv.abc4493] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/09/2020] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aaron I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine M Neupauer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fernanda de Mello Costa
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gargi Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nilam S Mangalmurti
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
60
|
Kruithof BPT, Paardekooper L, Hiemstra YL, Goumans MJ, Palmen M, Delgado V, Klautz RJM, Ajmone Marsan N. Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease. Cardiovasc Res 2020; 116:931-943. [PMID: 31497851 DOI: 10.1093/cvr/cvz204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 09/02/2019] [Indexed: 11/15/2022] Open
Abstract
AIMS In mitral valve prolapse (MVP), leaflet thickening has recently been suggested to be due, in addition to a myxomatous degeneration, to the presence of a superimposed tissue (SIT), defined as an additional fibrous layer on top of the original leaflet. The mechanisms of SIT formation are currently unknown. We hypothesized that SIT formation would result from excessive leaflet stress and we used a unique ex vivo model to assess the correlation between leaflet remodelling and the type and location of mechanical stress and to elucidate the mechanisms underlying SIT formation. METHODS AND RESULTS Human diseased mitral valves (MVs; n = 21) were histologically analysed for SIT formation and original leaflet thickening. The SIT comprised of various compositions of extracellular matrix and could reach more than 50% of total leaflet thickness. Original leaflet and SIT thickness did not show significant correlation (r = -0.27, P = 0.23), suggesting different regulatory mechanisms. To study the role of the mechanical environment on MV remodelling, mouse MV were cultured in their natural position in the heart and subjected to various haemodynamic conditions representing specific phases of the cardiac cycle and the MVP configuration. SIT formation was induced in the ex vivo model, mostly present on the atrial side, and clearly dependent on the duration, type, and extent of mechanical stress. Specific stainings and lineage tracing experiments showed that SIT comprises of macrophages and myofibroblasts and is associated with the activation of the transforming growth factor-beta and bone morphogenetic protein signalling pathways. Migration of valvular interstitial cells and macrophages through breakages of the endothelial cell lining contributed to SIT formation. CONCLUSIONS Mechanical stresses induce specific cellular and molecular changes in the MV that result in SIT formation. These observations provide the first insights in the mechanism of SIT formation and represent an initial step to identify potential novel and early treatment for MVP.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.,Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Laura Paardekooper
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Yasmine L Hiemstra
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Robert J M Klautz
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
61
|
Das RN, Yaniv K. Discovering New Progenitor Cell Populations through Lineage Tracing and In Vivo Imaging. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035618. [PMID: 32041709 DOI: 10.1101/cshperspect.a035618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of progenitor cells that generate differentiated cell types during development, regeneration, and disease states is central to understanding the mechanisms governing such transitions. For more than a century, different lineage-tracing strategies have been developed, which helped disentangle the complex relationship between progenitor cells and their progenies. In this review, we discuss how lineage-tracing analyses have evolved alongside technological advances, and how this approach has contributed to the identification of progenitor cells in different contexts of cell differentiation. We also highlight a few examples in which lineage-tracing experiments have been instrumental for resolving long-standing debates and for identifying unexpected cellular origins. This discussion emphasizes how this century-old quest to delineate cellular lineage relationships is still active, and new discoveries are being made with the development of newer methodologies.
Collapse
Affiliation(s)
- Rudra Nayan Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
62
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
63
|
Alexeyev M, Geurts AM, Annamdevula NS, Francis CM, Leavesley SJ, Rich TC, Taylor MS, Lin MT, Balczon R, Knighten JM, Alvarez DF, Stevens T. Development of an endothelial cell-restricted transgenic reporter rat: a resource for physiological studies of vascular biology. Am J Physiol Heart Circ Physiol 2020; 319:H349-H358. [PMID: 32589443 PMCID: PMC7473926 DOI: 10.1152/ajpheart.00276.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Aron M Geurts
- Genome Editing Rat Resource Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naga S Annamdevula
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Silas Josiah Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | | | - Diego F Alvarez
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
64
|
Wechman SL, Emdad L, Sarkar D, Das SK, Fisher PB. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv Cancer Res 2020; 148:27-67. [PMID: 32723566 DOI: 10.1016/bs.acr.2020.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular mimicry is induced by a wide array of genes with functions related to cancer stemness, hypoxia, angiogenesis and autophagy. Vascular mimicry competent (VM-competent) cells that form de novo blood vessels are common in solid tumors facilitating tumor cell survival and metastasis. VM-competent cells display increased levels of vascular mimicry selecting for stem-like cells in an O2-gradient-dependent manner in deeply hypoxic tumor regions, while also aiding in maintaining tumor cell metabolism and stemness. Three of the principal drivers of vascular mimicry are EphA2, Nodal and HIF-1α, however, directly or indirectly many of these molecules affect VE-Cadherin (VE-Cad), which forms gap-junctions to bind angiogenic blood vessels together. During vascular mimicry, the endothelial-like functions of VM-competent cancer stem cells co-opt VE-Cad to bind cancer cells together to create cancer cell-derived blood conducting vessels. This process potentially compensates for the lack of access to blood and nutrient in avascular tumors, simultaneously providing nutrients and enhancing cancer invasion and metastasis. Current evidence also supports that vascular mimicry promotes cancer malignancy and metastasis due to the cooperation of oncogenic signaling molecules driving cancer stemness and autophagy. While a number of currently used cancer therapeutics are effective inhibitors of vascular mimicry, developing a new class of vascular mimicry specific inhibitors could allow for the treatment of angiogenesis-resistant tumors, inhibit cancer metastasis and improve patient survival. In this review, we describe the principal vascular mimicry pathways in addition to emphasizing the roles of hypoxia, autophagy and select proangiogenic oncogenes in this process.
Collapse
Affiliation(s)
- Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
65
|
Dugaucquier L, Feyen E, Mateiu L, Bruyns TAM, De Keulenaer GW, Segers VFM. The role of endothelial autocrine NRG1/ERBB4 signaling in cardiac remodeling. Am J Physiol Heart Circ Physiol 2020; 319:H443-H455. [PMID: 32618511 DOI: 10.1152/ajpheart.00176.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuregulin-1 (NRG1) is a paracrine growth factor, secreted by cardiac endothelial cells (ECs) in conditions of cardiac overload/injury. The current concept is that the cardiac effects of NRG1 are mediated by activation of erythroblastic leukemia viral oncogene homolog (ERBB)4/ERBB2 receptors on cardiomyocytes. However, recent studies have shown that paracrine effects of NRG1 on fibroblasts and macrophages are equally important. Here, we hypothesize that NRG1 autocrine signaling plays a role in cardiac remodeling. We generated EC-specific Erbb4 knockout mice to eliminate endothelial autocrine ERBB4 signaling without affecting paracrine NRG1/ERBB4 signaling in the heart. We first observed no basal cardiac phenotype in these mice up to 32 wk. We next studied these mice following transverse aortic constriction (TAC), exposure to angiotensin II (ANG II), or myocardial infarction in terms of cardiac performance, myocardial hypertrophy, myocardial fibrosis, and capillary density. In general, no major differences between EC-specific Erbb4 knockout mice and control littermates were observed. However, 8 wk following TAC both myocardial hypertrophy and fibrosis were attenuated by EC-specific Erbb4 deletion, albeit these responses were normalized after 20 wk. Similarly, 4 wk after ANG II treatment, myocardial fibrosis was less pronounced compared with control littermates. These observations were supported by RNA-sequencing experiments on cultured endothelial cells showing that NRG1 controls the expression of various hypertrophic and fibrotic pathways. Overall, this study shows a role of endothelial autocrine NRG1/ERBB4 signaling in the modulation of hypertrophic and fibrotic responses during early cardiac remodeling. This study contributes to understanding the spatiotemporal heterogeneity of myocardial autocrine and paracrine responses following cardiac injury.NEW & NOTEWORTHY The role of NRG1/ERBB signaling in endothelial cells is not completely understood. Our study contributes to the understanding of spatiotemporal heterogeneity of myocardial autocrine and paracrine responses following cardiac injury and shows a role of endothelial autocrine NRG1/ERBB4 signaling in the modulation of hypertrophic and fibrotic responses during early cardiac remodeling.
Collapse
Affiliation(s)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Middelheim Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
66
|
Stegner D, Heinze KG. Intravital imaging of megakaryocytes. Platelets 2020; 31:599-609. [PMID: 32153253 DOI: 10.1080/09537104.2020.1738366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The dynamics of platelet formation could only be investigated since the development of two-photon microscopy in combination with suitable fluorescent labeling strategies. In this review paper, we give an overview of recent advances in fluorescence imaging of the bone marrow that have contributed to our understanding of platelet biogenesis during the last decade. We make a brief survey through the perspectives and limitations of today's intravital imaging, but also discuss complementary methods that may help to piece together the puzzle of megakaryopoiesis and platelet formation.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg , Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg , Würzburg, Germany
| |
Collapse
|
67
|
Lee MJ, Jang Y, Han J, Kim SJ, Ju X, Lee YL, Cui J, Zhu J, Ryu MJ, Choi SY, Chung W, Heo C, Yi HS, Kim HJ, Huh YH, Chung SK, Shong M, Kweon GR, Heo JY. Endothelial-specific Crif1 deletion induces BBB maturation and disruption via the alteration of actin dynamics by impaired mitochondrial respiration. J Cereb Blood Flow Metab 2020; 40:1546-1561. [PMID: 31987007 PMCID: PMC7308523 DOI: 10.1177/0271678x19900030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral endothelial cells (ECs) require junctional proteins to maintain blood-brain barrier (BBB) integrity, restricting toxic substances and controlling peripheral immune cells with a higher concentration of mitochondria than ECs of peripheral capillaries. The mechanism underlying BBB disruption by defective mitochondrial oxidative phosphorylation (OxPhos) is unclear in a mitochondria-related gene-targeted animal model. To assess the role of EC mitochondrial OxPhos function in the maintenance of the BBB, we developed an EC-specific CR6-interactin factor1 (Crif1) deletion mouse. We clearly observed defects in motor behavior, uncompacted myelin and leukocyte infiltration caused by BBB maturation and disruption in this mice. Furthermore, we investigated the alteration in the actin cytoskeleton, which interacts with junctional proteins to support BBB integrity. Loss of Crif1 led to reorganization of the actin cytoskeleton and a decrease in tight junction-associated protein expression through an ATP production defect in vitro and in vivo. Based on these results, we suggest that mitochondrial OxPhos is important for the maturation and maintenance of BBB integrity by supplying ATP to cerebral ECs.
Collapse
Affiliation(s)
- Min Joung Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yunseon Jang
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongsu Han
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Soo J Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Lim Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jiebo Zhu
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Yi Choi
- Department of Pathology, Chungnam National University, Daejeon, Republic of Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Anesthesiology and Pain medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, South Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yang H Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Chungcheongbukdo, Republic of Korea
| | - Sookja K Chung
- Medical Faculty at Macau University of Science and Technology, Taipa, Macau
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Gi-Ryang Kweon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
68
|
Wu W, Wang C, Zang H, Qi L, Azhar M, Nagarkatti M, Nagarkatti P, Cai G, Weiser-Evans MCM, Cui T. Mature Vascular Smooth Muscle Cells, but Not Endothelial Cells, Serve as the Major Cellular Source of Intimal Hyperplasia in Vein Grafts. Arterioscler Thromb Vasc Biol 2020; 40:1870-1890. [PMID: 32493169 DOI: 10.1161/atvbaha.120.314465] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Neointima formation is a primary cause of intermediate to late vein graft (VG) failure. However, the precise source of neointima cells in VGs remains unclear. Approach and Results: Herein we clarify the relative contributions of mature vascular smooth muscle cells (SMCs) and endothelial cells (ECs) to neointima formation in a mouse model of VG remodeling via the genetic-inducible fate mapping approaches. Regardless of the magnitude of neointima formation, the recipient arterial and the donor venous SMCs contributed ≈55% of the neointima cells at the anastomotic regions, whereas only donor venous SMCs donated ≈68% of the neointima cells at the middle bodies. A small portion of the SMC-derived cells became non-SMC cells, most likely vascular stem cells, and constituted 2% to 11% of the cells in each major layer of VGs. In addition, the recipient arterial ECs were the major cellular source of re-endothelialization but did not contribute to neointima formation. The donor venous ECs donated ≈17% neointima cells in the VGs with mild neointima formation and conditional media from ECs after endothelial-to-mesenchymal transition suppressed vascular SMC dedifferentiation. CONCLUSIONS The recipient arterial and donor venous mature SMCs dominate but contribute distinctly to intimal hyperplasia at the anastomosis and the middle body regions of VGs. The recipient arterial ECs are the major cellular source of re-endothelialization but do not donate neointima formation in VGs. Only the donor venous ECs undergo endothelial-to-mesenchymal transition. Endothelial-to-mesenchymal transition is marginal for generating neointima cells but is likely required for controlling the quality of VG remodeling.
Collapse
Affiliation(s)
- Weiwei Wu
- From the Department of Cell Biology and Anatomy (W.W., C.W., H.Z., L.Q., M.A., T.C.), University of South Carolina, Columbia, SC
| | - Chunyan Wang
- From the Department of Cell Biology and Anatomy (W.W., C.W., H.Z., L.Q., M.A., T.C.), University of South Carolina, Columbia, SC
| | - Huimei Zang
- From the Department of Cell Biology and Anatomy (W.W., C.W., H.Z., L.Q., M.A., T.C.), University of South Carolina, Columbia, SC
| | - Lei Qi
- From the Department of Cell Biology and Anatomy (W.W., C.W., H.Z., L.Q., M.A., T.C.), University of South Carolina, Columbia, SC
| | - Mohamad Azhar
- From the Department of Cell Biology and Anatomy (W.W., C.W., H.Z., L.Q., M.A., T.C.), University of South Carolina, Columbia, SC
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine (M.N., P.N.), University of South Carolina, Columbia, SC
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine (M.N., P.N.), University of South Carolina, Columbia, SC
| | - Guoshuai Cai
- Department of Environmental Health Science, Arnold School of Public Health (G.C.), University of South Carolina, Columbia, SC
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO (M.C.M.W.-E.)
| | - Taixing Cui
- From the Department of Cell Biology and Anatomy (W.W., C.W., H.Z., L.Q., M.A., T.C.), University of South Carolina, Columbia, SC
| |
Collapse
|
69
|
Pardridge WM. The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Front Physiol 2020; 11:398. [PMID: 32457645 PMCID: PMC7221163 DOI: 10.3389/fphys.2020.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an “in vitro” preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
70
|
Turaihi AH, Serné EH, Molthoff CFM, Koning JJ, Knol J, Niessen HW, Goumans MJTH, van Poelgeest EM, Yudkin JS, Smulders YM, Jimenez CR, van Hinsbergh VWM, Eringa EC. Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles. Diabetes 2020; 69:603-613. [PMID: 32005705 DOI: 10.2337/db18-1066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/24/2020] [Indexed: 11/13/2022]
Abstract
Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes.
Collapse
Affiliation(s)
- Alexander H Turaihi
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Erik H Serné
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jaco Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Hans W Niessen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Marie Jose T H Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik M van Poelgeest
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - John S Yudkin
- Institute of Cardiovascular Science, Division of Medicine, University College London, London, U.K
| | - Yvo M Smulders
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
71
|
Endothelial-specific YY1 governs sprouting angiogenesis through directly interacting with RBPJ. Proc Natl Acad Sci U S A 2020; 117:4792-4801. [PMID: 32075915 DOI: 10.1073/pnas.1916198117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1 iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1 iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.
Collapse
|
72
|
Esteban S, Clemente C, Koziol A, Gonzalo P, Rius C, Martínez F, Linares PM, Chaparro M, Urzainqui A, Andrés V, Seiki M, Gisbert JP, Arroyo AG. Endothelial MT1-MMP targeting limits intussusceptive angiogenesis and colitis via TSP1/nitric oxide axis. EMBO Mol Med 2020; 12:e10862. [PMID: 31793743 PMCID: PMC7005619 DOI: 10.15252/emmm.201910862] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022] Open
Abstract
Pathological angiogenesis contributes to cancer progression and chronic inflammatory diseases. In inflammatory bowel disease, the microvasculature expands by intussusceptive angiogenesis (IA), a poorly characterized mechanism involving increased blood flow and splitting of pre-existing capillaries. In this report, mice lacking the protease MT1-MMP in endothelial cells (MT1iΔEC ) presented limited IA in the capillary plexus of the colon mucosa assessed by 3D imaging during 1% DSS-induced colitis. This resulted in better tissue perfusion, preserved intestinal morphology, and milder disease activity index. Combined in vivo intravital microscopy and lentiviral rescue experiments with in vitro cell culture demonstrated that MT1-MMP activity in endothelial cells is required for vasodilation and IA, as well as for nitric oxide production via binding of the C-terminal fragment of MT1-MMP substrate thrombospondin-1 (TSP1) to CD47/αvβ3 integrin. Moreover, TSP1 levels were significantly higher in serum from IBD patients and in vivo administration of an anti-MT1-MMP inhibitory antibody or a nonamer peptide spanning the αvβ3 integrin binding site in TSP1 reduced IA during mouse colitis. Our results identify MT1-MMP as a new actor in inflammatory IA and a promising therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Sergio Esteban
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Cristina Clemente
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigaciones Biológicas (CIB‐CSIC)MadridSpain
| | - Agnieszka Koziol
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Pilar Gonzalo
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Cristina Rius
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBER‐CV)MadridSpain
| | - Fernando Martínez
- Bioinformatics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Pablo M Linares
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - María Chaparro
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - Ana Urzainqui
- Immunology DepartmentFIB‐Hospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)MadridSpain
| | - Vicente Andrés
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBER‐CV)MadridSpain
| | - Motoharu Seiki
- Division of Cancer Cell ResearchInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Javier P Gisbert
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - Alicia G Arroyo
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigaciones Biológicas (CIB‐CSIC)MadridSpain
| |
Collapse
|
73
|
Yu YRA, Malakhau Y, Yu CHA, Phelan SLJ, Cumming RI, Kan MJ, Mao L, Rajagopal S, Piantadosi CA, Gunn MD. Nonclassical Monocytes Sense Hypoxia, Regulate Pulmonary Vascular Remodeling, and Promote Pulmonary Hypertension. THE JOURNAL OF IMMUNOLOGY 2020; 204:1474-1485. [PMID: 31996456 DOI: 10.4049/jimmunol.1900239] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022]
Abstract
An increasing body of evidence suggests that bone marrow-derived myeloid cells play a critical role in the pathophysiology of pulmonary hypertension (PH). However, the true requirement for myeloid cells in PH development has not been demonstrated, and a specific disease-promoting myeloid cell population has not been identified. Using bone marrow chimeras, lineage labeling, and proliferation studies, we determined that, in murine hypoxia-induced PH, Ly6Clo nonclassical monocytes are recruited to small pulmonary arteries and differentiate into pulmonary interstitial macrophages. Accumulation of these nonclassical monocyte-derived pulmonary interstitial macrophages around pulmonary vasculature is associated with increased muscularization of small pulmonary arteries and disease severity. To determine if the sensing of hypoxia by nonclassical monocytes contributes to the development of PH, mice lacking expression of hypoxia-inducible factor-1α in the Ly6Clo monocyte lineage were exposed to hypoxia. In these mice, vascular remodeling and PH severity were significantly reduced. Transcriptome analyses suggest that the Ly6Clo monocyte lineage regulates PH through complement, phagocytosis, Ag presentation, and chemokine/cytokine pathways. Consistent with these murine findings, relative to controls, lungs from pulmonary arterial hypertension patients displayed a significant increase in the frequency of nonclassical monocytes. Taken together, these findings show that, in response to hypoxia, nonclassical monocytes in the lung sense hypoxia, infiltrate small pulmonary arteries, and promote vascular remodeling and development of PH. Our results demonstrate that myeloid cells, specifically cells of the nonclassical monocyte lineage, play a direct role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710;
| | - Yuryi Malakhau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Chen-Hsin A Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Stefan-Laural J Phelan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - R Ian Cumming
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Matthew J Kan
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94115; and
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Claude A Piantadosi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Michael D Gunn
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
74
|
Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv 2020; 3:168-183. [PMID: 30670533 DOI: 10.1182/bloodadvances.2018026294] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
In the earliest phase of inflammation, histamine and other agonists rapidly mobilize P-selectin to the apical membranes of endothelial cells, where it initiates rolling adhesion of flowing neutrophils. Clustering of P-selectin in clathrin-coated pits facilitates rolling. Inflammatory cytokines typically signal by regulating gene transcription over a period of hours. We found that neutrophils rolling on P-selectin secreted the cytokine oncostatin M (OSM). The released OSM triggered signals through glycoprotein 130 (gp130)-containing receptors on endothelial cells that, within minutes, further clustered P-selectin and markedly enhanced its adhesive function. Antibodies to OSM or gp130, deletion of the gene encoding OSM in hematopoietic cells, or conditional deletion of the gene encoding gp130 in endothelial cells inhibited neutrophil rolling on P-selectin in trauma-stimulated venules of the mouse cremaster muscle. In a mouse model of P-selectin-dependent deep vein thrombosis, deletion of OSM in hematopoietic cells or of gp130 in endothelial cells markedly inhibited adhesion of neutrophils and monocytes and the rate and extent of thrombus formation. Our results reveal a paracrine-signaling mechanism by which neutrophil-released OSM rapidly influences endothelial cell function during physiological and pathological inflammation.
Collapse
|
75
|
Soto-Avellaneda A, Morrison BE. Central nervous system and peripheral cell labeling by vascular endothelial cadherin-driven lineage tracing in adult mice. Neural Regen Res 2020; 15:1856-1866. [PMID: 32246634 PMCID: PMC7513977 DOI: 10.4103/1673-5374.280317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the contribution of endothelial cells to the progenitor pools of adult tissues has the potential to inform therapies for human disease. To address whether endothelial cells transdifferentiate into non-vascular cell types, we performed cell lineage tracing analysis using transgenic mice engineered to express a fluorescent marker following activation by tamoxifen in vascular endothelial cadherin promoter-expressing cells (VEcad-CreERT2; B6 Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze). Activation of target-cell labeling following 1.5 months of ad libitum feeding with tamoxifen-laden chow in 4–5 month-old mice resulted in the tracing of central nervous system and peripheral cells that include: cerebellar granule neurons, ependymal cells, skeletal myocytes, pancreatic beta cells, pancreatic acinar cells, tubular cells in the renal cortex, duodenal crypt cells, ileal crypt cells, and hair follicle stem cells. As Nestin expression has been reported in a subset of endothelial cells, Nes-CreERT2 mice were also utilized in these conditions. The tracing of cells in adult Nes-CreERT2 mice revealed the labeling of canonical progeny cell types such as hippocampal and olfactory granule neurons as well as ependymal cells. Interestingly, Nestin tracing also labeled skeletal myocytes, ileal crypt cells, and sparsely marked cerebellar granule neurons. Our findings provide support for endothelial cells as active contributors to adult tissue progenitor pools. This information could be of particular significance for the intravenous delivery of therapeutics to downstream endothelial-derived cellular targets. The animal experiments were approved by the Boise State University Institute Animal Care and Use Committee (approval No. 006-AC15-018) on October 31, 2018.
Collapse
Affiliation(s)
| | - Brad E Morrison
- Biomolecular Ph.D. Program, Boise State University; Department of Biological Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
76
|
Bibli SI, Hu J, Leisegang MS, Wittig J, Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos G, Filis K, Brandes RP, Papapetropoulos A, Sigala F, Fleming I. Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. Redox Biol 2020; 28:101379. [PMID: 31759247 PMCID: PMC6880097 DOI: 10.1016/j.redox.2019.101379] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cystathionine γ lyase (CSE) is the major source of hydrogen sulfide-derived species (H2Sn) in endothelial cells and plays an important role in protecting against atherosclerosis. Here we investigated the molecular mechanisms underlying the regulation of CSE expression in endothelial cells by fluid shear stress/flow. Fluid shear stress decreased CSE expression in human and murine endothelial cells and was negatively correlated with the transcription factor Krüppel-like factor (KLF) 2. CSE was identified as a direct target of the KLF2-regulated microRNA, miR-27b and high expression of CSE in native human plaque-derived endothelial cells, was also inversely correlated with KLF2 and miR-27b levels. One consequence of decreased CSE expression was the loss of Prx6 sulfhydration (on Cys47), which resulted in Prx6 hyperoxidation, decamerization and inhibition, as well as a concomitant increase in endothelial cell reactive oxygen species and lipid membrane peroxidation. H2Sn supplementation in vitro was able to reverse the redox state of Prx6. Statin therapy, which is known to activate KLF2, also decreased CSE expression but increased CSE activity by preventing its phosphorylation on Ser377. As a result, the sulfhydration of Prx6 was partially restored in samples from plaque containing arteries from statin-treated donors. Taken together, the regulation of CSE expression by shear stress/disturbed flow is dependent on KLF2 and miR-27b. Moreover, in murine and human arteries CSE acts to maintain endothelial redox balance at least partly by targeting Prx6 to prevent its decamerization and inhibition of its peroxidase activity.
Collapse
Key Words
- (3′utr), 3′untranslated region
- (cse), cystathionine γ lyase
- (dhe), dihydroethidium
- (dppp), diphenyl-1-pyrenylphosphine
- (enos), endothelial nitric oxide synthase
- (h2sn), h2s-related sulfane sulfur compounds
- (h2s), hydrogen sulfide
- (h2o2), hydrogen peroxide
- (il-1β), interleukin-1β
- (klf2), krüppel-like factor 2
- (lc-ms/ms), liquid chromatography - tandem mass spectrometry
- (no), nitric oxide
- (prx), peroxiredoxin
- (ros), reactive oxygen species
- (sirna), small interfering rna
- (o2•-), superoxide anion
- (tbars), thiobarbituric acid reactive substances
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Andrea Kapasakalidi
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Beate Fisslthaler
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Zografos
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Filis
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ralf P Brandes
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Medical School, Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| |
Collapse
|
77
|
Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Res 2019; 7:36. [PMID: 31840004 PMCID: PMC6904752 DOI: 10.1038/s41413-019-0075-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.
Collapse
|
78
|
Li Y, Wittchen ES, Monaghan-Benson E, Hahn C, Earp HS, Doerschuk CM, Burridge K. The role of endothelial MERTK during the inflammatory response in lungs. PLoS One 2019; 14:e0225051. [PMID: 31805065 PMCID: PMC6894824 DOI: 10.1371/journal.pone.0225051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
As a key homeostasis regulator in mammals, the MERTK receptor tyrosine kinase is crucial for efferocytosis, a process that requires remodeling of the cell membrane and adjacent actin cytoskeleton. Membrane and cytoskeletal reorganization also occur in endothelial cells during inflammation, particularly during neutrophil transendothelial migration (TEM) and during changes in permeability. However, MERTK’s function in endothelial cells remains unclear. This study evaluated the contribution of endothelial MERTK to neutrophil TEM and endothelial barrier function. In vitro experiments using primary human pulmonary microvascular endothelial cells found that neutrophil TEM across the endothelial monolayers was enhanced when MERTK expression in endothelial cells was reduced by siRNA knockdown. Examination of endothelial barrier function revealed increased passage of dextran across the MERTK-depleted monolayers, suggesting that MERTK helps maintain endothelial barrier function. MERTK knockdown also altered adherens junction structure, decreased junction protein levels, and reduced basal Rac1 activity in endothelial cells, providing potential mechanisms of how MERTK regulates endothelial barrier function. To study MERTK’s function in vivo, inflammation in the lungs of global Mertk-/- mice was examined during acute pneumonia. In response to P. aeruginosa, more neutrophils were recruited to the lungs of Mertk-/- than wildtype mice. Vascular leakage of Evans blue dye into the lung tissue was also greater in Mertk-/- mice. To analyze endothelial MERTK’s involvement in these processes, we generated inducible endothelial cell-specific (iEC) Mertk-/- mice. When similarly challenged with P. aeruginosa, iEC Mertk-/- mice demonstrated no difference in neutrophil TEM into the inflamed lungs or in vascular permeability compared to control mice. These results suggest that deletion of MERTK in human pulmonary microvascular endothelial cells in vitro and in all cells in vivo aggravates the inflammatory response. However, selective MERTK deletion in endothelial cells in vivo failed to replicate this response.
Collapse
Affiliation(s)
- Yitong Li
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cornelia Hahn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
79
|
MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription. Cell Death Dis 2019; 10:899. [PMID: 31776330 PMCID: PMC6881349 DOI: 10.1038/s41419-019-2101-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Excessive fibrogenic response in the liver disrupts normal hepatic anatomy and function heralding such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. Sinusoidal endothelial cells contribute to myofibroblast activation and liver fibrosis by undergoing endothelial-mesenchymal transition (EndMT). The underlying mechanism remains poorly defined. Here we report that inhibition or endothelial-specific deletion of MKL1, a transcriptional modulator, attenuated liver fibrosis in mice. MKL1 inhibition or deletion suppressed EndMT induced by TGF-β. Mechanistically, MKL1 was recruited to the promoter region of TWIST1, a master regulator of EndMT, and activated TWIST1 transcription in a STAT3-dependent manner. A small-molecule STAT3 inhibitor (C188-9) alleviated EndMT in cultured cells and bile duct ligation (BDL) induced liver fibrosis in mice. Finally, direct inhibition of TWIST1 by a small-molecule compound harmine was paralleled by blockade of EndMT in cultured cells and liver fibrosis in mice. In conclusion, our data unveil a novel mechanism underlying EndMT and liver fibrosis and highlight the possibility of targeting the STAT3-MKL1-TWIST1 axis in the intervention of aberrant liver fibrogenesis.
Collapse
|
80
|
The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. Proc Natl Acad Sci U S A 2019; 116:23618-23624. [PMID: 31712416 DOI: 10.1073/pnas.1912409116] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are highly specialized across vascular beds. However, given their interspersed anatomic distribution, comprehensive characterization of the molecular basis for this heterogeneity in vivo has been limited. By applying endothelial-specific translating ribosome affinity purification (EC-TRAP) combined with high-throughput RNA sequencing analysis, we identified pan EC-enriched genes and tissue-specific EC transcripts, which include both established markers and genes previously unappreciated for their presence in ECs. In addition, EC-TRAP limits changes in gene expression after EC isolation and in vitro expansion, as well as rapid vascular bed-specific shifts in EC gene expression profiles as a result of the enzymatic tissue dissociation required to generate single-cell suspensions for fluorescence-activated cell sorting or single-cell RNA sequencing analysis. Comparison of our EC-TRAP with published single-cell RNA sequencing data further demonstrates considerably greater sensitivity of EC-TRAP for the detection of low abundant transcripts. Application of EC-TRAP to examine the in vivo host response to lipopolysaccharide (LPS) revealed the induction of gene expression programs associated with a native defense response, with marked differences across vascular beds. Furthermore, comparative analysis of whole-tissue and TRAP-selected mRNAs identified LPS-induced differences that would not have been detected by whole-tissue analysis alone. Together, these data provide a resource for the analysis of EC-specific gene expression programs across heterogeneous vascular beds under both physiologic and pathologic conditions.
Collapse
|
81
|
Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, He A. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling. Mol Cell 2019; 76:206-216.e7. [DOI: 10.1016/j.molcel.2019.07.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
|
82
|
Abstract
The field of vascular biology has gained enormous insight from the use of Cre and inducible Cre mouse models to temporally and spatially manipulate gene expression within the endothelium. Models are available to constitutively or inducibly modulate gene expression in all or a specified subset of endothelial cells. However, caution should be applied to both the selection of allele and the analysis of resultant phenotype: many similarly named Cre models have divergent activity patterns while ectopic or inconsistent Cre or inducible Cre expression can dramatically affect results. In an effort to disambiguate previous data and to provide a resource to aid appropriate experimental design, here we summarize what is known about Cre recombinase activity in the most widely used endothelial-specific Cre and Cre/ERT2 mouse models.
Collapse
Affiliation(s)
- Sophie Payne
- From the Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine (S.P., S.D.V.),University of Oxford, United Kingdom
| | - Sarah De Val
- From the Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine (S.P., S.D.V.),University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics (S.D.V., A.N.),University of Oxford, United Kingdom
| | - Alice Neal
- Department of Physiology, Anatomy and Genetics (S.D.V., A.N.),University of Oxford, United Kingdom
| |
Collapse
|
83
|
van den Berg BM, Wang G, Boels MGS, Avramut MC, Jansen E, Sol WMPJ, Lebrin F, van Zonneveld AJ, de Koning EJP, Vink H, Gröne HJ, Carmeliet P, van der Vlag J, Rabelink TJ. Glomerular Function and Structural Integrity Depend on Hyaluronan Synthesis by Glomerular Endothelium. J Am Soc Nephrol 2019; 30:1886-1897. [PMID: 31308073 DOI: 10.1681/asn.2019020192] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/20/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND A glycocalyx envelope consisting of proteoglycans and adhering proteins covers endothelial cells, both the luminal and abluminal surface. We previously demonstrated that short-term loss of integrity of the luminal glycocalyx layer resulted in perturbed glomerular filtration barrier function. METHODS To explore the role of the glycocalyx layer of the endothelial extracellular matrix in renal function, we generated mice with an endothelium-specific and inducible deletion of hyaluronan synthase 2 (Has2), the enzyme that produces hyaluronan, the main structural component of the endothelial glycocalyx layer. We also investigated the presence of endothelial hyaluronan in human kidney tissue from patients with varying degrees of diabetic nephropathy. RESULTS Endothelial deletion of Has2 in adult mice led to substantial loss of the glycocalyx structure, and analysis of their kidneys and kidney function showed vascular destabilization, characterized by mesangiolysis, capillary ballooning, and albuminuria. This process develops over time into glomerular capillary rarefaction and glomerulosclerosis, recapitulating the phenotype of progressive human diabetic nephropathy. Using a hyaluronan-specific probe, we found loss of glomerular endothelial hyaluronan in association with lesion formation in tissue from patients with diabetic nephropathy. We also demonstrated that loss of hyaluronan, which harbors a specific binding site for angiopoietin and a key regulator of endothelial quiescence and maintenance of EC barrier function results in disturbed angiopoietin 1 Tie2. CONCLUSIONS Endothelial loss of hyaluronan results in disturbed glomerular endothelial stabilization. Glomerular endothelial hyaluronan is a previously unrecognized key component of the extracelluar matrix that is required for glomerular structure and function and lost in diabetic nephropathy.
Collapse
Affiliation(s)
- Bernard M van den Berg
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Gangqi Wang
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Margien G S Boels
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - M Cristina Avramut
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Jansen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy M P J Sol
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Franck Lebrin
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Anton Jan van Zonneveld
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Eelco J P de Koning
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and.,Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Vink
- Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, The German Cancer Research Center, Heidelberg, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Katholieke Universiteit Leuven, Vesalius Research Center, Vascular Institute Belgium, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vascular Institute Belgium, Leuven, Belgium; and
| | - Johan van der Vlag
- Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ton J Rabelink
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| |
Collapse
|
84
|
Salter DM, Griffin M, Muir M, Teo K, Culley J, Smith JR, Gomez-Cuadrado L, Matchett K, Sims AH, Hayward L, Henderson NC, Brunton VG. Development of mouse models of angiosarcoma driven by p53. Dis Model Mech 2019; 12:dmm038612. [PMID: 31221668 PMCID: PMC6679377 DOI: 10.1242/dmm.038612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Angiosarcomas are a rare group of tumours which have poor prognosis and limited treatment options. The development of new therapies has been hampered by a lack of good preclinical models. Here, we describe the development of an autochthonous mouse model of angiosarcoma driven by loss of p53 in VE-cadherin-expressing endothelial cells. Using Cdh5-Cre to drive recombination in adult endothelial cells, mice developed angiosarcomas with 100% penetrance upon homozygous deletion of Trp53 with a median lifespan of 325 days. In contrast, expression of the R172H mutant p53 resulted in formation of thymic lymphomas with a more rapid onset (median lifespan 151 days). We also used Pdgfrb-Cre-expressing mice, allowing us to target predominantly pericytes, as these have been reported as the cell of origin for a number of soft tissue sarcomas. Pdgfrb-Cre also results in low levels of recombination in venous blood endothelial cells in multiple tissues during development. Upon deletion of Trp53 in Pdgfrb-Cre-expressing mice (Pdgfrb-Cre,Trp53fl/fl mice), 65% developed lymphomas and 21% developed pleomorphic undifferentiated soft tissue sarcomas. None developed angiosarcomas. In contrast, 75% of Pdgfrb-Cre,Trp53R172H/R172H mice developed angiosarcomas, with 60% of these mice also developing lymphomas. The median lifespan of the Pdgfrb-Cre,Trp53R172H/R172H mice was 151 days. Re-implantation of angiosarcoma tumour fragments from Cdh5-Cre, Trp53fl/fl mice provided a more consistent and rapid model of angiosarcoma than the two spontaneous models. The ability to passage tumour fragments through the mouse provides a novel model which is amenable to preclinical studies and will help the development of potential new therapies for angiosarcoma.
Collapse
Affiliation(s)
- Donald M Salter
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Meredyth Griffin
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Morwenna Muir
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Katy Teo
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jayne Culley
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - James R Smith
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Gomez-Cuadrado
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Kylie Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Sims
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Larry Hayward
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
85
|
Colijn S, Gao S, Ingram KG, Menendez M, Muthukumar V, Silasi-Mansat R, Chmielewska JJ, Hinsdale M, Lupu F, Griffin CT. The NuRD chromatin-remodeling complex enzyme CHD4 prevents hypoxia-induced endothelial Ripk3 transcription and murine embryonic vascular rupture. Cell Death Differ 2019; 27:618-631. [PMID: 31235857 DOI: 10.1038/s41418-019-0376-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023] Open
Abstract
Physiological hypoxia can trigger transcriptional events that influence many developmental processes during mammalian embryogenesis. One way that hypoxia affects transcription is by engaging chromatin-remodeling complexes. We now report that chromodomain helicase DNA binding protein 4 (CHD4), an enzyme belonging to the nucleosome remodeling and deacetylase (NuRD) chromatin-remodeling complex, is required for transcriptional repression of the receptor-interacting protein kinase 3 (Ripk3)-a critical executor of the necroptosis cell death program-in hypoxic murine embryonic endothelial cells. Genetic deletion of Chd4 in murine embryonic endothelial cells in vivo results in upregulation of Ripk3 transcripts and protein prior to vascular rupture and lethality at midgestation, and concomitant deletion of Ripk3 partially rescues these phenotypes. In addition, CHD4 binds to and prevents acetylation of the Ripk3 promoter in cultured endothelial cells grown under hypoxic conditions to prevent excessive Ripk3 transcription. These data demonstrate that excessive RIPK3 is detrimental to embryonic vascular integrity and indicate that CHD4 suppresses Ripk3 transcription when the embryonic environment is particularly hypoxic prior to the establishment of fetal-placental circulation at midgestation. Altogether, this research provides new insights into regulators of Ripk3 transcription and encourages future studies into the mechanism by which excessive RIPK3 damages embryonic blood vessels.
Collapse
Affiliation(s)
- Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Kyle G Ingram
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joanna J Chmielewska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Myron Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.
| |
Collapse
|
86
|
He Q, Li X, Singh K, Luo Z, Meija-Cordova M, Jamalpour M, Lindahl B, Kriz V, Vuolteenaho R, Ulvmar M, Welsh M. The Cdh5-CreERT2 transgene causes conditional Shb gene deletion in hematopoietic cells with consequences for immune cell responses to tumors. Sci Rep 2019; 9:7548. [PMID: 31101877 PMCID: PMC6525206 DOI: 10.1038/s41598-019-44039-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
The tamoxifen-responsive conditional Cdh5-CreERT2 is commonly used for endothelial cell specific conditional deletion of loxP-flanked gene sequences. To address the role of endothelial cell Shb gene for B16F10 melanoma immune responses, tamoxifen-injected Cdh5-CreERT2/WT and Cdh5-CreERT2/Shbflox/flox mice received subcutaneous tumor cell injections. We observed a decrease of tumor myeloid cell Shb mRNA in the tamoxifen treated Cdh5-CreERT2/Shbflox/flox mice, which was not present when the mice had undergone a preceding bone marrow transplantation using wild type bone marrow. Differences in CD4+/FoxP3+ Tregs were similarly abolished by a preceding bone marrow transplantation. In ROSA26-mTmG mice, Cdh5-CreERT2 caused detectable floxing in certain bone marrow populations and in spleen cells. Floxing in bone marrow could be detected two months after tamoxifen treatment. In the spleen, however, floxing was undetectable two months after tamoxifen treatment, suggesting that Cdh5-CreERT2 is operating in a non-renewable population of hematopoietic cells in this organ. These data suggest that conditional gene deletion in hematopoietic cells is a potential confounder in experiments attempting to assess the role of endothelial specific effects. A cautious approach to achieve an endothelial-specific phenotype would be to adopt a strategy that includes a preceding bone marrow transplantation.
Collapse
Affiliation(s)
- Qi He
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiujuan Li
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Kailash Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Zhengkang Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Maria Jamalpour
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Björn Lindahl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Vitezslav Kriz
- Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | | | - Maria Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
87
|
Kilani B, Gourdou-Latyszenok V, Guy A, Bats ML, Peghaire C, Parrens M, Renault MA, Duplàa C, Villeval JL, Rautou PE, Couffinhal T, James C. Comparison of endothelial promoter efficiency and specificity in mice reveals a subset of Pdgfb-positive hematopoietic cells. J Thromb Haemost 2019; 17:827-840. [PMID: 30801958 DOI: 10.1111/jth.14417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Essentials To reliably study the respective roles of blood and endothelial cells in hemostasis, mouse models with a strong and specific endothelial expression of the Cre recombinase are needed. Using mT/mG reporter mice and conditional JAK2V617F/WT mice, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Comparison of recombination efficiency and specificity towards blood lineage reveals major differences between endothelial transgenic mice. Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2;JAK2V617F/WT transgenic mice. SUMMARY: Background The vessel wall, and particularly blood endothelial cells (BECs), are intensively studied to better understand hemostasis and target thrombosis. To understand the specific role of BECs, it is important to have mouse models that allow specific and homogeneous expression of genes of interest in all BEC beds without concomitant expression in blood cells. Inducible Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 transgenic mice are widely used for BEC targeting. However, issues remain in terms of recombination efficiency and specificity regarding hematopoietic cells. Objectives To determine which mouse model to choose when strong expression of a transgene is required in adult BECs from various organs, without concomitant expression in hematopoietic cells. Methods Using mT/mG reporter mice to measure recombination efficiency and conditional JAK2V617F/WT mice to assess specificity regarding hematopoietic cells, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Results Adult Cdh5(PAC)-CreERT2 mice are endothelial specific but require a dose of 10 mg of tamoxifen to allow constant Cre expression. Pdgfb-iCreERT2 mice injected with 5 mg of tamoxifen are appropriate for most endothelial research fields except liver studies, as hepatic sinusoid ECs are not recombined. Surprisingly, 2 months after induction of Cre-mediated recombination, all Pdgfb-iCreERT2;JAK2V617F/WT mice developed a myeloproliferative neoplasm that is related to the presence of JAK2V617F in hematopoietic cells, showing for the first time that Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2 transgenic mice. Conclusion This study provides useful guidelines for choosing the best mouse line to study the role of BECs in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Badr Kilani
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | | | - Alexandre Guy
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Marie-Lise Bats
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Claire Peghaire
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Marie Parrens
- CHU de Bordeaux, Laboratoire d'Anatomopathologie, Pessac, F-33600, France
| | - Marie-Ange Renault
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Cecile Duplàa
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | | | - Pierre-Emmanuel Rautou
- Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Thierry Couffinhal
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
- CHU de Bordeaux, service des Maladies Cardiaques et Vasculaires, Pessac, F-33600, France
| | - Chloe James
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
- CHU de Bordeaux, Laboratoire d'Hématologie, F-33600, Pessac, France
| |
Collapse
|
88
|
PGE 2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia. Proc Natl Acad Sci U S A 2019; 116:10019-10024. [PMID: 31036664 DOI: 10.1073/pnas.1818544116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inflammatory prostaglandin E2 (PGE2) EP2 receptor is a master suppressor of beneficial microglial function, and myeloid EP2 signaling ablation reduces pathology in models of inflammatory neurodegeneration. Here, we investigated the role of PGE2 EP2 signaling in a model of stroke in which the initial cerebral ischemic event is followed by an extended poststroke inflammatory response. Myeloid lineage cell-specific EP2 knockdown in Cd11bCre;EP2lox/lox mice attenuated brain infiltration of Cd11b+CD45hi macrophages and CD45+Ly6Ghi neutrophils, indicating that inflammatory EP2 signaling participates in the poststroke immune response. Inducible global deletion of the EP2 receptor in adult ROSA26-CreERT2 (ROSACreER);EP2lox/lox mice also reduced brain myeloid cell trafficking but additionally reduced stroke severity, suggesting that nonimmune EP2 receptor-expressing cell types contribute to cerebral injury. EP2 receptor expression was highly induced in neurons in the ischemic hemisphere, and postnatal deletion of the neuronal EP2 receptor in Thy1Cre;EP2lox/lox mice reduced cerebral ischemic injury. These findings diverge from previous studies of congenitally null EP2 receptor mice where a global deletion increases cerebral ischemic injury. Moreover, ROSACreER;EP2lox/lox mice, unlike EP2-/- mice, exhibited normal learning and memory, suggesting a confounding effect from congenital EP2 receptor deletion. Taken together with a precedent that inhibition of EP2 signaling is protective in inflammatory neurodegeneration, these data lend support to translational approaches targeting the EP2 receptor to reduce inflammation and neuronal injury that occur after stroke.
Collapse
|
89
|
Kröller-Schön S, Jansen T, Tran TLP, Kvandová M, Kalinovic S, Oelze M, Keaney JF, Foretz M, Viollet B, Daiber A, Kossmann S, Lagrange J, Frenis K, Wenzel P, Münzel T, Schulz E. Endothelial α1AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction. Basic Res Cardiol 2019; 114:8. [DOI: 10.1007/s00395-019-0717-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
|
90
|
Bibli SI, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B, Schürmann C, Siragusa M, Siuda D, Luck B, Abdel Malik R, Filis KA, Zografos G, Chen C, Wang DW, Pfeilschifter J, Brandes RP, Szabo C, Papapetropoulos A, Fleming I. Cystathionine γ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis. Circulation 2019; 139:101-114. [DOI: 10.1161/circulationaha.118.034757] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division, National and Kapodistrian University of Athens Medical School, Greece (F.S., D.I.T., K.A.F., G.Z.)
| | - Ilka Wittig
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Juliana Heidler
- Functional Proteomics, SFB 815 Core Unit (J.W., J. Heidler), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Diamantis I. Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division, National and Kapodistrian University of Athens Medical School, Greece (F.S., D.I.T., K.A.F., G.Z.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- Functional Proteomics, SFB 815 Core Unit (J.W., J. Heidler), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Baktybek Kojonazarov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Justus Liebig University, Germany (B.K.)
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology (C. Schürmann, R.P.B.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Daniel Siuda
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Bert Luck
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Randa Abdel Malik
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| | - Konstantinos A. Filis
- First Propedeutic Department of Surgery, Vascular Surgery Division, National and Kapodistrian University of Athens Medical School, Greece (F.S., D.I.T., K.A.F., G.Z.)
| | - George Zografos
- First Propedeutic Department of Surgery, Vascular Surgery Division, National and Kapodistrian University of Athens Medical School, Greece (F.S., D.I.T., K.A.F., G.Z.)
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C., D.W.W.)
| | - Josef Pfeilschifter
- Pharmacentre Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und –Sicherheit (J.P.), Goethe University, Frankfurt am Main, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology (C. Schürmann, R.P.B.), Goethe University, Frankfurt am Main, Germany
| | - Csaba Szabo
- Laboratory of Pharmacology, Department of Medicine, University of Fribourg, Switzerland (C. Szabo)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Greece (A.P.)
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine (S.-I.B., J. Hu, S.Z., V.R., J.W., M.S., D.S., B.L., R.A.M., I.F.), Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research, Partner site RheinMain, Frankfurt am Main, Germany (S.-I.B., J. Hu, I.W., J. Heidler, S.Z., V.R., J.W., C. Schürmann, M.S., D.S., B.L., R.A.M., R.P.B., I.F.)
| |
Collapse
|
91
|
Zhang X, Liu S, Weng X, Wu T, Yu L, Xu Y, Guo J. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J Mol Cell Cardiol 2018; 125:6-17. [DOI: 10.1016/j.yjmcc.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/10/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
92
|
Li Z, Zhang X, Liu S, Zeng S, Yu L, Yang G, Guo J, Xu Y. BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3477-3486. [DOI: 10.1016/j.bbadis.2018.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/14/2018] [Accepted: 08/01/2018] [Indexed: 12/24/2022]
|
93
|
Duan J, Ruan B, Yan X, Liang L, Song P, Yang Z, Liu Y, Dou K, Han H, Wang L. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 2018; 68:677-690. [PMID: 29420858 PMCID: PMC6099357 DOI: 10.1002/hep.29834] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
UNLABELLED Liver sinusoidal endothelial cells (LSECs) critically regulate liver homeostasis and diseases through angiocrine factors. Notch is critical in endothelial cells (ECs). In the current study, Notch signaling was activated by inducible EC-specific expression of the Notch intracellular domain (NIC). We found that endothelial Notch activation damaged liver homeostasis. Notch activation resulted in decreased fenestration and increased basement membrane, and a gene expression profile with decreased LSEC-associated genes and increased continuous EC-associated genes, suggesting LSEC dedifferentiation. Consistently, endothelial Notch activation enhanced hepatic fibrosis (HF) induced by CCl4 . Notch activation attenuated endothelial nitric oxide synthase (eNOS)/soluble guanylate cyclase (sGC) signaling, and activation of sGC by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) reversed the dedifferentiation phenotype. In addition, Notch activation subverted the hepatocyte-supporting angiocrine profile of LSECs by down-regulating critical hepatocyte mitogens, including Wnt2a, Wnt9b, and hepatocyte growth factor (HGF). This led to compromised hepatocyte proliferation under both quiescent and regenerating conditions. Whereas expression of Wnt2a and Wnt9b was dependent on eNOS-sGC signaling, HGF expression was not rescued by the sGC activator, suggesting heterogeneous mechanisms of LSECs to maintain hepatocyte homeostasis. CONCLUSION Endothelial Notch activation results in LSEC dedifferentiation and accelerated liver fibrogenesis through eNOS-sGC signaling, and alters the angiocrine profile of LSECs to compromise hepatocyte proliferation and liver regeneration (LR). (Hepatology 2018).
Collapse
Affiliation(s)
- Juan‐Li Duan
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina,Department of Clinical Aerospace Medicine, School of Aerospace MedicineFourth Military Medical UniversityXi'anChina
| | - Xian‐Chun Yan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zi‐Yan Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Ke‐Feng Dou
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Hua Han
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina,State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina,Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
94
|
Bibli SI, Luck B, Zukunft S, Wittig J, Chen W, Xian M, Papapetropoulos A, Hu J, Fleming I. A selective and sensitive method for quantification of endogenous polysulfide production in biological samples. Redox Biol 2018; 18:295-304. [PMID: 30077923 PMCID: PMC6083819 DOI: 10.1016/j.redox.2018.07.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that regulates cellular homeostasis and impacts on multiple physiological and pathophysiological processes. However, it exerts many of its biological actions indirectly via the formation of H2S-derived sulfane sulfur species/polysulfides. Because of the high reactivity of sulfur species, the detection of H2S-derived polysulfides in biological systems is challenging and currently used methods are neither sensitive nor quantitative. Herein, we describe a LC-MS/MS-based method that makes use of Sulfane Sulfur Probe 4 to detect endogenously generated polysulfides in biological samples in a selective, sensitive and quantitative manner. The results indicate a large variability in the activity of the H2S-generating enzymes in different murine organs, but the method described was able to detect intracellular levels of polysulfides in the nanomolar range and identify cystathionine γ-lyase as the major intracellular source of sulfane sulfur species/polysulfides in murine endothelial cells and hearts. The protocol described can be applied to a variety of biological samples for the quantification of the H2S-derived polysulfides and has the potential to increase understanding on the control and consequences of this gaseous transmitter.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| | - Bert Luck
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
95
|
Zhang X, Liu S, Weng X, Zeng S, Yu L, Guo J, Xu Y. Brg1 deficiency in vascular endothelial cells blocks neutrophil recruitment and ameliorates cardiac ischemia-reperfusion injury in mice. Int J Cardiol 2018; 269:250-258. [PMID: 30049497 DOI: 10.1016/j.ijcard.2018.07.105] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/14/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increased neutrophil infiltration and the ensuing inflammatory response represent a hallmark event in cardiac ischemia-reperfusion injury (IRI). It remains poorly defined how the epigenetic machinery contributes to this process. METHODS AND RESULTS Here we report that mice with endothelial specific deletion of brahma related gene 1 (BRG1), a chromatin remodeling protein, exhibited amelioration when subjected to cardiac ischemia-reperfusion as evidenced by a reduction in infarct size as well as better recovery of heart function. Endothelial BRG1 deficiency also attenuated cardiac fibrosis following IRI when compared to wild type littermates. Interestingly, ablation of BRG1 in the endothelium suppressed neutrophil infiltration and down-regulated the levels of pro-inflammatory mediators in the heart following IRI. Further studies revealed that BRG1 activated the transcription of PODOCALYXIN (PODXL), an L-SELECTIN ligand crucial for neutrophil adhesion, in vascular endothelial cells in response to hypoxia-reoxygenation (HR). BRG1 knockdown by small interfering RNA abrogated HR-induced PODXL expression and blocked the adhesion of neutrophils to endothelial cells. Mechanistically, BRG1 alters the chromatin structure surrounding the PODXL promoter by interacting with JMJD2B, a histone H3K9 demethylase. Depletion of JMJD2B abrogated PODXL induction by HR and inhibited the adhesion of neutrophils to endothelial cells. CONCLUSION Our data suggest that trans-activation of PODXL by the BRG1-JMJD2B complex in endothelial cells may promote neutrophil infiltration and consequently the pathogenesis of cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shuai Liu
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xinyu Weng
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Sheng Zeng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
96
|
Reeson P, Choi K, Brown CE. VEGF signaling regulates the fate of obstructed capillaries in mouse cortex. eLife 2018; 7:e33670. [PMID: 29697373 PMCID: PMC5919759 DOI: 10.7554/elife.33670] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Cortical capillaries are prone to obstruction, which over time, could have a major impact on brain angioarchitecture and function. The mechanisms that govern the removal of these obstructions and what long-term fate awaits obstructed capillaries, remains a mystery. We estimate that ~0.12% of mouse cortical capillaries are obstructed each day (lasting >20 min), preferentially in superficial layers and lower order branches. Tracking natural or microsphere-induced obstructions revealed that 75-80% of capillaries recanalized within 24 hr. Remarkably, 30% of all obstructed capillaries were pruned by 21 days, including some that had regained flow. Pruning involved regression of endothelial cells, which was not compensated for by sprouting. Using this information, we predicted capillary loss with aging that closely matched experimental estimates. Genetic knockdown or inhibition of VEGF-R2 signaling was a critical factor in promoting capillary recanalization and minimizing subsequent pruning. Our studies reveal the incidence, mechanism and long-term outcome of capillary obstructions which can also explain age-related capillary rarefaction.
Collapse
Affiliation(s)
- Patrick Reeson
- Division of Medical SciencesUniversity of VictoriaVictoriaCanada
| | - Kevin Choi
- Division of Medical SciencesUniversity of VictoriaVictoriaCanada
| | - Craig E Brown
- Division of Medical SciencesUniversity of VictoriaVictoriaCanada
- Department of BiologyUniversity of VictoriaVictoriaCanada
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
97
|
Crnkovic S, Marsh LM, El Agha E, Voswinckel R, Ghanim B, Klepetko W, Stacher‐Priehse E, Olschewski H, Bloch W, Bellusci S, Olschewski A, Kwapiszewska G. Resident cell lineages are preserved in pulmonary vascular remodeling. J Pathol 2018; 244:485-498. [PMID: 29359814 PMCID: PMC5903372 DOI: 10.1002/path.5044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/17/2017] [Accepted: 01/14/2018] [Indexed: 02/06/2023]
Abstract
Pulmonary vascular remodeling is the main pathological hallmark of pulmonary hypertension disease. We undertook a comprehensive and multilevel approach to investigate the origin of smooth muscle actin-expressing cells in remodeled vessels. Transgenic mice that allow for specific, inducible, and permanent labeling of endothelial (Cdh5-tdTomato), smooth muscle (Acta2-, Myh11-tdTomato), pericyte (Cspg4-tdTomato), and fibroblast (Pdgfra-tdTomato) lineages were used to delineate the cellular origins of pulmonary vascular remodeling. Mapping the fate of major lung resident cell types revealed smooth muscle cells (SMCs) as the predominant source of cells that populate remodeled pulmonary vessels in chronic hypoxia and allergen-induced murine models. Combining in vivo cell type-specific, time-controlled labeling of proliferating cells with a pulmonary artery phenotypic explant assay, we identified proliferation of SMCs as an underlying remodeling pathomechanism. Multicolor immunofluorescence analysis showed a preserved pattern of cell type marker localization in murine and human pulmonary arteries, in both donors and idiopathic pulmonary arterial hypertension (IPAH) patients. Whilst neural glial antigen 2 (chondroitin sulfate proteoglycan 4) labeled mostly vascular supportive cells with partial overlap with SMC markers, PDGFRα-expressing cells were observed in the perivascular compartment. The luminal vessel side was lined by a single cell layer expressing endothelial markers followed by an adjacent and distinct layer defined by SMC marker expression and pronounced thickening in remodeled vessels. Quantitative flow cytometric analysis of single cell digests of diverse pulmonary artery layers showed the preserved separation into two discrete cell populations expressing either endothelial cell (EC) or SMC markers in human remodeled vessels. Additionally, we found no evidence of overlap between EC and SMC ultrastructural characteristics using electron microscopy in either donor or IPAH arteries. Lineage-specific marker expression profiles are retained during pulmonary vascular remodeling without any indication of cell type conversion. The expansion of resident SMCs is the major underlying and evolutionarily conserved paradigm of pulmonary vascular disease pathogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Antigens/genetics
- Antigens/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Lineage
- Chronic Disease
- Disease Models, Animal
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/physiopathology
- Fluorescent Antibody Technique
- Genes, Reporter
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Lung/blood supply
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Respiratory Hypersensitivity/genetics
- Respiratory Hypersensitivity/metabolism
- Respiratory Hypersensitivity/pathology
- Respiratory Hypersensitivity/physiopathology
- Vascular Remodeling
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Department of PhysiologyMedical University of GrazGrazAustria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | - Elie El Agha
- Excellence Cluster Cardio‐Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC)Justus Liebig University GiessenGiessenGermany
| | | | - Bahil Ghanim
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Walter Klepetko
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Elvira Stacher‐Priehse
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Institute of PathologyMedical University of GrazGrazAustria
| | - Horst Olschewski
- Department of Internal Medicine, Division of PulmonologyMedical University of GrazGrazAustria
| | | | - Saverio Bellusci
- Excellence Cluster Cardio‐Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC)Justus Liebig University GiessenGiessenGermany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Department of PhysiologyMedical University of GrazGrazAustria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Department of PhysiologyMedical University of GrazGrazAustria
| |
Collapse
|
98
|
Mira E, Carmona-Rodríguez L, Pérez-Villamil B, Casas J, Fernández-Aceñero MJ, Martínez-Rey D, Martín-González P, Heras-Murillo I, Paz-Cabezas M, Tardáguila M, Oury TD, Martín-Puig S, Lacalle RA, Fabriás G, Díaz-Rubio E, Mañes S. SOD3 improves the tumor response to chemotherapy by stabilizing endothelial HIF-2α. Nat Commun 2018; 9:575. [PMID: 29422508 PMCID: PMC5805714 DOI: 10.1038/s41467-018-03079-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/18/2018] [Indexed: 02/08/2023] Open
Abstract
One drawback of chemotherapy is poor drug delivery to tumor cells, due in part to hyperpermeability of the tumor vasculature. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme usually repressed in the tumor milieu. Here we show that specific SOD3 re-expression in tumor-associated endothelial cells (ECs) increases doxorubicin (Doxo) delivery into and chemotherapeutic effect on tumors. Enhanced SOD3 activity fostered perivascular nitric oxide accumulation and reduced vessel leakage by inducing vascular endothelial cadherin (VEC) transcription. SOD3 reduced HIF prolyl hydroxylase domain protein activity, which increased hypoxia-inducible factor-2α (HIF-2α) stability and enhanced its binding to a specific VEC promoter region. EC-specific HIF-2α ablation prevented both the SOD3-mediated increase in VEC transcription and the enhanced Doxo effect. SOD3, VEC, and HIF-2α levels correlated positively in primary colorectal cancers, which suggests a similar interconnection of these proteins in human malignancy. Tumour vasculature influences drug delivery. Here, the authors show that SOD3 re-expression enhances doxorubicin delivery and effects through normalization of tumour vasculature via the HIF-2a/VE-cadherin pathway.
Collapse
Affiliation(s)
- Emilia Mira
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Lorena Carmona-Rodríguez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Beatriz Pérez-Villamil
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain
| | - María Jesús Fernández-Aceñero
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Diego Martínez-Rey
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Paula Martín-González
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Ignacio Heras-Murillo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Mateo Paz-Cabezas
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Manuel Tardáguila
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain.,Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Silvia Martín-Puig
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Rosa Ana Lacalle
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Gemma Fabriás
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain
| | - Eduardo Díaz-Rubio
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain.
| |
Collapse
|
99
|
Molina-Ortiz P, Orban T, Martin M, Habets A, Dequiedt F, Schurmans S. Rasa3 controls turnover of endothelial cell adhesion and vascular lumen integrity by a Rap1-dependent mechanism. PLoS Genet 2018; 14:e1007195. [PMID: 29381707 PMCID: PMC5806903 DOI: 10.1371/journal.pgen.1007195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/09/2018] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
Rasa3 is a GTPase activating protein of the GAP1 family which targets R-Ras and Rap1. Although catalytic inactivation or deletion of Rasa3 in mice leads to severe hemorrhages and embryonic lethality, the biological function and cellular location of Rasa3 underlying these defects remains unknown. Here, using a combination of loss of function studies in mouse and zebrafish as well as in vitro cell biology approaches, we identify a key role for Rasa3 in endothelial cells and vascular lumen integrity. Specific ablation of Rasa3 in the mouse endothelium, but not in megakaryocytes and platelets, lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out mice. Reduced plexus/sprouts formation and vascular lumenization defects were observed when Rasa3 was specifically inactivated in mouse endothelial cells at the postnatal or adult stages. Similar results were obtained in zebrafish after decreasing Rasa3 expression. In vitro, depletion of Rasa3 in cultured endothelial cells increased β1 integrin activation and cell adhesion to extracellular matrix components, decreased cell migration and blocked tubulogenesis. During migration, these Rasa3-depleted cells exhibited larger and more mature adhesions resulting from a perturbed dynamics of adhesion assembly and disassembly which significantly increased their life time. These defects were due to a hyperactivation of the Rap1 GTPase and blockade of FAK/Src signaling. Finally, Rasa3-depleted cells showed reduced turnover of VE-cadherin-based adhesions resulting in more stable endothelial cell-cell adhesion and decreased endothelial permeability. Altogether, our results indicate that Rasa3 is a critical regulator of Rap1 in endothelial cells which controls adhesions properties and vascular lumen integrity; its specific endothelial cell inactivation results in occluded blood vessels, hemorrhages and early embryonic death in mouse, mimicking thus the Rasa3-/- mouse phenotype. Because it delivers oxygen and nutriments to every tissue in the body, the vascular system is essential to vertebrate life. Blood vessels consist of a layer of interconnected endothelial cells delineating a luminal space through which blood flows. Formation of vascular lumens is a critical step in vascular development, as vessels should allow unrestricted blood flow while absorbing the pressure from cardiac activity yet retaining flexibility to adapt to homeostatic needs. Our current knowledge of how lumens are established and maintained is still modest and has come essentially from in vitro systems. Here, using a combination of loss of function studies in mouse and zebrafish and in vitro cell biology approaches, we show that Rasa3, a GTPase activating protein of the GAP1 family, controls Rap1 activation, endothelial cell adhesion and migration as well as formation of vascular lumens. We also found that inactivation of Rasa3 specifically in mouse endothelial cells lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out mice.
Collapse
Affiliation(s)
- Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
| | - Tanguy Orban
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Maud Martin
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Audrey Habets
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Franck Dequiedt
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
100
|
Manavski Y, Lucas T, Glaser SF, Dorsheimer L, Günther S, Braun T, Rieger MA, Zeiher AM, Boon RA, Dimmeler S. Clonal Expansion of Endothelial Cells Contributes to Ischemia-Induced Neovascularization. Circ Res 2018; 122:670-677. [PMID: 29358229 DOI: 10.1161/circresaha.117.312310] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE Vascularization is critical to maintain organ function. Although many molecular pathways were shown to control vessel growth, the genuine process of capillary formation under different conditions is unclear. OBJECTIVE Here, we elucidated whether clonal expansion contributes to vessel growth by using Confetti mice for genetic tracing of clonally expanding endothelial cells (ECs). METHODS AND RESULTS In postnatal retina angiogenesis, we predominantly observed random distribution of fluorescence labeled ECs indicative of random integration or cell mixing. However, in models of pathophysiological angiogenesis (retinopathy of prematurity), as well as ischemia-induced angiogenesis in limbs and hearts, clonally expanded ECs were significantly more abundant (≤69%). Inhibition of VEGFR2 (vascular endothelial growth factor receptor 2) reduced clonal expansion after ischemia. To determine the mechanism underlying clonal expansion in vivo, we assessed gene expression specifically in clonally expanded ECs selected by laser capture microscopy. Clonally expanded ECs showed an enrichment of genes involved in endothelial-to-mesenchymal transition. Moreover, hypoxia-induced clonal expansion and endothelial-to-mesenchymal transition in ECs in vitro suggesting that hypoxia-enhanced endothelial-to-mesenchymal transition might contribute to vessel growth under ischemia. CONCLUSIONS Our data suggest that neovascularization after ischemia is partially mediated by clonal expansion of ECs. Identification of the pathways that control clonal expansion may provide novel tools to augment therapeutic neovascularization or treat pathological angiogenesis.
Collapse
Affiliation(s)
- Yosif Manavski
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Tina Lucas
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Simone F Glaser
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Lena Dorsheimer
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Stefan Günther
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Thomas Braun
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Michael A Rieger
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Andreas M Zeiher
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Reinier A Boon
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.)
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.).
| |
Collapse
|