51
|
Wu GR, Baeken C. Sex Determines Anterior Cingulate Cortex Cortical Thickness in the Course of Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:346-353. [PMID: 39677834 PMCID: PMC11639738 DOI: 10.1016/j.bpsgos.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe psychiatric disorder affecting women more than men. Changes in anterior cingulate cortex cortical thickness (ACC CT) may be crucial to understanding sex influences in MDD onset and recurrency. METHODS Taken from the large open-source REST-meta-MDD database, we contrasted 499 patients with MDD (381 first-episode MDD, 118 recurrent MDD) and 524 healthy control participants using linear mixed-effects models and normative modeling and investigated whether sex differences affected ACC CT and its subregions differently during the course of depressive illness. RESULTS Overall, females showed thinner ACC CT compared with males. Female patients with a first depressive episode showed significantly thinner ACC CT compared with male patients with first-episode MDD (Cohen's d = -0.65), including in the perigenual ACC and the subgenual ACC, but not in the dorsal ACC. Moreover, male patients with first-episode depression showed thicker ACC CT (including subgenual ACC and pregenual ACC) compared to the male patients with recurrent MDD (Cohen's d = 1.24), but they also showed significantly thicker cortices in the same subregions in comparison to never-depressed males (Cohen's d = 0.85). No lateralization differences were observed in ACC CT or its subdivisions. CONCLUSIONS Sex determined ACC CT changes over the course of depressive illness. Because the ACC subdivisions in question are associated with dysregulation of emotions, our observations substantiate the need for early and prolonged sex-specific clinical interventions.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
- Ghent Experimental Psychiatry Lab, Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry Lab, Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (Universitair Ziekenhuis Brussel), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
52
|
Peterson M, Braga RM, Floris DL, Nielsen JA. Evidence for a Compensatory Relationship between Left- and Right-Lateralized Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570817. [PMID: 38106130 PMCID: PMC10723397 DOI: 10.1101/2023.12.08.570817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
53
|
Irani ZA, Sheridan AMC, Badcock NA, Fox A. Assessing non-right-handedness and atypical cerebral lateralisation as predictors of paediatric mental health difficulties. Eur J Neurosci 2023; 58:4195-4210. [PMID: 37821770 DOI: 10.1111/ejn.16162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Research utilising handedness as a proxy for atypical language lateralisation has invoked the latter to explain increased mental health difficulties in left-/mixed-handed children. The current study investigated unique associations between handedness and language lateralisation, handedness and mental health, and language lateralisation and mental health, in children, to elucidate the role of cerebral lateralisation in paediatric mental health. Participants were N = 64 (34 females [52%]; MAge = 8.56 years; SDAge = 1.33; aged 6-12 years) typically developing children. Hand preference was assessed via a reaching task, language lateralisation was assessed using functional transcranial Doppler ultrasonography (fTCD) during an expressive language task, and mental health was assessed with the Strengths and Difficulties Questionnaire. As hypothesised, leftward hand preference predicted increased general mental health issues in children, with a strong relationship noted between leftward hand preference and the emotional symptoms subscale. Contrary to expectation, no relationship was found between direction of language lateralisation and general mental health issues, although exploratory analyses of subscales showed rightward lateralisation to predict conduct problems. Hand preference and direction of language lateralisation were also not significantly associated. The relatively weak relationship between manual and language laterality coupled with discrepancy regarding the predictive scope of each phenotype (i.e., hand preference predicts overall mental health, whereas language laterality predicts only conduct problems) suggests independent developmental pathways for these phenotypes. The role of manual laterality in paediatric mental health warrants further investigation utilising a neuroimaging method with higher spatial resolution.
Collapse
Affiliation(s)
- Zubin A Irani
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Andrew M C Sheridan
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Allison Fox
- School of Psychological Science, University of Western Australia, Perth, Australia
| |
Collapse
|
54
|
Zhang J, Zamoscik VE, Kirsch P, Gerchen MF. No evidence from a negative mood induction fMRI task for frontal functional asymmetry as a suitable neurofeedback target. Sci Rep 2023; 13:17557. [PMID: 37845332 PMCID: PMC10579342 DOI: 10.1038/s41598-023-44694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
Frontal functional asymmetry (FA) has been proposed as a potential target for neurofeedback (NFB) training for mental disorders but most FA NFB studies used electroencephalography while the investigations of FA NFB in functional magnetic resonance imaging (fMRI) are rather limited. In this study, we aimed at identifying functional asymmetry effects in fMRI and exploring its potential as a target for fMRI NFB studies by re-analyzing an existing data set containing a resting state measurement and a sad mood induction task of n = 30 participants with remitted major depressive disorder and n = 30 matched healthy controls. We applied low-frequency fluctuations (ALFF), fractional ALFF, and regional homogeneity and estimated functional asymmetry in both a voxel-wise and regional manner. We assessed functional asymmetry during rest and negative mood induction as well as functional asymmetry changes between the phases, and associated the induced mood change with the change in functional asymmetry. Analyses were conducted within as well as between groups. Despite extensive analyses, we identified only very limited effects. While some tests showed nominal significance, our results did not contain any clear identifiable patterns of effects that would be expected if a true underlying effect would be present. In conclusion, we do not find evidence for FA effects related to negative mood in fMRI, which questions the usefulness of FA measures for real-time fMRI neurofeedback as a treatment approach for affective disorders.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany.
| | - Vera Eva Zamoscik
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, University of Heidelberg, Heidelberg, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, University of Heidelberg, Heidelberg, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
55
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G, environMENTAL consortium. How does the macroenvironment influence brain and behaviour - a review of current status and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296785. [PMID: 37873310 PMCID: PMC10593044 DOI: 10.1101/2023.10.09.23296785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
| | - Soeren Hese
- Institute of Geography, Friedrich Schiller University Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | |
Collapse
|
56
|
Omont-Lescieux S, Menu I, Salvia E, Poirel N, Oppenheim C, Houdé O, Cachia A, Borst G. Lateralization of the cerebral network of inhibition in children before and after cognitive training. Dev Cogn Neurosci 2023; 63:101293. [PMID: 37683326 PMCID: PMC10498008 DOI: 10.1016/j.dcn.2023.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Inhibitory control (IC) plays a critical role in cognitive and socio-emotional development. IC relies on a lateralized cortico-subcortical brain network including the inferior frontal cortex, anterior parts of insula, anterior cingulate cortex, caudate nucleus and putamen. Brain asymmetries play a critical role for IC efficiency. In parallel to age-related changes, IC can be improved following training. The aim of this study was to (1) assess the lateralization of IC network in children (N = 60, 9-10 y.o.) and (2) examine possible changes in neural asymmetry of this network from anatomical (structural MRI) and functional (resting-state fMRI) levels after 5-week computerized IC vs. active control (AC) training. We observed that IC training, but not AC training, led to a leftward lateralization of the putamen anatomy, similarly to what is observed in adults, supporting that training could accelerate the maturation of this structure.
Collapse
Affiliation(s)
- Sixtine Omont-Lescieux
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Iris Menu
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Emilie Salvia
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Poirel
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GIP Cyceron, Caen, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Olivier Houdé
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France; Institut Universitaire de France, Paris, France
| | - Arnaud Cachia
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Grégoire Borst
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
57
|
Sharpley CF, Evans ID, Bitsika V, Arnold WM, Jesulola E, Agnew LL. Frontal Alpha Asymmetry Argues for the Heterogeneity of Psychological Resilience. Brain Sci 2023; 13:1354. [PMID: 37759955 PMCID: PMC10526132 DOI: 10.3390/brainsci13091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Depression is associated with frontal alpha asymmetry (FAA) and Psychological Resilience (PR), although in different ways. Only cursory attention has been given to how these three constructs interact despite the possible clinical and research implications of those associations. One limitation of recent research into these associations has been conceptualising PR as a unitary construct, whereas it has been shown to be multi-component. This study investigated the underlying components of PR, their correlations with FAA, and the effect that participants' depressive status had upon those correlations in a community sample of 54 males and 46 females aged between 18 yr and 75 years. Results confirmed the overall inverse association between total PR and depression for four of the original five PR components and for one of the two components found in this sample. Similarly, there were differences between the ways that FAA and PR components were associated, depending upon the depressive status of participants. Source localisation data indicated that the PR components were not uniformly correlated with alpha activity in the same brain regions. These findings of content, efficacy, and neurophysiological differences between the five components of PR and their associations with FAA argue against consideration of PR as a unitary construct.
Collapse
Affiliation(s)
- Christopher F. Sharpley
- Brain-Behavior Research Group, University of New England, Armidale, NSW 2350, Australia; (I.D.E.); (V.B.); (W.M.A.); (E.J.)
- School of Science & Technology, University of New England, Queen Elizabeth Drive, Armidale, NSW 2351, Australia
| | - Ian D. Evans
- Brain-Behavior Research Group, University of New England, Armidale, NSW 2350, Australia; (I.D.E.); (V.B.); (W.M.A.); (E.J.)
| | - Vicki Bitsika
- Brain-Behavior Research Group, University of New England, Armidale, NSW 2350, Australia; (I.D.E.); (V.B.); (W.M.A.); (E.J.)
| | - Wayne M. Arnold
- Brain-Behavior Research Group, University of New England, Armidale, NSW 2350, Australia; (I.D.E.); (V.B.); (W.M.A.); (E.J.)
| | - Emmanuel Jesulola
- Brain-Behavior Research Group, University of New England, Armidale, NSW 2350, Australia; (I.D.E.); (V.B.); (W.M.A.); (E.J.)
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC 4222, Australia
| | - Linda L. Agnew
- Brain-Behavior Research Group, University of New England, Armidale, NSW 2350, Australia; (I.D.E.); (V.B.); (W.M.A.); (E.J.)
- Griffith University, Nathan, QLD 4222, Australia
| |
Collapse
|
58
|
Barton SA, Kent M, Hecht EE. Neuroanatomical asymmetry in the canine brain. Brain Struct Funct 2023; 228:1657-1669. [PMID: 37436502 DOI: 10.1007/s00429-023-02677-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
The brains of humans and non-human primates exhibit left/right asymmetries in grey matter morphology, white matter connections, and functional responses. These asymmetries have been implicated in specialized behavioral adaptations such as language, tool use, and handedness. Left/right asymmetries are also observed in behavioral tendencies across the animal kingdom, suggesting a deep evolutionary origin for the neural mechanisms underlying lateralized behavior. However, it is still unclear to what extent brain asymmetries supporting lateralized behaviors are present in other large-brained animals outside the primate order. Canids and other carnivorans evolved large, complex brains independently and convergently with primates, and exhibit lateralized behaviors. Therefore, domestic dogs offer an opportunity to address this question. We examined T2-weighted MRI images of 62 dogs from 33 breeds, opportunistically collected from a veterinary MRI scanner from dogs who were referred for neurological examination but were not found to show any neuropathology. Volumetrically asymmetric regions of gray matter included portions of the temporal and frontal cortex, in addition to portions of the cerebellum, brainstem, and other subcortical regions. These results are consistent with the perspective that asymmetry may be a common feature underlying the evolution of complex brains and behavior across clades, and provide neuro-organizational information that is likely relevant to the growing field of canine behavioral neuroscience.
Collapse
Affiliation(s)
- Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| | - Marc Kent
- College of Veterinary Medicine, University of Georgia, Athens, 30602, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA
| |
Collapse
|
59
|
Mundorf A, Ocklenburg S. Hemispheric asymmetries in mental disorders: evidence from rodent studies. J Neural Transm (Vienna) 2023; 130:1153-1165. [PMID: 36842091 PMCID: PMC10460727 DOI: 10.1007/s00702-023-02610-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The brain is built with hemispheric asymmetries in structure and function to enable fast neuronal processing. In neuroimaging studies, several mental disorders have been associated with altered or attenuated hemispheric asymmetries. However, the exact mechanism linking asymmetries and disorders is not known. Here, studies in animal models of mental disorders render important insights into the etiology and neuronal alterations associated with both disorders and atypical asymmetry. In this review, the current literature of animal studies in rats and mice focusing on anxiety and fear, anhedonia and despair, addiction or substance misuse, neurodegenerative disorders as well as stress exposure, and atypical hemispheric asymmetries is summarized. Results indicate overall increased right-hemispheric neuronal activity and a left-sided behavioral bias associated with symptoms of anxiety, fear, anhedonia, behavioral despair as well as stress exposure. Addiction behavior is associated with right-sided bias and transgenic models of Alzheimer's disease indicate an asymmetrical accumulation of fibrillar plaques. Most studies focused on changes in the bilateral amygdala and frontal cortex. Across studies, two crucial factors influencing atypical asymmetries arose independently of the disorder modeled: sex and developmental age. In conclusion, animal models of mental disorders demonstrate atypical hemispheric asymmetries similar to findings in patients. Particularly, increased left-sided behavior and greater right-hemispheric activity were found across models applying stress-based paradigms. However, sex- and age-dependent effects on atypical hemispheric asymmetries are present that require further investigation. Animal models enable the analysis of hemispheric changes on the molecular level which may be most effective to detect early alterations.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
60
|
Schetter M, Romascano D, Gaujard M, Rummel C, Denervaud S. Learning by Heart or with Heart: Brain Asymmetry Reflects Pedagogical Practices. Brain Sci 2023; 13:1270. [PMID: 37759871 PMCID: PMC10526483 DOI: 10.3390/brainsci13091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Brain hemispheres develop rather symmetrically, except in the case of pathology or intense training. As school experience is a form of training, the current study tested the influence of pedagogy on morphological development through the cortical thickness (CTh) asymmetry index (AI). First, we compared the CTh AI of 111 students aged 4 to 18 with 77 adults aged > 20. Second, we investigated the CTh AI of the students as a function of schooling background (Montessori or traditional). At the whole-brain level, CTh AI was not different between the adult and student groups, even when controlling for age. However, pedagogical experience was found to impact CTh AI in the temporal lobe, within the parahippocampal (PHC) region. The PHC region has a functional lateralization, with the right PHC region having a stronger involvement in spatiotemporal context encoding, while the left PHC region is involved in semantic encoding. We observed CTh asymmetry toward the left PHC region for participants enrolled in Montessori schools and toward the right for participants enrolled in traditional schools. As these participants were matched on age, intelligence, home-life and socioeconomic conditions, we interpret this effect found in memory-related brain regions to reflect differences in learning strategies. Pedagogy modulates how new concepts are encoded, with possible long-term effects on knowledge transfer.
Collapse
Affiliation(s)
- Martin Schetter
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
| | - David Romascano
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital—Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Mathilde Gaujard
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital—Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Solange Denervaud
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
61
|
Brancucci A, Ferracci S, D'Anselmo A, Manippa V. Hemispheric functional asymmetries and sex effects in visual bistable perception. Conscious Cogn 2023; 113:103551. [PMID: 37429212 DOI: 10.1016/j.concog.2023.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
This study investigates bistable perception as a function of the presentation side of the ambiguous figures and of participants' sex, to evaluate left-right hemispheric (LH-RH) asymmetries related to consciousness. In two experiments using the divided visual field paradigm, two Rubin's vase-faces figures were projected simultaneously and continuously 180 s long to the left (LVF) and right (RVF; Experiment 1) or to the upper (UVF) and lower (DVF; Experiment 2) visual hemifields of 48 healthy subjects monitored with eye-tracker. Experiment 1 enables stimulus segregation from the LVF to the RH and from the RVF to the LH, whereas Experiment 2 does not. Results from Experiment 1 show that males perceived the face profiles for more time in the LVF than in the RVF, with an opposite trend for the vase, whereas females show a similar pattern of perception in the two hemifields. A related result confirmed the previously reported possibility to have simultaneously two different percepts (qualia) in the two hemifields elicited by the two identic ambiguous stimuli, which was here observed to occur more frequently in males. Similar effects were not observed in Experiment 2. These findings suggest that the percepts display the processing abilities of the hemisphere currently processing the stimulus eliciting them (e.g., RH-faces), and that females and males reflect in bistable perception, a genuine manifestation of consciousness, the well-known hemispheric asymmetry differences they show in ordinary perception.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Department of Motor, Human and Health Sciences, University of Rome "Foro Italico", Italy.
| | - Sara Ferracci
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti - Pescara "G. d'Annunzio", Italy
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences, University of Chieti - Pescara "G. d'Annunzio", Italy
| | - Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Italy
| |
Collapse
|
62
|
Harms A, Bauer T, Witt JA, Baumgartner T, von Wrede R, Racz A, Ernst L, Becker AJ, Helmstaedter C, Surges R, Rüber T. Mesiotemporal Volumetry, Cortical Thickness, and Neuropsychological Deficits in the Long-term Course of Limbic Encephalitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/4/e200125. [PMID: 37230543 DOI: 10.1212/nxi.0000000000200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Limbic encephalitis (LE) is an autoimmune disease often associated with temporal lobe epilepsy and subacute memory deficits. It is categorized into serologic subgroups, which differ in clinical progress, therapy response, and prognosis. Using longitudinal MRI analysis, we hypothesized that mesiotemporal and cortical atrophy rates would reveal serotype-specific patterns and reflect disease severity. METHODS In this longitudinal case-control study, all individuals with antibody-positive (glutamic acid decarboxylase 65 [GAD], leucine-rich glioma-inactivated protein 1 [LGI1], contactin-associated protein 2 [CASPR2], and N-methyl-d-aspartate receptor [NMDAR]) nonparaneoplastic LE according to Graus' diagnostic criteria treated between 2005 and 2019 at the University Hospital Bonn were enrolled. A longitudinal healthy cohort was included as the control group. Subcortical segmentation and cortical reconstruction of T1-weighted MRI were performed using the longitudinal framework in FreeSurfer. We applied linear mixed models to examine mesiotemporal volumes and cortical thickness longitudinally. RESULTS Two hundred fifty-seven MRI scans from 59 individuals with LE (34 female, age at disease onset [mean ± SD] 42.5 ± 20.4 years; GAD: n = 30, 135 scans; LGI1: n = 15, 55 scans; CASPR2: n = 9, 37 scans; and NMDAR: n = 5, 30 scans) were included. The healthy control group consisted of 128 scans from 41 individuals (22 female, age at first scan [mean ± SD] 37.7 ± 14.6 years). The amygdalar volume at disease onset was significantly higher in individuals with LE (p ≤ 0.048 for all antibody subgroups) compared with that in healthy controls and decreased over time in all antibody subgroups, except in the GAD subgroup. We observed a significantly higher hippocampal atrophy rate in all antibody subgroups compared with that in healthy controls (all p ≤ 0.002), except in the GAD subgroup. Cortical atrophy rates exceeded normal aging in individuals with impaired verbal memory, while those who were not impaired did not differ significantly from healthy controls. DISCUSSION Our data depict higher mesiotemporal volumes in the early disease stage, most likely due to edematous swelling, followed by volume regression and atrophy/hippocampal sclerosis in the late disease stage. Our study reveals a continuous and pathophysiologically meaningful trajectory of mesiotemporal volumetry across all serogroups and provides evidence that LE should be considered a network disorder in which extratemporal involvement is an important determinant of disease severity.
Collapse
Affiliation(s)
- Antonia Harms
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Tobias Bauer
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Juri-Alexander Witt
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Tobias Baumgartner
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Randi von Wrede
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Attila Racz
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Leon Ernst
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Albert J Becker
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Christoph Helmstaedter
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Rainer Surges
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany
| | - Theodor Rüber
- From the Department of Epileptology (A.H., T. Bauer, J.-A.W., T. Baumgartner, R.v.W., A.R., L.E., C.H., R.S., T.R.), and Department of Neuropathology (A.J.B.), Section for Translational Epilepsy Research, University Hospital Bonn, Germany.
| |
Collapse
|
63
|
de Matos K, Cury C, Chougar L, Strike LT, Rolland T, Riche M, Hemforth L, Martin A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Papadopoulos Orfanos D, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Frouin V, Bach Cuadra M, Colliot O, Couvy-Duchesne B. Temporo-basal sulcal connections: a manual annotation protocol and an investigation of sexual dimorphism and heritability. Brain Struct Funct 2023; 228:1459-1478. [PMID: 37358662 DOI: 10.1007/s00429-023-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The temporo-basal region of the human brain is composed of the collateral, the occipito-temporal, and the rhinal sulci. We manually rated (using a novel protocol) the connections between rhinal/collateral (RS-CS), collateral/occipito-temporal (CS-OTS) and rhinal/occipito-temporal (RS-OTS) sulci, using the MRI of nearly 3400 individuals including around 1000 twins. We reported both the associations between sulcal polymorphisms as well with a wide range of demographics (e.g. age, sex, handedness). Finally, we also estimated the heritability, and the genetic correlation between sulcal connections. We reported the frequency of the sulcal connections in the general population, which were hemisphere dependent. We found a sexual dimorphism of the connections, especially marked in the right hemisphere, with a CS-OTS connection more frequent in females (approximately 35-40% versus 20-25% in males) and an RS-CS connection more common in males (approximately 40-45% versus 25-30% in females). We confirmed associations between sulcal connections and characteristics of incomplete hippocampal inversion (IHI). We estimated the broad sense heritability to be 0.28-0.45 for RS-CS and CS-OTS connections, with hints of dominant contribution for the RS-CS connection. The connections appeared to share some of their genetic causing factors as indicated by strong genetic correlations. Heritability appeared much smaller for the (rarer) RS-OTS connection.
Collapse
Affiliation(s)
- Kevin de Matos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Claire Cury
- CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U-1228, University of Rennes, 35000, Rennes, France
| | - Lydia Chougar
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Service de neuroradiologie, AP-HP, Pitié-Salpêtrière, Paris, France
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thibault Rolland
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Maximilien Riche
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, 75013, Paris, France
| | - Lisa Hemforth
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Alexandre Martin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Inria Sophia Antipolis, Morpheme Project, Paris, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Brunswick, Berlin, Germany
| | - Jean-Luc Martinot
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, AP-HP, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Eric Artiges
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
- UMR 5293, CNRS, CEA, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montréal and Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neuroscience, Centre for Population Neuroscience and Stratified Medicine (PONS), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Department of Psychiatry and Neuroscience, Centre for Population Neuroscience and Stratified Medicine (PONS), Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Baptiste Couvy-Duchesne
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France.
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4062, Australia.
- ARAMIS Team, Pitié-Salpêtrière Hospital, Institut du Cerveau, 75013, Paris, France.
| |
Collapse
|
64
|
Roe JM, Vidal-Pineiro D, Amlien IK, Pan M, Sneve MH, Thiebaut de Schotten M, Friedrich P, Sha Z, Francks C, Eilertsen EM, Wang Y, Walhovd KB, Fjell AM, Westerhausen R. Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife 2023; 12:e84685. [PMID: 37335613 PMCID: PMC10368427 DOI: 10.7554/elife.84685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the developmental timing of asymmetry and the extent to which it arises through genetic and later influences in childhood. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in seven datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry is low-moderately heritable (max h2SNP ~19%) and correlates phenotypically and genetically in specific regions, indicating coordinated development of asymmetries partly through genes. In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises early in life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of BordeauxBordeauxFrance
- Brian Connectivity and Behaviour Laboratory, Sorbonne UniversityParisFrance
| | - Patrick Friedrich
- Institute of Neuroscience and Medicine, Research Centre JülichJülichGermany
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Espen M Eilertsen
- PROMENTA Research Center, Department of Psychology, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - René Westerhausen
- Section for Cognitive and Clinical Neuroscience, Department of Psychology, University of OsloOsloNorway
| |
Collapse
|
65
|
Blum ASS, Riggins NY, Hersey DP, Atwood GS, Littenberg B. Left- vs right-sided migraine: a scoping review. J Neurol 2023; 270:2938-2949. [PMID: 36882660 DOI: 10.1007/s00415-023-11609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Migraine is a historically unilateral head pain condition, the cause of which is not currently known. A growing body of literature suggests individuals who experience migraine with left-sided headache ("left-sided migraine") may be distinguished from those who experience migraine with right-sided headache ("right-sided migraine"). OBJECTIVE In this scoping review, we explore migraine unilaterality by summarizing what is currently known about left- and right-sided migraine. METHODS Two senior medical librarians worked with the lead authors to construct and refine a set of search terms to identify studies of subjects with left- or right-sided migraine published between 1988, which is the year of publication of the first edition of the International Classification of Headache Disorders (ICHD), and December 8, 2021 (the date the searches were conducted). The following databases were searched: Medline, Embase, PsycINFO, PubMed, Cochrane Library, and Web of Science. Abstracts were loaded into Covidence review software, deduplicated, then screened by two authors to determine study eligibility. Eligible studies were those involving subjects diagnosed with migraine (according to ICHD criteria) in which the authors either: a) compared left- to right-sided migraine; or b) described (with analysis) a characteristic that differentiated the two. Data were extracted by the lead author, including ICHD version, the definition of unilateral migraine used by the authors, sample size, whether the findings were collected during or between attacks, and their key findings. The key findings were grouped into the following themes: handedness, symptoms, psychiatric assessments, cognitive testing, autonomic function, and imaging. RESULTS After deduplication, the search yielded 5428 abstracts for screening. Of these, 179 met eligibility criteria and underwent full text review. 26 articles were included in the final analysis. All of the studies were observational. One study was performed during attack, nineteen between attacks, and six both during and between attacks. Left- and right-sided migraine were found to differ across multiple domains. In several cases, reciprocal findings were reported in left- and right-migraine. For example, both left- and right-sided migraine were associated with ipsilateral handedness, tinnitus, onset of first Parkinson's symptoms, changes in blood flow across the face, white matter hyperintensities on MRI, activation of the dorsal pons, hippocampal sclerosis, and thalamic NAA/Cho and NAA/Cr concentrations. In other cases, however, the findings were specific to one migraine laterality. For example, left-sided migraine was associated with worse quality of life, anxiety, bipolar disorder, PTSD, lower sympathetic activity, and higher parasympathetic activity. Whereas right-sided migraine was associated with poorer performance on multiple cognitive tests, a greater degree of anisocoria, changes in skin temperature, higher diastolic blood pressure, changes in blood flow through the middle cerebral and basilar arteries, and changes on EEG. CONCLUSION Left- and right-sided migraine differed across a wide range of domains, raising the possibility that the pathophysiology of left- and right-migraine may not be identical.
Collapse
Affiliation(s)
- Adam S Sprouse Blum
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Nina Y Riggins
- Department of Neurological Sciences, University of California San Diego, San Diego, CA, USA
| | - Denise P Hersey
- Dana Medical Library, University of Vermont, Burlington, VT, USA
| | - Gary S Atwood
- Dana Medical Library, University of Vermont, Burlington, VT, USA
| | - Benjamin Littenberg
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
66
|
El Basbasse Y, Packheiser J, Peterburs J, Maymon C, Güntürkün O, Grimshaw G, Ocklenburg S. Walk the plank! Using mobile electroencephalography to investigate emotional lateralization of immersive fear in virtual reality. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221239. [PMID: 37266038 PMCID: PMC10230188 DOI: 10.1098/rsos.221239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/03/2023] [Indexed: 06/03/2023]
Abstract
Most studies on emotion processing induce emotions through images or films. However, this method lacks ecological validity, limiting generalization to real-life emotion processing. More realistic paradigms using virtual reality (VR) may be better suited to investigate authentic emotional states and their neuronal correlates. This pre-registered study examines the neuronal underpinnings of naturalistic fear, measured using mobile electroencephalography (EEG). Seventy-five healthy participants walked across a virtual plank which extended from the side of a skyscraper-either 80 storeys up (the negative condition) or at street level (the neutral condition). Subjective ratings showed that the negative condition induced feelings of fear. Following the VR experience, participants passively viewed negative and neutral images from the international affective picture system (IAPS) outside of VR. We compared frontal alpha asymmetry between the plank and IAPS task and across valence of the conditions. Asymmetry indices in the plank task revealed greater right-hemispheric lateralization during the negative VR condition, relative to the neutral VR condition and to IAPS viewing. Within the IAPS task, no significant asymmetries were detected. In summary, our findings indicate that immersive technologies such as VR can advance emotion research by providing more ecologically valid ways to induce emotion.
Collapse
Affiliation(s)
- Yasmin El Basbasse
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Julian Packheiser
- Netherlands Institute for Neuroscience, Social Brain Lab, 1105 BA Amsterdam, The Netherlands
| | - Jutta Peterburs
- Institute for Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Christopher Maymon
- School of Psychology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Gina Grimshaw
- School of Psychology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| |
Collapse
|
67
|
Mundorf A, Getzmann S, Gajewski PD, Larra MF, Wascher E, Ocklenburg S. Stress exposure, hand preference, and hand skill: A deep phenotyping approach. Laterality 2023:1-29. [PMID: 37099727 DOI: 10.1080/1357650x.2023.2204551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
ABSTRACTStress exposure and reactivity may show differential associations with handedness, but shallow phenotyping may influence the current knowledge. Importantly, different handedness measures do not necessarily show high correlations with each other and should not be used interchangeably as they may reflect different dimensions of laterality. Here, data on handedness from 599 participants in the population-based, longitudinal Dortmund Vital Study was used to determine various asymmetry indices. Hand preference was assessed with the Edinburgh Handedness Inventory (EHI) and the lateral preference inventory (LPI) measuring handedness, footedness, earedness, and eyedness. Hand performance was determined using the pegboard test. In addition, data on several dimensions of stress exposure and reactivity, including hair cortisol, and mental well-being was analysed to determine associations with handedness. All handedness measures correlated significantly with each other, with the strongest correlation between the EHI and the LPI handedness score. The EHI and LPI hand measures resulted in the highest effect sizes and most consistent correlations with stress or mental well-being. In contrast, the pegboard test only showed very little association with the stress and mental well-being measures. This highlights the importance of handedness phenotyping. Including preference measures is recommended to disentangle the link between handedness and mental health.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Mauro F Larra
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
68
|
Kopal J, Kumar K, Shafighi K, Saltoun K, Modenato C, Moreau CA, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Douard E, Jizi K, Beauchamp-Chatel A, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Zatorre R, Jacquemont S, Bzdok D. Using rare genetic mutations to revisit structural brain asymmetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537199. [PMID: 37131672 PMCID: PMC10153125 DOI: 10.1101/2023.04.17.537199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.
Collapse
|
69
|
Schijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, et alSchijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, Fazio L, Pergola G, Bertolino A, Díaz-Caneja CM, Janssen J, Lois NG, Arango C, Tomyshev AS, Lebedeva I, Cervenka S, Sellgren CM, Georgiadis F, Kirschner M, Kaiser S, Hajek T, Skoch A, Spaniel F, Kim M, Kwak YB, Oh S, Kwon JS, James A, Bakker G, Knöchel C, Stäblein M, Oertel V, Uhlmann A, Howells FM, Stein DJ, Temmingh HS, Diaz-Zuluaga AM, Pineda-Zapata JA, López-Jaramillo C, Homan S, Ji E, Surbeck W, Homan P, Fisher SE, Franke B, Glahn DC, Gur RC, Hashimoto R, Jahanshad N, Luders E, Medland SE, Thompson PM, Turner JA, van Erp TGM, Francks C. Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proc Natl Acad Sci U S A 2023; 120:e2213880120. [PMID: 36976765 PMCID: PMC10083554 DOI: 10.1073/pnas.2213880120] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
| | - Merel C. Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam1081 HZ, The Netherlands
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Neeltje E. M. van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam3015 CN, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, New York, NY10468
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Víctor Ortiz-García de la Foz
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, Marqués de Valdecilla University Hospital, Instituto de Investigación Sanitaria Valdecilla, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Diana Tordesillas-Gutierrez
- Department of Radiology, Instituto de Investigación Marqués de Valdecilla, Marqués de Valdecilla University Hospital, Santander39011, Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria, Universidad de Cantabria - Consejo Superior de Investigaciones Científicas, Santander39005, Spain
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, School of Medicine, University of Sevilla, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas - Instituto de Biomedicina de Sevilla, Sevilla41013, Spain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Bjørknes College, Oslo0456, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo0373, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo0450, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo0373, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD21201
| | - Jason M. Bruggemann
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Edith Collins Centre (Translational Research in Alcohol, Drugs & Toxicology), Sydney Local Health District, Sydney2050, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney2006, Australia
| | - Stanley V. Catts
- School of Medicine, The University of Queensland, Brisbane4006, Australia
| | - Patricia T. Michie
- School of Psychological Sciences, University of Newcastle, Newcastle2308, Australia
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane4072, Australia
- Queensland Centre for Mental Health Research, The University of Queensland, Brisbane4076, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Paul E. Rasser
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle2308, Australia
- Hunter Medical Research Institute, Newcastle2305, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
| | - Rodney J. Scott
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle2308, Australia
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Frans A. Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- PRC for Health Behaviour, Hunter Medical Research Institute, Newcastle2305, Australia
| | - Carmel M. Loughland
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- Hunter New England Mental Health Service, Newcastle2305, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne3053, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Thomas W. Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Lieuwe de Haan
- Early Psychosis Department, Department of Psychiatry, Amsterdam UMC (location AMC), Amsterdam1105 AZ, The Netherlands
- Arkin Institute for Mental Health, Amsterdam1033 NN, The Netherlands
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
- Core-Facility Brainimaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg35032, Germany
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Bernd Krämer
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Oliver Gruber
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Juan Bustillo
- Department of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM87106
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA94121
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
| | - Vince D. Calhoun
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Judith M. Ford
- San Francisco VA Medical Center, University of California, San Francisco, CA94121
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Long Beach VA Health Care System, Long Beach, CA90822
| | - Jingxu Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing404188, P.R. China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Benito Menni Complex Assistencial en Salut Mental, Barcelona08830, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX77030
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Erin W. Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore539747, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Christina Andreou
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - André Schmidt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - Andrew M. McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town7505, South Africa
| | - Hilmar K. Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Freda Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Jesse T. Edmond
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | - Kelly Rootes-Murdy
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | | | | | - Linda A. Antonucci
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari70121, Italy
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
- Psychiatry Unit, Bari University Hospital, Bari70121, Italy
| | - Covadonga M. Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Noemi G. Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Alexander S. Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala751 85, Sweden
| | - Carl M. Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm171 65, Sweden
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Montreal Neurological Institute, McGill University, MontrealH3A 2B4, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva1202, Switzerland
| | - Tomas Hajek
- National Institute of Mental Health, Klecany250 67, Czech Republic
- Department of Psychiatry, Dalhousie University, HalifaxB3H 2E2, Canada
| | - Antonin Skoch
- National Institute of Mental Health, Klecany250 67, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany250 67, Czech Republic
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul08826, Republic of Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Anthony James
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Geor Bakker
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Dresden01187, Germany
| | - Fleur M. Howells
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town7505, South Africa
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
| | - Ana M. Diaz-Zuluaga
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Julian A. Pineda-Zapata
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Carlos López-Jaramillo
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich8050, Switzerland
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY11030
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY11004
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, New York, NY11549
| | - Simon E. Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - David C. Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA02115
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT06102
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA19104
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA19104
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala752 37, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane4006, Australia
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jessica A. Turner
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA92697
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
70
|
Wu GR, Baeken C. Lateralized subgenual ACC metabolic connectivity patterns in refractory melancholic depression: does it matter? Cereb Cortex 2023; 33:3490-3497. [PMID: 35984291 DOI: 10.1093/cercor/bhac286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although treatment resistance to antidepressant pharmacotherapy is quite common, the phenomenon of refractory major depressive disorder (rMDD) is not well understood. Nevertheless, the metabolic activity of the subgenual anterior cingulate cortex (sgACC) has been put forward as a possible metabolic biomarker of clinical prediction and response, albeit sgACC lateralization differences in functional connectivity have not yet been extensively examined. Also not in the refractory depressed state. To examine sgACC lateralization differences in metabolic connectivity, we recruited 43 right-handed antidepressant-free unipolar melancholic rMDD patients and 32 right-handed healthy controls to participate in this 18FDG PET study and developed a searchlight-based interregional covariance connectivity approach. Compared to non-depressed individuals, sgACC covariance analysis showed stronger metabolic connections with frontolimbic brain regions known to be affected in the depressed state. Furthermore, whereas the left sgACC showed stronger metabolic connections with ventromedial prefrontal cortical regions, implicated in anhedonia, suicidal ideation, and self-referential processes, the right sgACC showed significantly stronger metabolic connections with posterior hippocampal and cerebellar regions, respectively specialized in memory and social processing. Overall, our results substantiate earlier research that the sgACC is a metabolic key player when clinically depressed and that distinct lateralized sgACC metabolic connectivity patterns are present.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
71
|
Cao Z, Yu W, Zhang L, Yang J, Lou J, Xu M, Zhang Z. A study on the correlation of the asymmetric regulation between the periaqueductal gray and the bilateral trigeminal nucleus caudalis in migraine male rats. J Headache Pain 2023; 24:27. [PMID: 36935501 PMCID: PMC10026495 DOI: 10.1186/s10194-023-01559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND The study was designed to explore the correlation of the asymmetric regulation between periaqueductal gray (PAG) and bilateral trigeminal nucleus caudalis (TNC) in migraine rats through studying the changes of metabolites in pain regulatory pathway of acute migraine attack. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into three groups: blank, control, model groups. Then, blank group was intraperitoneally injected with ultrapure water, while control group injected with saline and model group injected with Glyceryl Trinitrate (GTN). Two hours later, PAG and bilateral TNC were removed respectively, and metabolite concentrations of PAG, Left-TNC, Right-TNC were obtained. Lastly, the differences of metabolite among three brain tissues were compared. RESULTS The relative concentrations of rNAA, rGlu, rGln, rTau, rMI in PAG or bilateral TNC had interaction effects between groups and sites. The concentration of rLac of three brain tissues increased in migraine rats, however, the rLac of LTNC and RTNC increased more than that of PAG. Besides, the concentrations of rNAA and rGln increased in RTNC, while rGABA decreased in RTNC. CONCLUSIONS There is correlation between PAG, LTNC and RTNC in regulation of pain during acute migraine attack, and the regulation of LTNC and RTNC on pain is asymmetric.
Collapse
Affiliation(s)
- Zhijian Cao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Wenjing Yu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Luping Zhang
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Yang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Jiafei Lou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China.
| | - Zhengxiang Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, 54 Youdian Road, Hangzhou, China.
| |
Collapse
|
72
|
Li W, Lou W, Zhang W, Tong RKY, Jin R, Peng W. Gyrus rectus asymmetry predicts trait alexithymia, cognitive empathy, and social function in neurotypical adults. Cereb Cortex 2023; 33:1941-1954. [PMID: 35567793 DOI: 10.1093/cercor/bhac184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced empathy and elevated alexithymia are observed in autism spectrum disorder (ASD), which has been linked to altered asymmetry in brain morphology. Here, we investigated whether trait autism, empathy, and alexithymia in the general population is associated with brain morphological asymmetry. We determined left-right asymmetry indexes for cortical thickness and cortical surface area (CSA) and applied these features to a support-vector regression model that predicted trait autism, empathy, and alexithymia. Results showed that less leftward asymmetry of CSA in the gyrus rectus (a subregion of the orbitofrontal cortex) predicted more difficulties in social functioning, as well as reduced cognitive empathy and elevated trait alexithymia. Meta-analytic decoding of the left gyrus rectus annotated functional items related to social cognition. Furthermore, the link between gyrus rectus asymmetry and social difficulties was accounted by trait alexithymia and cognitive empathy. These results suggest that gyrus rectus asymmetry could be a shared neural correlate among trait alexithymia, cognitive empathy, and social functioning in neurotypical adults. Left-right asymmetry of gyrus rectus influenced social functioning by affecting the cognitive processes of emotions in the self and others. Interventions that increase leftward asymmetry of the gyrus rectus might improve social functioning for individuals with ASD.
Collapse
Affiliation(s)
- Wenlong Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wenyun Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Richu Jin
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
73
|
Kashii H, Kasai S, Sato A, Hagino Y, Nishito Y, Kobayashi T, Hino O, Mizuguchi M, Ikeda K. Tsc2 mutation rather than Tsc1 mutation dominantly causes a social deficit in a mouse model of tuberous sclerosis complex. Hum Genomics 2023; 17:4. [PMID: 36732866 PMCID: PMC9893559 DOI: 10.1186/s40246-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.
Collapse
Affiliation(s)
- Hirofumi Kashii
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.417106.5Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| | - Shinya Kasai
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Atsushi Sato
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.412708.80000 0004 1764 7572Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan
| | - Yoko Hagino
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Yasumasa Nishito
- grid.272456.00000 0000 9343 3630Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Toshiyuki Kobayashi
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Okio Hino
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Masashi Mizuguchi
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, 1-1-10 Komone, Itabashi-Ku, Tokyo, 173-0037 Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
74
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Restructuring of an asymmetric neural circuit during associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523604. [PMID: 36711870 PMCID: PMC9882173 DOI: 10.1101/2023.01.12.523604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Asymmetric brain function is common across the animal kingdom and involved in language processing, and likely in learning and memory. What regulates asymmetric brain function remains elusive. Here, we show that the nematode Caenorhabditis elegans restructures an asymmetric salt sensing neural circuit during associative learning. Worms memorize and prefer the salt concentration at which they were raised in the presence of food through a left-biased network architecture. When conditioned at elevated salt concentrations, animals change the left-biased to a right-biased network, which explains the changed salt-seeking behavior. The changes in circuit architecture require new synapse formation induced through asymmetric, paracrine insulin-signaling. Therefore, experience-dependent changes in asymmetric network architecture rely on paracrine insulin signaling and are fundamental to learning and behavior.
Collapse
|
75
|
Stieger B, Wesseler Y, Kaiser S, Sachser N, Richter SH. Behavioral lateralization of mice varying in serotonin transporter genotype. Front Behav Neurosci 2023; 16:1095567. [PMID: 36710954 PMCID: PMC9875089 DOI: 10.3389/fnbeh.2022.1095567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In humans, non-right-handedness is associated with a higher incidence of psychiatric disorders. Since serotonin seems to be involved in both, the development of psychiatric disorders and lateralization, the present study focuses on the effect of the serotonin transporter (5-HTT) gene on behavioral lateralization. For this, we used the 5-HTT knockout mouse model, a well-established animal model for the study of human depression and anxiety disorders. For female mice from all three 5-HTT genotypes (wild type, heterozygous, and homozygous knockout), we repeatedly observed the direction and strength of lateralization of the following four behaviors: grid climbing (GC), food-reaching in an artificial test situation (FRT), self-grooming (SG), and barrier crossing (BC), with the FRT being the standard test for assessing behavioral lateralization in mice. We found no association between behavioral lateralization and 5-HTT genotype. However, in accordance with previous findings, the strength and temporal consistency of lateralization differed between the four behaviors observed. In conclusion, since the 5-HTT genotype did not affect behavioral lateralization in mice, more research on other factors connected with behavioral lateralization and the development of symptoms of psychiatric disorders, such as environmental influences, is needed.
Collapse
Affiliation(s)
- Binia Stieger
- Department of Behavioural Biology, University of Münster, Münster, Germany,DFG Research Training Group EvoPAD, University of Münster, Münster, Germany,*Correspondence: Binia Stieger,
| | - Yvonne Wesseler
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany,DFG Research Training Group EvoPAD, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany,DFG Research Training Group EvoPAD, University of Münster, Münster, Germany
| | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany,DFG Research Training Group EvoPAD, University of Münster, Münster, Germany
| |
Collapse
|
76
|
Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. Neuroimage 2022; 262:119534. [PMID: 35931311 DOI: 10.1016/j.neuroimage.2022.119534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobiological basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by self-reported direction of hand preference, and its variability related to brain structural and functional organization in the UK Biobank (N = 36,024). A multivariate machine learning approach with multi-modalities of brain imaging data was adopted, to reveal how well brain imaging features could predict individual's handedness (i.e., right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance in the prediction showed functional relevance to hand movement and several higher-level cognitive functions including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA polymorphisms to the imaging-derived handedness prediction score showed a significant heritability (h2=7.55%, p <0.001) that was similar to and slightly higher than that for the behavioural measure itself (h2=6.74%, p <0.001). The genetic correlation between the two was high (rg=0.71), suggesting that the imaging-derived score could be used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates of human handedness.
Collapse
|
77
|
Wang H, Zhang Y, Cheng H, Yan F, Song D, Wang Q, Cai S, Wang Y, Huang L. Selective corticocortical connectivity suppression during propofol-induced anesthesia in healthy volunteers. Cogn Neurodyn 2022; 16:1029-1043. [PMID: 36237410 PMCID: PMC9508318 DOI: 10.1007/s11571-021-09775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
We comprehensively studied directional feedback and feedforward connectivity to explore potential connectivity changes that underlie propofol-induced deep sedation. We further investigated the corticocortical connectivity patterns within and between hemispheres. Sixty-channel electroencephalographic data were collected from 19 healthy volunteers in a resting wakefulness state and propofol-induced deep unconsciousness state defined by a bispectral index value of 40. A source analysis was employed to locate cortical activity. The Desikan-Killiany atlas was used to partition cortices, and directional functional connectivity was assessed by normalized symbolic transfer entropy between higher-order (prefrontal and frontal) and lower-order (auditory, sensorimotor and visual) cortices and between hot-spot frontal and parietal cortices. We found that propofol significantly suppressed feedforward connectivity from the left parietal to right frontal cortex and bidirectional connectivity between the left frontal and left parietal cortex, between the frontal and auditory cortex, and between the frontal and sensorimotor cortex. However, there were no significant changes in either feedforward or feedback connectivity between the prefrontal and all the lower-order cortices and between the frontal and visual cortices or in feedback connectivity from the frontal to parietal cortex. Propofol anesthetic selectively decreased the unidirectional interaction between higher-order frontoparietal cortices and bidirectional interactions between the higher-order frontal cortex and lower-order auditory and sensorimotor cortices, which indicated that both feedback and feedforward connectivity were suppressed under propofol-induced deep sedation. Our findings provide critical insights into the connectivity changes underlying the top-down mechanism of propofol anesthesia at deep sedation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09775-x.
Collapse
Affiliation(s)
- Haidong Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| |
Collapse
|
78
|
Zhao X, Liang W, Wang W, Liu H, Zhang X, Liu C, Zhu C, Cui B, Tang Y, Liu S. Changes in and asymmetry of the proteome in the human fetal frontal lobe during early development. Commun Biol 2022; 5:1031. [PMID: 36175510 PMCID: PMC9522861 DOI: 10.1038/s42003-022-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Inherent hemispheric asymmetry is important for cognition, language and other functions. Describing normal brain and asymmetry development during early development will improve our understanding of how different hemispheres prioritize specific functions, which is currently unknown. Here, we analysed developmental changes in and asymmetry of the proteome in the bilateral frontal lobes of three foetal specimens in the late first trimester of pregnancy. We found that during this period, the difference in expression between gestational weeks (GWs) increased, and the difference in asymmetric expression decreased. Changes in the patterns of protein expression differed in the bilateral frontal lobes. Our results show that brain asymmetry can be observed in early development. These findings can guide researchers in further investigations of the mechanisms of brain asymmetry. We propose that both sides of the brain should be analysed separately in future multiomics and human brain mapping studies.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Hailan Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chengxin Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Caiting Zhu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
79
|
Wan B, Bayrak Ş, Xu T, Schaare HL, Bethlehem RAI, Bernhardt BC, Valk SL. Heritability and cross-species comparisons of human cortical functional organization asymmetry. eLife 2022; 11:e77215. [PMID: 35904242 PMCID: PMC9381036 DOI: 10.7554/elife.77215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, that is asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization in humans. These asymmetries were heritable in humans and showed a similar spatial distribution with macaques, in the case of intra-hemispheric asymmetry of functional hierarchy. This suggests (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques. Overall, our findings suggest a genetic basis for asymmetry in intrinsic functional organization, linked to higher order cognitive functions uniquely developed in humans.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom)LeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
80
|
|
81
|
Aamodt EB, Lydersen S, Alnæs D, Schellhorn T, Saltvedt I, Beyer MK, Håberg A. Longitudinal Brain Changes After Stroke and the Association With Cognitive Decline. Front Neurol 2022; 13:856919. [PMID: 35720079 PMCID: PMC9204010 DOI: 10.3389/fneur.2022.856919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCognitive impairment is common after stroke. So is cortical- and subcortical atrophy, with studies reporting more atrophy in the ipsilesional hemisphere than the contralesional hemisphere. The current study aimed to investigate the longitudinal associations between (I) lateralization of brain atrophy and stroke hemisphere, and (II) cognitive impairment and brain atrophy after stroke. We expected to find that (I) cortical thickness and hippocampal-, thalamic-, and caudate nucleus volumes declined more in the ipsilesional than the contralesional hemisphere up to 36 months after stroke. Furthermore, we predicted that (II) cognitive decline was associated with greater stroke volumes, and with greater cortical thickness and subcortical structural volume atrophy across the 36 months.MethodsStroke survivors from five Norwegian hospitals were included from the multisite-prospective “Norwegian Cognitive Impairment After Stroke” (Nor-COAST) study. Analyses were run with clinical, neuropsychological and structural magnetic resonance imaging (MRI) data from baseline, 18- and 36 months. Cortical thicknesses and subcortical volumes were obtained via FreeSurfer segmentations and stroke lesion volumes were semi-automatically derived using ITK-SNAP. Cognition was measured using MoCA.ResultsFindings from 244 stroke survivors [age = 72.2 (11.3) years, women = 55.7%, stroke severity NIHSS = 4.9 (5.0)] were included at baseline. Of these, 145 (59.4%) had an MRI scan at 18 months and 72 (49.7% of 18 months) at 36 months. Most cortices and subcortices showed a higher ipsi- compared to contralesional atrophy rate, with the effect being more prominent in the right hemisphere. Next, greater degrees of atrophy particularly in the medial temporal lobe after left-sided strokes and larger stroke lesion volumes after right-sided strokes were associated with cognitive decline over time.ConclusionAtrophy in the ipsilesional hemisphere was greater than in the contralesional hemisphere over time. This effect was found to be more prominent in the right hemisphere, pointing to a possible higher resilience to stroke of the left hemisphere. Lastly, greater atrophy of the cortex and subcortex, as well as larger stroke volume, were associated with worse cognition over time and should be included in risk assessments of cognitive decline after stroke.
Collapse
Affiliation(s)
- Eva B. Aamodt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- *Correspondence: Eva B. Aamodt
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Till Schellhorn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatrics, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mona K. Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Asta Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
82
|
Cognitive and Neurophysiological Models of Brain Asymmetry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asymmetry is an inherent characteristic of brain organization in both humans and other vertebrate species, and is evident at the behavioral, neurophysiological, and structural levels. Brain asymmetry underlies the organization of several cognitive systems, such as emotion, communication, and spatial processing. Despite this ubiquity of asymmetries in the vertebrate brain, we are only beginning to understand the complex neuronal mechanisms underlying the interaction between hemispheric asymmetries and cognitive systems. Unfortunately, despite the vast number of empirical studies on brain asymmetries, theoretical models that aim to provide mechanistic explanations of hemispheric asymmetries are sparse in the field. Therefore, this Special Issue aims to highlight empirically based mechanistic models of brain asymmetry. Overall, six theoretical and four empirical articles were published in the Special Issue, covering a wide range of topics, from human handedness to auditory laterality in bats. Two key challenges for theoretical models of brain asymmetry are the integration of increasingly complex molecular data into testable models, and the creation of theoretical models that are robust and testable across different species.
Collapse
|
83
|
Abstract
Graph-theoretical approaches are increasingly used to study the brain and may enhance our understanding of its asymmetries. In this paper, we hypothesize that the structure of the left hemisphere is, on average, more modular. To this end, we analyzed resting-state functional magnetic resonance imaging data of 90 healthy subjects. We computed functional connectivity by Pearson’s correlation coefficient, turned the matrix into an unweighted graph by keeping a certain percentage of the strongest connections, and quantified modularity separately for the subgraph formed by each hemisphere. Our results show that the left hemisphere is more modular. The result is consistent across a range of binarization thresholds, regardless of whether the two hemispheres are thresholded together or separately. This illustrates that graph-theoretical analysis can provide a robust characterization of lateralization of brain functional connectivity.
Collapse
|
84
|
Zhao L, Matloff W, Shi Y, Cabeen RP, Toga AW. Mapping Complex Brain Torque Components and Their Genetic Architecture and Phenomic Associations in 24,112 Individuals. Biol Psychiatry 2022; 91:753-768. [PMID: 35027165 PMCID: PMC8957509 DOI: 10.1016/j.biopsych.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functional significance and mechanisms determining the development and individual variability of structural brain asymmetry remain unclear. Here, we systematically analyzed all relevant components of the most prominent structural asymmetry, brain torque (BT), and their relationships with potential genetic and nongenetic modifiers in a sample comprising 24,112 individuals from six cohorts. METHODS BT features, including petalia, bending, dorsoventral shift, brain tissue distribution asymmetries, and cortical surface positional asymmetries, were directly modeled using a set of automatic three-dimensional brain shape analysis approaches. Age-, sex-, and handedness-related effects on BT were assessed. The genetic architecture and phenomic associations of BT were investigated using genome- and phenome-wide association scans. RESULTS Our results confirmed the population-level predominance of the typical counterclockwise torque and suggested a first attenuating, then enlarging dynamic across the life span (3-81 years) primarily for frontal, occipital, and perisylvian BT features. Sex/handedness, BT, and cognitive function of verbal-numerical reasoning were found to be interrelated statistically. We observed differential heritability of up to 56% for BT, especially in temporal language areas. Individual variations of BT were also associated with various phenotypic variables of neuroanatomy, cognition, lifestyle, sociodemographics, anthropometry, physical health, and adult and child mental health. Our genomic analyses identified a number of genetic associations at lenient significance levels, which need to be further validated using larger samples in the future. CONCLUSIONS This study provides a comprehensive description of BT and insights into biological and other factors that may contribute to the development and individual variations of BT.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.
| |
Collapse
|
85
|
Seoane S, Ezama L, Janssen N. Daily-Life Physical Activity of Healthy Young Adults Associates With Function and Structure of the Hippocampus. Front Hum Neurosci 2022; 16:790359. [PMID: 35360290 PMCID: PMC8963905 DOI: 10.3389/fnhum.2022.790359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research on Physical Activity (PA) has been highly valuable in elucidating how PA affects the structure and function of the hippocampus in elderly populations that take part in structured interventions. However, how PA affects the hippocampus in younger populations that perform PA during daily-life activities remains poorly understood. In addition, this research has not examined the impact of PA on the internal structure of the hippocampus. Here, we performed a cross-sectional exploration of the way structural and functional aspects of the hippocampus are associated with habitual PA performed during work, leisure time, and sports in the daily lives of healthy young adults (n = 30; 14 female; mean age = 23.9 y.o.; SD = 7.8 y.o.). We assessed PA in these three different contexts through a validated questionnaire. The results show that PA performed during work time correlated with higher subicular volumes. In addition, we found that PA changed functional connectivity (FC) between a location in the middle/posterior hippocampus and regions of the default mode network, and between a location in the anterior hippocampus and regions of the somatomotor network. No statistical effects of PA performed during leisure time and sports were found. The results generalize the impact of PA on younger populations and show how PA performed in daily-life situations correlates with the precise internal structure and functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Sara Seoane
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ezama
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Niels Janssen
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
86
|
Berretz G, Packheiser J, Wolf OT, Ocklenburg S. Acute stress increases left hemispheric activity measured via changes in frontal alpha asymmetries. iScience 2022; 25:103841. [PMID: 35198894 PMCID: PMC8850739 DOI: 10.1016/j.isci.2022.103841] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Frontal EEG alpha band asymmetries have been linked to affective processing in healthy individuals and affective disorders. As stress provides a strong source of negative affect, the present study investigated how acute stress affects frontal EEG alpha asymmetries. Continuous EEG data were acquired from 51 healthy adult participants during stress induction with the Trier Social Stress Test. EEG data were also collected during a non-stressful control condition. Furthermore, EEG resting state data were acquired after both conditions. Under stress, participants showed stronger left hemispheric activation over frontal electrodes as well as reduced left-hemispheric activation over occipital electrodes compared to the control condition. Our results are in line with predictions of the asymmetric inhibition model which postulates that the left prefrontal cortex inhibits negative distractors. Moreover, the results support the capability model of emotional regulation which states that frontal asymmetries during emotional challenge are more pronounced compared to asymmetries during rest. EEG recording during social stress induction Stronger left hemispheric frontal activation during emotional challenge No stress-related changes in resting state EEG after stress induction Support for asymmetric inhibition and the capability model of emotional regulation
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Room: IB 6/109, 44780 Bochum, Germany
- Corresponding author
| | - Julian Packheiser
- Netherlands Institute for Neuroscience, Social Brain Lab, Amsterdam, the Netherlands
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Room: IB 6/109, 44780 Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
87
|
Chen YC, Arnatkevičiūtė A, McTavish E, Pang JC, Chopra S, Suo C, Fornito A, Aquino KM. The individuality of shape asymmetries of the human cerebral cortex. eLife 2022; 11:75056. [PMID: 36197720 PMCID: PMC9668337 DOI: 10.7554/elife.75056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Monash Data Futures Institute, Monash UniversityMelbourneAustralia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Eugene McTavish
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic UniversityFitzroyAustralia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Department of Psychology, Yale UniversityNew HavenUnited States
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Kevin M Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,School of Physics, University of SydneySydneyAustralia,Center of Excellence for Integrative Brain Function, University of SydneySydneyAustralia,BrainKey IncSan FranciscoUnited States
| | | |
Collapse
|
88
|
Kong X, Francks C. Reproducibility in the absence of selective reporting: An illustration from large-scale brain asymmetry research. Hum Brain Mapp 2022; 43:244-254. [PMID: 32841457 PMCID: PMC8675427 DOI: 10.1002/hbm.25154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022] Open
Abstract
The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes.
Collapse
Affiliation(s)
- Xiang‐Zhen Kong
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Clyde Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
89
|
Thompson PM, Jahanshad N, Schmaal L, Turner JA, Winkler AM, Thomopoulos SI, Egan GF, Kochunov P. The Enhancing NeuroImaging Genetics through Meta-Analysis Consortium: 10 Years of Global Collaborations in Human Brain Mapping. Hum Brain Mapp 2022; 43:15-22. [PMID: 34612558 PMCID: PMC8675422 DOI: 10.1002/hbm.25672] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke.
Collapse
Affiliation(s)
- Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Lianne Schmaal
- OrygenParkvilleAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | | | - Anderson M. Winkler
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), BethesdaMarylandUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Gary F. Egan
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
90
|
Sha Z, Schijven D, Francks C. Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Mol Psychiatry 2021; 26:7652-7660. [PMID: 34211121 PMCID: PMC8872997 DOI: 10.1038/s41380-021-01204-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing vs. empathizing cognitive styles, with resemblances to male vs. female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness, and subcortical volume measures in 32,256 participants from the UK Biobank. Polygenic risks for the two disorders were positively correlated (r = 0.08, p = 7.13 × 10-50) and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each polygenic risk score was associated with multivariate brain asymmetry after adjusting for sex, ASD r = 0.03, p = 2.17 × 10-9, and schizophrenia r = 0.04, p = 2.61 × 10-11, but the multivariate patterns were mostly distinct for the two polygenic risks and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both polygenic risks were associated with asymmetries of regions important for language and executive functions, consistent with behavioral associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risks for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
91
|
Kocsis K, Holczer A, Kazinczi C, Boross K, Horváth R, Németh LV, Klivényi P, Kincses ZT, Must A. Voxel-based asymmetry of the regional gray matter over the inferior temporal gyrus correlates with depressive symptoms in medicated patients with major depressive disorder. Psychiatry Res Neuroimaging 2021; 317:111378. [PMID: 34479177 DOI: 10.1016/j.pscychresns.2021.111378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The number of patients suffering from major depressive disorder (MDD) is increasing worldwide. Imbalanced hemispherical brain activity may be an underlying factor of MDD; however, whether structural asymmetry also contributes to the symptoms experienced in MDD has been scarcely investigated. In this study, we aimed to examine cortical asymmetry in association with the severity of depressive and cognitive symptoms observed in MDD during stable medication. The association between the affective and cognitive symptoms and gray matter asymmetry was evaluated in 17 MDD patients using voxel-wise gray matter asymmetry analysis on high-resolution T1-weighted MR images. Asymmetry index values in the inferior temporal gyrus (ITG) correlated with the scores of the 17-item Hamilton Depression Rating Scale (HDRS), but no association was found with the Beck Hopelessness Scale, and performance on the 1-, 2- and 3-back task. Our results indicate that the asymmetry of gray matter content in the ITG might be associated with higher depression severity. Our findings might help to better understand how structural changes contribute to depression severity in patients with MDD.
Collapse
Affiliation(s)
- Krisztián Kocsis
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Csaba Kazinczi
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Katalin Boross
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Regina Horváth
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Luca Viola Németh
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Hungary
| | - Anita Must
- Institute of Psychology, Faculty of Arts, University of Szeged, Egyetem utca 2 H-6722, Szeged, Hungary.
| |
Collapse
|
92
|
Raja R, Na X, Glasier CM, Badger TM, Bellando J, Ou X. Associations between Cortical Asymmetry and Domain Specific Cognitive Functions in Healthy Children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3127-3132. [PMID: 34891904 PMCID: PMC9179091 DOI: 10.1109/embc46164.2021.9630831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cortical asymmetry and functional lateralization form intriguing and fundamental features of human brain organization, and is complicated by individual differences and evolvement with age. While many studies have investigated neuroanatomical differences between hemispheres as well as functional lateralization of the brain for different age groups, few have looked into the associations between cortical asymmetry and development of cognitive functions in children. In this study, we aimed to identify relationships between hemispheric asymmetry in brain cortex measured by MRI and cognitive development in healthy young children evaluated by a comprehensive battery of neuropsychological tests. Structural MRI data were obtained from 71 children in the age range of 7.5 to 8.5 years. Structural lateralization index (SLI), a reflection of the brain asymmetry, was computed for each of the 3 cortical morphometry measurements: cortical thickness, surface area and gray matter volume. A total of 34 bilateral regions were studied for the whole brain cortex as defined by the Desikan atlas. Region-wise SLI was correlated with domain specific cognitive scores using partial correlation analysis controlled for the potential confounding effects of age and sex. Significant correlations were identified between test scores of multiple cognitive domains and SLI of several cortical regions. Specifically, SLI of total surface area of precuneus and insula significantly correlated with measures of executive function behavior; significant relationships were also found between SLI of mean cortical thickness of superior parietal cortex and memory and language tests scores; in addition, SLI of parahippocampal gyrus also showed significant correlations with language test scores for all 3 morphometry features. These findings revealed regional hemispheric asymmetries that may be linked to specific cognitive abilities in children.Clinical relevance- This study shows associations between structural lateralization in different brain cortical regions and variations in specific cognitive functions in healthy children.
Collapse
Affiliation(s)
- Rajikha Raja
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charles M. Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Thomas M. Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| | - Jayne Bellando
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| |
Collapse
|
93
|
A Novel Perspective for Examining and Comparing Real and Virtual Test Tasks Performed by the Dominant and Non-Dominant Hand in Healthy Adults. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study presents a novel perspective for the study of functional lateralization in a virtual reality environment. In the model study of handedness, the recognition of the dominant and non-dominant hand in real and virtual conditions was assessed using selected tests, such as a real light exposure test of Piórkowski’s apparatus and classical clinical tests, as well as virtual test tasks, in healthy adults. Statistically significant differences between the dominant and non-dominant hand were observed for tests carried out both in classical conditions and the virtual environment. The results and findings of other studies suggest that the virtual reality approach is a very promising and sensitive tool in the research on functional asymmetries in healthy and disease for motor skills and cognition processes.
Collapse
|
94
|
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3:fcab211. [PMID: 34557668 PMCID: PMC8454206 DOI: 10.1093/braincomms/fcab211] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerhard A Coetzee
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Viviane Labrie
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
95
|
Floris DL, Wolfers T, Zabihi M, Holz NE, Zwiers MP, Charman T, Tillmann J, Ecker C, Dell'Acqua F, Banaschewski T, Moessnang C, Baron-Cohen S, Holt R, Durston S, Loth E, Murphy DGM, Marquand A, Buitelaar JK, Beckmann CF. Atypical Brain Asymmetry in Autism-A Candidate for Clinically Meaningful Stratification. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:802-812. [PMID: 33097470 DOI: 10.1016/j.bpsc.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder ("autism") is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. METHODS In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions-A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. RESULTS Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. CONCLUSIONS Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
Collapse
Affiliation(s)
- Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Psychology, University of Oslo, Norway; Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo Hospital and Oslo University Hospital, Oslo, Norway
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany; Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Andre Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
96
|
Kong XZ, Postema M, Schijven D, Castillo AC, Pepe A, Crivello F, Joliot M, Mazoyer B, Fisher SE, Francks C. Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. Cereb Cortex 2021; 31:4151-4168. [PMID: 33836062 PMCID: PMC8328207 DOI: 10.1093/cercor/bhab075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
The human cerebral hemispheres show a left-right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4-13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry.
Collapse
Affiliation(s)
- Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
| | - Merel Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Amaia Carrión Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Antonietta Pepe
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Fabrice Crivello
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Marc Joliot
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
97
|
Chowdhury MAU, Raslan AA, Lee E, Eum J, Hwang BJ, Kwon SH, Kee Y. Histopathological assessment of laterality defects in zebrafish development. Anim Cells Syst (Seoul) 2021; 25:136-145. [PMID: 34262656 PMCID: PMC8253201 DOI: 10.1080/19768354.2021.1931443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations.
Collapse
Affiliation(s)
- Md Ashraf Uddin Chowdhury
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea.,Department of Pharmacy, International Islamic University Chittagong, Chattogram, Bangladesh
| | - Ahmed A Raslan
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eunhye Lee
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Juneyong Eum
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
98
|
Abstract
While paying attention to the recommendations of Ocklenburg, Berretz, Packheiser, and Friedrich (2020) in the target article, researchers in the field of laterality should attempt to: (1) solve the long-standing puzzle of the relationship between handedness and language lateralization; (2) further explore the genetic bases of manual and cerebral asymmetry and of their associations with psychiatric and neurodevelopmental conditions; (3) explore the adaptive significance of laterality for humans and non-humans and elucidate the relationships of asymmetry across species; and (4) embrace developing technologies to investigate the interaction between the hemispheres during the performance of everyday tasks.
Collapse
Affiliation(s)
- Alan A Beaton
- Department of Psychology, School of Human & Health Sciences, Swansea University, Swansea, UK.,Department of Psychology, Aberystwyth University, Aberystwyth, UK
| | - Gareth Richards
- School of Psychology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
99
|
Liloia D, Mancuso L, Uddin LQ, Costa T, Nani A, Keller R, Manuello J, Duca S, Cauda F. Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence. Neuroimage Clin 2021; 30:102583. [PMID: 33618237 PMCID: PMC7903137 DOI: 10.1016/j.nicl.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored. METHODS An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern of co-alteration across the brain. This pattern was then compared with normative profiles of structural and genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas with the highest topological hierarchy and core sub-graph components within the co-alteration network observed in ASD. RESULTS Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to be central in the topology of co-alterations. CONCLUSION These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful approach to better understand neuropsychiatric disorders.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| |
Collapse
|
100
|
Roe JM, Vidal-Piñeiro D, Sørensen Ø, Brandmaier AM, Düzel S, Gonzalez HA, Kievit RA, Knights E, Kühn S, Lindenberger U, Mowinckel AM, Nyberg L, Park DC, Pudas S, Rundle MM, Walhovd KB, Fjell AM, Westerhausen R, The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing MastersColin L.9BushAshley I.9FowlerChristopher9DarbyDavid9PertileKelly9RestrepoCarolina9RobertsBlaine9RobertsonJo9RumbleRebecca9RyanTim9CollinsSteven9ThaiChristine9TrounsonBrett9LennonKate9LiQiao-Xin9UgarteFernanda Yevenes9VolitakisIrene9VovosMichael9WilliamsRob9BakerJenalle9RussellAlyce10PerettiMadeline10MilicicLidija10LimLucy11RodriguesMark11TaddeiKevin11TaddeiTania11HoneEugene11LimFlorence11FernandezShane11Rainey-SmithStephanie11PedriniSteve11MartinsRalph11DoeckeJames12BourgeatPierrick12FrippJurgen12GibsonSimon12LerouxHugo12HansonDavid12DoreVincent13ZhangPing13BurnhamSamantha13RoweChristopher C.14VillemagneVictor L.14YatesPaul14PejoskaSveltana Bozin14JonesGareth14AmesDavid15CyartoElizabeth15LautenschlagerNicola15BarnhamKevin16ChengLesley16HillAndy16KilleenNeil17MaruffPaul18SilbertBrendan19BrownBelinda20SohrabiHarmid20SavageGreg21VacherMichael22. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer's disease. Nat Commun 2021; 12:721. [PMID: 33526780 PMCID: PMC7851164 DOI: 10.1038/s41467-021-21057-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Aging and Alzheimer's disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
Collapse
Affiliation(s)
- James M. Roe
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Didac Vidal-Piñeiro
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Andreas M. Brandmaier
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Rogier A. Kievit
- grid.5335.00000000121885934MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Ethan Knights
- grid.5335.00000000121885934MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Simone Kühn
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.13648.380000 0001 2180 3484Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulman Lindenberger
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Athanasia M. Mowinckel
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging and Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Denise C. Park
- Center for Vital Longevity, University of Texas, Dallas, TX USA
| | - Sara Pudas
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging and Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Kristine B. Walhovd
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M. Fjell
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - René Westerhausen
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | | |
Collapse
|