51
|
Senn KA, Lipinski KA, Zeps NJ, Griffin AF, Wilkinson ME, Hoskins AA. Control of 3' splice site selection by the yeast splicing factor Fyv6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592262. [PMID: 38746449 PMCID: PMC11092753 DOI: 10.1101/2024.05.04.592262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pre-mRNA splicing is catalyzed in two steps: 5' splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (1st and 2nd step factors). We recently identified Fyv6 (FAM192A in humans) as a 2nd step factor in S. cerevisiae; however, we did not determine how widespread Fyv6's impact is on the transcriptome. To answer this question, we have used RNA-seq to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3' SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-EM structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only 2nd step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the 1st step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3' SS.
Collapse
Affiliation(s)
- Katherine A Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Karli A Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Natalie J Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Amory F Griffin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH UK
- Present Addresses: Broad Institute of MIT and Harvard, Cambridge MA 02142 USA and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
52
|
Hurtado J, Rogers TF, Jaffe DB, Adams BA, Bangaru S, Garcia E, Capozzola T, Messmer T, Sharma P, Song G, Beutler N, He W, Dueker K, Musharrafieh R, Burbach S, Truong A, Stubbington MJT, Burton DR, Andrabi R, Ward AB, McDonnell WJ, Briney B. Deep repertoire mining uncovers ultra-broad coronavirus neutralizing antibodies targeting multiple spike epitopes. Cell Rep 2024; 43:114307. [PMID: 38848216 DOI: 10.1016/j.celrep.2024.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
The development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees to isolate over 9,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific monoclonal antibodies (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. Among the recovered antibodies was TXG-0078, an N-terminal domain (NTD)-specific neutralizing mAb that recognizes diverse alpha- and beta-coronaviruses. TXG-0078 achieves its exceptional binding breadth while utilizing the same VH1-24 variable gene signature and heavy-chain-dominant binding pattern seen in other NTD-supersite-specific neutralizing Abs with much narrower specificity. We also report CC24.2, a pan-sarbecovirus neutralizing antibody that targets a unique receptor-binding domain (RBD) epitope and shows similar neutralization potency against all tested SARS-CoV-2 variants, including BQ.1.1 and XBB.1.5. A cocktail of TXG-0078 and CC24.2 shows protection in vivo, suggesting their potential use in variant-resistant therapeutic Ab cocktails and as templates for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David B Jaffe
- 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Bruce A Adams
- 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pragati Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wanting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Burbach
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alina Truong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, Harvard and MIT, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wyatt J McDonnell
- 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA.
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Multi-Omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
53
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024:10.1038/s41594-024-01335-1. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
54
|
Rehman S, Antonovic AK, McIntire IE, Zheng H, Cleaver L, Baczynska M, Adams CO, Portlock T, Richardson K, Shaw R, Oregioni A, Mastroianni G, Whittaker SBM, Kelly G, Lorenz CD, Fornili A, Cianciotto NP, Garnett JA. The Legionella collagen-like protein employs a distinct binding mechanism for the recognition of host glycosaminoglycans. Nat Commun 2024; 15:4912. [PMID: 38851738 PMCID: PMC11162425 DOI: 10.1038/s41467-024-49255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Anna Katarina Antonovic
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Maria Baczynska
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Carlton O Adams
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Katherine Richardson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rosie Shaw
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Giulia Mastroianni
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sara B-M Whittaker
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
55
|
Sanz-Gaitero M, De Maesschalck V, Patel A, Longin H, Van Noort V, Rodriguez-Rubio L, van Ryne M, Danis-Wlodarczyk K, Drulis-Kawa Z, Mesnage S, van Raaij M, Lavigne R. Structural and Biochemical Characterization of a New Phage-Encoded Muramidase, KTN6 Gp46. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:53-62. [PMID: 39119210 PMCID: PMC11304755 DOI: 10.1089/phage.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Endolysins are phage-encoded lytic enzymes that degrade bacterial peptidoglycan at the end of phage lytic cycles to release new phage particles. These enzymes are being explored as an alternative to small-molecule antibiotics. Methods The crystal structure of KTN6 Gp46 was determined and compared with a ColabFold model. Cleavage specificity was examined using a peptidoglycan digest and reversed-phase high-performance liquid chromatography coupled to mass spectrometry (HPLC/MS). Results The structure of KTN6 Gp46 could be determined at 1.4 Å resolution, and key differences in loops of the putative peptidoglycan binding domain were identified in comparison with its closest known homologue, the endolysin of phage SPN1S. Reversed-phase HPLC/MS analysis of the reaction products following peptidoglycan digestion confirmed the muramidase activity of Gp46, consistent with structural predictions. Conclusion These insights into the structure and function of endolysins further expand the toolbox for endolysin engineering and explore their potential in enzyme-based antibacterial design strategies.
Collapse
Affiliation(s)
- Marta Sanz-Gaitero
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Ankur Patel
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Hannelore Longin
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Vera Van Noort
- Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | | | | | - Katarzyna Danis-Wlodarczyk
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Stephane Mesnage
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mark van Raaij
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
56
|
Solà Colom M, Fu Z, Gunkel P, Güttler T, Trakhanov S, Srinivasan V, Gregor K, Pleiner T, Görlich D. A checkpoint function for Nup98 in nuclear pore formation suggested by novel inhibitory nanobodies. EMBO J 2024; 43:2198-2232. [PMID: 38649536 PMCID: PMC11148069 DOI: 10.1038/s44318-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Nuclear pore complex (NPC) biogenesis is a still enigmatic example of protein self-assembly. We now introduce several cross-reacting anti-Nup nanobodies for imaging intact nuclear pore complexes from frog to human. We also report a simplified assay that directly tracks postmitotic NPC assembly with added fluorophore-labeled anti-Nup nanobodies. During interphase, NPCs are inserted into a pre-existing nuclear envelope. Monitoring this process is challenging because newly assembled NPCs are indistinguishable from pre-existing ones. We overcame this problem by inserting Xenopus-derived NPCs into human nuclear envelopes and using frog-specific anti-Nup nanobodies for detection. We further asked whether anti-Nup nanobodies could serve as NPC assembly inhibitors. Using a selection strategy against conserved epitopes, we obtained anti-Nup93, Nup98, and Nup155 nanobodies that block Nup-Nup interfaces and arrest NPC assembly. We solved structures of nanobody-target complexes and identified roles for the Nup93 α-solenoid domain in recruiting Nup358 and the Nup214·88·62 complex, as well as for Nup155 and the Nup98 autoproteolytic domain in NPC scaffold assembly. The latter suggests a checkpoint linking pore formation to the assembly of the Nup98-dominated permeability barrier.
Collapse
Affiliation(s)
- Mireia Solà Colom
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- AI Proteins, 20 Overland St., Boston, MA, USA
| | - Zhenglin Fu
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Philip Gunkel
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Octapharma Biopharmaceuticals, Im Neuenheimer Feld 590, 69120, Heidelberg, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasundara Srinivasan
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
57
|
Lei L, Harp JM, Chaput JC, Wassarman K, Schlegel MK, Manoharan M, Egli M. Structure and Stability of Ago2 MID-Nucleotide Complexes: All-in-One (Drop) His 6-SUMO Tag Removal, Nucleotide Binding, and Crystal Growth. Curr Protoc 2024; 4:e1088. [PMID: 38923271 DOI: 10.1002/cpz1.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The middle (MID) domain of eukaryotic Argonaute (Ago) proteins and archaeal and bacterial homologues mediates the interaction with the 5'-terminal nucleotide of miRNA and siRNA guide strands. The MID domain of human Ago2 (hAgo2) is comprised of 139 amino acids with a molecular weight of 15.56 kDa. MID adopts a Rossman-like beta1-alpha1-beta2-alpha2-beta3-alpha3-beta4-alpha4 fold with a nucleotide specificity loop between beta3 and alpha3. Multiple crystal structures of nucleotides bound to hAgo2 MID have been reported, whereby complexes were obtained by soaking ligands into crystals of MID domain alone. This protocol describes a simplified one-step approach to grow well-diffracting crystals of hAgo2 MID-nucleotide complexes by mixing purified His6-SUMO-MID fusion protein, Ulp1 protease, and excess nucleotide in the presence of buffer and precipitant. The crystal structures of MID complexes with UMP, UTP and 2'-3' linked α-L-threofuranosyl thymidine-3'-triphosphate (tTTP) are presented. This article also describes fluorescence-based assays to measure dissociation constants (Kd) of MID-nucleotide interactions for nucleoside 5'-monophosphates and nucleoside 3',5'-bisphosphates. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Crystallization of Ago2 MID-nucleotide complexes Basic Protocol 2: Measurement of dissociation constant Kd between Ago2 MID and nucleotides.
Collapse
Affiliation(s)
- Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | | | | | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
58
|
Schiffner T, Phung I, Ray R, Irimia A, Tian M, Swanson O, Lee JH, Lee CCD, Marina-Zárate E, Cho SY, Huang J, Ozorowski G, Skog PD, Serra AM, Rantalainen K, Allen JD, Baboo S, Rodriguez OL, Himansu S, Zhou J, Hurtado J, Flynn CT, McKenney K, Havenar-Daughton C, Saha S, Shields K, Schultze S, Smith ML, Liang CH, Toy L, Pecetta S, Lin YC, Willis JR, Sesterhenn F, Kulp DW, Hu X, Cottrell CA, Zhou X, Ruiz J, Wang X, Nair U, Kirsch KH, Cheng HL, Davis J, Kalyuzhniy O, Liguori A, Diedrich JK, Ngo JT, Lewis V, Phelps N, Tingle RD, Spencer S, Georgeson E, Adachi Y, Kubitz M, Eskandarzadeh S, Elsliger MA, Amara RR, Landais E, Briney B, Burton DR, Carnathan DG, Silvestri G, Watson CT, Yates JR, Paulson JC, Crispin M, Grigoryan G, Ward AB, Sok D, Alt FW, Wilson IA, Batista FD, Crotty S, Schief WR. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat Immunol 2024; 25:1073-1082. [PMID: 38816615 PMCID: PMC11147780 DOI: 10.1038/s41590-024-01833-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
Collapse
Affiliation(s)
- Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Adriana Irimia
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun D Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ester Marina-Zárate
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - So Yeon Cho
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jiachen Huang
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick D Skog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Andreia M Serra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia T Flynn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine McKenney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chi-Hui Liang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Toy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Fabian Sesterhenn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaoya Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer Ruiz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jillian Davis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Julia T Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vanessa Lewis
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan D Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Skye Spencer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Marc A Elsliger
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, USA
- San Diego Center for AIDS Research, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Diane G Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Generate Biomedicines, Inc., Somerville, MA, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| |
Collapse
|
59
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
60
|
Ceron RH, Báez-Cruz FA, Palmer NJ, Carman PJ, Boczkowska M, Heuckeroth RO, Ostap EM, Dominguez R. Molecular mechanisms linking missense ACTG2 mutations to visceral myopathy. SCIENCE ADVANCES 2024; 10:eadn6615. [PMID: 38820162 PMCID: PMC11141634 DOI: 10.1126/sciadv.adn6615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Visceral myopathy is a life-threatening disease characterized by muscle weakness in the bowel, bladder, and uterus. Mutations in smooth muscle γ-actin (ACTG2) are the most common cause of the disease, but the mechanisms by which the mutations alter muscle function are unknown. Here, we examined four prevalent ACTG2 mutations (R40C, R148C, R178C, and R257C) that cause different disease severity and are spread throughout the actin fold. R178C displayed premature degradation, R148C disrupted interactions with actin-binding proteins, R40C inhibited polymerization, and R257C destabilized filaments. Because these mutations are heterozygous, we also analyzed 50/50 mixtures with wild-type (WT) ACTG2. The WT/R40C mixture impaired filament nucleation by leiomodin 1, and WT/R257C produced filaments that were easily fragmented by smooth muscle myosin. Smooth muscle tropomyosin isoform Tpm1.4 partially rescued the defects of R40C and R257C. Cryo-electron microscopy structures of filaments formed by R40C and R257C revealed disrupted intersubunit contacts. The biochemical and structural properties of the mutants correlate with their genotype-specific disease severity.
Collapse
Affiliation(s)
- Rachel H. Ceron
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Faviolla A. Báez-Cruz
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
61
|
Nam KH, Xu Y. Structural Analysis of the Large Stokes Shift Red Fluorescent Protein tKeima. Molecules 2024; 29:2579. [PMID: 38893454 PMCID: PMC11173989 DOI: 10.3390/molecules29112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The Keima family comprises large Stokes shift fluorescent proteins that are useful for dual-color fluorescence cross-correlation spectroscopy and multicolor imaging. The tKeima is a tetrameric large Stokes shift fluorescent protein and serves as the ancestor fluorescent protein for both dKeima and mKeima. The spectroscopic properties of tKeima have been previously reported; however, its structural basis and molecular properties have not yet been elucidated. In this study, we present the crystallographic results of the large Stokes shift fluorescent protein tKeima. The purified tKeima protein spontaneously crystallized after purification without further crystallization. The crystal structure of tKeima was determined at 3.0 Å resolution, revealing a β-barrel fold containing the Gln-Tyr-Gly chromophores mainly with cis-conformation. The tetrameric interfaces of tKeima were stabilized by numerous hydrogen bonds and salt-bridge interactions. These key residues distinguish the substituted residues in dKeima and mKeima. The key structure-based residues involved in the tetramer formation of tKeima provide insights into the generation of a new type of monomeric mKeima. This structural analysis expands our knowledge of the Keima family and provides insights into its protein engineering.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
62
|
Seyfizadeh N, Kalbermatter D, Imhof T, Ries M, Müller C, Jenner L, Blumenschein E, Yendrzheyevskiy A, Grün F, Moog K, Eckert D, Engel R, Diebolder P, Chami M, Krauss J, Schaller T, Arndt M. Development of a highly effective combination monoclonal antibody therapy against Herpes simplex virus. J Biomed Sci 2024; 31:56. [PMID: 38807208 PMCID: PMC11134845 DOI: 10.1186/s12929-024-01045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Infections with Herpes simplex virus (HSV)-1 or -2 usually present as mild chronic recurrent disease, however in rare cases can result in life-threatening conditions with a large spectrum of pathology. Monoclonal antibody therapy has great potential especially to treat infections with virus resistant to standard therapies. HDIT101, a humanized IgG targeting HSV-1/2 gB was previously investigated in phase 2 clinical trials. The aim of this study was to develop a next-generation therapy by combining different antiviral monoclonal antibodies. METHODS A lymph-node derived phage display library (LYNDAL) was screened against recombinant gB from Herpes simplex virus (HSV) -1 and HDIT102 scFv was selected for its binding characteristics using bio-layer interferometry. HDIT102 was further developed as fully human IgG and tested alone or in combination with HDIT101, a clinically tested humanized anti-HSV IgG, in vitro and in vivo. T-cell stimulating activities by antigen-presenting cells treated with IgG-HSV immune complexes were analyzed using primary human cells. To determine the epitopes, the cryo-EM structures of HDIT101 or HDIT102 Fab bound to HSV-1F as well as HSV-2G gB protein were solved at resolutions < 3.5 Å. RESULTS HDIT102 Fab showed strong binding to HSV-1F gB with Kd of 8.95 × 10-11 M and to HSV-2G gB with Kd of 3.29 × 10-11 M. Neutralization of cell-free virus and inhibition of cell-to-cell spread were comparable between HDIT101 and HDIT102. Both antibodies induced internalization of gB from the cell surface into acidic endosomes by binding distinct epitopes in domain I of gB and compete for binding. CryoEM analyses revealed the ability to form heterogenic immune complexes consisting of two HDIT102 and one HDIT101 Fab bound to one gB trimeric molecule. Both antibodies mediated antibody-dependent phagocytosis by antigen presenting cells which stimulated autologous T-cell activation. In vivo, the combination of HDIT101 and HDIT102 demonstrated synergistic effects on survival and clinical outcome in immunocompetent BALB/cOlaHsd mice. CONCLUSION This biochemical and immunological study showcases the potential of an effective combination therapy with two monoclonal anti-gB IgGs for the treatment of HSV-1/2 induced disease conditions.
Collapse
Affiliation(s)
- Narges Seyfizadeh
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - David Kalbermatter
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH - 4056, Switzerland
- Present address: University of Bern, Institute of Anatomy, Balzerstrasse 2, Bern, 3012, Switzerland
| | - Thomas Imhof
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Moritz Ries
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Christian Müller
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Leonie Jenner
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | | | | | - Frank Grün
- Vanudis GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Kevin Moog
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Daniel Eckert
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Ronja Engel
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Philipp Diebolder
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, 69120, Germany
- Present address: Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, Neuried, 82061, Germany
| | - Mohamed Chami
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH - 4056, Switzerland
| | - Jürgen Krauss
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Torsten Schaller
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Michaela Arndt
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany.
| |
Collapse
|
63
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Human neutralizing antibodies target a conserved lateral patch on H7N9 hemagglutinin head. Nat Commun 2024; 15:4505. [PMID: 38802413 PMCID: PMC11130183 DOI: 10.1038/s41467-024-48758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Avian influenza A virus H7N9 causes severe human infections with >30% fatality. Currently, there is no H7N9-specific prevention or treatment for humans. Here, from a 2013 H7N9 convalescent case in Hong Kong, we isolate four hemagglutinin (HA)-reactive monoclonal antibodies (mAbs), with three directed to the globular head domain (HA1) and one to the stalk domain (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralize H7N9 and protect female mice from lethal H7N9/AH1 challenge. Cryo-EM structures reveal that H7.HK1 and H7.HK2 bind to a β14-centered surface and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on an adjacent protomer, thereby blocking viral entry. Sequence analysis indicates the lateral patch targeted by H7.HK1 and H7.HK2 to be conserved among influenza subtypes. Both H7.HK1 and H7.HK2 retain HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, consistent with structural data showing that the antigenic mutations during this timeframe occur at their epitope peripheries. The HA2-directed mAb H7.HK4 lacks neutralizing activity but when used in combination with H7.HK2 moderately augments female mouse protection. Overall, our data reveal antibodies to a conserved lateral HA1 supersite that confer neutralization, and when combined with a HA2-directed non-neutralizing mAb, augment protection.
Collapse
Grants
- INV-016167 Bill & Melinda Gates Foundation
- ZIA AI005022 Intramural NIH HHS
- W911NF-14-C-0001 U.S. Department of Defense (United States Department of Defense)
- FNIH SHAP19IUFV Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Donations from Richard Yu and Carol Yu, Shaw Foundation Hong Kong, Michael Seak-Kan Tong, The Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Chan Yin Chuen Memorial Charitable Foundation, Marina Man-Wai Lee, Jessie and George Ho Charitable Foundation, Kai Chong Tong, Tse Kam Ming Laurence, Foo Oi Foundation Limited, Betty Hing-Chu Lee, and Ping Cham So
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Peter D Kwong
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China.
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China.
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
64
|
Park J, Herrmann GK, Roy A, Shumate CK, Cisneros GA, Yin YW. An interaction network in the polymerase active site is a prerequisite for Watson-Crick base pairing in Pol γ. SCIENCE ADVANCES 2024; 10:eadl3214. [PMID: 38787958 PMCID: PMC11122685 DOI: 10.1126/sciadv.adl3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.
Collapse
Affiliation(s)
- Joon Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Geoffrey K. Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Arkanil Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Christie K. Shumate
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - G. Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Physics, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
65
|
Steichen JM, Phung I, Salcedo E, Ozorowski G, Willis JR, Baboo S, Liguori A, Cottrell CA, Torres JL, Madden PJ, Ma KM, Sutton HJ, Lee JH, Kalyuzhniy O, Allen JD, Rodriguez OL, Adachi Y, Mullen TM, Georgeson E, Kubitz M, Burns A, Barman S, Mopuri R, Metz A, Altheide TK, Diedrich JK, Saha S, Shields K, Schultze SE, Smith ML, Schiffner T, Burton DR, Watson CT, Bosinger SE, Crispin M, Yates JR, Paulson JC, Ward AB, Sok D, Crotty S, Schief WR. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 2024; 384:eadj8321. [PMID: 38753769 PMCID: PMC11309785 DOI: 10.1126/science.adj8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.
Collapse
Affiliation(s)
- Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego; La Jolla, CA 92037, USA
| | - Eugenia Salcedo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Jordan R. Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Sabyasachi Baboo
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Patrick J. Madden
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Krystal M. Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Henry J. Sutton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Joel D. Allen
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Tina-Marie Mullen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Rohini Mopuri
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Tasha K. Altheide
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Steven E. Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Max Crispin
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - John R. Yates
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology; La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego; La Jolla, CA 92037, USA
| | - William R. Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla; CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
- Moderna, Inc., Cambridge, MA 02139, USA
| |
Collapse
|
66
|
Xie Z, Lin YC, Steichen JM, Ozorowski G, Kratochvil S, Ray R, Torres JL, Liguori A, Kalyuzhniy O, Wang X, Warner JE, Weldon SR, Dale GA, Kirsch KH, Nair U, Baboo S, Georgeson E, Adachi Y, Kubitz M, Jackson AM, Richey ST, Volk RM, Lee JH, Diedrich JK, Prum T, Falcone S, Himansu S, Carfi A, Yates JR, Paulson JC, Sok D, Ward AB, Schief WR, Batista FD. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 2024; 384:eadk0582. [PMID: 38753770 PMCID: PMC11488660 DOI: 10.1126/science.adk0582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.
Collapse
Affiliation(s)
- Zhenfei Xie
- These authors contributed equally
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ying-Cing Lin
- These authors contributed equally
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jon M. Steichen
- These authors contributed equally
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- These authors contributed equally
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sven Kratochvil
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jonathan L. Torres
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - John E. Warner
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Gordon A. Dale
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M. Jackson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara T. Richey
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reid M Volk
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R. Schief
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Moderna Inc., Cambridge, MA 02139, USA
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
67
|
Ray R, Nait Mohamed FA, Maurer DP, Huang J, Alpay BA, Ronsard L, Xie Z, Han J, Fernandez-Quintero M, Phan QA, Ursin RL, Vu M, Kirsch KH, Prum T, Rosado VC, Bracamonte-Moreno T, Okonkwo V, Bals J, McCarthy C, Nair U, Kanekiyo M, Ward AB, Schmidt AG, Batista FD, Lingwood D. Eliciting a single amino acid change by vaccination generates antibody protection against group 1 and group 2 influenza A viruses. Immunity 2024; 57:1141-1159.e11. [PMID: 38670113 PMCID: PMC11096021 DOI: 10.1016/j.immuni.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.
Collapse
Affiliation(s)
- Rashmi Ray
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Faez Amokrane Nait Mohamed
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Daniel P Maurer
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Jiachen Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Berk A Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Larance Ronsard
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Monica Fernandez-Quintero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020 Innsbruck, Austria
| | - Quynh Anh Phan
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Rebecca L Ursin
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mya Vu
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Victoria C Rosado
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte-Moreno
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vintus Okonkwo
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Julia Bals
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Caitlin McCarthy
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron G Schmidt
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA; Department of Biology, The Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel Lingwood
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
68
|
Hoelzgen F, Nguyen TTP, Klukin E, Boumaiza M, Srivastava AK, Kim EY, Zalk R, Shahar A, Cohen-Schwartz S, Meyron-Holtz EG, Bou-Abdallah F, Mancias JD, Frank GA. Structural basis for the intracellular regulation of ferritin degradation. Nat Commun 2024; 15:3802. [PMID: 38714719 PMCID: PMC11076521 DOI: 10.1038/s41467-024-48151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/10/2024] Open
Abstract
The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.
Collapse
Affiliation(s)
- Fabian Hoelzgen
- The Kreitman School of Advanced Graduate Studies, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Thuy T P Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elina Klukin
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mohamed Boumaiza
- Department of Chemistry, State University of New York at Potsdam (SUNY Potsdam), Potsdam, NY, USA
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York at Potsdam (SUNY Potsdam), Potsdam, NY, USA
| | - Elizabeth Y Kim
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shahar
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sagit Cohen-Schwartz
- The National Institute for Biotechnology in the Negev - NIBN, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam (SUNY Potsdam), Potsdam, NY, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gabriel A Frank
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev - NIBN, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
69
|
Schneider S, Brandina I, Peter D, Lagad S, Fraudeau A, Portell-Montserrat J, Tholen J, Zhao J, Galej WP. Structure of the human 20S U5 snRNP. Nat Struct Mol Biol 2024; 31:752-756. [PMID: 38467877 PMCID: PMC11102862 DOI: 10.1038/s41594-024-01250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
The 20S U5 small nuclear ribonucleoprotein particle (snRNP) is a 17-subunit RNA-protein complex and a precursor of the U4/U6.U5 tri-snRNP, the major building block of the precatalytic spliceosome. CD2BP2 is a hallmark protein of the 20S U5 snRNP, absent from the mature tri-snRNP. Here we report a high-resolution cryogenic electron microscopy structure of the 20S U5 snRNP, shedding light on the mutually exclusive interfaces utilized during tri-snRNP assembly and the role of the CD2BP2 in facilitating this process.
Collapse
Affiliation(s)
- Sarah Schneider
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
| | - Irina Brandina
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
| | - Daniel Peter
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sonal Lagad
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
| | | | - Júlia Portell-Montserrat
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jonas Tholen
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Jiangfeng Zhao
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, France.
| |
Collapse
|
70
|
Burmeister WP, Boutin L, Balestra AC, Gröger H, Ballandras-Colas A, Hutin S, Kraft C, Grimm C, Böttcher B, Fischer U, Tarbouriech N, Iseni F. Structure and flexibility of the DNA polymerase holoenzyme of vaccinia virus. PLoS Pathog 2024; 20:e1011652. [PMID: 38768256 PMCID: PMC11142717 DOI: 10.1371/journal.ppat.1011652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/31/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.
Collapse
Affiliation(s)
- Wim P. Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Laetitia Boutin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Aurelia C. Balestra
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Henri Gröger
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Allison Ballandras-Colas
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | | | | | | | - Utz Fischer
- Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Frédéric Iseni
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
71
|
Liang CC, Greenhough LA, Masino L, Maslen S, Bajrami I, Tuppi M, Skehel M, Taylor IA, West SC. Mechanism of single-stranded DNA annealing by RAD52-RPA complex. Nature 2024; 629:697-703. [PMID: 38658755 PMCID: PMC11096129 DOI: 10.1038/s41586-024-07347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcel Tuppi
- The Francis Crick Institute, London, UK
- Abcam, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | |
Collapse
|
72
|
Wang Z, McCallum M, Yan L, Gibson CA, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. Proc Natl Acad Sci U S A 2024; 121:e2314990121. [PMID: 38593070 PMCID: PMC11032465 DOI: 10.1073/pnas.2314990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Cecily A. Gibson
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| |
Collapse
|
73
|
Jia Z, Yu W, Li J, Zhang M, Zhan B, Yan L, Ming Z, Cheng Y, Tian X, Shao S, Huang J, Zhu X. Crystal structure of Trichinella spiralis calreticulin and the structural basis of its complement evasion mechanism involving C1q. Front Immunol 2024; 15:1404752. [PMID: 38690267 PMCID: PMC11059001 DOI: 10.3389/fimmu.2024.1404752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.
Collapse
Affiliation(s)
- Zhihui Jia
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Yu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingmo Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Mingming Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Liming Yan
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Zhenhua Ming
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaolin Tian
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Shao
- Beijing institute of Clinical Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
74
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. Nat Commun 2024; 15:3186. [PMID: 38622114 PMCID: PMC11018626 DOI: 10.1038/s41467-024-47439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tarek Hilal
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tim Luca Selinger
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin, Germany.
| |
Collapse
|
75
|
Casiraghi M, Wang H, Brennan P, Habrian C, Hubner H, Schmidt MF, Maul L, Pani B, Bahriz SM, Xu B, White E, Sunahara RK, Xiang YK, Lefkowitz RJ, Isacoff EY, Nucci N, Gmeiner P, Lerch M, Kobilka BK. Structure and dynamics determine G protein coupling specificity at a class A GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587240. [PMID: 38586060 PMCID: PMC10996611 DOI: 10.1101/2024.03.28.587240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The β2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.
Collapse
|
76
|
Oosterheert W, Boiero Sanders M, Funk J, Prumbaum D, Raunser S, Bieling P. Molecular mechanism of actin filament elongation by formins. Science 2024; 384:eadn9560. [PMID: 38603491 DOI: 10.1126/science.adn9560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
77
|
Frain KM, Dedic E, Nel L, Bohush A, Olesen E, Thaysen K, Wüstner D, Stokes DL, Pedersen BP. Conformational changes in the Niemann-Pick type C1 protein NCR1 drive sterol translocation. Proc Natl Acad Sci U S A 2024; 121:e2315575121. [PMID: 38568972 PMCID: PMC11009665 DOI: 10.1073/pnas.2315575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.
Collapse
Affiliation(s)
- Kelly M. Frain
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Anastasiia Bohush
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus Institute of Advanced Studies, Aarhus University, AarhusC 8000, Denmark
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, OdenseM 5230, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, OdenseM 5230, Denmark
| | - David L. Stokes
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016
| | | |
Collapse
|
78
|
Jojoa-Cruz S, Dubin AE, Lee WH, Ward AB. Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli. eLife 2024; 12:RP93147. [PMID: 38592763 PMCID: PMC11003742 DOI: 10.7554/elife.93147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
| | - Adrienne E Dubin
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
- Department of Neuroscience, Scripps ResearchLa JollaUnited States
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
| |
Collapse
|
79
|
Sridhar S, Kiema T, Schmitz W, Widersten M, Wierenga RK. Structural enzymology studies with the substrate 3S-hydroxybutanoyl-CoA: bifunctional MFE1 is a less efficient dehydrogenase than monofunctional HAD. FEBS Open Bio 2024; 14:655-674. [PMID: 38458818 PMCID: PMC10988713 DOI: 10.1002/2211-5463.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Multifunctional enzyme, type-1 (MFE1) catalyzes the second and third step of the β-oxidation cycle, being, respectively, the 2E-enoyl-CoA hydratase (ECH) reaction (N-terminal part, crotonase fold) and the NAD+-dependent, 3S-hydroxyacyl-CoA dehydrogenase (HAD) reaction (C-terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S-hydroxybutanoyl-CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S-hydroxybutanoyl-CoA as well as of its 3-keto, oxidized form, acetoacetyl-CoA, with the catalytic glutamates in the ECH active site. Pre-steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S-hydroxyacyl-CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre-steady state kinetic data concerning the HAD-catalyzed dehydrogenation reaction of the substrate 3S-hydroxybutanoyl-CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl-CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.
Collapse
Affiliation(s)
- Shruthi Sridhar
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| | | | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter)University of WürzburgGermany
| | | | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| |
Collapse
|
80
|
Hsu HC, Wang M, Kovach A, Darwin AJ, Li H. P. aeruginosa CtpA protease adopts a novel activation mechanism to initiate the proteolytic process. EMBO J 2024; 43:1634-1652. [PMID: 38467832 PMCID: PMC11021448 DOI: 10.1038/s44318-024-00069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
During bacterial cell growth, hydrolases cleave peptide cross-links between strands of the peptidoglycan sacculus to allow new strand insertion. The Pseudomonas aeruginosa carboxyl-terminal processing protease (CTP) CtpA regulates some of these hydrolases by degrading them. CtpA assembles as an inactive hexamer composed of a trimer-of-dimers, but its lipoprotein binding partner LbcA activates CtpA by an unknown mechanism. Here, we report the cryo-EM structures of the CtpA-LbcA complex. LbcA has an N-terminal adaptor domain that binds to CtpA, and a C-terminal superhelical tetratricopeptide repeat domain. One LbcA molecule attaches to each of the three vertices of a CtpA hexamer. LbcA triggers relocation of the CtpA PDZ domain, remodeling of the substrate binding pocket, and realignment of the catalytic residues. Surprisingly, only one CtpA molecule in a CtpA dimer is activated upon LbcA binding. Also, a long loop from one CtpA dimer inserts into a neighboring dimer to facilitate the proteolytic activity. This work has revealed an activation mechanism for a bacterial CTP that is strikingly different from other CTPs that have been characterized structurally.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Michelle Wang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Andrew J Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
81
|
Mydy LS, Hungerford J, Chigumba DN, Konwerski JR, Jantzi SC, Wang D, Smith JL, Kersten RD. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat Chem Biol 2024; 20:530-540. [PMID: 38355722 PMCID: PMC11049724 DOI: 10.1038/s41589-024-01552-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The biosynthetic dogma of ribosomally synthesized and posttranslationally modified peptides (RiPP) involves enzymatic intermolecular modification of core peptide motifs in precursor peptides. The plant-specific BURP-domain protein family, named after their four founding members, includes autocatalytic peptide cyclases involved in the biosynthesis of side-chain-macrocyclic plant RiPPs. Here we show that AhyBURP, a representative of the founding Unknown Seed Protein-type BURP-domain subfamily, catalyzes intramolecular macrocyclizations of its core peptide during the sequential biosynthesis of monocyclic lyciumin I via glycine-tryptophan crosslinking and bicyclic legumenin via glutamine-tyrosine crosslinking. X-ray crystallography of AhyBURP reveals the BURP-domain fold with two type II copper centers derived from a conserved stapled-disulfide and His motif. We show the macrocyclization of lyciumin-C(sp3)-N-bond formation followed by legumenin-C(sp3)-O-bond formation requires dioxygen and radical involvement based on enzyme assays in anoxic conditions and isotopic labeling. Our study expands enzymatic intramolecular modifications beyond catalytic moiety and chromophore biogenesis to RiPP biosynthesis.
Collapse
Affiliation(s)
- Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Jordan Hungerford
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah C Jantzi
- Plasma Chemistry Laboratory, Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
| | - Di Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
82
|
Stachowski TR, Fischer M. FLEXR GUI: a graphical user interface for multi-conformer modeling of proteins. J Appl Crystallogr 2024; 57:580-586. [PMID: 38596743 PMCID: PMC11001397 DOI: 10.1107/s1600576724001523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2024] Open
Abstract
Proteins are well known 'shapeshifters' which change conformation to function. In crystallography, multiple conformational states are often present within the crystal and the resulting electron-density map. Yet, explicitly incorporating alternative states into models to disentangle multi-conformer ensembles is challenging. We previously reported the tool FLEXR, which, within a few minutes, automatically separates conformational signal from noise and builds the corresponding, often missing, structural features into a multi-conformer model. To make the method widely accessible for routine multi-conformer building as part of the computational toolkit for macromolecular crystallography, we present a graphical user interface (GUI) for FLEXR, designed as a plugin for Coot 1. The GUI implementation seamlessly connects FLEXR models with the existing suite of validation and modeling tools available in Coot. We envision that FLEXR will aid crystallographers by increasing access to a multi-conformer modeling method that will ultimately lead to a better representation of protein conformational heterogeneity in the Protein Data Bank. In turn, deeper insights into the protein conformational landscape may inform biology or provide new opportunities for ligand design. The code is open source and freely available on GitHub at https://github.com/TheFischerLab/FLEXR-GUI.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
83
|
Torii S, Gouttenoire J, Kumar K, Antanasijevic A, Kohn T. Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5279-5289. [PMID: 38488515 DOI: 10.1021/acs.est.3c10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Kiruthika Kumar
- Virology and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Virology and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
84
|
Fernandez-Martinez D, Kong Y, Goussard S, Zavala A, Gastineau P, Rey M, Ayme G, Chamot-Rooke J, Lafaye P, Vos M, Mechaly A, Duménil G. Cryo-EM structures of type IV pili complexed with nanobodies reveal immune escape mechanisms. Nat Commun 2024; 15:2414. [PMID: 38499587 PMCID: PMC10948894 DOI: 10.1038/s41467-024-46677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
Collapse
Affiliation(s)
- David Fernandez-Martinez
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Youxin Kong
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France
| | - Sylvie Goussard
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Agustin Zavala
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Pauline Gastineau
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Martial Rey
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Matthijn Vos
- NanoImaging Core Facility, Center for Technological Resources and Research, Institut Pasteur, 75015, Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Crystallography Platform-C2RT, CNRS-UMR 3528, Université Paris Cité, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
| |
Collapse
|
85
|
Nishio S, Emori C, Wiseman B, Fahrenkamp D, Dioguardi E, Zamora-Caballero S, Bokhove M, Han L, Stsiapanava A, Algarra B, Lu Y, Kodani M, Bainbridge RE, Komondor KM, Carlson AE, Landreh M, de Sanctis D, Yasumasu S, Ikawa M, Jovine L. ZP2 cleavage blocks polyspermy by modulating the architecture of the egg coat. Cell 2024; 187:1440-1459.e24. [PMID: 38490181 DOI: 10.1016/j.cell.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.
Collapse
Affiliation(s)
- Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Benjamin Wiseman
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcel Bokhove
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Mayo Kodani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
86
|
Nakamura T, Ohyama C, Sakamoto M, Toma T, Tateishi H, Matsuo M, Chirifu M, Ikemizu S, Morioka H, Fujita M, Inoue JI, Yamagata Y. TIFAB regulates the TIFA-TRAF6 signaling pathway involved in innate immunity by forming a heterodimer complex with TIFA. Proc Natl Acad Sci U S A 2024; 121:e2318794121. [PMID: 38442163 PMCID: PMC10945758 DOI: 10.1073/pnas.2318794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Nuclear factor κB (NF-κB) is activated by various inflammatory and infectious molecules and is involved in immune responses. It has been elucidated that ADP-β-D-manno-heptose (ADP-Hep), a metabolite in gram-negative bacteria, activates NF-κB through alpha-kinase 1 (ALPK1)-TIFA-TRAF6 signaling. ADP-Hep stimulates the kinase activity of ALPK1 for TIFA phosphorylation. Complex formation between phosphorylation-dependent TIFA oligomer and TRAF6 promotes the polyubiquitination of TRAF6 for NF-κB activation. TIFAB, a TIFA homolog lacking a phosphorylation site and a TRAF6 binding motif, is a negative regulator of TIFA-TRAF6 signaling and is implicated in myeloid diseases. TIFAB is indicated to regulate TIFA-TRAF6 signaling through interactions with TIFA and TRAF6; however, little is known about its biological function. We demonstrated that TIFAB forms a complex not with the TIFA dimer, an intrinsic form of TIFA involved in NF-κB activation, but with monomeric TIFA. The structural analysis of the TIFA/TIFAB complex and the biochemical and cell-based analyses showed that TIFAB forms a stable heterodimer with TIFA, inhibits TIFA dimer formation, and suppresses TIFA-TRAF6 signaling. The resultant TIFA/TIFAB complex is a "pseudo-TIFA dimer" lacking the phosphorylation site and TRAF6 binding motif in TIFAB and cannot form the orderly structure as proposed for the phosphorylated TIFA oligomer involved in NF-κB activation. This study elucidated the molecular and structural basis for the regulation of TIFA-TRAF6 signaling by TIFAB.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Chiaki Ohyama
- School of Pharmacy, Kumamoto University, Kumamoto862-0973, Japan
| | - Madoka Sakamoto
- School of Pharmacy, Kumamoto University, Kumamoto862-0973, Japan
| | - Tsugumasa Toma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Hiroshi Tateishi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mihoko Matsuo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mikako Fujita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Jun-ichiro Inoue
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), 4-6-1 Shirokanedai, Minato-ku, Tokyo108-0071, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
- Shokei University and Shokei University Junior College, Kumamoto862-8678, Japan
| |
Collapse
|
87
|
Nam KH. Structural analysis of Tris binding in β-glucosidases. Biochem Biophys Res Commun 2024; 700:149608. [PMID: 38306932 DOI: 10.1016/j.bbrc.2024.149608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
β-glucosidases (Bgls) are glycosyl hydrolases that catalyze the conversion of cellobiose or glucosyl-polysaccharide into glucose. Bgls are widely used in industry to produce bioethanol, wine and juice, and feed. Tris (tris(hydroxymethyl)aminomethane) is an organic compound that can inhibit the hydrolase activity of some Bgls, but the inhibition state and selectivity have not been fully elucidated. Here, three crystal structures of Thermoanaerobacterium saccharolyticum Bgl complexed with the Tris molecule were determined at 1.55-1.95 Å. The configuration of Tris binding to TsaBgl remained consistent across three crystal structures, and the amino acids interacting with the Tris molecule were conserved across Bgl enzymes. The positions O1 and O3 atoms of Tris exhibit the same binding moiety as the hydroxyl group of the glucose molecule. Tris molecules are stably positioned at the glycone site and coordinate with surrounding water molecules. The Tris-binding configuration of TsaBgl is similar to that of HjeBgl, HgaBgl, ManBgl, and KflBgl, but the arrangement of the water molecule coordinating Tris at the aglycone site differs. Meanwhile, both the arrangement of Tris and the water molecules in ubBgl, NkoBgl, and SfrBgl differ from those in TsaBgl. The binding configuration and affinity of the Tris molecule for Bgl may be affected by the residues on the aglycone and gatekeeper regions. This result will extend our knowledge of the inhibitory effect of Tris molecules on TsaBgl.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 20707, Republic of Korea.
| |
Collapse
|
88
|
Madigan V, Zhang Y, Raghavan R, Wilkinson ME, Faure G, Puccio E, Segel M, Lash B, Macrae RK, Zhang F. Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc Natl Acad Sci U S A 2024; 121:e2307812120. [PMID: 38437549 PMCID: PMC10945824 DOI: 10.1073/pnas.2307812120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/20/2023] [Indexed: 03/06/2024] Open
Abstract
A number of endogenous genes in the human genome encode retroviral gag-like proteins, which were domesticated from ancient retroelements. The paraneoplastic Ma antigen (PNMA) family members encode a gag-like capsid domain, but their ability to assemble as capsids and traffic between cells remains mostly uncharacterized. Here, we systematically investigate human PNMA proteins and find that a number of PNMAs are secreted by human cells. We determine that PNMA2 forms icosahedral capsids efficiently but does not naturally encapsidate nucleic acids. We resolve the cryoelectron microscopy (cryo-EM) structure of PNMA2 and leverage the structure to design engineered PNMA2 (ePNMA2) particles with RNA packaging abilities. Recombinantly purified ePNMA2 proteins package mRNA molecules into icosahedral capsids and can function as delivery vehicles in mammalian cell lines, demonstrating the potential for engineered endogenous capsids as a nucleic acid therapy delivery modality.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Yugang Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Rumya Raghavan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Max E. Wilkinson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Guilhem Faure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Elena Puccio
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Michael Segel
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Blake Lash
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Rhiannon K. Macrae
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| |
Collapse
|
89
|
do Prado PFV, Ahrens FM, Liebers M, Ditz N, Braun HP, Pfannschmidt T, Hillen HS. Structure of the multi-subunit chloroplast RNA polymerase. Mol Cell 2024; 84:910-925.e5. [PMID: 38428434 DOI: 10.1016/j.molcel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.
Collapse
Affiliation(s)
- Paula F V do Prado
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Frederik M Ahrens
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Monique Liebers
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Noah Ditz
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
90
|
Roisné-Hamelin F, Liu HW, Taschner M, Li Y, Gruber S. Structural basis for plasmid restriction by SMC JET nuclease. Mol Cell 2024; 84:883-896.e7. [PMID: 38309275 DOI: 10.1016/j.molcel.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Yan Li
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland.
| |
Collapse
|
91
|
Jojoa-Cruz S, Dubin AE, Lee WH, Ward A. Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560740. [PMID: 37873218 PMCID: PMC10592937 DOI: 10.1101/2023.10.03.560740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension1. Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e., they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). In an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization2. Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| | - Adrienne E. Dubin
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| | - Andrew Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| |
Collapse
|
92
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
93
|
Ye Q, Henrickson A, Demeler B, Serrão VHB, Davies PL. Human calpain-3 and its structural plasticity: dissociation of a homohexamer into dimers on binding titin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582628. [PMID: 38464089 PMCID: PMC10925265 DOI: 10.1101/2024.02.28.582628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Calpain-3 is an intracellular Ca2+-dependent cysteine protease abundant in skeletal muscle. Its physiological role in the sarcomere is thought to include removing damaged muscle proteins after exercise. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2). The latter sequences are unique to this calpain isoform and are hypersensitive to proteolysis. To investigate the whole enzyme structure and how mutations might affect its activity, we produce the proteolytically more stable 85-kDa calpain-3 ΔNS ΔIS1 form with a C129A inactivating mutation as a recombinant protein in E. coli. During size-exclusion chromatography, this calpain-3 was consistently eluted as a much larger 0.5-MDa complex rather than the expected 170-kDa dimer. Its size, which was confirmed by SEC-MALS, Blue Native PAGE, and AUC, made the complex amenable to single-particle cryo-EM analysis. From two data sets, we obtained a 3.85-Å reconstruction map that shows the complex is a trimer of calpain-3 dimers with six penta-EF-hand domains at its core. Calpain-3 has been reported to bind the N2A region of the giant muscle protein titin. When this 37-kDa region of titin was co-expressed with calpain-3 the multimer was reduced to a 320-kDa particle, which appears to be the calpain dimer bound to several copies of the titin fragment. We suggest that newly synthesized calpain-3 is kept as an inactive hexamer until it binds the N2A region of titin in the sarcomere, whereupon it dissociates into functional dimers.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Amy Henrickson
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Vitor Hugo Balasco Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California - Santa Cruz, Santa Cruz, California, 95064, United States
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, California, 95064, United States
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
94
|
Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Fraser CS, Ramakrishnan V. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Nat Struct Mol Biol 2024; 31:455-464. [PMID: 38287194 PMCID: PMC10948362 DOI: 10.1038/s41594-023-01196-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
95
|
Nam KH. Structural and bioinformatics analysis of single-domain substrate-binding protein from Rhodothermus marinus. Biochem Biophys Rep 2024; 37:101611. [PMID: 38269326 PMCID: PMC10805632 DOI: 10.1016/j.bbrep.2023.101611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Substrate-binding proteins (SBPs) are key elements in determining the substrate specificity and high affinity of the ATP-binding cassette uptake system. A typical SBP has two domains that recognize substrates and are responsible for the specific substrate delivery. Conversely, in GenBank, genes for SBPs constituting a single domain SBP are often found in vicinity of a methyl-accepting chemotaxis protein gene. However, the molecular function and mechanism of single domain SBPs are not fully elucidated. To understand their molecular functions, we performed a crystallographic study of single domain SBP from Rhodothermus marinus (RmSBP). RmSBP crystals were soaked in solution containing NaBr or HgCl2 and their structures determined at 1.75 and 2.3 Å resolution, respectively. RmSBP soaked in NaBr exhibited disorder of the α2-helix, β5-to β6-strand loop, and C-terminus region, showing the structural dynamic region of RmSBP. RmSBP soaked in HgCl2 showed that Hg2+ bound to Cys145 located between the α5-and α6-helices. The structural properties of RmSBP were compared with those of single domain SBP homologs. These results will contribute to continued identification of the molecular function and mechanism of single domain SBPs.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 20707, Republic of Korea
| |
Collapse
|
96
|
Wang Y, Yang X, Yu F, Deng Z, Lin S, Zheng J. Structural and functional characterization of AfsR, an SARP family transcriptional activator of antibiotic biosynthesis in Streptomyces. PLoS Biol 2024; 22:e3002528. [PMID: 38427710 PMCID: PMC10936776 DOI: 10.1371/journal.pbio.3002528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the β-flap tip helix (FTH), the β' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
97
|
Nurullina L, Terrosu S, Myasnikov AG, Jenner LB, Yusupov M. Cryo-EM structure of the inactive ribosome complex accumulated in chick embryo cells in cold-stress conditions. FEBS Lett 2024; 598:537-547. [PMID: 38395592 DOI: 10.1002/1873-3468.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Here, we present the high-resolution structure of the Gallus gallus 80S ribosome obtained from cold-treated chicken embryos. The translationally inactive ribosome complex contains elongation factor eEF2 with GDP, SERPINE1 mRNA binding protein 1 (SERBP1) and deacylated tRNA in the P/E position, showing common features with complexes already described in mammals. Modeling of most expansion segments of G. gallus 28S ribosomal RNA allowed us to identify specific features in their structural organization and to describe areas where a marked difference between mammalian and avian ribosomes could shed light on the evolution of the expansion segments. This study provides the first structure of an avian ribosome, establishing a model for future structural and functional studies on the translational machinery in Aves.
Collapse
Affiliation(s)
- Liliia Nurullina
- Integrated Structural Biology, IGBMC - IGBMC - CNRS UMR 7104, Inserm, France
| | - Salvatore Terrosu
- Integrated Structural Biology, IGBMC - IGBMC - CNRS UMR 7104, Inserm, France
| | | | - Lasse Bohl Jenner
- Integrated Structural Biology, IGBMC - IGBMC - CNRS UMR 7104, Inserm, France
| | - Marat Yusupov
- Integrated Structural Biology, IGBMC - IGBMC - CNRS UMR 7104, Inserm, France
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia
| |
Collapse
|
98
|
Banayan NE, Loughlin BJ, Singh S, Forouhar F, Lu G, Wong K, Neky M, Hunt HS, Bateman LB, Tamez A, Handelman SK, Price WN, Hunt JF. Systematic enhancement of protein crystallization efficiency by bulk lysine-to-arginine (KR) substitution. Protein Sci 2024; 33:e4898. [PMID: 38358135 PMCID: PMC10868448 DOI: 10.1002/pro.4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.
Collapse
Affiliation(s)
- Nooriel E. Banayan
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Blaine J. Loughlin
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Shikha Singh
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Farhad Forouhar
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Guanqi Lu
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Kam‐Ho Wong
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
Vaccine Research and DevelopmentPfizer Inc.Pearl RiverNew YorkUSA
| | - Matthew Neky
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
Columbia UniversityNew YorkNew YorkUSA
| | - Henry S. Hunt
- Department of PhysicsStanford UniversityStanfordCaliforniaUSA
| | | | | | - Samuel K. Handelman
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
Department of Pain & Neuronal HealthEli Lily & Co.893 Delaware StIndianapolisIndianaUSA
| | - W. Nicholson Price
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
University of Michigan Law SchoolAnn ArborMichiganUSA
| | - John F. Hunt
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
99
|
Gerovac M, Chihara K, Wicke L, Böttcher B, Lavigne R, Vogel J. Phage proteins target and co-opt host ribosomes immediately upon infection. Nat Microbiol 2024; 9:787-800. [PMID: 38443577 PMCID: PMC10914614 DOI: 10.1038/s41564-024-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Bacteriophages must seize control of the host gene expression machinery to replicate. To bypass bacterial anti-phage defence systems, this host takeover occurs immediately upon infection. A general understanding of phage mechanisms for immediate targeting of host transcription and translation processes is lacking. Here we introduce an integrative high-throughput approach to uncover phage-encoded proteins that target the gene expression machinery of Pseudomonas aeruginosa immediately upon infection with the jumbo phage ΦKZ. By integrating biochemical, genetic and structural analyses, we identify an abundant and conserved phage factor ΦKZ014 that targets the large ribosomal subunit by binding the 5S ribosomal RNA, and rapidly promotes replication in several clinical isolates. ΦKZ014 is among the earliest ΦKZ proteins expressed after infection and remains bound to ribosomes during the entire translation cycle. Our study provides a strategy to decipher molecular components of phage-mediated host takeover and argues that phage genomes represent an untapped discovery space for proteins that modulate the host gene expression machinery.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Laura Wicke
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
100
|
Pilotto S, Sýkora M, Cackett G, Dulson C, Werner F. Structure of the recombinant RNA polymerase from African Swine Fever Virus. Nat Commun 2024; 15:1606. [PMID: 38383525 PMCID: PMC10881513 DOI: 10.1038/s41467-024-45842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
African Swine Fever Virus is a Nucleo-Cytoplasmic Large DNA Virus that causes an incurable haemorrhagic fever in pigs with a high impact on global food security. ASFV replicates in the cytoplasm of the infected cell and encodes its own transcription machinery that is independent of cellular factors, however, not much is known about how this system works at a molecular level. Here, we present methods to produce recombinant ASFV RNA polymerase, functional assays to screen for inhibitors, and high-resolution cryo-electron microscopy structures of the ASFV RNAP in different conformational states. The ASFV RNAP bears a striking resemblance to RNAPII with bona fide homologues of nine of its twelve subunits. Key differences include the fusion of the ASFV assembly platform subunits RPB3 and RPB11, and an unusual C-terminal domain of the stalk subunit vRPB7 that is related to the eukaryotic mRNA cap 2´-O-methyltransferase 1. Despite the high degree of structural conservation with cellular RNA polymerases, the ASFV RNAP is resistant to the inhibitors rifampicin and alpha-amanitin. The cryo-EM structures and fully recombinant RNAP system together provide an important tool for the design, development, and screening of antiviral drugs in a low biosafety containment environment.
Collapse
Affiliation(s)
- Simona Pilotto
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher Dulson
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|