51
|
Garcia-Segura ME, Durainayagam BR, Liggi S, Graça G, Jimenez B, Dehghan A, Tzoulaki I, Karaman I, Elliott P, Griffin JL. Pathway-based integration of multi-omics data reveals lipidomics alterations validated in an Alzheimer's disease mouse model and risk loci carriers. J Neurochem 2023; 164:57-76. [PMID: 36326588 PMCID: PMC10107183 DOI: 10.1111/jnc.15719] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.
Collapse
Affiliation(s)
- Monica Emili Garcia-Segura
- Department of Brain Sciences, Imperial College London, London, UK.,Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brenan R Durainayagam
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
| | - Sonia Liggi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Gonçalo Graça
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beatriz Jimenez
- Section of Bioanalytical Chemistry and the National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Abbas Dehghan
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ibrahim Karaman
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Paul Elliott
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK
| | - Julian L Griffin
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.,The Rowett Institute, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
52
|
Zhao X, Zhang S, Sanders AR, Duan J. Brain Lipids and Lipid Droplet Dysregulation in Alzheimer's Disease and Neuropsychiatric Disorders. Complex Psychiatry 2023; 9:154-171. [PMID: 38058955 PMCID: PMC10697751 DOI: 10.1159/000535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Background Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
53
|
Bonnechère B, Liu J, Thompson A, Amin N, van Duijn C. Does ethnicity influence dementia, stroke and mortality risk? Evidence from the UK Biobank. Front Public Health 2023; 11:1111321. [PMID: 37124771 PMCID: PMC10140594 DOI: 10.3389/fpubh.2023.1111321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The number of people with dementia and stroke is increasing worldwide. There is increasing evidence that there are clinically relevant genetic differences across ethnicities. This study aims to quantify risk factors of dementia, stroke, and mortality in Asian and black participants compared to whites. Methods 272,660 participants from the UK Biobank were included in the final analysis, among whom the vast majority are white (n = 266,671, 97.80%), followed by Asian (n = 3,790, 1.35%), and black (n = 2,358, 0.84%) participants. Cumulative incidence risk was calculated based on all incident cases occurring during the follow-up of the individuals without dementia and stroke at baseline. We compared the allele frequency of variants in Asian and black participants with the referent ethnicity, whites, by chi-square test. Hierarchical cluster analysis was used in the clustering analysis. Significance level corrected for the false discovery rate was considered. Results After adjusting for risk factors, black participants have an increased risk of dementia and stroke compared to white participants, while Asians has similar odds to the white. The risk of mortality is not different in blacks and white participants but Asians have a decreased risk. Discussion The study provides important insights into the potential differences in the risk of dementia and stroke among different ethnic groups. Specifically, the study found that black individuals had a higher incidence of dementia and stroke compared to white individuals living in the UK. These findings are particularly significant as they suggest that there may be underlying factors that contribute to these differences, including genetic, environmental, and social factors. By identifying these differences, the study helps to inform interventions and policies aimed at reducing the risk of dementia and stroke, particularly among high-risk populations.
Collapse
Affiliation(s)
- Bruno Bonnechère
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Alexander Thompson
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- *Correspondence: Cornelia van Duijn,
| |
Collapse
|
54
|
Garcia-Segura ME, Durainayagam BR, Liggi S, Graça G, Jimenez B, Dehghan A, Tzoulaki I, Karaman I, Elliott P, Griffin JL. Pathway-based integration of multi-omics data reveals lipidomics alterations validated in an Alzheimer's disease mouse model and risk loci carriers. J Neurochem 2023. [PMID: 36326588 DOI: 10.1101/2021.05.10.21255052v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.
Collapse
Affiliation(s)
- Monica Emili Garcia-Segura
- Department of Brain Sciences, Imperial College London, London, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brenan R Durainayagam
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
| | - Sonia Liggi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Gonçalo Graça
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beatriz Jimenez
- Section of Bioanalytical Chemistry and the National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Abbas Dehghan
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ibrahim Karaman
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Paul Elliott
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK
| | - Julian L Griffin
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
55
|
Bioinformatic Analysis of Genetic Factors from Human Blood Samples and Postmortem Brains in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9235358. [PMID: 36593912 PMCID: PMC9805394 DOI: 10.1155/2022/9235358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders characterized by motor and nonmotor symptoms due to the selective loss of midbrain dopaminergic neurons. Pharmacological and surgical interventions have not been possible to cure PD; however, the cause of neurodegeneration remains unclear. Here, we performed and tested a multitiered bioinformatic analysis using the GEO and Proteinexchange database to investigate the gene expression involved in the pathogenesis of PD. Then we further validated individual differences in gene expression in whole blood samples that we collected in the clinic. We also made an interaction analysis and prediction for these genetic factors. There were in all 1045 genes expressing differently in PD compared with the healthy control group. Protein-protein interaction (PPI) networks showed 10 top hub genes: ACO2, MDH2, SDHA, ATP5A1, UQCRC2, PDHB, SUCLG1, NDUFS3, UQCRC1, and ATP5C1. We validated the ten hub gene expression in clinical PD patients and showed the expression of MDH2 was significantly different compared with healthy control. Besides, we also identified the expression of G6PD, GRID2, RIPK2, CUL4B, BCL6, MRPS31, GPI, and MAP 2 K1 were all significantly increased, and levels of MAPK, ELAVL1, RAB14, KLF9, ARF1, ARFGAP1, ATG7, ABCA7, SFT2D2, E2F2, MAPK7, and UHRF1 were all significantly decreased in PD. Among them, to our knowledge, we presently have the most recent and conclusive evidence that GRID2, RIPK2, CUL4B, E2F2, and ABCA7 are possible PD indicators. We confirmed several genetic factors which may be involved in the pathogenesis of PD. They could be promising markers for discriminating the PD and potential factors that may affect PD development.
Collapse
|
56
|
Xu C, Zhang J, Zhou Q, Wang J, Liu C, Tian Y, Huang D, Ye H, Jin Y. Exposure to a real traffic environment impairs brain cognition in aged mice. ENVIRONMENTAL RESEARCH 2022; 215:114181. [PMID: 36113572 DOI: 10.1016/j.envres.2022.114181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution (TRAP) has been a common public health problem, which is associated with central nervous system dysfunction according to large-scale epidemiological studies. Current studies are mostly limited to artificial laboratory exposure environments and specific genetic mechanisms remain unclear. Therefore, we chose a real-world transportation environment to expose aged mice, transporting them from the laboratory to a 1-m-high dry platform inside the campus and tunnel, and the mice were exposed daily from 7 a.m. to 7 p.m. for 2, 4 and 12 weeks respectively. Compared with the control group (in campus), the memory function of mice in the experimental group (in tunnel) was significantly impaired in the Morris water maze test. TRAP exposure increased the number of activated microglia in the hippocampal DG, CA1, CA3 regions and dorsolateral prefrontal cortex (dPFC). And neuroinflammation and oxidative stress levels were up-regulated in both hippocampus and dPFC of aged mice. By screening the risk genes of Alzheimer's disease, we found the mRNA and protein levels of ABCA7 were down-regulated and those of PYK2 were up-regulated. The DNA methylation ratios increased in four CpG sites of abca7 promoter region and decreased in one CpG site of pyk2 promoter region, which were consistent with the altered expression of ABCA7 and PYK2. In conclusion, exposure to the real traffic environment impaired memory function and enhanced neuroinflammation and oxidative stress responses, which could be relevant to the altered expression and DNA methylation levels of ABCA7 and PYK2. Our work provides a new and promising understanding of the pathological mechanisms of cognitive impairment caused by traffic-related air pollution.
Collapse
Affiliation(s)
- Chenlu Xu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhang
- Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinfeng Zhou
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juling Wang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyang Liu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Tian
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Huang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaizhuang Ye
- Teaching and Research Center, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtang Jin
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
57
|
Chaar DL, Nguyen K, Wang YZ, Ratliff SM, Mosley TH, Kardia SLR, Smith JA, Zhao W. SNP-by-CpG Site Interactions in ABCA7 Are Associated with Cognition in Older African Americans. Genes (Basel) 2022; 13:2150. [PMID: 36421824 PMCID: PMC9691156 DOI: 10.3390/genes13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
SNPs in ABCA7 confer the largest genetic risk for Alzheimer's Disease (AD) in African Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA (p = 2 × 10-4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (p = 2 × 10-4) and 0.33 SD increase (p = 0.004), respectively, in cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were not associated with cognition in this sample, some have interactions with proximal methylation on cognition.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kim Nguyen
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MI 39216, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
58
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
59
|
Jansen IE, van der Lee SJ, Gomez-Fonseca D, de Rojas I, Dalmasso MC, Grenier-Boley B, Zettergren A, Mishra A, Ali M, Andrade V, Bellenguez C, Kleineidam L, Küçükali F, Sung YJ, Tesí N, Vromen EM, Wightman DP, Alcolea D, Alegret M, Alvarez I, Amouyel P, Athanasiu L, Bahrami S, Bailly H, Belbin O, Bergh S, Bertram L, Biessels GJ, Blennow K, Blesa R, Boada M, Boland A, Buerger K, Carracedo Á, Cervera-Carles L, Chene G, Claassen JAHR, Debette S, Deleuze JF, de Deyn PP, Diehl-Schmid J, Djurovic S, Dols-Icardo O, Dufouil C, Duron E, Düzel E, Fladby T, Fortea J, Frölich L, García-González P, Garcia-Martinez M, Giegling I, Goldhardt O, Gobom J, Grimmer T, Haapasalo A, Hampel H, Hanon O, Hausner L, Heilmann-Heimbach S, Helisalmi S, Heneka MT, Hernández I, Herukka SK, Holstege H, Jarholm J, Kern S, Knapskog AB, Koivisto AM, Kornhuber J, Kuulasmaa T, Lage C, Laske C, Leinonen V, Lewczuk P, Lleó A, de Munain AL, Lopez-Garcia S, Maier W, Marquié M, Mol MO, Montrreal L, Moreno F, Moreno-Grau S, Nicolas G, Nöthen MM, Orellana A, Pålhaugen L, Papma JM, Pasquier F, Perneczky R, Peters O, Pijnenburg YAL, Popp J, Posthuma D, Pozueta A, Priller J, Puerta R, Quintela I, Ramakers I, Rodriguez-Rodriguez E, Rujescu D, Saltvedt I, Sanchez-Juan P, Scheltens P, Scherbaum N, Schmid M, Schneider A, Selbæk G, Selnes P, Shadrin A, Skoog I, Soininen H, Tárraga L, Teipel S, Tijms B, Tsolaki M, Van Broeckhoven C, Van Dongen J, van Swieten JC, Vandenberghe R, Vidal JS, Visser PJ, Vogelgsang J, Waern M, Wagner M, Wiltfang J, Wittens MMJ, Zetterberg H, Zulaica M, van Duijn CM, Bjerke M, Engelborghs S, Jessen F, Teunissen CE, Pastor P, Hiltunen M, Ingelsson M, Andreassen OA, Clarimón J, Sleegers K, Ruiz A, Ramirez A, Cruchaga C, Lambert JC, van der Flier W. Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers. Acta Neuropathol 2022; 144:821-842. [PMID: 36066633 PMCID: PMC9547780 DOI: 10.1007/s00401-022-02454-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 01/26/2023]
Abstract
Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
Collapse
Affiliation(s)
- Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Duber Gomez-Fonseca
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurosciences and Complex Systems Unit (ENyS), CONICET, Hospital El Cruce, National University A. Jauretche (UNAJ), Florencio Varela, Argentina
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Victor Andrade
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Niccolo Tesí
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Ellen M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Daniel Alcolea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Lavinia Athanasiu
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Henri Bailly
- Université Paris Cité, EA4468, Maladie d'Alzheimer, F-75013 Paris, France
| | - Olivia Belbin
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sverre Bergh
- The Research-Centre for Age-Related Functional Decline and Disease, Innlandet Hospital Trust, Brumunddal, Norway
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rafael Blesa
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-CIBERER-IDIS, Santiago de Compostela, Spain
| | - Laura Cervera-Carles
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Geneviève Chene
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
| | - Jurgen A H R Claassen
- Radboudumc Alzheimer Center, Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Center for Medical Neuroscience, Nijmegen, The Netherlands
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, 2115, USA
| | - Jean-Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Peter Paul de Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine Diehl-Schmid
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- kbo-Inn-Salzach-Hospital, Wasserburg am Inn, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, NORMENT Centre, University of Bergen, Bergen, Norway
| | - Oriol Dols-Icardo
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Pôle de Santé Publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Juan Fortea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Pablo García-González
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria Garcia-Martinez
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ina Giegling
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Goldhardt
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Timo Grimmer
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Harald Hampel
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Neurology Business Group, Eisai Inc, 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Olivier Hanon
- Université Paris Cité, EA4468, Maladie d'Alzheimer, F-75013 Paris, France
- Service gériatrie, Centre Mémoire de Ressources et Recherches Ile de France-Broca, AP-HP, Hôpital Broca, F-75013, Paris, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, 53127, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Isabel Hernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sanna-Kaisa Herukka
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | | | - Anne M Koivisto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Teemu Kuulasmaa
- Bioinformatics Center, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Carmen Lage
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Atlantic Fellow at the Global Brain Health Institute (GBHI) -, University of California, San Francisco, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ville Leinonen
- Institute of Clinical Medicine, Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Alberto Lleó
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adolfo López de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
- University of The Basque Country, San Sebastian, Spain
| | - Sara Lopez-Garcia
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Rouen, France
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, 53127, Bonn, Germany
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lene Pålhaugen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Janne M Papma
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich and University of Zürich, Zurich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Ana Pozueta
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Klinikum rechts der isar, Technical University Munich, 81675, Munich, Germany
| | - Raquel Puerta
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Eloy Rodriguez-Rodriguez
- Cognitive Impairment Unit, Neurology Service, "Marqués de Valdecilla" University Hospital, Institute for Research "Marques de Valdecilla" (IDIVAL), University of Cantabria, Santander, Spain, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dan Rujescu
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Geriatrics, St Olav Hospital, University Hospital of Trondheim, Trondheim, Norway
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lluís Tárraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Betty Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rik Vandenberghe
- Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Pieter J Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Göttingen, Germany
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Psychosis Clinic, Gothenburg, Sweden
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Miren Zulaica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario Donostia-OSAKIDETZA, Donostia, Spain
- Instituto Biodonostia, San Sebastián, Spain
| | - Cornelia M van Duijn
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health, Oslo, Norway
- Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Jordi Clarimón
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE / Labex DISTALZ - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Bartoletti-Stella A, Tarozzi M, Mengozzi G, Asirelli F, Brancaleoni L, Mometto N, Stanzani-Maserati M, Baiardi S, Linarello S, Spallazzi M, Pantieri R, Ferriani E, Caffarra P, Liguori R, Parchi P, Capellari S. Dementia-related genetic variants in an Italian population of early-onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:969817. [PMID: 36133075 PMCID: PMC9484406 DOI: 10.3389/fnagi.2022.969817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Early-onset Alzheimer’s disease (EOAD) is the most common form of early-onset dementia. Although three major genes have been identified as causative, the genetic contribution to the disease remains unsolved in many patients. Recent studies have identified pathogenic variants in genes representing a risk factor for developing Alzheimer’s disease (AD) and in causative genes for other degenerative dementias as responsible for EOAD. To study them further, we investigated a panel of candidate genes in 102 Italian EOAD patients, 45.10% of whom had a positive family history and 21.74% with a strong family history of dementia. We found that 10.78% of patients carried pathogenic or likely pathogenic variants, including a novel variant, in PSEN1, PSEN2, or APP, and 7.84% showed homozygosity for the ε4 APOE allele. Additionally, 7.84% of patients had a moderate risk allele in PSEN1, PSEN2, or TREM2 genes. Besides, we observed that 12.75% of our patients carried only a variant in genes associated with other neurodegenerative diseases. The combination of these variants contributes to explain 46% of cases with a definite familiarity and 32% of sporadic forms. Our results confirm the importance of extensive genetic screening in EOAD for clinical purposes, to select patients for future treatments and to contribute to the definition of overlapping pathogenic mechanisms between AD and other forms of dementia.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Tarozzi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Francesca Asirelli
- Department of Medical Science and Surgery (DIMEC), University of Bologna, Bologna, Italy
| | - Laura Brancaleoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Nicola Mometto
- UOC Neurologia, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | | | - Simone Baiardi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Simona Linarello
- Programma Cure Intermedie - Azienda USL di Bologna, Bologna, Italy
| | - Marco Spallazzi
- U.O. di Neurologia, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Roberta Pantieri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Elisa Ferriani
- UOC Psicologia Clinica Ospedaliera, Ospedale Bellaria, Azienda USL di Bologna, Bologna, Italy
| | - Paolo Caffarra
- Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- *Correspondence: Sabina Capellari,
| |
Collapse
|
61
|
Genetic landscape of early-onset dementia in Hungary. Neurol Sci 2022; 43:5289-5300. [PMID: 35752680 PMCID: PMC9385840 DOI: 10.1007/s10072-022-06168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 10/31/2022]
Abstract
Abstract
Introduction
Early-onset dementias (EOD) are predominantly genetically determined, but the underlying disease-causing alterations are often unknown. The most frequent forms of EODs are early-onset Alzheimer’s disease (EOAD) and frontotemporal dementia (FTD).
Patients
This study included 120 Hungarian patients with EOD (48 familial and 72 sporadic) which had a diagnosis of EOAD (n = 49), FTD (n = 49), or atypical dementia (n = 22).
Results
Monogenic dementia was detected in 15.8% of the patients. A pathogenic hexanucleotide repeat expansion in the C9ORF72 gene was present in 6.7% of cases and disease-causing variants were detected in other known AD or FTD genes in 6.7% of cases (APP, PSEN1, PSEN2, GRN). A compound heterozygous alteration of the TREM2 gene was identified in one patient and heterozygous damaging variants in the CSF1R and PRNP genes were detected in two other cases. In two patients, the coexistence of several heterozygous damaging rare variants associated with neurodegeneration was detected (1.7%). The APOE genotype had a high odds ratio for both the APOE ɛ4/3 and the ɛ4/4 genotype (OR = 2.7 (95%CI = 1.3–5.9) and OR = 6.5 (95%CI = 1.4–29.2), respectively). In TREM2, SORL1, and ABCA7 genes, 5 different rare damaging variants were detected as genetic risk factors. These alterations were not present in the control group.
Conclusion
Based on our observations, a comprehensive, targeted panel of next-generation sequencing (NGS) testing investigating several neurodegeneration-associated genes may accelerate the path to achieve the proper genetic diagnosis since phenotypes are present on a spectrum. This can also reveal hidden correlations and overlaps in neurodegenerative diseases that would remain concealed in separated genetic testing.
Collapse
|
62
|
Houben S, Bonnechère B. The Impact of COVID-19 Infection on Cognitive Function and the Implication for Rehabilitation: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7748. [PMID: 35805406 PMCID: PMC9266128 DOI: 10.3390/ijerph19137748] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/11/2022]
Abstract
There is mounting evidence that patients with severe COVID-19 disease may have symptoms that continue beyond the acute phase, extending into the early chronic phase. This prolonged COVID-19 pathology is often referred to as 'Long COVID'. Simultaneously, case investigations have shown that COVID-19 individuals might have a variety of neurological problems. The accurate and accessible assessment of cognitive function in patients post-COVID-19 infection is thus of increasingly high importance for both public and individual health. Little is known about the influence of COVID-19 on the general cognitive levels but more importantly, at sub-functions level. Therefore, we first aim to summarize the current level of evidence supporting the negative impact of COVID-19 infection on cognitive functions. Twenty-seven studies were included in the systematic review representing a total of 94,103 participants (90,317 COVID-19 patients and 3786 healthy controls). We then performed a meta-analysis summarizing the results of five studies (959 participants, 513 patients) to quantify the impact of COVID-19 on cognitive functions. The overall effect, expressed in standardized mean differences, is -0.41 [95%CI -0.55; -0.27]. To prevent disability, we finally discuss the different approaches available in rehabilitation to help these patients and avoid long-term complications.
Collapse
Affiliation(s)
- Sarah Houben
- Scientific Direction Infectious Diseases in Humans, Sciensano, 1050 Brussels, Belgium;
| | - Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
63
|
Yang Z, Xue L, Li C, Li M, Xie A. Association between ABCA7 gene polymorphisms and Parkinson's disease susceptibility in a northern Chinese Han population. Neurosci Lett 2022; 784:136734. [PMID: 35709878 DOI: 10.1016/j.neulet.2022.136734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE As a typical member of the ABC transporter superfamily, ABCA7 has been shown to play an important role in stalling the pathogenesis of neurodegenerative disorders through maintaining the normal microglial function, regulating cellular responses to inflammation and ER stress, and modulating lipid metabolism. Variants in the ABCA7 locus have been hypothesized to be correlated with the genetic predisposition of several neurodegenerative disorders. The goal of this study was to examine whether there is a link between three specific single nucleotide polymorphisms in the ABCA7 gene, namely, rs3764650, rs4147929, and rs3752246, with the risk of developing Parkinson's disease (PD) in a northern Chinese Han community. METHODS In this case-control study, we recruited 821 participants, including 411 patients with sporadic PD and 410 independent, healthy controls. A Polymerase Chain Reaction-Restriction Fragment Length Polymorphism genotyping assay was used to identify polymorphisms of the three selected single nucleotide polymorphisms (rs3764650, rs4147929, and rs3752246) of the ABCA7 gene. Sanger sequencing was further applied to identify the accuracy of the genotyping results. The chi-square test was used to compare the frequencies of alleles and genotypes in patients and controls. Odds ratios and 95% confidence intervals were calculated using logistic regression. RESULTS We found significant between-group differences in the alleles (A vs. G, nominal P = 0.014) and dominant models (AA + GA vs. GG, nominal P = 0.015) of rs4147929. Subgroup analysis showed that the frequency of the rs4147929 A allele in male patients with PD was significantly higher than that in male controls (nominal P = 0.036). For the rs3752246 polymorphism, the frequency of the G allele was significantly higher in patients with PD than in controls, and the dominant model fit the data best when considering the nominal P-values (nominal P = 0.019, nominal P = 0.033, respectively). Differences in G allele and genotypes frequencies between patients and controls remained significant in women (nominal P = 0.032 for allele, nominal P = 0.015 for genotype), as well as in individuals aged more than 50 years (nominal P = 0.044, nominal P = 0.020, respectively). No significant differences were observed in allele or genotype frequencies between patients with PD and healthy controls for rs3764650. The frequency of the TCG (rs3764650-rs3752246-rs4147929) haplotype was significantly lower in the PD group than in the healthy control group (odds ratio = 0.772; 95% confidence interval = 0.634-0.940; P = 0.011). CONCLUSION The rs4147929 polymorphism was significantly associated with PD susceptibility in the northern Chinese Han population. The A allele of rs4147929 was a risk factor for developing PD. The TCG haplotype presented a protective role in the pathogenesis of PD. Further studies using larger sample sizes, considering different clinical and biochemical parameters such as the cognitive status of subjects at the same time, are warranted to better clarify the effects of these common variants on the pathogenesis and development of PD.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- The Recording Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqian Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjuan Li
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
64
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW This article discusses the spectrum of genetic risk in familial and sporadic forms of early- and late-onset Alzheimer disease (AD). Recent work illuminating the complex genetic architecture of AD is discussed in the context of high and low risk and what is known in different populations. RECENT FINDINGS A small proportion of AD is autosomal dominant familial AD caused by variants in PSEN1, PSEN2, or APP, although more recently described rare genetic changes can also increase risk substantially over the general population, with odds ratios estimated at 2 to 4. APOE remains the strongest genetic risk factor for late-onset AD, and understanding the biology of APOE has yielded mechanistic insights and leads for therapeutic interventions. Genome-wide studies enabled by rapidly developing technologic advances in sequencing have identified numerous risk factors that have a low impact on risk but are widely shared throughout the population and involve a repertoire of cell pathways, again shining light on potential paths to intervention. Population studies aimed at defining and stratifying genetic AD risk have been informative, although they are not yet widely applicable clinically because the studies were not performed in people with diverse ancestry and ethnicity and thus population-wide data are lacking. SUMMARY The value of genetic information to practitioners in the clinic is distinct from information sought by researchers looking to identify novel therapeutic targets. It is possible to envision a future in which genetic stratification joins other biomarkers to facilitate therapeutic choices and inform prognosis. Genetics already has transformed our understanding of AD pathogenesis and will, no doubt, continue to reveal the complexity of brain biology in health and disease.
Collapse
|
66
|
Mol MO, van der Lee SJ, Hulsman M, Pijnenburg YAL, Scheltens P, Seelaar H, van Swieten JC, Kaat LD, Holstege H, van Rooij JGJ. Mapping the genetic landscape of early-onset Alzheimer's disease in a cohort of 36 families. Alzheimers Res Ther 2022; 14:77. [PMID: 35650585 PMCID: PMC9158156 DOI: 10.1186/s13195-022-01018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Many families with clinical early-onset Alzheimer's disease (EOAD) remain genetically unexplained. A combination of genetic factors is not standardly investigated. In addition to monogenic causes, we evaluated the possible polygenic architecture in a large series of families, to assess if genetic testing of familial EOAD could be expanded. METHODS Thirty-six pedigrees (77 patients) were ascertained from a larger cohort of patients, with relationships determined by genetic data (exome sequencing data and/or SNP arrays). All families included at least one AD patient with symptom onset <70 years. We evaluated segregating rare variants in known dementia-related genes, and other genes or variants if shared by multiple families. APOE was genotyped and duplications in APP were assessed by targeted test or using SNP array data. We computed polygenic risk scores (PRS) compared with a reference population-based dataset, by imputing SNP arrays or exome sequencing data. RESULTS In eight families, we identified a pathogenic variant, including the genes APP, PSEN1, SORL1, and an unexpected GRN frameshift variant. APOE-ε4 homozygosity was present in eighteen families, showing full segregation with disease in seven families. Eight families harbored a variant of uncertain significance (VUS), of which six included APOE-ε4 homozygous carriers. PRS was not higher in the families combined compared with the population mean (beta 0.05, P = 0.21), with a maximum increase of 0.61 (OR = 1.84) in the GRN family. Subgroup analyses indicated lower PRS in six APP/PSEN1 families compared with the rest (beta -0.22 vs. 0.10; P = 0.009) and lower APOE burden in all eight families with monogenic cause (beta 0.29 vs. 1.15, P = 0.010). Nine families remained without a genetic cause or risk factor identified. CONCLUSION Besides monogenic causes, we suspect a polygenic disease architecture in multiple families based on APOE and rare VUS. The risk conveyed by PRS is modest across the studied families. Families without any identified risk factor render suitable candidates for further in-depth genetic evaluation.
Collapse
Affiliation(s)
- Merel O Mol
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Phillip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Jeroen G J van Rooij
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
67
|
Chen F, Wang N, He X. Identification of Differential Genes of DNA Methylation Associated With Alzheimer's Disease Based on Integrated Bioinformatics and Its Diagnostic Significance. Front Aging Neurosci 2022; 14:884367. [PMID: 35615586 PMCID: PMC9125150 DOI: 10.3389/fnagi.2022.884367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative disease. The pathogenesis is complex and has not been clearly elucidated, and there is no effective treatment. Recent studies have demonstrated that DNA methylation is closely associated with the pathogenesis of AD, which sheds light on investigating potential biomarkers for the diagnosis of early AD and related possible therapeutic approaches. Methods Alzheimer's disease patients samples and healthy controls samples were collected from two datasets in the GEO database. Using LIMMA software package in R language to find differentially expressed genes (DEGs). Afterward, DEGs have been subjected to enrichment analysis of GO and KEGG pathways. The PPI networks and Hub genes were created and visualized based on the STRING database and Cytoscape. ROC curves were further constructed to analyze the accuracy of these genes for AD diagnosis. Results Analysis of the GSE109887 and GSE97760 datasets showed 477 significant DEGs. GO and KEGG enrichment analysis showed terms related to biological processes related to these genes. The top ten Hub genes were found on the basis of the PPI network using the CytoHubba plugin, and the AUC areas of these top ranked genes were all greater than 0.7, showing satisfactory diagnostic accuracy. Conclusion The study identified the top 10 Hub genes associated with AD-related DNA methylation, of which RPSA, RPS23, and RPLP0 have high diagnostic accuracy and excellent AD biomarker potential.
Collapse
Affiliation(s)
| | | | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
68
|
Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease. Mol Neurodegener 2022; 17:31. [PMID: 35477481 PMCID: PMC9044696 DOI: 10.1186/s13024-022-00536-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. Main body Changes in expression or dysfunction of these transporters were found to increase amyloid β levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. Conclusions A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp - CDE, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
69
|
Heath L, Earls JC, Magis AT, Kornilov SA, Lovejoy JC, Funk CC, Rappaport N, Logsdon BA, Mangravite LM, Kunkle BW, Martin ER, Naj AC, Ertekin-Taner N, Golde TE, Hood L, Price ND. Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Sci Rep 2022; 12:6117. [PMID: 35413975 PMCID: PMC9005657 DOI: 10.1038/s41598-022-09825-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Genetics play an important role in late-onset Alzheimer's Disease (AD) etiology and dozens of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed. We observed statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel proteins were associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification of a putative causal variant within the PILRA gene. We did not observe associations between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, sex-stratified GWAS results from an independent AD case-control meta-analysis supported sex-specific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a population of non-AD individuals, with associations observed from early adulthood onward. Further research is needed to determine whether and how these effects are implicated in early-stage biological pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-associated genetic variants.
Collapse
Affiliation(s)
- Laura Heath
- Institute for Systems Biology, Seattle, WA, USA.
- Sage Bionetworks, Seattle, WA, USA.
| | - John C Earls
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York, NY, USA
| | | | | | | | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adam C Naj
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease University of Florida, Gainesville, FL, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
- Providence St. Joseph Health, Renton, WA, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, USA.
- Thorne HealthTech, New York, NY, USA.
| |
Collapse
|
70
|
Neumann A, Küçükali F, Bos I, Vos SJB, Engelborghs S, De Pooter T, Joris G, De Rijk P, De Roeck E, Tsolaki M, Verhey F, Martinez-Lage P, Tainta M, Frisoni G, Blin O, Richardson J, Bordet R, Scheltens P, Popp J, Peyratout G, Johannsen P, Frölich L, Vandenberghe R, Freund-Levi Y, Streffer J, Lovestone S, Legido-Quigley C, Ten Kate M, Barkhof F, Strazisar M, Zetterberg H, Bertram L, Visser PJ, van Broeckhoven C, Sleegers K. Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation. Mol Psychiatry 2022; 27:1990-1999. [PMID: 35173266 PMCID: PMC9126805 DOI: 10.1038/s41380-022-01437-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.
Collapse
Affiliation(s)
- Alexander Neumann
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabelle Bos
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | - Stephanie J B Vos
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Universitair Ziekenhuis Brussel (UZ Brussel) and Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Tim De Pooter
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Geert Joris
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Peter De Rijk
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Ellen De Roeck
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Magda Tsolaki
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Frans Verhey
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Pablo Martinez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Mikel Tainta
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Giovanni Frisoni
- Department of Psychiatry, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- RCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Oliver Blin
- Clinical Pharmacology & Pharmacovigilance Department, Marseille University Hospital, Marseille, France
| | - Jill Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevanage, UK
| | - Régis Bordet
- Neuroscience & Cognition, CHU de Lille, University of Lille, Inserm, France
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Gwendoline Peyratout
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Peter Johannsen
- Clinical Drug Development, Novo Nordisk, Copenhagen, Denmark
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Yvonne Freund-Levi
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society Karolinska Institute Stockholm Sweden, Stockholm, Sweden
- School of Medical Sciences Örebro, University Örebro, Örebro, Sweden
| | - Johannes Streffer
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- Janssen Medical Ltd, High Wycombe, UK
| | - Cristina Legido-Quigley
- Steno Diabetes Center, Copenhagen, Denmark
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Mara Ten Kate
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Mojca Strazisar
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Pieter Jelle Visser
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Christine van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
71
|
Jiao B, Xiao X, Yuan Z, Guo L, Liao X, Zhou Y, Zhou L, Wang X, Liu X, Liu H, Jiang Y, Lin Z, Zhu Y, Yang Q, Zhang W, Li J, Shen L. Associations of risk genes with onset age and plasma biomarkers of Alzheimer's disease: a large case-control study in mainland China. Neuropsychopharmacology 2022; 47:1121-1127. [PMID: 35001095 PMCID: PMC8938514 DOI: 10.1038/s41386-021-01258-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Abstract
Most genetic studies concerning risk genes in Alzheimer's disease (AD) are from Caucasian populations, whereas the data remain limited in the Chinese population. In this study, we systematically explored the relationship between AD and risk genes in mainland China. We sequenced 33 risk genes previously reported to be associated with AD in a total of 3604 individuals in the mainland Chinese population. Common variant (MAF ≥ 0.01) based association analysis and gene-based (MAF < 0.01) association test were performed by PLINK 1.9 and Sequence Kernel Association Test-Optimal, respectively. Polygenic risk score (PRS) was calculated, and receiver operating characteristic curve (AUC) was computed. Plasma Aβ42, Aβ40, total tau (T-tau), and neurofilament light chain (NFL) were tested in a subgroup, and their associations with PRS were conducted using the Spearman correlation test. Six common variants varied significantly between AD patients and cognitively normal controls after the adjustment of age, gender, and APOE ε4 status, including variants in ABCA7 (n = 5) and APOE (n = 1). Among them, four variants were novel and two were reported previously. The AUC of PRS was 0.71. The high PRS was significantly associated with an earlier age at onset (P = 4.30 × 10-4). PRS was correlated with plasma Aβ42, Aβ42/Aβ40 ratio, T-tau, and NFL levels. Gene-based association test revealed that ABCA7 and UNC5C reached statistical significance. The common variants in APOE and ABCA7, as well as rare variants in ABCA7 and UNC5C, may contribute to the etiology of AD. Moreover, the PRS, to some extent, could predict the risk, onset age, and biological changes of AD.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
72
|
Bossaerts L, Hendrickx Van de Craen E, Cacace R, Asselbergh B, Van Broeckhoven C. Rare missense mutations in ABCA7 might increase Alzheimer's disease risk by plasma membrane exclusion. Acta Neuropathol Commun 2022; 10:43. [PMID: 35361255 PMCID: PMC8973822 DOI: 10.1186/s40478-022-01346-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
The adenosine triphosphate-binding cassette subfamily A member 7 gene (ABCA7) is associated with Alzheimer's disease (AD) in large genome-wide association studies. Targeted sequencing of ABCA7 suggests a role for rare premature termination codon (PTC) mutations in AD, with haploinsufficiency through nonsense-mediated mRNA decay as a plausible pathogenic mechanism. Since other classes of rare variants in ABCA7 are poorly understood, we investigated the contribution and pathogenicity of rare missense, indel and splice variants in ABCA7 in Belgian AD patient and control cohorts. We identified 8.36% rare variants in the patient cohort versus 6.05% in the control cohort. For 10 missense mutations identified in the Belgian cohort we analyzed the pathogenetic effect on protein localization in vitro using immunocytochemistry. Our results demonstrate that rare ABCA7 missense mutations can contribute to AD by inducing protein mislocalization, resulting in a lack of functional protein at the plasma membrane. In one pedigree, a mislocalization-inducing missense mutation in ABCA7 (p.G1820S) co-segregated with AD in an autosomal dominant inheritance pattern. Brain autopsy of six patient missense mutation carriers showed typical AD neuropathological characteristics including cerebral amyloid angiopathy type 1. Also, among the rare ABCA7 missense mutations, we observed mutations that affect amino acid residues that are conserved in ABCA1 and ABCA4, of which some correspond to established ABCA1 or ABCA4 disease-causing mutations involved in Tangier or Stargardt disease.
Collapse
|
73
|
Vendruscolo M. Lipid Homeostasis and Its Links With Protein Misfolding Diseases. Front Mol Neurosci 2022; 15:829291. [PMID: 35401104 PMCID: PMC8990168 DOI: 10.3389/fnmol.2022.829291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
The maintenance of lipid homeostasis is essential for the normal functioning of living organisms. Alterations of the lipid homeostasis system remodel the composition of the lipidome, potentially leading to the formation of toxic lipid species. In turn, lipidome changes can affect the protein homeostasis system by causing perturbations that elicit protein condensation phenomena such as protein liquid-liquid phase separation and protein aggregation. Lipids can also be more directly involved the formation of aberrant condensed states of proteins by facilitating the early events that initiate these processes and by stabilizing the condensed states themselves. These observations suggest that lipid-induced toxicity can contribute to protein misfolding diseases, including Alzheimer’s and Parkinson’s diseases. According to this view, an impairment of the lipid homeostasis system generates toxic states of lipids that disturb the protein homeostasis system and promote the formation of toxic states of proteins.
Collapse
|
74
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
75
|
Wang W, Kong W, Wang S, Wei K. Detecting Biomarkers of Alzheimer's Disease Based on Multi-constrained Uncertainty-Aware Adaptive Sparse Multi-view Canonical Correlation Analysis. J Mol Neurosci 2022; 72:841-865. [PMID: 35080765 DOI: 10.1007/s12031-021-01963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/29/2021] [Indexed: 12/01/2022]
Abstract
Image genetics mainly explores the pathogenesis of Alzheimer's disease (AD) by studying the relationship between genetic data (such as SNP, gene expression data, and DNA methylation) and imaging data (such as structural MRI (sMRI), fMRI, and PET). Most of the existing research on brain imaging genomics uses two-way or three-way bi-multivariate methods to explore the correlation analysis between genes and brain imaging. However, many of these methods are still affected by the gradient domination or cannot take into account the effect of feature redundancy on the results, so that the typical correlation coefficient and program running speed are not significantly improved. In order to solve the above problems, this paper proposes a multi-constrained uncertainty-aware adaptive sparse multi-view canonical correlation analysis method (MC-unAdaSMCCA) to explore associations among SNPs, gene expression data, and sMRI; that is, based on traditional unAdaSMCCA, orthogonal constraints are imposed on the weights of the three data features through linear programming, which can reduce the redundancy of feature weights to improve the correlation between the data and reduce the complexity of the algorithm to significantly speed up the running speed of the program. Three adaptive sparse multi-view canonical correlation analysis methods are used as benchmarks to evaluate the difference between real neuroimaging data and synthetic data. Compared with the other three methods, our proposed method has obtained better or comparable typical correlation coefficients and typical weights. Moreover, the following experimental results show that the MC-unAdaSMCCA method cannot only identify biomarkers related to AD and mild cognitive impairment (MCI), but also has a strong ability to resist noise and process high-dimensional data. Therefore, our proposed method provides a reliable approach to multi-modal imaging genetic researches.
Collapse
Affiliation(s)
- Wenbo Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China.
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China
| | - Kai Wei
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China
| |
Collapse
|
76
|
Campbell AS, Ho CCG, Atık M, Allen M, Lincoln S, Malphrus K, Nguyen T, Oatman SR, Corda M, Conway O, Strickland S, Petersen RC, Dickson DW, Graff-Radford NR, Ertekin-Taner N. Clinical Deep Phenotyping of ABCA7 Mutation Carriers. Neurol Genet 2022; 8:e655. [PMID: 35047668 PMCID: PMC8759075 DOI: 10.1212/nxg.0000000000000655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022]
Abstract
Background and Objectives Putative loss-of-function (pLOF) ABCA7 variants that increase Alzheimer disease (AD) risk were identified; however, deep phenotypic characterization of these variants in mutation carriers is limited. We aimed to obtain deep clinical phenotypes of ABCA7 pLOF mutation carriers from a large retrospectively reviewed series. Methods Genotypes were determined for 5,353 individuals evaluated at Mayo Clinic for 6 reported ABCA7 pLOF variants (p.E709fs, p.Trp1214X, p.L1403fs, c.4416+2T>G, p.E1679X, and c.5570+5G>C). Medical records of 100 mutation carriers were reviewed for demographics, clinical phenotypes, and diagnoses. Eleven mutation carriers had autopsy-based neuropathologic diagnoses. Results We confirmed that ABCA7 pLOF mutations confer AD risk in our series of 2,495 participants with AD and 2,858 cognitively unaffected participants. Clinical review of 100 mutation carriers demonstrated phenotypic variability of clinical presentations with both memory and nonmemory cognitive impairment and a subset presenting with motor symptoms. There was a wide range of age at onset of cognitive symptoms (ages 56–92 years, mean = 75.6). Ten of the 11 autopsied mutation carriers had AD neuropathology. ABCA7 pLOF mutation carriers had higher rates of depression (41.6%) and first-degree relatives with cognitive impairment (38.1%) compared with the general population. Discussion Our study provides a deep clinical review of phenotypic characteristics of mutation carriers for 6 ABCA7 pLOF mutations. Although memory impairment was the most common initial symptom, nonmemory cognitive and/or motor symptoms were present in a substantial number of mutation carriers, highlighting the heterogeneity of clinical features associated with these mutations. Likewise, although AD neuropathology is the most common, it is not the only autopsy-based diagnosis. Presence of earlier ages at onset, higher rates of depression, and first-degree relatives with cognitive impairment among mutation carriers suggest that these genetic variants may have more aggressive clinical features than AD in the general population. This deep phenotyping study of ABCA7 pLOF mutation carriers provides essential genotype-phenotype correlations for future precision medicine approaches in the clinical setting.
Collapse
Affiliation(s)
- Alana S Campbell
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Charlotte C G Ho
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Merve Atık
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Mariet Allen
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Sarah Lincoln
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Kimberly Malphrus
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Thuy Nguyen
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Stephanie R Oatman
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Morgane Corda
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Olivia Conway
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Samantha Strickland
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Dennis W Dickson
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Neill R Graff-Radford
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Nilüfer Ertekin-Taner
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
77
|
Khani M, Gibbons E, Bras J, Guerreiro R. Challenge accepted: uncovering the role of rare genetic variants in Alzheimer's disease. Mol Neurodegener 2022; 17:3. [PMID: 35000612 PMCID: PMC8744312 DOI: 10.1186/s13024-021-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
The search for rare variants in Alzheimer's disease (AD) is usually deemed a high-risk - high-reward situation. The challenges associated with this endeavor are real. Still, the application of genome-wide technologies to large numbers of cases and controls or to small, well-characterized families has started to be fruitful.Rare variants associated with AD have been shown to increase risk or cause disease, but also to protect against the development of AD. All of these can potentially be targeted for the development of new drugs.Multiple independent studies have now shown associations of rare variants in NOTCH3, TREM2, SORL1, ABCA7, BIN1, CLU, NCK2, AKAP9, UNC5C, PLCG2, and ABI3 with AD and suggested that they may influence disease via multiple mechanisms. These genes have reported functions in the immune system, lipid metabolism, synaptic plasticity, and apoptosis. However, the main pathway emerging from the collective of genes harboring rare variants associated with AD is the Aβ pathway. Associations of rare variants in dozens of other genes have also been proposed, but have not yet been replicated in independent studies. Replication of this type of findings is one of the challenges associated with studying rare variants in complex diseases, such as AD. In this review, we discuss some of these primary challenges as well as possible solutions.Integrative approaches, the availability of large datasets and databases, and the development of new analytical methodologies will continue to produce new genes harboring rare variability impacting AD. In the future, more extensive and more diverse genetic studies, as well as studies of deeply characterized families, will enhance our understanding of disease pathogenesis and put us on the correct path for the development of successful drugs.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E., Grand Rapids, Michigan 49503-2518 USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E., Grand Rapids, Michigan 49503-2518 USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E., Grand Rapids, Michigan 49503-2518 USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI USA
| |
Collapse
|
78
|
Liu Y, Castano D, Girolamo F, Trigueros-Motos L, Bae HG, Neo SP, Oh J, Narayanaswamy P, Torta F, Rye KA, Jo DG, Gunaratne J, Jung S, Virgintino D, Singaraja RR. Loss of ABCA8B decreases myelination by reducing oligodendrocyte precursor cells in mice. J Lipid Res 2022; 63:100147. [PMID: 34752805 PMCID: PMC8953628 DOI: 10.1016/j.jlr.2021.100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
The myelin sheath, which is wrapped around axons, is a lipid-enriched structure produced by mature oligodendrocytes. Disruption of the myelin sheath is observed in several neurological diseases, such as multiple sclerosis. A crucial component of myelin is sphingomyelin, levels of which can be increased by ABCA8, a member of the ATP-binding cassette transporter family. ABCA8 is highly expressed in the cerebellum, specifically in oligodendroglia. However, whether ABCA8 plays a role in myelination and mechanisms that would underlie this role remain unknown. Here, we found that the absence of Abca8b, a mouse ortholog of ABCA8, led to decreased numbers of cerebellar oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in mice. We show that in oligodendrocytes, ABCA8 interacts with chondroitin sulfate proteoglycan 4 (CSPG4), a molecule essential for OPC proliferation, migration, and myelination. In the absence of Abca8b, localization of CSPG4 to the plasma membrane was decreased, contributing to reduced cerebellar CSPG4 expression. Cerebellar CSPG4+ OPCs were also diminished, leading to decreased mature myelinating oligodendrocyte numbers and cerebellar myelination levels in Abca8b-/- mice. In addition, electron microscopy analyses showed that the number of nonmyelinated cerebellar axons was increased, whereas cerebellar myelin thickness (g-ratio), myelin sheath periodicity, and axonal diameter were all decreased, indicative of disordered myelin ultrastructure. In line with disrupted cerebellar myelination, Abca8b-/- mice showed lower cerebellar conduction velocity and disturbed locomotion. In summary, ABCA8 modulates cerebellar myelination, in part through functional regulation of the ABCA8-interacting protein CSPG4. Our findings suggest that ABCA8 disruption may contribute to the pathophysiology of myelin disorders.
Collapse
Affiliation(s)
- Yiran Liu
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Health System, Singapore, Singapore
| | - David Castano
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Health System, Singapore, Singapore
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Laia Trigueros-Motos
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| | - Han-Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeongah Oh
- Singapore Lipidomics Incubator, Department of Biochemistry, Life Sciences Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pradeep Narayanaswamy
- Singapore Lipidomics Incubator, Department of Biochemistry, Life Sciences Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Department of Biochemistry, Life Sciences Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kerry Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Roshni R Singaraja
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
79
|
Huttula S, Väyrynen H, Helisalmi S, Kytövuori L, Luukkainen L, Hiltunen M, Remes AM, Krüger J. NDUFA1 p.Gly32Arg variant in early-onset dementia. Neurobiol Aging 2022; 114:113-116. [DOI: 10.1016/j.neurobiolaging.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
|
80
|
Jonas LA, Jain T, Li YM. Functional insight into LOAD-associated microglial response genes. Open Biol 2022; 12:210280. [PMID: 35078351 PMCID: PMC8790339 DOI: 10.1098/rsob.210280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), neuronal and synaptic loss and inflammation of the central nervous system (CNS). The majority of AD research has been dedicated to the understanding of two major AD hallmarks (i.e. Aβ and NFTs); however, recent genome-wide association studies (GWAS) data indicate neuroinflammation as having a critical role in late-onset AD (LOAD) development, thus unveiling a novel avenue for AD therapeutics. Recent evidence has provided much support to the innate immune system's involvement with AD progression; however, much remains to be uncovered regarding the role of glial cells, specifically microglia, in AD. Moreover, numerous variants in immune and/or microglia-related genes have been identified in whole-genome sequencing and GWAS analyses, including such genes as TREM2, CD33, APOE, API1, MS4A, ABCA7, BIN1, CLU, CR1, INPP5D, PICALM and PLCG2. In this review, we aim to provide an insight into the function of the major LOAD-associated microglia response genes.
Collapse
Affiliation(s)
- Lauren A. Jonas
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanya Jain
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
81
|
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23:53-66. [PMID: 34815562 PMCID: PMC8840505 DOI: 10.1038/s41583-021-00533-w] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Cinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences; University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Life Science Partners, Amsterdam, Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle Épinière, UMR-S975, INSERM, Paris, France
| |
Collapse
|
82
|
Stepler KE, Gillyard TR, Reed CB, Avery TM, Davis JS, Robinson RA. ABCA7, a Genetic Risk Factor Associated with Alzheimer's Disease Risk in African Americans. J Alzheimers Dis 2022; 86:5-19. [PMID: 35034901 PMCID: PMC10984370 DOI: 10.3233/jad-215306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
African American/Black adults are twice as likely to have Alzheimer's disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and 'omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.
Collapse
Affiliation(s)
| | - Taneisha R. Gillyard
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
| | - Calla B. Reed
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
| | - Tyra M. Avery
- Fisk University Department of Life and Physical Sciences, Nashville, TN, USA
| | - Jamaine S. Davis
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renã A.S. Robinson
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
- Vanderbilt University Medical Center Department of Neurology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| |
Collapse
|
83
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
84
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
85
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
86
|
Deep post-GWAS analysis identifies potential risk genes and risk variants for Alzheimer's disease, providing new insights into its disease mechanisms. Sci Rep 2021; 11:20511. [PMID: 34654853 PMCID: PMC8519945 DOI: 10.1038/s41598-021-99352-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a genetically complex, multifactorial neurodegenerative disease. It affects more than 45 million people worldwide and currently remains untreatable. Although genome-wide association studies (GWAS) have identified many AD-associated common variants, only about 25 genes are currently known to affect the risk of developing AD, despite its highly polygenic nature. Moreover, the risk variants underlying GWAS AD-association signals remain unknown. Here, we describe a deep post-GWAS analysis of AD-associated variants, using an integrated computational framework for predicting both disease genes and their risk variants. We identified 342 putative AD risk genes in 203 risk regions spanning 502 AD-associated common variants. 246 AD risk genes have not been identified as AD risk genes by previous GWAS collected in GWAS catalogs, and 115 of 342 AD risk genes are outside the risk regions, likely under the regulation of transcriptional regulatory elements contained therein. Even more significantly, for 109 AD risk genes, we predicted 150 risk variants, of both coding and regulatory (in promoters or enhancers) types, and 85 (57%) of them are supported by functional annotation. In-depth functional analyses showed that AD risk genes were overrepresented in AD-related pathways or GO terms—e.g., the complement and coagulation cascade and phosphorylation and activation of immune response—and their expression was relatively enriched in microglia, endothelia, and pericytes of the human brain. We found nine AD risk genes—e.g., IL1RAP, PMAIP1, LAMTOR4—as predictors for the prognosis of AD survival and genes such as ARL6IP5 with altered network connectivity between AD patients and normal individuals involved in AD progression. Our findings open new strategies for developing therapeutics targeting AD risk genes or risk variants to influence AD pathogenesis.
Collapse
|
87
|
Bartoletti-Stella A, Vacchiano V, De Pasqua S, Mengozzi G, De Biase D, Bartolomei I, Avoni P, Rizzo G, Parchi P, Donadio V, Chiò A, Pession A, Oppi F, Salvi F, Liguori R, Capellari S. Targeted sequencing panels in Italian ALS patients support different etiologies in the ALS/FTD continuum. J Neurol 2021; 268:3766-3776. [PMID: 33770234 PMCID: PMC8463338 DOI: 10.1007/s00415-021-10521-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND 5-10% of amyotrophic lateral sclerosis (ALS) patients presented a positive family history (fALS). More than 30 genes have been identified in association with ALS/frontotemporal dementia (FTD) spectrum, with four major genes accounting for 60-70% of fALS. In this paper, we aimed to assess the contribution to the pathogenesis of major and rare ALS/FTD genes in ALS patients. METHODS We analyzed ALS and ALS/FTD associated genes by direct sequencing or next-generation sequencing multigene panels in ALS patients. RESULTS Genetic abnormalities in ALS major genes included repeated expansions of hexanucleotide in C9orf72 gene (7.3%), mutations in SOD1 (4.9%), FUS (2.1%), and TARDBP (2.4%), whereas variants in rare ALS/FTD genes affected 15.5% of subjects overall, most frequently involving SQSTM1 (3.4%), and CHMP2B (1.9%). We found clustering of variants in ALS major genes in patients with a family history for "pure" ALS, while ALS/FTD related genes mainly occurred in patients with a family history for other neurodegenerative diseases (dementia and/or parkinsonism). CONCLUSIONS Our data support the presence of two different genetic components underlying ALS pathogenesis, related to the presence of a family history for ALS or other neurodegenerative diseases. Thus, family history may help in optimizing the genetic screening protocol to be applied.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Silvia De Pasqua
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, viale Ercolani 4/2, 40138, Bologna, Italy
| | - Ilaria Bartolomei
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Patrizia Avoni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Citta Della Salute E Della Scienza Di Torino, Turin, Italy
- Neuroscience Institute of Turin, Turin, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, viale Ercolani 4/2, 40138, Bologna, Italy
| | - Federico Oppi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy.
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy.
| | | |
Collapse
|
88
|
ATP-binding cassette transporters and neurodegenerative diseases. Essays Biochem 2021; 65:1013-1024. [PMID: 34415015 DOI: 10.1042/ebc20210012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.
Collapse
|
89
|
Horimoto ARVR, Xue D, Thornton TA, Blue EE. Admixture mapping reveals the association between Native American ancestry at 3q13.11 and reduced risk of Alzheimer's disease in Caribbean Hispanics. Alzheimers Res Ther 2021; 13:122. [PMID: 34217363 PMCID: PMC8254995 DOI: 10.1186/s13195-021-00866-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Genetic studies have primarily been conducted in European ancestry populations, identifying dozens of loci associated with late-onset Alzheimer's disease (AD). However, much of AD's heritability remains unexplained; as the prevalence of AD varies across populations, the genetic architecture of the disease may also vary by population with the presence of novel variants or loci. METHODS We conducted genome-wide analyses of AD in a sample of 2565 Caribbean Hispanics to better understand the genetic contribution to AD in this population. Statistical analysis included both admixture mapping and association testing. Evidence for differential gene expression within regions of interest was collected from independent transcriptomic studies comparing AD cases and controls in samples with primarily European ancestry. RESULTS Our genome-wide association study of AD identified no loci reaching genome-wide significance. However, a genome-wide admixture mapping analysis that tests for association between a haplotype's ancestral origin and AD status detected a genome-wide significant association with chromosome 3q13.11 (103.7-107.7Mb, P = 8.76E-07), driven by a protective effect conferred by the Native American ancestry (OR = 0.58, 95%CI = 0.47-0.73). Within this region, two variants were significantly associated with AD after accounting for the number of independent tests (rs12494162, P = 2.33E-06; rs1731642, P = 6.36E-05). The significant admixture mapping signal is composed of 15 haplotype blocks spanning 5 protein-coding genes (ALCAM, BBX, CBLB, CCDC54, CD47) and four brain-derived topologically associated domains, and includes markers significantly associated with the expression of ALCAM, BBX, CBLB, and CD47 in the brain. ALCAM and BBX were also significantly differentially expressed in the brain between AD cases and controls with European ancestry. CONCLUSION These results provide multiethnic evidence for a relationship between AD and multiple genes at 3q13.11 and illustrate the utility of leveraging genetic ancestry diversity via admixture mapping for new insights into AD.
Collapse
Affiliation(s)
| | - Diane Xue
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA.
- Division of Medical Genetics, University of Washington, BOX 357720, Seattle, WA, 98195-7720, USA.
| |
Collapse
|
90
|
Tesi N, van der Lee S, Hulsman M, Holstege H, Reinders MJT. snpXplorer: a web application to explore human SNP-associations and annotate SNP-sets. Nucleic Acids Res 2021; 49:W603-W612. [PMID: 34048563 PMCID: PMC8262737 DOI: 10.1093/nar/gkab410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic association studies are frequently used to study the genetic basis of numerous human phenotypes. However, the rapid interrogation of how well a certain genomic region associates across traits as well as the interpretation of genetic associations is often complex and requires the integration of multiple sources of annotation, which involves advanced bioinformatic skills. We developed snpXplorer, an easy-to-use web-server application for exploring Single Nucleotide Polymorphisms (SNP) association statistics and to functionally annotate sets of SNPs. snpXplorer can superimpose association statistics from multiple studies, and displays regional information including SNP associations, structural variations, recombination rates, eQTL, linkage disequilibrium patterns, genes and gene-expressions per tissue. By overlaying multiple GWAS studies, snpXplorer can be used to compare levels of association across different traits, which may help the interpretation of variant consequences. Given a list of SNPs, snpXplorer can also be used to perform variant-to-gene mapping and gene-set enrichment analysis to identify molecular pathways that are overrepresented in the list of input SNPs. snpXplorer is freely available at https://snpxplorer.net. Source code, documentation, example files and tutorial videos are available within the Help section of snpXplorer and at https://github.com/TesiNicco/snpXplorer.
Collapse
Affiliation(s)
- Niccolo Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
91
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
92
|
Hsieh TJ, Lee WJ, Liao YC, Hsu CC, Fang YH, Chen TY, Lin YS, Chang IS, Wang SJ, Hsiung CA, Fuh JL. Association between Alzheimer's disease genes and trajectories of cognitive function decline in Han Chinese in Taiwan. Aging (Albany NY) 2021; 13:17237-17252. [PMID: 34214049 PMCID: PMC8312434 DOI: 10.18632/aging.203204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
Genetic background has been considered one of the important contributors to the rate of cognitive decline among patients with Alzheimer’s disease (AD). We conducted a 4-year longitudinal follow-up study, recruited 255 AD and 44 mild cognitive impairment (MCI) patients, and used a data-driven trajectory analysis to examine the influence of selected AD risk genes on the age for and the rate of cognitive decline in Han Chinese population. Genotyping of selected single-nucleotide polymorphisms in the APOE, ABCA7, SORL1, BIN1, GAB2, and CD33 genes was conducted, and a Bayesian hierarchical model was fitted to analyze the trajectories of cognitive decline among different genotypes. After adjusting for sex and education years, the APOE ε4 allele was associated with an earlier mean change of −2.39 years in the age at midpoint of cognitive decline, the G allele in ABCA7 rs3764650 was associated with an earlier mean change of −1.75 years, and the T allele in SORL1 rs3737529 was associated with a later mean change of 2.6 years. Additionally, the rate of cognitive decline was associated with the APOE ε4 allele and SORL1 rs3737529. In summary, APOE and SORL1 might be the most important genetic factors related to cognitive decline in Han Chinese population.
Collapse
Affiliation(s)
- Tsung-Jen Hsieh
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Ju Lee
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yao-Hwei Fang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yung-Shuan Lin
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | |
Collapse
|
93
|
Vergouw LJM, Geut H, Breedveld G, Kuipers DJS, Quadri M, Rozemuller AJM, van Swieten JC, de Jong FJ, van de Berg WDJ, Bonifati V. Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia. J Alzheimers Dis 2021; 76:1161-1170. [PMID: 32597809 PMCID: PMC7505004 DOI: 10.3233/jad-200318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Objective: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. Methods: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. Results: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer’s disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD. Conclusion: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum.
Collapse
Affiliation(s)
- Leonie J M Vergouw
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Hanneke Geut
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Guido Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Demy J S Kuipers
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marialuisa Quadri
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | | | - Annemieke J M Rozemuller
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - John C van Swieten
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Frank Jan de Jong
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| |
Collapse
|
94
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
95
|
Bossaerts L, Hens E, Hanseeuw B, Vandenberghe R, Cras P, De Deyn PP, Engelborghs S, Van Broeckhoven C. Premature termination codon mutations in ABCA7 contribute to Alzheimer's disease risk in Belgian patients. Neurobiol Aging 2021; 106:307.e1-307.e7. [PMID: 34090711 DOI: 10.1016/j.neurobiolaging.2021.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023]
Abstract
The ATP-Binding Cassette Subfamily A Member 7 gene (ABCA7) was identified as a risk gene for Alzheimer's disease (AD) in genome-wide association studies of large cohorts of late-onset AD (LOAD) patients. Extended resequencing of the ABCA7 coding regions identified mutations that lead to premature termination codons (PTC) and loss of function of ABCA7. PTC mutations were enriched in LOAD patients and were frequently present in patients with early-onset AD (EOAD). We aimed at assessing the contribution of ABCA7 PTC mutations to AD in the Belgian population by screening the ABCA7 coding region in a Belgian AD cohort of 1376 patients, including LOAD and EOAD patients, and in a Belgian control cohort of 976 individuals. We identified a PTC mutation in 67 AD patients (4.9%) and in 18 control individuals (1.8%) confirming the enrichment of ABCA7 PTC mutations in Belgian AD patients. The patient carriers had a mean onset age of 69.7 ± 9.8 years with a wide onset age range of 42 years (48-90 years). In 77.3% of the families of ABCA7 carriers, there were AD patients present suggestive of a positive family history of disease, but a Mendelian co-segregation of ABCA7 PTC mutations with disease is not clear. Overall, our genetic data predict that PTC mutations in ABCA7 are common in the Belgian population and are present in LOAD and EOAD patients.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Hens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Brussels, and University Center for Neurosciences, VUB, Brussels, Belgium
| | - Bernard Hanseeuw
- Department of Neurology, University Hospitals Saint-Luc Brussels and University Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven and University Department of Neurosciences KU Leuven, Leuven, Belgium
| | - Patrick Cras
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium
| | - Peter P De Deyn
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Brussels, and University Center for Neurosciences, VUB, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
96
|
Huang M, Chen X, Yu Y, Lai H, Feng Q. Imaging Genetics Study Based on a Temporal Group Sparse Regression and Additive Model for Biomarker Detection of Alzheimer's Disease. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1461-1473. [PMID: 33556003 DOI: 10.1109/tmi.2021.3057660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imaging genetics is an effective tool used to detect potential biomarkers of Alzheimer's disease (AD) in imaging and genetic data. Most existing imaging genetics methods analyze the association between brain imaging quantitative traits (QTs) and genetic data [e.g., single nucleotide polymorphism (SNP)] by using a linear model, ignoring correlations between a set of QTs and SNP groups, and disregarding the varied associations between longitudinal imaging QTs and SNPs. To solve these problems, we propose a novel temporal group sparsity regression and additive model (T-GSRAM) to identify associations between longitudinal imaging QTs and SNPs for detection of potential AD biomarkers. We first construct a nonparametric regression model to analyze the nonlinear association between QTs and SNPs, which can accurately model the complex influence of SNPs on QTs. We then use longitudinal QTs to identify the trajectory of imaging genetic patterns over time. Moreover, the SNP information of group and individual levels are incorporated into the proposed method to boost the power of biomarker detection. Finally, we propose an efficient algorithm to solve the whole T-GSRAM model. We evaluated our method using simulation data and real data obtained from AD neuroimaging initiative. Experimental results show that our proposed method outperforms several state-of-the-art methods in terms of the receiver operating characteristic curves and area under the curve. Moreover, the detection of AD-related genes and QTs has been confirmed in previous studies, thereby further verifying the effectiveness of our approach and helping understand the genetic basis over time during disease progression.
Collapse
|
97
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
98
|
Dib S, Pahnke J, Gosselet F. Role of ABCA7 in Human Health and in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094603. [PMID: 33925691 PMCID: PMC8124837 DOI: 10.3390/ijms22094603] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies, including genome wide association studies (GWAS), have strongly suggested a central role for the ATP-binding cassette transporter subfamily A member 7 (ABCA7) in Alzheimer’s disease (AD). This ABC transporter is now considered as an important genetic determinant for late onset Alzheimer disease (LOAD) by regulating several molecular processes such as cholesterol metabolism and amyloid processing and clearance. In this review we shed light on these new functions and their cross-talk, explaining its implication in brain functioning, and therefore in AD onset and development.
Collapse
Affiliation(s)
- Shiraz Dib
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Fabien Gosselet
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
- Correspondence: ; Tel.: +33-(0)3-21791733
| |
Collapse
|
99
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
100
|
Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021; 13:59. [PMID: 33853652 PMCID: PMC8048219 DOI: 10.1186/s13073-021-00878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open avenues for effective personalized therapies.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| |
Collapse
|