51
|
Bae CR, Na Y, Cho M, Hwang YM, Tae WS, Pyun SB. Structural Changes in the Arcuate Fasciculus and Recovery of Post-stroke Aphasia: A 6-Month Follow-up Study using Diffusion Tensor Imaging. Neurorehabil Neural Repair 2022; 36:633-644. [PMID: 36036555 DOI: 10.1177/15459683221121752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Temporal changes in the structural connectivity of major language tracts after stroke and their contribution to aphasia recovery are unclear. OBJECTIVE To investigate longitudinal arcuate fasciculus (AF) integrity changes and their relationship with post-stroke aphasia recovery using diffusion tensor imaging (DTI). METHODS Thirty-five patients with aphasia due to first-ever left hemispheric stroke underwent the Korean version of the Western Aphasia Battery and DTI at 1- and 6-month post stroke onset. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) of both AF tracts were analyzed to evaluate the temporal changes in tract integrity and determine the correlation between changes (Δ; follow-up - initial) in DTI parameters and language scores. RESULTS At 6 months post-stroke, the mean FA decreased, and mean MD and RD increased in both hemispheres; however, compared with mean AD observed after 1 month, the mean observed at 6 months increased only in the left hemisphere (P < .05). ΔFA of the left AF and proportional change in the aphasia quotient showed a significant positive correlation (r = 0.365, P = .031). No correlation was found between changes in the right AF parameters and language score. The group with increased FA in the left AF showed more significant language improvement than the group with decreased FA. CONCLUSIONS During the subacute stage, the integrity of AF decreased in both hemispheres in patients with aphasia, and the change in structural connectivity of the left AF was associated with language improvement.
Collapse
Affiliation(s)
- Cho Rong Bae
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoonhye Na
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minjae Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yu Mi Hwang
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
52
|
Steinberg SN, Tedla NB, Hecht E, Robins DL, King TZ. White matter pathways associated with empathy in females: A DTI investigation. Brain Cogn 2022; 162:105902. [PMID: 36007350 DOI: 10.1016/j.bandc.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Empathy is a component of social cognition that allows us to understand, perceive, experience, and respond to the emotional state of others. In this study, we seek to build on previous research that suggests that sex and hormone levels may impact white matter microstructure. These white matter microstructural differences may influence social cognition. We examine the fractional anisotropy (FA) of white matter pathways associated with the complex human process of empathy in healthy young adult females during the self-reported luteal phase of their menstrual cycle. We used tract-based spatial statistics to perform statistical comparisons of FA and conducted multiple linear regression analysis to examine the strength of association between white matter FA and scores on the Empathy Quotient (EQ), a self-report questionnaire in which individuals report how much they agree or disagree with 60 statements pertaining to their empathic tendencies. Results identified a significant negative relationship between EQ scores and FA within five clusters of white matter: in the left forceps minor/body of the corpus callosum, left corticospinal tract, intraparietal sulcus/primary somatosensory cortex, superior longitudinal fasciculus, and right inferior fronto-occipital fasciculus/forceps minor. These consistent findings across clusters suggest that lower self-reported empathy is related to higher FA across healthy young females in specific white matter regions during the menstrual luteal phase. Future research should seek to examine if self-reported empathy varies across the menstrual cycle, using blood samples to confirm cycle phase and hormone levels.
Collapse
Affiliation(s)
| | - Neami B Tedla
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Erin Hecht
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Diana L Robins
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
53
|
Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res 2022; 15:1585-1602. [PMID: 35962721 PMCID: PMC9546367 DOI: 10.1002/aur.2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Patients with autism spectrum disorder (ASD) often show pervasive and complex language impairments that are closely associated with aberrant structural connectivity of language networks. However, the characteristics of white matter connectivity in ASD have remained inconclusive in previous diffusion tensor imaging (DTI) studies. The current meta‐analysis aimed to comprehensively elucidate the abnormality in language‐related white matter connectivity in individuals with ASD. We searched PubMed, Web of Science, Scopus, and Medline databases to identify relevant studies. The standardized mean difference was calculated to measure the pooled difference in DTI metrics in each tract between the ASD and typically developing (TD) groups. The moderating effects of age, sex, language ability, and symptom severity were investigated using subgroup and meta‐regression analysis. Thirty‐three DTI studies involving 831 individuals with ASD and 836 TD controls were included in the meta‐analysis. ASD subjects showed significantly lower fractional anisotropy or higher mean diffusivity across language‐associated tracts than TD controls. These abnormalities tended to be more prominent in the left language networks than in the right. In addition, children with ASD exhibit more pronounced and pervasive disturbances in white matter connectivity than adults. These results support the under‐connectivity hypothesis and demonstrate the widespread abnormal microstructure of language‐related tracts in patients with ASD. Otherwise, white matter abnormalities in the autistic brain could vary depending on the developmental stage and hemisphere.
Collapse
Affiliation(s)
- Min Li
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yide Wang
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masaya Tachibana
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shafiur Rahman
- Department of Child Development, United Graduate School of Child Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
54
|
Segregated circuits for phonemic and semantic fluency: A novel patient-tailored disconnection study. Neuroimage Clin 2022; 36:103149. [PMID: 35970113 PMCID: PMC9400120 DOI: 10.1016/j.nicl.2022.103149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.
Collapse
|
55
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
56
|
Song X, Li X, Wang F, Wang L, Lv L, Xie Q, Zhang X, Shao X. Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration. Front Bioeng Biotechnol 2022; 10:832727. [PMID: 35875498 PMCID: PMC9300829 DOI: 10.3389/fbioe.2022.832727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background: This study was aimed to investigate the effect of three dimensional (3D)printed poly lactide-co-glycolide (PLGA) scaffolds combined with Gly-Phe-Hyp-Gly-Arg (GFOGER) and bone morphogenetic protein 9 (BMP-9) on the repair of large bone defects. Methods: 3D printing method was used to produce PLGA scaffolds, and the sample was viewed by both optical microscopy and SEM, XRD analysis, water absorption and compressive strength analysis, etc. The rabbits were divided into six groups randomly and bone defect models were constructed (6 mm in diameter and 9 mm in depth): control group (n = 2), sham group (n = 4), model group (n = 4) and model + scaffold group (n = 4 rabbits for each group, 0%,2% and 4%). The rabbits were sacrificed at the 4th and 12th weeks after surgery, and the samples were collected for quantitative analysis of new bone mineral density by micro-CT, histopathological observation, immunohistochemistry and Western blot to detect the protein expression of osteoblast-related genes. Results: This scaffold presented acceptable mechanical properties and slower degradation rates. After surface modification with GFOGER peptide and BMP-9, the scaffold demonstrated enhanced new bone mineral deposition and density over the course of a 12 week in vivo study. Histological analysis and WB confirmed that this scaffold up-regulated the expression of Runx7, OCN, COL-1 and SP7, contributing to the noted uniform trabeculae formation and new bone regeneration. Conclusions: The application of this strategy in the manufacture of composite scaffolds provided extensive guidance for the application of bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoliang Song
- Department of Hand Surgery, Hebei Medical University, Shijiazhuang, China
| | - Xianxian Li
- Department of Hematological Oncology, Heji Hospital affiliated to Changzhi Medical College, Changzhi, China
| | - Fengyu Wang
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Wang
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Lv
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing Xie
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Zhang
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinzhong Shao
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xinzhong Shao,
| |
Collapse
|
57
|
Chandwani R, Harpster K, Kline JE, Mehta V, Wang H, Merhar SL, Schwartz TL, Parikh NA. Brain microstructural antecedents of visual difficulties in infants born very preterm. Neuroimage Clin 2022; 34:102987. [PMID: 35290855 PMCID: PMC8918861 DOI: 10.1016/j.nicl.2022.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Infants born very preterm (VPT) are at risk of later visual problems. Although neonatal screening can identify ophthalmologic abnormalities, subtle perinatal brain injury and/or delayed brain maturation may be significant contributors to complex visual-behavioral problems. Our aim was to assess the micro and macrostructural antecedents of early visual-behavioral difficulties in VPT infants by using diffusion MRI (dMRI) at term-equivalent age. We prospectively recruited a cohort of 262 VPT infants (≤32 weeks gestational age [GA]) from five neonatal intensive care units. We obtained structural and diffusion MRI at term-equivalent age and administered the Preverbal Visual Assessment (PreViAs) questionnaire to parents at 3-4 months corrected age. We used constrained spherical deconvolution to reconstruct nine white matter tracts of the visual pathways with high reliability and performed fixel-based analysis to derive fiber density (FD), fiber-bundle cross-section (FC), and combined fiber density and cross-section (FDC). In multiple logistic regression analyses, we related these tract metrics to visual-behavioral function. Of 262 infants, 191 had both high-quality dMRI and completed PreViAs, constituting the final cohort: mean (SD) GA was 29.3 (2.4) weeks, 90 (47.1%) were males, and postmenstrual age (PMA) at MRI was 42.8 (1.3) weeks. FD and FC of several tracts were altered in infants with (N = 59) versus those without retinopathy of prematurity (N = 132). FDC of the left posterior thalamic radiations (PTR), left inferior longitudinal fasciculus (ILF), right superior longitudinal fasciculus (SLF), and left inferior fronto-occipital fasciculus (IFOF) were significantly associated with visual attention scores, prior to adjusting for confounders. After adjustment for PMA at MRI, GA, severe retinopathy of prematurity, and total brain volume, FDC of the left PTR, left ILF, and left IFOF remained significantly associated with visual attention. Early visual-behavioral difficulties in VPT infants are preceded by micro and macrostructural abnormalities in several major visual pathways at term-equivalent age.
Collapse
Affiliation(s)
- Rahul Chandwani
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Karen Harpster
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Rehabilitation, Exercise, and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Julia E Kline
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ved Mehta
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hui Wang
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; MR Clinical Science, Philips, Cincinnati, OH, United States
| | - Stephanie L Merhar
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Terry L Schwartz
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A Parikh
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
58
|
Hwang YE, Kim YB, Son YD. Finding Cortical Subregions Regarding the Dorsal Language Pathway Based on the Structural Connectivity. Front Hum Neurosci 2022; 16:784340. [PMID: 35585994 PMCID: PMC9108242 DOI: 10.3389/fnhum.2022.784340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the language-related fiber pathways in the human brain, such as the superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF), are already well-known, understanding more sophisticated cortical regions connected by the fiber tracts is essential to scrutinize the structural connectivity of language circuits. With the regions of interest that were selected based on the Brainnetome atlas, the fiber orientation distribution estimation method for tractography was used to produce further elaborate connectivity information. The results indicated that both fiber bundles had two distinct connections with the prefrontal cortex (PFC). The SLF-II and dorsal AF are mainly connected to the rostrodorsal part of the inferior parietal cortex (IPC) and lateral part of the fusiform gyrus with the inferior frontal junction (IFJ), respectively. In contrast, the SLF-III and ventral AF were primarily linked to the anterior part of the supramarginal gyrus and superior part of the temporal cortex with the inferior frontal cortex, including the Broca's area. Moreover, the IFJ in the PFC, which has rarely been emphasized as a language-related subregion, also had the strongest connectivity with the previously known language-related subregions among the PFC; consequently, we proposed that these specific regions are interconnected via the SLF and AF within the PFC, IPC, and temporal cortex as language-related circuitry.
Collapse
Affiliation(s)
- Young-Eun Hwang
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
- Department of Health Sciences and Technology, Gachion Advanced Institute for Health Sciences & Technology (GAHIST), Gachon University, Incheon, South Korea
- Department of Biomedical Engineering, Gachon University, Incheon, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Young-Don Son
- Department of Health Sciences and Technology, Gachion Advanced Institute for Health Sciences & Technology (GAHIST), Gachon University, Incheon, South Korea
- Department of Biomedical Engineering, Gachon University, Incheon, South Korea
- *Correspondence: Young-Don Son
| |
Collapse
|
59
|
Vinci-Booher S, Caron B, Bullock D, James K, Pestilli F. Development of white matter tracts between and within the dorsal and ventral streams. Brain Struct Funct 2022; 227:1457-1477. [PMID: 35267078 DOI: 10.1007/s00429-021-02414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
The degree of interaction between the ventral and dorsal visual streams has been discussed in multiple scientific domains for decades. Recently, several white matter tracts that directly connect cortical regions associated with the dorsal and ventral streams have become possible to study due to advancements in automated and reproducible methods. The developmental trajectory of this set of tracts, here referred to as the posterior vertical pathway (PVP), has yet to be described. We propose an input-driven model of white matter development and provide evidence for the model by focusing on the development of the PVP. We used reproducible, cloud-computing methods and diffusion imaging from adults and children (ages 5-8 years) to compare PVP development to that of tracts within the ventral and dorsal pathways. PVP microstructure was more adult-like than dorsal stream microstructure, but less adult-like than ventral stream microstructure. Additionally, PVP microstructure was more similar to the microstructure of the ventral than the dorsal stream and was predicted by performance on a perceptual task in children. Overall, results suggest a potential role for the PVP in the development of the dorsal visual stream that may be related to its ability to facilitate interactions between ventral and dorsal streams during learning. Our results are consistent with the proposed model, suggesting that the microstructural development of major white matter pathways is related, at least in part, to the propagation of sensory information within the visual system.
Collapse
Affiliation(s)
- S Vinci-Booher
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| | - B Caron
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - D Bullock
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - K James
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - F Pestilli
- Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- The University of Texas, 108 E Dean Keeton St, Austin, TX, 78712, USA.
| |
Collapse
|
60
|
Janelle F, Iorio-Morin C, D'amour S, Fortin D. Superior Longitudinal Fasciculus: A Review of the Anatomical Descriptions With Functional Correlates. Front Neurol 2022; 13:794618. [PMID: 35572948 PMCID: PMC9093186 DOI: 10.3389/fneur.2022.794618] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The superior longitudinal fasciculus (SLF) is part of the longitudinal association fiber system, which lays connections between the frontal lobe and other areas of the ipsilateral hemisphere. As a dominant association fiber bundle, it should correspond to a well-defined structure with a clear anatomical definition. However, this is not the case, and a lot of confusion and overlap surrounds this entity. In this review/opinion study, we survey relevant current literature on the topic and try to clarify the definition of SLF in each hemisphere. After a comparison of postmortem dissections and data obtained from diffusion MRI studies, we discuss the specifics of this bundle regarding its anatomical landmarks, differences in lateralization, as well as individual variability. We also discuss the confusion regarding the arcuate fasciculus in relation to the SLF. Finally, we recommend a nomenclature based on the findings exposed in this review and finalize with a discussion on relevant functional correlates of the structure.
Collapse
|
61
|
Nakayama Y, Sugawara SK, Fukunaga M, Hamano YH, Sadato N, Nishimura Y. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans. Neuroimage 2022; 256:119221. [PMID: 35447355 DOI: 10.1016/j.neuroimage.2022.119221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022] Open
Abstract
The dorsal premotor cortex (PMd) plays an essential role in visually guided goal-directed motor behavior. Although there are several planning processes for achieving goal-directed behavior, the separate neural processes are largely unknown. Here, we created a new visuo-goal task to investigate the step-by-step planning processes for visuomotor and visuo-goal behavior in humans. Using functional magnetic resonance imaging, we found activation in different portions of the bilateral PMd during each processing step. In particular, the activated area for rule-based visuomotor and visuo-goal mapping was located at the ventrorostral portion of the bilateral PMd, that for action plan specification was at the dorsocaudal portion of the left PMd, that for transformation was at the rostral portion of the left PMd, and that for action preparation was at the caudal portion of the bilateral PMd. Thus, the left PMd was involved throughout all of the processes, but the right PMd was involved only in rule-based visuomotor and visuo-goal mapping and action preparation. The locations related to each process were generally spatially separated from each other, but they overlapped partially. These findings revealed that there are functional subregions in the bilateral PMd in humans and these subregions form a functional gradient to achieve goal-directed behavior.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
62
|
Cheema K, Sweneya S, Craig J, Huynh T, Ostevik AV, Reed A, Cummine J. An investigation of white matter properties as they relate to spelling behaviour in skilled and impaired readers. Neuropsychol Rehabil 2022:1-29. [PMID: 35323090 DOI: 10.1080/09602011.2022.2053168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RESULTS While the inferior longitudinal fasciculus was more strongly related to spelling behaviour in skilled adults, the uncinate fasciculus was more strongly related to spelling behaviour in impaired adults. We found strong left lateralization of the arcuate fasciculus and inferior longitudinal fasciculus in both groups. However, lateralization of the inferior frontal occipital fasciculus was more strongly related to spelling response time behaviour in skilled adults, whereas lateralization of the uncinate fasciculus was more strongly related to spelling accuracy behaviour in the impaired adults. CONCLUSION This study provides some useful information for understanding the underlying white matter pathways that support spelling in skilled and impaired adults and underscore the advantage of adopting multiple spelling tasks and outcomes (i.e., response time and accuracy) to better characterize brain-behaviour relationships in skilled and impaired adults.
Collapse
Affiliation(s)
- Kulpreet Cheema
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sarah Sweneya
- Faculty of Education, University of Alberta, Edmonton, AB, Canada
| | - Julia Craig
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Truc Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Amberley V Ostevik
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alesha Reed
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
63
|
Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Rudkowski K, Podwalski P, Bielecki M, Mak M, Bober A, Misiak B, Sagan L, Michalczyk A, Kucharska-Mazur J, Samochowiec J. Relationship between White Matter Alterations and Pathophysiological Symptoms in Patients with Ultra-High Risk of Psychosis, First-Episode, and Chronic Schizophrenia. Brain Sci 2022; 12:brainsci12030354. [PMID: 35326310 PMCID: PMC8946295 DOI: 10.3390/brainsci12030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
Some symptoms of schizophrenia might be present before full-blown psychosis, so white matter changes must be studied both in individuals with emerging psychosis and chronic schizophrenia. A total of 86 patients—12 ultra-high risk of psychosis (UHR), 20 first episode psychosis (FEP), 54 chronic schizophrenia (CS), and 33 healthy controls (HC)—underwent psychiatric examination and diffusion tensor imaging (DTI) in a 3-Tesla MRI scanner. We assessed fractional anisotropy (FA) and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILS). We found that CS patients had lower FA than FEP patients (p = 0.025) and HC (p = 0.088), and higher MD than HC (p = 0.037) in the right SLF. In the CS group, we found positive correlations of MD in both right ILF (rho = 0.39, p < 0.05) and SLF (rho = 0.43, p < 0.01) with disorganization symptoms, as well as negative correlation of FA in the right ILF with disorganization symptoms (rho = −0.43, p < 0.05). Among UHR individuals, we found significant negative correlations between MD in the left ILF and negative (r = −0.74, p < 0.05) and general symptoms (r = −0.77, p < 0.05). However promising, these findings should be treated as preliminary, and further research must verify whether they can be treated as potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Adrianna Bober
- Institute of Psychology, University of Szczecin, Krakowska 69 Street, 71-017 Szczecin, Poland
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 Street, 71-252 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| |
Collapse
|
64
|
Arévalo-Sáenz A, López-Manzanares L, Navas-García M, Pastor J, Vega-Zelaya L, Torres CV. Deep brain stimulation in Parkinson's disease: analysis of brain fractional anisotropy differences in operated patients. Rev Neurol 2022; 74:125-134. [PMID: 35148421 PMCID: PMC11502176 DOI: 10.33588/rn.7404.2021196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the subthalamic nucleus is currently an evidence-based therapeutic option for motor symptoms in patients with Parkinson's disease (PD), although other non-motor symptoms can be affected by stimulation. AIM Our objective is to evaluate the global changes in the connectivity of the large-scale structural network in PD patients that have obtained a benefit from subthalamic DBS. SUBJECTS AND METHODS Retrospective study of 31 subjects: 7 PD patients with subthalamic DBS (group A), 12 age and gender-matched non-operated PD (B) and 12 healthy controls (C). All subjects had undergone a 1.5 T brain MRI with DTI. DICOM images were processed with the FSL5.0 software and TBSS tool. RESULTS The study group comprised 23 men and 8 women. No statistically significant differences in age, gender, scores on the HandY scale and mean follow-up between group A and B were found, and in age and gender between groups A and C. Statistical analysis revealed differences in the fractional anisotropy of the different groups in certain areas: bilateral corticospinal tract, anterior thalamic radiations, bilateral fronto-occipital fascicle, both superior longitudinal fascicles, and left inferior longitudinal fascicle. CONCLUSIONS In our series, PD patients treated with bilateral subthalamic DBS showed a significantly higher fractional anisotropy in widespread areas of the cerebral white matter; suggesting that neuromodulation produces connectivity changes in different neural networks.
Collapse
Affiliation(s)
- Alejandra Arévalo-Sáenz
- Servicio de Neurocirugía. Hospital Clínico San Carlos (A. Arévalo-Sáenz)Hospital Clínico San CarlosHospital Clínico San CarlosMadridEspaña
| | - Lydia López-Manzanares
- Servicio de Neurología (L. López-Manzanares)Servicio de NeurologíaServicio de NeurologíaMadridEspaña
| | - Marta Navas-García
- Servicio de Neurocirugía (M. Navas, C.V. Torres)Servicio de NeurocirugíaServicio de NeurocirugíaMadridEspaña
| | - Jesús Pastor
- Servicio de Neurofisiología. Hospital Universitario de la Princesa. Madrid, España (J. Pastor, L. Vega-Zelaya)Hospital Universitario de la PrincesaHospital Universitario de la PrincesaMadridEspaña
| | - Lorena Vega-Zelaya
- Servicio de Neurofisiología. Hospital Universitario de la Princesa. Madrid, España (J. Pastor, L. Vega-Zelaya)Hospital Universitario de la PrincesaHospital Universitario de la PrincesaMadridEspaña
| | - Cristina V. Torres
- Servicio de Neurocirugía (M. Navas, C.V. Torres)Servicio de NeurocirugíaServicio de NeurocirugíaMadridEspaña
| |
Collapse
|
65
|
Errante A, Rossi Sebastiano A, Ziccarelli S, Bruno V, Rozzi S, Pia L, Fogassi L, Garbarini F. Structural connectivity associated with the sense of body ownership: a diffusion tensor imaging and disconnection study in patients with bodily awareness disorder. Brain Commun 2022; 4:fcac032. [PMID: 35233523 PMCID: PMC8882004 DOI: 10.1093/braincomms/fcac032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/25/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
The brain mechanisms underlying the emergence of a normal sense of body ownership can be investigated starting from pathological conditions in which body awareness is selectively impaired. Here, we focused on pathological embodiment, a body ownership disturbance observed in brain-damaged patients who misidentify other people’s limbs as their own. We investigated whether such body ownership disturbance can be classified as a disconnection syndrome, using three different approaches based on diffusion tensor imaging: (i) reconstruction of disconnectome maps in a large sample (N = 70) of stroke patients with and without pathological embodiment; (ii) probabilistic tractography, performed on the age-matched healthy controls (N = 16), to trace cortical connections potentially interrupted in patients with pathological embodiment and spared in patients without this pathological condition; (iii) probabilistic ‘in vivo’ tractography on two patients without and one patient with pathological embodiment. The converging results revealed the arcuate fasciculus and the third branch of the superior longitudinal fasciculus as mainly involved fibre tracts in patients showing pathological embodiment, suggesting that this condition could be related to the disconnection between frontal, parietal and temporal areas. This evidence raises the possibility of a ventral self-body recognition route including regions where visual (computed in occipito-temporal areas) and sensorimotor (stored in premotor and parietal areas) body representations are integrated, giving rise to a normal sense of body ownership.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | | | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Lorenzo Pia
- SAMBA Research Group, Psychology Department, University of Turin, Turin 10123, Italy
- Neuroscience Institute of Turin (NIT), Turin 10123, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
- Neuroscience Institute of Turin (NIT), Turin 10123, Italy
| |
Collapse
|
66
|
Mahdy Ali K, Avesani P. The vertical superior longitudinal fascicle and the vertical occipital fascicle. J Neurosurg Sci 2022; 65:581-589. [PMID: 35128919 DOI: 10.23736/s0390-5616.21.05368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Association fibers of the human brain have long been considered to exclusively follow an anterior-posterior direction. Using magnetic resonance imaging techniques that allow in-vivo fiber dissection, vertically oriented association fibers have been rediscovered or newly described. Aside from the frontal aslant tract (FAT) in the frontal lobe, the vertical occipital fascicle (VOF) and the vertical portion of the superior longitudinal fascicle system (vSLF) have been studied in recent years. The aim of this review was to give an overview on the current knowledge regarding these two fiber tracts. A review of the available literature in the Medline database was conducted to gather all available publications dealing with either the VOF or the vSLF. One thousand two hundred seventy-three articles were obtained from the literature search of which a total of 71 articles met the final inclusion criteria of this review. We describe the history of the discovery of the respective fiber tract, its anatomical course and its boundaries integrating blunt fiber dissection studies and functional MRI/tractography studies. We discuss the functional properties of the respective fiber tract and its relevance in neurosurgery. The VOF is a fiber tract that has been discovered in the late XIX century and long been forgotten before being rediscovered in the 1970's. It lies lateral to the fibers of the sagittal stratum and mainly connects the superior and inferior occipital lobe. It plays a major role in reading and visual word and language comprehension and is said to be the main link between dorsal and ventral visual streams. The vSLF has many synonyms and is part of the superior longitudinal fascicle system. Recent studies were able to provide more insight into this set of fiber tracts showing distinct connections running from the superior and inferior parietal lobule to the posterior part of the temporal lobe. Its functional role is still not completely cleared. It is said to play a role in visual and auditory semantic language comprehension. It lies directly lateral to the arcuate fascicle. The VOF and the vSLF are vertically oriented fiber tracts connecting the temporo-parieto-occipital region and play a major role in the communication of dorsal and ventral visual streams (VOF), reading (VOF, vSLF) and visual and auditory semantic language comprehension (vSLF). They can consistently be identified using ex vivo blunt dissection techniques and in-vivo fiber tractography. Because of their localization and orientation these two fiber tracts can be combined to a fiber bundle system called posterior transverse system (PTS).
Collapse
Affiliation(s)
- Kariem Mahdy Ali
- Department of Neurosurgery, Medical University of Graz, Graz, Austria -
| | - Paolo Avesani
- Center for Information Technology, Fondazione Bruno Kessler (FBK), Trento, Italy
| |
Collapse
|
67
|
Jacobs HI, Schoemaker D, Torrico-Teave H, Zuluaga Y, Velilla-Jimenez L, Ospina-Villegas C, Lopera F, Arboleda-Velasquez JF, Quiroz YT. Specific Abnormalities in White Matter Pathways as Interface to Small Vessels Disease and Cognition in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Individuals. Brain Connect 2022; 12:52-60. [PMID: 33980027 PMCID: PMC8867102 DOI: 10.1089/brain.2020.0980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by leukoencephalopathy leading to cognitive impairment. Subtle cognitive deficits can be observed early in the course of the disease, before the occurrence of the first stroke. Therefore, markers that can predict disease progression at this early stage, when interventions are likely to alter disease course, are needed. We aimed to examine the biological cascade of microstructural and macrostructural white matter (WM) abnormalities underlying cognitive deficits in CADASIL. Methods: We examined 20 nondemented CADASIL mutation carriers and 23 noncarriers who underwent neuropsychological evaluation and magnetic resonance imaging. Using probabilistic tractography of key WM tracts, we examined group differences in diffusivity measures and WM hyperintensity volume. Successive mediation models examined whether tract-specific WM abnormalities mediated subtle cognitive differences between CADASIL mutation carriers and noncarriers. Results: The largest effect size differentiating the two groups was observed for left superior longitudinal fasciculus-temporal (SLFt) diffusivity (Cohen's f = 0.49). No group differences were observed with a global diffusion measure. These specific microstructural differences in the SLFt were associated with higher WM hyperintensities burden, and subtle executive deficits in CADASIL mutation carriers. Discussion: Worse diffusivity in the left SLFt is related to greater severity of small vessel disease and worse executive functioning in the asymptomatic stage of the disease. Worse diffusivity of the left SLFt may potentially hold promise as an indicator of disease progression. Impact statement Diffusion tensor imaging outperforms conventional imaging of subcortical small vessel disease as a potential marker of future disease progression. Here we identified the left superior longitudinal temporal fasciculus as a critical white matter fiber bundle, of which worse diffusivity can link presence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy mutations to greater severity of small vessel disease and worse executive functioning in asymptomatic stages of the disease. This tract may hold promise and deserves further examination as an early indicator of disease progression.
Collapse
Affiliation(s)
- Heidi I.L. Jacobs
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Gordon Center for Medical Imaging, Boston, Massachusetts, USA.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Dorothee Schoemaker
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hei Torrico-Teave
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yesica Zuluaga
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Francisco Lopera
- Grupo Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Joseph F. Arboleda-Velasquez
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Yakeel T. Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Address correspondence to: Yakeel T. Quiroz, Department of Psychiatry and Neurology, Harvard Medical School, Massachusetts General Hospital, 100 1st Avenue, Building 39, Suite 101, Charlestown, MA 02129, USA
| |
Collapse
|
68
|
Ferrea S, Junker FB, Hartmann CJ, Dinkelbach L, Eickhoff SB, Moldovan AS, Südmeyer M, Schnitzler A, Schmidt‐Wilcke T. Brain volume patterns in corticobasal syndrome versus idiopathic Parkinson's disease. J Neuroimaging 2022; 32:720-727. [DOI: 10.1111/jon.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Frederick Benjamin Junker
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM‐7) Research Center Jülich Jülich Germany
| | - Alexia Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology Ernst von Bergmann Hospital Potsdam Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Tobias Schmidt‐Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Center of Neurology Bezirksklinikum Mainkofen Deggendorf Germany
| |
Collapse
|
69
|
Ottino-González J, Uhlmann A, Hahn S, Cao Z, Cupertino RB, Schwab N, Allgaier N, Alia-Klein N, Ekhtiari H, Fouche JP, Goldstein RZ, Li CSR, Lochner C, London ED, Luijten M, Masjoodi S, Momenan R, Oghabian MA, Roos A, Stein DJ, Stein EA, Veltman DJ, Verdejo-García A, Zhang S, Zhao M, Zhong N, Jahanshad N, Thompson PM, Conrod P, Mackey S, Garavan H. White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: Findings from the ENIGMA-Addiction working group. Drug Alcohol Depend 2022; 230:109185. [PMID: 34861493 PMCID: PMC8952409 DOI: 10.1016/j.drugalcdep.2021.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.
| | - Anne Uhlmann
- Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Renata B. Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nathan Schwab
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nelly Alia-Klein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Hamed Ekhtiari
- Institute for Cognitive Sciences Studies, University of Tehran, Tehran, Iran,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Paul Fouche
- SA MRC Genomics and Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rita Z. Goldstein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Edythe D. London
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, California, United States
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Sadegh Masjoodi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad Ali Oghabian
- Neuroimaging & Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa,SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elliot A. Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute of Drug Abuse, Baltimore, Maryland, United States
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC – location VUMC, Amsterdam, the Netherlands
| | - Antonio Verdejo-García
- School of Psychological Sciences & Turner Institute for Brain & Mental Health, Monash University, Melbourne, Australia
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neda Jahanshad
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Paul M. Thompson
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, Montreal, Quebec, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
70
|
Maffei C, Lee C, Planich M, Ramprasad M, Ravi N, Trainor D, Urban Z, Kim M, Jones RJ, Henin A, Hofmann SG, Pizzagalli DA, Auerbach RP, Gabrieli JDE, Whitfield-Gabrieli S, Greve DN, Haber SN, Yendiki A. Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. Neuroimage 2021; 245:118706. [PMID: 34780916 PMCID: PMC8835483 DOI: 10.1016/j.neuroimage.2021.118706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022] Open
Abstract
The development of scanners with ultra-high gradient strength, spearheaded by the Human Connectome Project, has led to dramatic improvements in the spatial, angular, and diffusion resolution that is feasible for in vivo diffusion MRI acquisitions. The improved quality of the data can be exploited to achieve higher accuracy in the inference of both microstructural and macrostructural anatomy. However, such high-quality data can only be acquired on a handful of Connectom MRI scanners worldwide, while remaining prohibitive in clinical settings because of the constraints imposed by hardware and scanning time. In this study, we first update the classical protocols for tractography-based, manual annotation of major white-matter pathways, to adapt them to the much greater volume and variability of the streamlines that can be produced from today’s state-of-the-art diffusion MRI data. We then use these protocols to annotate 42 major pathways manually in data from a Connectom scanner. Finally, we show that, when we use these manually annotated pathways as training data for global probabilistic tractography with anatomical neighborhood priors, we can perform highly accurate, automated reconstruction of the same pathways in much lower-quality, more widely available diffusion MRI data. The outcomes of this work include both a new, comprehensive atlas of WM pathways from Connectom data, and an updated version of our tractography toolbox, TRActs Constrained by UnderLying Anatomy (TRACULA), which is trained on data from this atlas. Both the atlas and TRACULA are distributed publicly as part of FreeSurfer. We present the first comprehensive comparison of TRACULA to the more conventional, multi-region-of-interest approach to automated tractography, and the first demonstration of training TRACULA on high-quality, Connectom data to benefit studies that use more modest acquisition protocols.
Collapse
Affiliation(s)
- C Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - C Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Planich
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Ramprasad
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - N Ravi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Trainor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Z Urban
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - R J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - A Henin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - S G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany; Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - D A Pizzagalli
- McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | | | - J D E Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - D N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - S N Haber
- McLean Hospital and Harvard Medical School, Belmont, MA, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, USA
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
71
|
Esrael SMAM, Hamed AMM, Khedr EM, Soliman RK. Application of diffusion tensor imaging in Alzheimer’s disease: quantification of white matter microstructural changes. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alzheimer’s disease (AD) is the most common cause of dementia in the aging population, responsible for 60–70% of all demented cases. Diffusion tensor imaging (DTI) is a very recent technique that allows the mapping of white matter (WM) microstructure changes in neurological disorders. The current study was conducted to compare DTI parameters between AD patients and healthy elderly subjects and to determine whether DTI can act as a potential biomarker for AD.
Results
There were significant differences in Modified Mini-Mental State Examination (MMMSE) and Clinical Dementia Rating (CDR) between the two groups. As regards the DTI parameters, significant differences were found between AD patients versus healthy subjects, in the mean diffusivity (MD) of the splenium [(1.05 ± 0.19) vs. (0.92 ± 0.22) , P=0.03], the MD of the right uncinate fasciculus [(0.92 ± 0.04) vs. (0.87 ± 0.05), P= 0.01], and MD of the right arcuate fasciculus (AF) [(0.83 ± 0.04) vs. (0.79 ± 0.04) P =0.01], as well as the MD of the right and left inferior fronto-occipital fasiculus (IFOF) [(0.89 ± 0.06) vs. (0.83 ± 0.04), P=0.01]. In addition, there were significant differences in the fractional anisotropy (FA) of the right and left cingulum between both groups [(0.45 ± 0.02) vs. (0.47 ± 0.03), P=0.01 and (0.45 ± 0.03) vs. 0.49± 0.04), P=0.01, respectively]. The overall accuracy of the aforementioned parameters ranged between 73 and 81% with the MD of the left cingulum revealing the highest accuracy.
Conclusion
DTI proofed to be a useful tool in differentiating AD patients from healthy subjects. In our study, we found that the splenium, cingulum, IFOF, and the right UF and right AF are the main tracts involved in AD. The left cingulum provided the highest accuracy in differentiating AD from normal subjects.
Collapse
|
72
|
Kerleroux B, Benzakoun J, Janot K, Dargazanli C, Eraya DD, Ben Hassen W, Zhu F, Gory B, Hak JF, Perot C, Detraz L, Bourcier R, Aymeric R, Forestier G, Marnat G, Gariel F, Mordasini P, Seners P, Turc G, Kaesmacher J, Oppenheim C, Naggara O, Boulouis G. Relevance of Brain Regions' Eloquence Assessment in Patients With a Large Ischemic Core Treated With Mechanical Thrombectomy. Neurology 2021; 97:e1975-e1985. [PMID: 34649871 DOI: 10.1212/wnl.0000000000012863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Individualized patient selection for mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large ischemic core (LIC) at baseline is an unmet need. We tested the hypothesis that assessing the functional relevance of both infarcted and hypoperfused brain tissue would improve the selection framework of patients with LIC for MT. METHODS We performed a multicenter, retrospective study of adults with LIC (ischemic core volume >70 mL on MRI diffusion-weighted imaging) with MRI perfusion treated with MT or best medical management (BMM). Primary outcome was 3-month modified Rankin Scale (mRS), favorable if 0-3. Global and regional eloquence-based core perfusion mismatch ratios were derived. The predictive accuracy for clinical outcome of eloquent regions involvement was compared in multivariable and bootstrap random forest models. RESULTS A total of 138 patients with baseline LIC were included (MT n = 96 or BMM n = 42; mean age ± SD, 72.4 ± 14.4 years; 34.1% female; mRS 0-3: 45.1%). Mean core and critically hypoperfused volume were 100.4 mL ± 36.3 mL and 157.6 ± 56.2 mL, respectively, and did not differ between groups. Models considering the functional relevance of the infarct location showed a better accuracy for the prediction of mRS 0-3 with a c statistic of 0.76 and 0.83 for logistic regression model and bootstrap random forest testing sets, respectively. In these models, the interaction between treatment effect of MT and the mismatch was significant (p = 0.04). In comparison, in the logistic regression model disregarding functional eloquence, the c statistic was 0.67 and the interaction between MT and the mismatch was insignificant. CONCLUSIONS Considering functional eloquence of hypoperfused tissue in patients with a large infarct core at baseline allows for a more precise estimation of treatment expected benefit. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that, in patients with AIS and LIC, considering the functional eloquence of the infarct location improves prediction of disability status at 3 months.
Collapse
Affiliation(s)
- Basile Kerleroux
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France.
| | - Joseph Benzakoun
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Kévin Janot
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Cyril Dargazanli
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Dimitri Daly Eraya
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Wagih Ben Hassen
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - François Zhu
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Benjamin Gory
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Jean-Francois Hak
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Charline Perot
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Lili Detraz
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Romain Bourcier
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Rouchaud Aymeric
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Géraud Forestier
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Gaultier Marnat
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Florent Gariel
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Pasquale Mordasini
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Pierre Seners
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Guillaume Turc
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Johannes Kaesmacher
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Catherine Oppenheim
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Olivier Naggara
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | - Gregoire Boulouis
- From INSERM U1266 (B.K., J.B., W.B.H., C.O., O.N.), Institut of Psychiatry and Neuroscience (IPNP), UMR_S1266, INSERM, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne; Diagnostic and Therapeutic Neuroradiology (K.J., G.B.), CHRU de Tours; Department of Interventional Neuroradiology (C.D., D.D.E.), University Hospital Center of Montpellier, Gui de Chauliac Hospital; Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy (F.Z., B.G.), IADI, INSERM U1254 (F.Z., B.G.), and ADI U1254 (F.Z., G.B.) Université de Lorraine, Nancy; Department of Diagnostic and Interventional Neuroradiology (J.-F.H.) and Neurology Department (C.P.), APHM, Cedex, Timone Hospital, Aix Marseille University; Department of Diagnostic and Interventional Neuroradiology (L.D., R.B.), Guillaume et René Laennec University Hospital, Nantes; Department of Interventional Neuroradiology (R.A., G.F.), Dupuytren University Hospital, Limoges; Department of Diagnostic and Interventional Neuroradiology (G.M., F.G.), Pellegrin Hospital-University Hospital of Bordeaux, France; Institute of Diagnostic, Interventional and Pediatric Radiology and Institute of Diagnostic and Interventional Neuroradiology (P.M., J.K.), University Hospital Bern, Inselspital, University of Bern, Switzerland; Neurology Department (P.S.), Fondation Rothschild Hospital, Paris; Neurology Department (G.T.), GHU Paris Psychiatrie et Neurosciences, Université de Paris, INSERM U1266, FHU NeuroVasc; and Neuroradiology Department (G.B.), Université de Paris, des Neurosciences Psychiatrie de Paris, France
| | | |
Collapse
|
73
|
Fleming V, Piro-Gambetti B, Patrick A, Zammit M, Alexander A, Christian BT, Handen B, Cohen A, Klunk W, Laymon C, Ances BM, Plante DT, Okonkwo O, Hartley SL. Physical activity and cognitive and imaging biomarkers of Alzheimer's disease in down syndrome. Neurobiol Aging 2021; 107:118-127. [PMID: 34428720 PMCID: PMC8641014 DOI: 10.1016/j.neurobiolaging.2021.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Adults with Down syndrome (DS) are at risk for Alzheimer's disease. Despite sharing trisomy 21, however, there is variability in the age of disease onset. This variability may mean that other factors, such as lifestyle, influence cognitive aging and disease timing. The present study assessed the association between everyday life physical activity using an actigraph accelerometer and cognitive functioning and early Alzheimer's disease pathology via positron emission tomography amyloid-β and tau and diffusion tension imaging measures of white matter integrity in 61 non-demented adults with DS. Percent time in sedentary behavior and in moderate-to-vigorous activity were associated (negatively and positively, respectively) with cognitive functioning (r = -.472 to .572, p < 0.05). Neither sedentary behavior nor moderate-to-vigorous activity were associated with amyloid-β or tau, but both were associated with white matter integrity in the superior and inferior longitudinal fasciculus (Fractional Anisotropy: r = -.397 to -.419, p < 0.05; Mean Diffusivity: r = .400, p < 0.05). Longitudinal studies are needed to determine if physical activity promotes healthy aging in DS.
Collapse
Affiliation(s)
- Victoria Fleming
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brianna Piro-Gambetti
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Austin Patrick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew Zammit
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bradley T Christian
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annie Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beau M Ances
- Department of Neurology, Washington University at St. Louis, St. Louis, MO, USA
| | - David T Plante
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ozioma Okonkwo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
74
|
Sander K, Barbeau EB, Chai X, Kousaie S, Petrides M, Baum S, Klein D. Frontoparietal Anatomical Connectivity Predicts Second Language Learning Success. Cereb Cortex 2021; 32:2602-2610. [PMID: 34607363 DOI: 10.1093/cercor/bhab367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022] Open
Abstract
There is considerable individual variability in second language (L2) learning abilities in adulthood. The inferior parietal lobule, important in L2 learning success, is anatomically connected to language areas in the frontal lobe via the superior longitudinal fasciculus (SLF). The second and third branches of the SLF (SLF II and III) have not been examined separately in the context of language, yet they are known to have dissociable frontoparietal connections. Studying these pathways and their functional contributions to L2 learning is thus of great interest. Using diffusion MRI tractography, we investigated individuals undergoing language training to explore brain structural predictors of L2 learning success. We dissected SLF II and III using gold-standard anatomical definitions and related prelearning white matter integrity to language improvements corresponding with hypothesized tract functions. SLF II properties predicted improvement in lexical retrieval, while SLF III properties predicted improvement in articulation rate. Finer grained separation of these pathways enables better understanding of their distinct roles in language, which is essential for studying how anatomical connectivity relates to L2 learning abilities.
Collapse
Affiliation(s)
- Kaija Sander
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H3G 2A8, Canada
| | - Elise B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H3G 2A8, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H3G 2A8, Canada
| | - Shanna Kousaie
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.,School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H3G 2A8, Canada.,Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada
| | - Shari Baum
- Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H3G 2A8, Canada.,School of Communication Sciences and Disorders, McGill University, Montreal, QC, H3A 1G1, Canada
| | - Denise Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language, and Music (CRBLM), Montreal, QC H3G 2A8, Canada
| |
Collapse
|
75
|
Ma ZZ, Lu YC, Wu JJ, Hua XY, Li SS, Ding W, Xu JG. Effective connectivity decreases in specific brain networks with postparalysis facial synkinesis: a dynamic causal modeling study. Brain Imaging Behav 2021; 16:748-760. [PMID: 34550534 DOI: 10.1007/s11682-021-00547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Currently, the treatments for postparalysis facial synkinesis are still inadequate. However, neuroimaging mechanistic studies are very limited and blurred. Instead of mapping activation regions, we were devoted to characterizing the organizational features of brain regions to develop new targets for therapeutic intervention. Eighteen patients with unilateral facial synkinesis and 19 healthy controls were enrolled. They were instructed to perform task functional magnetic resonance imaging (eye blinking and lip pursing) examinations and resting-state scans. Then, we characterized group differences in task-state fMRI to identify three foci, including the contralateral precentral gyrus (PreCG), supramarginal gyrus (SMG), and superior parietal gyrus (SPG). Next, we employed a novel approach (using dynamic causal modeling) to identify directed connectivity differences between groups in different modes. Significant patterns in multiple regions in terms of regionally specific actions following synkinetic movements were demonstrated, although the resting state was not significant. The couplings from the SMG to the PreCG (p = 0.03) was significant in the task of left blinking, whereas the coupling from the SMG to the SPG (p = 0.04) was significant in the task of left smiling. We speculated that facial synkinesis affects disruption among the brain networks, and specific couplings that are modulated simultaneously can compensate for motor deficits. Therefore, behavioral or brain stimulation technique treatment could be applied to alter reorganization within specific couplings in the rehabilitation of facial function.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye-Chen Lu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Li
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Ding
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, China.
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Department of Hand Surgery, Huashan Hospital, Fudan University, No.1200 Cailun Road, Shanghai, China.
| |
Collapse
|
76
|
Asymmetric alterations of white matter integrity in patients with insomnia disorder. Brain Imaging Behav 2021; 16:389-396. [PMID: 34427878 DOI: 10.1007/s11682-021-00512-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Despite the adverse consequences of insomnia disorder for both individuals and society, the underlying neurobiological processes are poorly understood. The purpose was to further understand the alterations of white matter tracts in patients with insomnia and their association with sleep variables and also to determine if diffusion tensor imaging measures would be a useful disease marker. Twenty-six patients with insomnia and 26 age-matched healthy volunteers underwent diffusion tensor imaging. We employed an automated probabilistic tractography analysis approach using TRActs Constrained by UnderLying Anatomy (TRACULA) to quantify diffusion measures in major white matter tracts. We found significantly increased fractional anisotropy in the right cingulum-angular bundle and uncinate fasciculus in patients group compared to controls. Moreover, the mean diffusivity and radial diffusivity were reduced in the right cingulum-angular bundle in patients group in comparison with controls. We also found significantly increased fractional anisotropy along the bilateral cingulum-angular bundle and right uncinate fasciculus in patients. Also, mean and radial diffusivity were reduced along the right cingulum-angular bundle in patients group compared to controls. There is a significant positive correlation between fractional anisotropy and Epworth Sleepiness Scale scores. Moreover, there are negative correlations between mean, radial and axial diffusivity and total sleep time and sleep efficiency and also positive correlations between mean, radial and axial diffusivity and duration of disease and Pittsburgh Sleep Quality Index scores. This study showed the importance of examining whole-tract and waypoint white matter integrity in insomnia disorder. We found asymmetric widespread white matter integrity changes in patients with insomnia.
Collapse
|
77
|
Warling A, McDermott CL, Liu S, Seidlitz J, Rodrigue AL, Nadig A, Gur RC, Gur RE, Roalf D, Moore TM, Glahn D, Satterthwaite TD, Bullmore ET, Raznahan A. Regional White Matter Scaling in the Human Brain. J Neurosci 2021; 41:7015-7028. [PMID: 34244364 PMCID: PMC8372020 DOI: 10.1523/jneurosci.1193-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/21/2022] Open
Abstract
Anatomical organization of the primate cortex varies as a function of total brain size, where possession of a larger brain is accompanied by disproportionate expansion of associative cortices alongside a relative contraction of sensorimotor systems. However, equivalent scaling maps are not yet available for regional white matter anatomy. Here, we use three large-scale neuroimaging datasets to examine how regional white matter volume (WMV) scales with interindividual variation in brain volume among typically developing humans (combined N = 2391: 1247 females, 1144 males). We show that WMV scaling is regionally heterogeneous: larger brains have relatively greater WMV in anterior and posterior regions of cortical white matter, as well as the genu and splenium of the corpus callosum, but relatively less WMV in most subcortical regions. Furthermore, regions of positive WMV scaling tend to connect previously-defined regions of positive gray matter scaling in the cortex, revealing a coordinated coupling of regional gray and white matter organization with naturally occurring variations in human brain size. However, we also show that two commonly studied measures of white matter microstructure, fractional anisotropy (FA) and magnetization transfer (MT), scale negatively with brain size, and do so in a manner that is spatially unlike WMV scaling. Collectively, these findings provide a more complete view of anatomic scaling in the human brain, and offer new contexts for the interpretation of regional white matter variation in health and disease.SIGNIFICANCE STATEMENT Recent work has shown that, in humans, regional cortical and subcortical anatomy show systematic changes as a function of brain size variation. Here, we show that regional white matter structures also show brain-size related changes in humans. Specifically, white matter regions connecting higher-order cortical systems are relatively expanded in larger human brains, while subcortical and cerebellar white matter tracts responsible for unimodal sensory or motor functions are relatively contracted. This regional scaling of white matter volume (WMV) is coordinated with regional scaling of cortical anatomy, but is distinct from scaling of white matter microstructure. These findings provide a more complete view of anatomic scaling of the human brain, with relevance for evolutionary, basic, and clinical neuroscience.
Collapse
Affiliation(s)
- Allysa Warling
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Cassidy L McDermott
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jakob Seidlitz
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Amanda L Rodrigue
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ajay Nadig
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania 19104
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania 19104
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania 19104
| | - David Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Theodore D Satterthwaite
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
78
|
Wang Y, Metoki A, Xia Y, Zang Y, He Y, Olson IR. A large-scale structural and functional connectome of social mentalizing. Neuroimage 2021; 236:118115. [PMID: 33933599 DOI: 10.1016/j.neuroimage.2021.118115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Humans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network of brain regions but how these regions connect and interact is not well understood. Here we leveraged large-scale multimodal neuroimaging data to elucidate the brain-wide organization and mechanisms of mentalizing processing. Key connectomic features of the mentalizing network (MTN) have been delineated in exquisite detail. We found the structural architecture of MTN is organized by two parallel subsystems and constructed redundantly by local and long-range white matter fibers. We uncovered an intrinsic functional architecture that is synchronized according to the degree of mentalizing, and its hierarchy reflects the inherent information integration order. We also examined the correspondence between the structural and functional connectivity in the network and revealed their differences in network topology, individual variance, spatial specificity, and functional specificity. Finally, we scrutinized the connectome resemblance between the default mode network and MTN and elaborated their inherent differences in dynamic patterns, laterality, and homogeneity. Overall, our study demonstrates that mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and unique hierarchical functional architecture, which make it distinguishable from the default mode network and other vicinity brain networks supporting autobiographical memory, semantic memory, self-referential, moral reasoning, and mental time travel.
Collapse
Affiliation(s)
- Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Athanasia Metoki
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yinyin Zang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
79
|
Li M, Song L, Zhang Y, Han Z. White matter network of oral word reading identified by network-based lesion-symptom mapping. iScience 2021; 24:102862. [PMID: 34386727 PMCID: PMC8346667 DOI: 10.1016/j.isci.2021.102862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Oral word reading is supported by a neural subnetwork that includes gray matter regions and white matter tracts connected by the regions. Traditional methods typically determine the reading-relevant focal gray matter regions or white matter tracts rather than the reading-relevant global subnetwork. The present study developed a network-based lesion-symptom mapping (NLSM) method to identify the reading-relevant global white matter subnetwork in 84 brain-damaged patients. The global subnetwork was selected among all possible subnetworks because its global efficiency exhibited the best explanatory power for patients' reading scores. This reading subnetwork was left lateralized and included 7 gray matter regions and 15 white matter tracts. Moreover, the reading subnetwork had additional explanatory power for the patients' reading performance after eliminating the effects of reading-related local regions and tracts. These findings refine the reading neuroanatomical architecture and indicate that the NLSM can be a better method for revealing behavior-specific subnetworks.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen University General Hospital, Department of Rehabilitation Medicine, Shenzhen 518055, China
| | - Yumei Zhang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Corresponding author
| |
Collapse
|
80
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
81
|
Cheng L, Zhang Y, Li G, Wang J, Sherwood C, Gong G, Fan L, Jiang T. Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. eLife 2021; 10:e67600. [PMID: 34219649 PMCID: PMC8257252 DOI: 10.7554/elife.67600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The inferior parietal lobule (IPL) is one of the most expanded cortical regions in humans relative to other primates. It is also among the most structurally and functionally asymmetric regions in the human cerebral cortex. Whether the structural and connectional asymmetries of IPL subdivisions differ across primate species and how this relates to functional asymmetries remain unclear. We identified IPL subregions that exhibited positive allometric in both hemispheres, scaling across rhesus macaque monkeys, chimpanzees, and humans. The patterns of IPL subregions asymmetry were similar in chimpanzees and humans, but no IPL asymmetries were evident in macaques. Among the comparative sample of primates, humans showed the most widespread asymmetric connections in the frontal, parietal, and temporal cortices, constituting leftward asymmetric networks that may provide an anatomical basis for language and tool use. Unique human asymmetric connectivity between the IPL and primary motor cortex might be related to handedness. These findings suggest that structural and connectional asymmetries may underlie hemispheric specialization of the human brain.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Gang Li
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Center for Language and Brain, Shenzhen Institute of NeuroscienceShenzhenChina
| | - Chet Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
82
|
Clemente A, Domínguez D JF, Imms P, Burmester A, Dhollander T, Wilson PH, Poudel G, Caeyenberghs K. Individual differences in attentional lapses are associated with fiber-specific white matter microstructure in healthy adults. Psychophysiology 2021; 58:e13871. [PMID: 34096075 DOI: 10.1111/psyp.13871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Attentional lapses interfere with goal-directed behaviors, which may result in harmless (e.g., not hearing instructions) or severe (e.g., fatal car accident) consequences. Task-related functional MRI (fMRI) studies have shown a link between attentional lapses and activity in the frontoparietal network. Activity in this network is likely to be mediated by the organization of the white matter fiber pathways that connect the regions implicated in the network, such as the superior longitudinal fasciculus I (SLF-I). In the present study, we investigate the relationship between susceptibility to attentional lapses and relevant white matter pathways in 36 healthy adults (23 females, Mage = 31.56 years). Participants underwent a diffusion MRI (dMRI) scan and completed the global-local task to measure attentional lapses, similar to previous fMRI studies. Applying the fixel-based analysis framework for fiber-specific analysis of dMRI data, we investigated the association between attentional lapses and variability in microstructural fiber density (FD) and macrostructural (morphological) fiber-bundle cross section (FC) in the SLF-I. Our results revealed a significant negative association between higher total number of attentional lapses and lower FD in the left SLF-I. This finding indicates that the variation in the microstructure of a key frontoparietal white matter tract is associated with attentional lapses and may provide a trait-like biomarker in the general population. However, SLF-I microstructure alone does not explain propensity for attentional lapses, as other factors such as sleep deprivation or underlying psychological conditions (e.g., sleep disorders) may also lead to higher susceptibility in both healthy people and those with neurological disorders.
Collapse
Affiliation(s)
- Adam Clemente
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Phoebe Imms
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Peter H Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural, Health and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
83
|
Deng X, Liu Z, Kang Q, Lu L, Zhu Y, Xu R. Cortical Structural Connectivity Alterations and Potential Pathogenesis in Mid-Stage Sporadic Parkinson's Disease. Front Aging Neurosci 2021; 13:650371. [PMID: 34135748 PMCID: PMC8200851 DOI: 10.3389/fnagi.2021.650371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many clinical symptoms of sporadic Parkinson's disease (sPD) cannot be completely explained by a lesion of the simple typical extrapyramidal circuit between the striatum and substantia nigra. Therefore, this study aimed to explore the new potential damaged pathogenesis of other brain regions associated with the multiple and complex clinical symptoms of sPD through magnetic resonance imaging (MRI). A total of 65 patients with mid-stage sPD and 35 healthy controls were recruited in this study. Cortical structural connectivity was assessed by seed-based analysis using the vertex-based morphology of MRI. Seven different clusters in the brain regions of cortical thickness thinning derived from the regression analysis using brain size as covariates between sPD and control were selected as seeds. Results showed that the significant alteration of cortical structural connectivity mainly occurred in the bilateral frontal orbital, opercular, triangular, precentral, rectus, supplementary-motor, temporal pole, angular, Heschl, parietal, supramarginal, postcentral, precuneus, occipital, lingual, cuneus, Rolandic-opercular, cingulum, parahippocampal, calcarine, olfactory, insula, paracentral-lobule, and fusiform regions at the mid-stage of sPD. These findings suggested that the extensive alteration of cortical structural connectivity is one of possible pathogenesis resulting in the multiple and complex clinical symptoms in sPD.
Collapse
Affiliation(s)
- Xia Deng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qin Kang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
84
|
Biagi L, Lenzi S, Cipriano E, Fiori S, Bosco P, Cristofani P, Astrea G, Pini A, Cioni G, Mercuri E, Tosetti M, Battini R. Neural substrates of neuropsychological profiles in dystrophynopathies: A pilot study of diffusion tractography imaging. PLoS One 2021; 16:e0250420. [PMID: 33939732 PMCID: PMC8092766 DOI: 10.1371/journal.pone.0250420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Cognitive difficulties and neuropsychological alterations in Duchenne and Becker muscular dystrophy (DMD, BMD) boys are not yet sufficiently explored, although this topic could have a relevant impact, finding novel biomarkers of disease both at genetics and neuroimaging point of view. The current study aims to: 1) analyze the neuropsychological profile of a group of DMD and BMD boys without cognitive impairment with an assessment of their executive functions; 2) explore the structural connectivity in DMD, BMD, and age-matched controls focusing on cortico-subcortical tracts that connect frontal cortex, basal ganglia, and cerebellum via the thalamus; 3) explore possible correlations between altered structural connectivity and clinical neuropsychological measures. Materials and methods This pilot study included 15 boys (5 DMD subjects, 5 BMD subjects, and 5 age-matched typically developing, TD). They were assessed using a neuropsychological assessment protocol including cognitive and executive functioning assessment and performed a 1.5T MRI brain exam including advance Diffusion Weighted Imaging (DWI) method for tractography. Structural connectivity measurements were extracted along three specific tracts: Cortico-Ponto-Cerebellar Tract (CPCT), Cerebellar-Thalamic Tract (CTT), and Superior Longitudinal Fasciculus (SLF). Cortical-Spinal Tract (CST) was selected for reference, as control tract. Results Regarding intellectual functioning, a major impairment in executive functions compared to the general intellectual functioning was observed both for DMD (mean score = 86.20; SD = 11.54) and for BMD children (mean score = 88; SD = 3.67). Mean FA resulted tendentially always lower in DMD compared to both BMD and TD groups for all the examined tracts. The differences in FA were statistically significant for the right CTT (DMD vs BMD, p = 0.002, and DMD vs TD, p = 0.0015) and the right CPCT (DMD vs TD, p = 0.008). Concerning DMD, significant correlations emerged between FA-R-CTT and intellectual quotients (FIQ, p = 0.044; ρs = 0.821), and executive functions (Denomination Total, p = 0.044, ρs = 0.821; Inhibition Total, p = 0.019, ρs = 0.900). BMD showed a significant correlation between FA-R-CPCT and working memory index (p = 0.007; ρs = 0.949). Discussion and conclusion In this pilot study, despite the limitation of sample size, the findings support the hypothesis of the involvement of a cerebellar-thalamo-cortical loop for the neuropsychological profile of DMD, as the CTT and the CPCT are involved in the network and the related brain structures are known to be implied in executive functions. Our results suggest that altered WM connectivity and reduced fibre organization in cerebellar tracts, probably due to the lack of dystrophin in the brain, may render less efficient some neuropsychological functions in children affected by dystrophinopathies. The wider multicentric study could help to better establish the role of cerebellar connectivity in neuropsychological profile for dystrophinopathies, identifying possible novel diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Sara Lenzi
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Emilio Cipriano
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Italy
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Paolo Bosco
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Guia Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Antonella Pini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University and Nemo Center, Policlinico Universitario Gemelli, Rome, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
85
|
Vergani F, Ghimire P, Rajashekar D, Dell'acqua F, Lavrador JP. Superior longitudinal fasciculus (SLF) I and II: an anatomical and functional review. J Neurosurg Sci 2021; 65:560-565. [PMID: 33940781 DOI: 10.23736/s0390-5616.21.05327-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we summarise the current knowledge regarding the Superior Longitudinal Fasciculus (SLF) I and II. These fibres represent a longitudinal association tract between the parietal and frontal lobes of the brain. We highlight the anatomical representation of the SLF I and II in the primate and in the human brain. The fibres of the SLF I extend from the superior parietal lobule and precuneus, running anteriorly to reach the superior frontal gyrus and the supplementary motor area. The anatomy of the SLF I is debated in the literature, with some Authors questioning the existence of the SLF I as an individual tract. The SLF II is located inferiorly and laterally compared to the SLF I. The fibres of the SLF II extend from the inferior parietal lobule to the middle frontal gyrus. The putative functions of these tracts are reviewed, with particular regards to intraoperative findings and their relevance in applied neurosurgery. Considered together, the two tracts link associative parietal areas with premotor and supplementary motor frontal areas. The two tracts seem therefore involved in supporting the integration of sensory information and motor planning, finalised to visuospatial attention and complex motor behaviour. Finally, we discuss future directions for further study of these fibre tracts, highlighting the need for more detailed anatomical study of the SLF I and additional intraoperative tests that have been suggested to explore the function of these tracts during surgery.
Collapse
Affiliation(s)
- Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK -
| | - Prajwal Ghimire
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Devika Rajashekar
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Flavio Dell'acqua
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King's College London, London, UK
| | - Jose P Lavrador
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
86
|
Baro V, Caliri S, Sartori L, Facchini S, Guarrera B, Zangrossi P, Anglani M, Denaro L, d’Avella D, Ferreri F, Landi A. Preoperative Repetitive Navigated TMS and Functional White Matter Tractography in a Bilingual Patient with a Brain Tumor in Wernike Area. Brain Sci 2021; 11:brainsci11050557. [PMID: 33924964 PMCID: PMC8145512 DOI: 10.3390/brainsci11050557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
Awake surgery and intraoperative neuromonitoring represent the gold standard for surgery of lesion located in language-eloquent areas of the dominant hemisphere, enabling the maximal safe resection while preserving language function. Nevertheless, this functional mapping is invasive; it can be executed only during surgery and in selected patients. Moreover, the number of neuro-oncological bilingual patients is constantly growing, and performing awake surgery in this group of patients can be difficult. In this scenario, the application of accurate, repeatable and non-invasive preoperative mapping procedures is needed, in order to define the anatomical distribution of both languages. Repetitive navigated transcranial magnetic stimulation (rnTMS) associated with functional subcortical fiber tracking (nTMS-based DTI-FT) represents a promising and comprehensive mapping tool to display language pathway and function reorganization in neurosurgical patients. Herein we report a case of a bilingual patient affected by brain tumor in the left temporal lobe, who underwent rnTMS mapping for both languages (Romanian and Italian), disclosing the true eloquence of the anterior part of the lesion in both tests. After surgery, language abilities were intact at follow-up in both languages. This case represents a preliminary application of nTMS-based DTI-FT in neurosurgery for brain tumor in eloquent areas in a bilingual patient.
Collapse
Affiliation(s)
- Valentina Baro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
- Correspondence:
| | - Samuel Caliri
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Luca Sartori
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Silvia Facchini
- Department of Neuroscience DNS, University of Padova, 35128 Padova, Italy;
| | - Brando Guarrera
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Pietro Zangrossi
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | | | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Domenico d’Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Florinda Ferreri
- Unit of Neurology and Neurophysiology, Department of Neuroscience, University of Padova, 35128 Padova, Italy;
| | - Andrea Landi
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| |
Collapse
|
87
|
Hyde C, Sciberras E, Efron D, Fuelscher I, Silk T. Reduced fine motor competence in children with ADHD is associated with atypical microstructural organization within the superior longitudinal fasciculus. Brain Imaging Behav 2021; 15:727-737. [PMID: 32333317 DOI: 10.1007/s11682-020-00280-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent work in healthy adults suggests that white matter organization within the superior longitudinal fasciculus (SLF) may, at least partly, explain individual differences in fine motor skills. The SLF is also often implicated in the neurobiology underlying attention deficit hyperactivity disorder (ADHD) as part of the attention network connecting frontal and parietal regions. While ADHD is primarily characterized by inattention, impulsivity and/or hyperactivity, atypical fine motor control is a common comorbid feature. This study aimed to investigate the association between reduced fine motor skills in ADHD and microstructural properties within the SLF. Participants were 55 right-handed children with ADHD and 61 controls aged 9-11 years. Fine motor control was assessed using the Grooved Pegboard task. Children underwent high angular resolution diffusion MRI. Following pre-processing, constrained spherical deconvolution tractography was performed to delineate the three SLF branches bilaterally. Children with ADHD showed significantly poorer fine motor performance relative to controls in the non-dominant hand, indicated by significantly slower left handed Grooved Pegboard task performance. This slower response time for the non-dominant (left) hand was significantly associated with reduced apparent fibre density within the right SLF I, and reduced right SLF I, II and III volume. This finding was independent of spatial attention performance. These data support previous reports indicating that children with ADHD have poorer fine motor performance than controls in their non-dominant hand, and indicates that the neurobiological basis for impaired fine motor control may involve white matter properties within the contralateral SLF. This suggests that white matter properties in fronto-parietal areas may have broader implications than attention.
Collapse
Affiliation(s)
- Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Emma Sciberras
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Daryl Efron
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Tim Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
88
|
Mace RA, Gansler DA, Sawyer KS, Suvak M. Age-dependent relationship of cardiorespiratory fitness and white matter integrity. Neurobiol Aging 2021; 105:48-56. [PMID: 34022538 DOI: 10.1016/j.neurobiolaging.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Growing evidence has linked cardiorespiratory fitness (CRF) to more conserved white matter (WM) microstructure. Additional research is needed to determine which WM tracts are most strongly related to CRF and if the neuroprotective effects of CRF are age-dependent. Participants were community-dwelling adults (N = 499; ages 20-85) from the open-access Nathan Kline Institute - Rockland Sample (NKI-RS) with CRF (bike test) and diffusion tensor imaging (DTI) data. Mixed-effect modeling tested the interaction between CRF and age on global (main effect across 9 tracts) and local (individual tract effects) WM microstructure. Among older participants (age ≥ 60), CRF was significantly related to whole-brain (z-score slope = 0.11) and local WM microstructure within several tracts (| z-score slope | range = 0.13 - 0.27). Significant interactions with age indicated that the CRF-WM relationship was weaker (z-score slope ≤ 0.11) and more limited (one WM tract) in younger adults. The findings highlight the importance of aerobic exercise to maintain brain health into senescence. CRF may preferentially preserve a collection of anterior and posterior WM connections related to visuomotor function.
Collapse
Affiliation(s)
- Ryan A Mace
- Department of Psychology, Suffolk University, Boston, MA, USA.
| | - David A Gansler
- Department of Psychology, Suffolk University, Boston, MA, USA
| | - Kayle S Sawyer
- VA Boston Healthcare System, Jamaica Plain, MA USA; School of Medicine, Boston University, Boston, MA USA; Massachusetts General Hospital, Charlestown, MA USA; Sawyer Scientific, LLC, Boston, MA USA
| | - Michael Suvak
- Department of Psychology, Suffolk University, Boston, MA, USA
| |
Collapse
|
89
|
Hodology of the superior longitudinal system of the human brain: a historical perspective, the current controversies, and a proposal. Brain Struct Funct 2021; 226:1363-1384. [PMID: 33881634 DOI: 10.1007/s00429-021-02265-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The description of human white matter pathways experienced a tremendous improvement, thanks to the advancement of neuroimaging and dissection techniques. The downside of this progress is the production of redundant and conflicting literature, bound by specific studies' methods and aims. The Superior Longitudinal System (SLS), encompassing the arcuate (AF) and the superior longitudinal fasciculi (SLF), becomes an illustrative example of this fundamental issue, being one of the most studied white matter association pathways of the brain. Herein, we provide a complete illustration of this white matter fiber system's current definition, from its early descriptions in the nineteenth century to its most recent characterizations. We propose a review of both in vivo diffusion magnetic resonance imaging-based tractography and anatomical dissection studies, enclosing all the information available up to date. Based on these findings, we reconstruct the wiring diagram of the SLS, highlighting a substantial variability in the description of its cortical sites of termination and the taxonomy and partonomy that characterize the system. We aim to level up discrepancies in the literature by proposing a parallel across the various nomenclature. Consistent with the topographical arrangement already documented for commissural and projection pathways, we suggest approaching the SLS organization as an orderly and continuous wiring diagram, respecting a medio-lateral palisading topography between the different frontal, parietal, occipital, and temporal gyri rather than in terms of individualized fascicles. A better and complete description of the fine organization of white matter association pathways' connectivity is fundamental for a better understanding of brain function and their clinical and neurosurgical applications.
Collapse
|
90
|
Yuan T, Ying J, Li C, Jin L, Kang J, Shi Y, Gui S, Liu C, Wang R, Zuo Z, Zhang Y. In Vivo Characterization of Cortical and White Matter Microstructural Pathology in Growth Hormone-Secreting Pituitary Adenoma. Front Oncol 2021; 11:641359. [PMID: 33912457 PMCID: PMC8072046 DOI: 10.3389/fonc.2021.641359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background The growth hormone (GH) and insulin-like-growth factor 1 (IGF-1) axis has long been recognized for its critical role in brain growth, development. This study was designed to investigate microstructural pathology in the cortex and white matter in growth hormone-secreting pituitary adenoma, which characterized by excessive secretion of GH and IGF-1. Methods 29 patients with growth hormone-secreting pituitary adenoma (acromegaly) and 31 patients with non-functional pituitary adenoma as controls were recruited and assessed using neuropsychological test, surface-based morphometry, T1/T2-weighted myelin-sensitive magnetic resonance imaging, neurite orientation dispersion and density imaging, and diffusion tensor imaging. Results Compared to controls, we found 1) acromegaly had significantly increased cortical thickness throughout the bilateral cortex (pFDR < 0.05). 2) T1/T2-weighted ratio in the cortex were decreased in the bilateral occipital cortex and pre/postcentral central gyri but increased in the bilateral fusiform, insular, and superior temporal gyri in acromegaly (pFDR < 0.05). 3) T1/T2-weighted ratio were decreased in most bundles, and only a few areas showed increases in acromegaly (pFDR < 0.05). 4) Neurite density index (NDI) was significantly lower throughout the cortex and bundles in acromegaly (pTFCE < 0.05). 5) lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in extensive bundles in acromegaly (pTFCE < 0.05). 6) microstructural pathology in the cortex and white matter were associated with neuropsychological dysfunction in acromegaly. Conclusions Our findings suggested that long-term persistent and excess serum GH/IGF-1 levels alter the microstructure in the cortex and white matter in acromegaly, which may be responsible for neuropsychological dysfunction.
Collapse
Affiliation(s)
- Taoyang Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyou Ying
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanyu Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunhui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, China
| |
Collapse
|
91
|
Manelis A, Soehner A, Halchenko YO, Satz S, Ragozzino R, Lucero M, Swartz HA, Phillips ML, Versace A. White matter abnormalities in adults with bipolar disorder type-II and unipolar depression. Sci Rep 2021; 11:7541. [PMID: 33824408 PMCID: PMC8024340 DOI: 10.1038/s41598-021-87069-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Discerning distinct neurobiological characteristics of related mood disorders such as bipolar disorder type-II (BD-II) and unipolar depression (UD) is challenging due to overlapping symptoms and patterns of disruption in brain regions. More than 60% of individuals with UD experience subthreshold hypomanic symptoms such as elevated mood, irritability, and increased activity. Previous studies linked bipolar disorder to widespread white matter abnormalities. However, no published work has compared white matter microstructure in individuals with BD-II vs. UD vs. healthy controls (HC), or examined the relationship between spectrum (dimensional) measures of hypomania and white matter microstructure across those individuals. This study aimed to examine fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) across BD-II, UD, and HC groups in the white matter tracts identified by the XTRACT tool in FSL. Individuals with BD-II (n = 18), UD (n = 23), and HC (n = 24) underwent Diffusion Weighted Imaging. The categorical approach revealed decreased FA and increased RD in BD-II and UD vs. HC across multiple tracts. While BD-II had significantly lower FA and higher RD values than UD in the anterior part of the left arcuate fasciculus, UD had significantly lower FA and higher RD values than BD-II in the area of intersections between the right arcuate, inferior fronto-occipital and uncinate fasciculi and forceps minor. The dimensional approach revealed the depression-by-spectrum mania interaction effect on the FA, RD, and AD values in the area of intersection between the right posterior arcuate and middle longitudinal fasciculi. We propose that the white matter microstructure in these tracts reflects a unique pathophysiologic signature and compensatory mechanisms distinguishing BD-II from UD.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA.
| | - Adriane Soehner
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Yaroslav O Halchenko
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Skye Satz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Rachel Ragozzino
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Mora Lucero
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Holly A Swartz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| |
Collapse
|
92
|
Bugain M, Dimech Y, Torzhenskaya N, Thiebaut de Schotten M, Caspers S, Muscat R, Bajada CJ. Occipital Intralobar fasciculi: a description, through tractography, of three forgotten tracts. Commun Biol 2021; 4:433. [PMID: 33785859 PMCID: PMC8010026 DOI: 10.1038/s42003-021-01935-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diffusion MRI paired with tractography has facilitated a non-invasive exploration of many association, projection, and commissural fiber tracts. However, there is still a scarcity of research studies related to intralobar association fibers. The Dejerines' (two of the most notable neurologists of 19th century France) gave an in-depth description of the intralobar fibers of the occipital lobe. Unfortunately, their exquisite work has since been sparsely cited in the modern literature. This work gives a modern description of many of the occipital intralobar lobe fibers described by the Dejerines. We perform a virtual dissection and reconstruct the tracts using diffusion MRI tractography. The dissection is guided by the Dejerines' treatise, Anatomie des Centres Nerveux. As an accompaniment to this article, we provided a French-to-English translation of the treatise portion concerning five intra-occipital tracts, namely: the stratum calcarinum, the stratum proprium cunei, the vertical occipital fasciculus of Wernicke, the transverse fasciculus of the cuneus and the transverse fasciculus of the lingual lobule of Vialet. It was possible to reconstruct all but one of these tracts. For completeness, the recently described sledge runner fasciculus, although not one of the Dejerines' tracts, was identified and successfully reconstructed.
Collapse
Affiliation(s)
- Maeva Bugain
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Yana Dimech
- Department of Cognitive Sciences, Faculty of Media and Knowledge Sciences, The University of Malta, Msida, Malta
| | - Natalia Torzhenskaya
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives -UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Richard Muscat
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta
| | - Claude J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, The University of Malta, Msida, Malta.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.
| |
Collapse
|
93
|
Nakajima R, Kinoshita M, Shinohara H, Nakada M. The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 2021; 14:2817-2830. [PMID: 31468374 DOI: 10.1007/s11682-019-00187-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Due primarily to the extensive disposition of fibers and secondarily to the methodological preferences of researchers, the superior longitudinal fasciculus (SLF) subdivisions have multiple names, complicating SLF research. Here, we collected and reassessed existing knowledge regarding the SLF, which we used to propose a four-term classification of the SLF based mainly on function: dorsal SLF, ventral SLF, posterior SLF, and arcuate fasciculus (AF); these correspond to the traditional SLF II, SLF III or anterior AF, temporoparietal segment of the SLF or posterior AF, and AF or AF long segment, respectively. Each segment has a distinct functional role. The dorsal SLF is involved in visuospatial attention and motor control, while the ventral SLF is associated with language-related networks, auditory comprehension, and articulatory processing in the left hemisphere. The posterior SLF is involved in language-related processing, including auditory comprehension, reading, and lexical access, while the AF is associated with language-related activities, such as phonological processing; the right AF plays a role in social cognition and visuospatial attention. This simple proposed classification permits a better understanding of the SLF and may comprise a convenient classification for use in research and clinical practice relating to brain function.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational therapy, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
94
|
Amemiya K, Naito E, Takemura H. Age dependency and lateralization in the three branches of the human superior longitudinal fasciculus. Cortex 2021; 139:116-133. [PMID: 33852990 DOI: 10.1016/j.cortex.2021.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The superior longitudinal fascicle/fasciculus (SLF) is a major white matter tract connecting the frontal and parietal cortices in humans. Although the SLF has often been analyzed as a single entity, several studies have reported that the SLF is segregated into three distinct branches (SLF I, II, and III). They have also reported the right lateralization of the SLF III volume and discussed its relationship with lateralized cortical functions in the fronto-parietal network. However, to date, the homogeneity or heterogeneity of the age dependency and lateralization properties of SLF branches have not been fully clarified. Through this study, we aimed to clarify the age dependency and lateralization of SLF I-III by analyzing diffusion-weighted MRI (dMRI) and quantitative R1 (qR1) map datasets collected from a wide range of age groups, mostly comprising right-handed children, adolescents, adults, and seniors (6 to 81 years old). The age dependency in dMRI measurement (fractional anisotropy, FA) was heterogeneous among the three SLF branches, suggesting that these branches are regulated by distinct developmental and aging processes. Lateralization analysis on SLF branches revealed that the right SLF III was larger than the left SLF III in adults, replicating previous reports. FA measurement also suggested that, in addition to SLF III, SLF II was lateralized to the right hemisphere in adolescents and adults. We further found a left lateralization of SLF I in qR1 data, a microstructural measurement sensitive to myelin levels, in adults. These findings suggest that the SLF sub-bundles are distinct entities in terms of age dependency and lateralization.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
95
|
Kim NS, Lee TY, Hwang WJ, Kwak YB, Kim S, Moon SY, Lho SK, Oh S, Kwon JS. White Matter Correlates of Theory of Mind in Patients With First-Episode Psychosis. Front Psychiatry 2021; 12:617683. [PMID: 33746794 PMCID: PMC7973210 DOI: 10.3389/fpsyt.2021.617683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Deficits in theory of mind (ToM) are considered as a distinctive feature of schizophrenia. Functional magnetic resonance imaging (fMRI) studies have suggested that aberrant activity among the regions comprising the mentalizing network is related to observed ToM deficits. However, the white matter structures underlying the ToM functional network in schizophrenia remain unclear. To investigate the relationship between white matter integrity and ToM impairment, 35 patients with first-episode psychosis (FEP) and 29 matched healthy controls (HCs) underwent diffusion tensor imaging (DTI). Using tract-based spatial statistics (TBSS), fractional anisotropy (FA) values of the two regions of interest (ROI)-the cingulum and superior longitudinal fasciculus (SLF)-were acquired, and correlational analysis with ToM task scores was performed. Among the patients with FEP, ToM strange story scores were positively correlated with the FA values of the left cingulum and left SLF. There was no significant correlation between FA and ToM task scores in HCs. These results suggest that the left cingulum and SLF constitute a possible neural basis for ToM deficits in schizophrenia. Our study is the first to demonstrate the white matter connectivity underlying the mentalizing network, as well as its relation to ToM ability in patients with FEP.
Collapse
Affiliation(s)
- Nahrie Suk Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
- Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
| | - Seowoo Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
| | - Sun-Young Moon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Silvia Kyungjin Lho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
96
|
Caunca MR, Siedlecki K, Cheung YK, Alperin N, Lee SH, Elkind MSV, Sacco RL, Wright CB, Rundek T. Cholinergic White Matter Lesions, AD-Signature Cortical Thickness, and Change in Cognition: The Northern Manhattan Study. J Gerontol A Biol Sci Med Sci 2021; 75:1508-1515. [PMID: 31944231 DOI: 10.1093/gerona/glz279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND How cerebrovascular disease and neurodegeneration affect each other to impact cognition is not yet known. We aimed to test whether Alzheimer's disease-signature (AD) cortical thickness mediates the association between cholinergic white matter lesion load and change in domain-specific cognition. METHODS Clinically stroke-free participants from the Northern Manhattan Study with both regional white matter hyperintensity volume (WMHV) and gray matter measurements were included (N = 894). Tract-specific WMHVs were quantified through FSL using the Johns Hopkins University white matter tract atlas. We used Freesurfer 5.1 to estimate regional cortical thickness. We fit structural equation models, including multiple indicator latent change score models, to examine associations between white matter hyperintensity volume (WMHV) in cholinergic tracts, AD-signature region cortical thickness (CT), and domain-specific cognition. RESULTS Our sample (N = 894) had a mean (SD) age = 70 (9) years, years of education = 10 (5), 63% women, and 67% Hispanics/Latinos. Greater cholinergic WMHV was significantly related to worse processing speed at baseline (standardized β = -0.17, SE = 0.05, p = .001) and over time (standardized β = -0.28, SE = 0.09, p = .003), with a significant indirect effect of AD-signature region CT (baseline: standardized β = -0.02, SE = 0.01, p = .023; change: standardized β = -0.03, SE = 0.02, p = .040). CONCLUSIONS Cholinergic tract WMHV is associated with worse processing speed, both directly and indirectly through its effect on AD-signature region CT.
Collapse
Affiliation(s)
- Michelle R Caunca
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida.,Evelyn F. McKnight Brain Institute, University of Miami, Miami, Florida.,Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Karen Siedlecki
- Department of Psychology, Fordham University, New York, New York
| | - Ying Kuen Cheung
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Noam Alperin
- Evelyn F. McKnight Brain Institute, University of Miami, Miami, Florida.,Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sang H Lee
- Evelyn F. McKnight Brain Institute, University of Miami, Miami, Florida.,Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Mitchell S V Elkind
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York.,Department of Neurology, Valegos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ralph L Sacco
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida.,Evelyn F. McKnight Brain Institute, University of Miami, Miami, Florida.,Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland
| | - Tatjana Rundek
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida.,Evelyn F. McKnight Brain Institute, University of Miami, Miami, Florida.,Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
97
|
Grassi DC, Zaninotto AL, Feltrin FS, Macruz FBC, Otaduy MCG, Leite CC, Guirado VMP, Paiva WS, Santos Andrade C. Dynamic changes in white matter following traumatic brain injury and how diffuse axonal injury relates to cognitive domain. Brain Inj 2021; 35:275-284. [PMID: 33507820 DOI: 10.1080/02699052.2020.1859615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The goal is to evaluate longitudinally with diffusion tensor imaging (DTI) the integrity of cerebral white matter in patients with moderate and severe DAI and to correlate the DTI findings with cognitive deficits.Methods: Patients with DAI (n = 20) were scanned at three timepoints (2, 6 and 12 months) after trauma. A healthy control group (n = 20) was evaluated once with the same high-field MRI scanner. The corpus callosum (CC) and the bilateral superior longitudinal fascicles (SLFs) were assessed by deterministic tractography with ExploreDTI. A neuropschychological evaluation was also performed.Results: The CC and both SLFs demonstrated various microstructural abnormalities in between-groups comparisons. All DTI parameters demonstrated changes across time in the body of the CC, while FA (fractional anisotropy) increases were seen on both SLFs. In the splenium of the CC, progressive changes in the mean diffusivity (MD) and axial diffusivity (AD) were also observed. There was an improvement in attention and memory along time. Remarkably, DTI parameters demonstrated several correlations with the cognitive domains.Conclusions: Our findings suggest that microstructural changes in the white matter are dynamic and may be detectable by DTI throughout the first year after trauma. Likewise, patients also demonstrated improvement in some cognitive skills.
Collapse
Affiliation(s)
- Daphine Centola Grassi
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Luiza Zaninotto
- Speech and Feeding Disorders Lab, MGH Institute of Health Professions (MGHIHP), Boston, Massachusetts, USA.,Department of Neurology, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabrício Stewan Feltrin
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fabíola Bezerra Carvalho Macruz
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Concepción García Otaduy
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Claudia Costa Leite
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Wellingson Silva Paiva
- Department of Neurology, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Celi Santos Andrade
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
98
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
99
|
Beresniewicz J, Craven AR, Hugdahl K, Løberg EM, Kroken RA, Johnsen E, Grüner R. White Matter Microstructural Differences between Hallucinating and Non-Hallucinating Schizophrenia Spectrum Patients. Diagnostics (Basel) 2021; 11:139. [PMID: 33477803 PMCID: PMC7832406 DOI: 10.3390/diagnostics11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/14/2023] Open
Abstract
The relation between auditory verbal hallucinations (AVH) and white matter has been studied, but results are still inconsistent. This inconsistency may be related to having only a single time-point of AVH assessment in many studies, not capturing that AVH severity fluctuates over time. In the current study, AVH fluctuations were captured by utilizing a longitudinal design and using repeated (Positive and Negative Symptoms Scale) PANSS questionnaire interviews over a 12 month period. We used a Magnetic Resonance Diffusion Tensor Imaging (MR DTI) sequence and tract-based spatial statistics (TBSS) to explore white matter differences between two subtypes of schizophrenia patients; 44 hallucinating (AVH+) and 13 non-hallucinating (AVH-), compared to 13 AVH- matched controls and 44 AVH+ matched controls. Additionally, we tested for hemispheric fractional anisotropy (FA) asymmetry between the groups. Significant widespread FA-value reduction was found in the AVH+ group in comparison to the AVH- group. Although not significant, the extracted FA-values for the control group were in between the two patient groups, for all clusters. We also found a significant difference in FA-asymmetry between the AVH+ and AVH- groups in two clusters, with significantly higher leftward asymmetry in the AVH- group. The current findings suggest a possible qualitative difference in white matter integrity between AVH+ and AVH- patients. Strengths and limitations of the study are discussed.
Collapse
Affiliation(s)
- Justyna Beresniewicz
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway; (A.R.C.); (K.H.)
- NORMENT Center of Excellence, Haukeland University Hospital, 5021 Bergen, Norway; (E.-M.L.); (R.A.K.); (E.J.)
- Mohn Medical Imaging and Visualization Center, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Alexander R. Craven
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway; (A.R.C.); (K.H.)
- NORMENT Center of Excellence, Haukeland University Hospital, 5021 Bergen, Norway; (E.-M.L.); (R.A.K.); (E.J.)
- Department of Clinical Engineering, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway; (A.R.C.); (K.H.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Else-Marie Løberg
- NORMENT Center of Excellence, Haukeland University Hospital, 5021 Bergen, Norway; (E.-M.L.); (R.A.K.); (E.J.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Addiction Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Psychology, University of Bergen, 5009 Bergen, Norway
| | - Rune Andreas Kroken
- NORMENT Center of Excellence, Haukeland University Hospital, 5021 Bergen, Norway; (E.-M.L.); (R.A.K.); (E.J.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Erik Johnsen
- NORMENT Center of Excellence, Haukeland University Hospital, 5021 Bergen, Norway; (E.-M.L.); (R.A.K.); (E.J.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Renate Grüner
- Mohn Medical Imaging and Visualization Center, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Physics and Technology, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
100
|
Yang Q, Nanivadekar S, Taylor PA, Dou Z, Lungu CI, Horovitz SG. Executive function network's white matter alterations relate to Parkinson's disease motor phenotype. Neurosci Lett 2021; 741:135486. [PMID: 33161103 PMCID: PMC7750296 DOI: 10.1016/j.neulet.2020.135486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) patients with postural instability and gait disorder phenotype (PIGD) are at high risk of cognitive deficits compared to those with tremor dominant phenotype (TD). Alterations of white matter (WM) integrity can occur in patients with normal cognitive functions (PD-N). However, the alterations of WM integrity related to cognitive functions in PD-N, especially in these two motor phenotypes, remain unclear. Diffusion tensor imaging (DTI) is a non-invasive neuroimaging method to evaluate WM properties and by applying DTI tractography, one can identify WM tracts connecting functional regions. Here, we 1) compared the executive function (EF) in PIGD phenotype with normal cognitive functions (PIGD-N) and TD phenotype with normal cognitive functions (TD-N) phenotypes; 2) used DTI tractography to evaluated differences in WM alterations between these two phenotypes within a task-based functional network; and 3) examined the WM integrity alterations related to EF in a whole brain network for PD-N patients regardless of phenotypes. Thirty-four idiopathic PD-N patients were classified into two groups based on phenotypes: TD-N and PIGD-N, using an algorithm based on UPDRS part III. Neuropsychological tests were used to evaluate patients' EF, including the Trail making test part A and B, the Stroop color naming, the Stroop word naming, the Stroop color-word interference task, as well as the FAS verbal fluency task and the animal category fluency tasks. DTI measures were calculated among WM regions associated with the verbal fluency network defined from previous task fMRI studies and compared between PIGD-N and TD-N groups. In addition, the relationship of DTI measures and verbal fluency scores were evaluated for our full cohort of PD-N patients within the whole brain network. These values were also correlated with the scores of the FAS verbal fluency task. Only the FAS verbal fluency test showed significant group differences, having lower scores in PIGD-N when compared to TD-N phenotype (p < 0.05). Compared to the TD-N, PIGD-N group exhibited significantly higher MD and RD in the tracts connecting the left superior temporal gyrus and left insula, and those connecting the right pars opercularis and right insula. Moreover, compared to TD-N, PIGD-N group had significantly higher RD in the tracts connecting right pars opercularis and right pars triangularis, and the tracts connecting right inferior temporal gyrus and right middle temporal gyrus. For the entire PD-N cohort, FAS verbal fluency scores positively correlated with MD in the superior longitudinal fasciculus (SLF). This study confirmed that PIGD-N phenotype has more deficits in verbal fluency task than TD-N phenotype. Additionally, our findings suggest: (1) PIGD-N shows more microstructural changes related to FAS verbal fluency task when compared to TD-N phenotype; (2) SLF plays an important role in FAS verbal fluency task in PD-N patients regardless of motor phenotypes.
Collapse
Affiliation(s)
- Qinglu Yang
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States; The Third Affiliated Hospital of Sun Yat-sen University, Rehabilitation Department, Guangzhou, PR China
| | - Shruti Nanivadekar
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zulin Dou
- The Third Affiliated Hospital of Sun Yat-sen University, Rehabilitation Department, Guangzhou, PR China
| | - Codrin I Lungu
- Parkinson Disease Clinic, OCD, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|