51
|
Hamazaki K, Choi KH, Kim HY. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. J Psychiatr Res 2010; 44:688-93. [PMID: 20056243 PMCID: PMC2891352 DOI: 10.1016/j.jpsychires.2009.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 01/19/2023]
Abstract
Previous studies with postmortem brain tissues showed abnormalities not only in n-3 long-chain polyunsaturated fatty acids (PUFA) but also in phospholipid metabolism in the cortex of individuals with schizophrenia and mood disorder. In this study we investigated whether there is similar abnormality in n-3 long-chain PUFAs and/or in phospholipid profile in the hippocampus of schizophrenia and bipolar disorder patients compared to unaffected controls. Using high-performance liquid chromatography/electrospray ionization-mass spectrometry (LC/MS), the phospholipid contents in the postmortem hippocampus from 35 individuals with schizophrenia, 34 individuals with bipolar disorder and 35 controls were evaluated. Unlike the previous findings form orbitofrontal cortex, we found no significant differences in either n-3 long-chain PUFA or total phosphatidylserine (PS), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). However, docosapentaenoic acid (n-6, 22:5n-6)-PS and 22:5n-6-PC were significantly lower in individuals with schizophrenia or bipolar disorder than the controls. When fatty acid contents were estimated from PS, PE and PC, 22:5n-6 was significantly lower in both patient groups compared to the controls. From these results we concluded that DHA loss associated with these psychiatric disorders may be specific to certain regions of the brain. The selective decrease in 22:5n-6 without affecting DHA contents suggests altered lipid metabolism, particularly n-6 PUFA rather than n-3 PUFA, in the hippocampus of individuals with schizophrenia or bipolar disorder.
Collapse
Affiliation(s)
- Kei Hamazaki
- Laboratory of Molecular Signaling, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N07, MSC9410, Bethesda, MD 20892-9410, USA.
| | | | | |
Collapse
|
52
|
Fish Oil and Antipsychotic Drug Risperidone Modulate Oxidative Stress in PC12 Cell Membranes Through Regulation of Cytosolic Calcium Ion Release and Antioxidant System. J Membr Biol 2010; 235:211-8. [DOI: 10.1007/s00232-010-9267-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
53
|
Effects of sub-chronic clozapine and haloperidol administration on brain lipid levels. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:669-73. [PMID: 20227455 DOI: 10.1016/j.pnpbp.2010.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/21/2022]
Abstract
Abnormal lipid profiles have been reported in the central nervous system (CNS) in individuals with schizophrenia, although the etiology of these changes remains to be elucidated. While treatment with second-generation antipsychotics has been associated with alterations in peripheral lipid levels and changes in erythrocyte membrane composition, the relationship between peripheral and CNS lipid levels is complex and the effect of antipsychotics on CNS lipid regulation is not yet understood. In this study we investigated whether sub-chronic administration of the second-generation antipsychotic clozapine and the first-generation antipsychotic haloperidol alters brain membrane lipid composition in male Sprague-Dawley rats. The relationship between brain membrane lipid composition and plasma cholesterol concentrations was also assessed. Our results indicate that brain lipid composition and plasma cholesterol concentrations are not altered following administration of antipsychotics. No correlation was observed between plasma and brain membrane cholesterol levels. Our findings suggest that observed alterations in brain lipid profiles in individuals with schizophrenia are not a consequence of treatment with antipsychotic medications.
Collapse
|
54
|
Smesny S, Milleit B, Nenadic I, Preul C, Kinder D, Lasch J, Willhardt I, Sauer H, Gaser C. Phospholipase A2 activity is associated with structural brain changes in schizophrenia. Neuroimage 2010; 52:1314-27. [PMID: 20478385 DOI: 10.1016/j.neuroimage.2010.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 12/25/2022] Open
Abstract
Regional structural brain changes are among the most robust biological findings in schizophrenia, yet the underlying pathophysiological changes remain poorly understood. Recent evidence suggests that abnormal neuronal/dendritic plasticity is related to alterations in membrane lipids. We examined whether serum activity of membrane lipid remodelling/repairing cytosolic phospholipase A(2) (PLA(2)) were related to regional brain structure in magnetic resonance images (MRI). The study involved 24 schizophrenia patients, who were either drug-naïve or off antipsychotic medication, and 25 healthy controls. Using voxel-based morphometry (VBM) analysis of T1-high-resolution MRI-images, we correlated both gray matter and white matter changes with serum PLA(2)-activity. PLA(2) activity was increased in patients, consistent with previous findings. VBM group comparison of patients vs. controls showed abnormalities of frontal and medial temporal cortices/hippocampus, and left middle/superior temporal gyrus in first-episode patients. Group comparison of VBM/PLA(2)-correlations revealed a distinct pattern of disease-related interactions between gray/white matter changes in patients and PLA(2)-activity: in first-episode patients (n=13), PLA(2)-activity was associated with structural alterations in the left prefrontal cortex and the bilateral thalamus. Recurrent-episode patients (n=11) showed a wide-spread pattern of associations between PLA(2)-activity and structural changes in the left (less right) prefrontal and inferior parietal cortex, the left (less right) thalamus and caudate nucleus, the left medial temporal and orbitofrontal cortex and anterior cingulum, and the cerebellum. Our findings demonstrate a potential association between membrane lipid biochemistry and focal brain structural abnormalities in schizophrenia. Differential patterns in first-episode vs. chronic patients might be related to PLA(2)-increase at disease-onset reflecting localized regenerative activity, whereas correlations in recurrent-episode patients might point to less specific neurodegenerative aspects of disease progression.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry and Psychotherapy, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Watari M, Hamazaki K, Hirata T, Hamazaki T, Okubo Y. Hostility of drug-free patients with schizophrenia and n-3 polyunsaturated fatty acid levels in red blood cells. Psychiatry Res 2010; 177:22-6. [PMID: 20227767 DOI: 10.1016/j.psychres.2010.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 01/26/2010] [Accepted: 02/17/2010] [Indexed: 12/22/2022]
Abstract
Many reports suggest that n-3 polyunsaturated fatty acids (PUFAs) influence the symptoms of psychiatric disorders. Moreover, it has also been reported that n-3 PUFAs control aggression and hostility. Acute symptoms of schizophrenia such as aggression can be a formidable clinical problem resulting in hospitalization. However, few investigations have determined the relationships between acute symptoms of drug-free schizophrenia and n-3 PUFAs. We recruited 75 inpatients with acute drug-free schizophrenia admitted to Chiba Psychiatric Medical Center, an emergency psychiatric hospital. Blood was sampled immediately after admission. The red blood cell (RBC) fatty acid composition and hostility score of Positive and Negative Syndrome Scale (PANSS) scores were measured. Multiple regression analysis showed that the concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the ratio of EPA/arachidonic acid (AA) in RBC showed significant negative correlations with the hostility score of PANSS scores after adjustment for age and sex. AA, on the other hand, showed significant positive correlations. The tissue n-3 PUFA and n-6 PUFA levels were negatively and positively associated with the hostility score of PANSS scores, respectively, suggesting possible effects of PUFA levels on hostile behavior in patients with schizophrenia.
Collapse
Affiliation(s)
- Michiko Watari
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
56
|
Dietrich-Muszalska A, Olas B. Inhibitory effects of polyphenol compounds on lipid peroxidation caused by antipsychotics (haloperidol and amisulpride) in human plasmain vitro. World J Biol Psychiatry 2010. [PMID: 19225991 DOI: 10.3109/15622970902718790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anna Dietrich-Muszalska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka, Lodz, Poland.
| | | |
Collapse
|
57
|
Kale A, Naphade N, Sapkale S, Kamaraju M, Pillai A, Joshi S, Mahadik S. Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res 2010; 175:47-53. [PMID: 19969375 DOI: 10.1016/j.psychres.2009.01.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 12/14/2022]
Abstract
Abnormal one-carbon metabolism has long been suggested as one of the mechanisms for neuropathology and psychopathology of schizophrenia. Variable levels of components of one-carbon metabolism (folic acid and vitamin B12) and consequent altered levels of homocysteine and phospholipid docosahexaenoic acid (DHA) have been independently reported, mostly in medicated patients. This study examined the simultaneous levels of these key components of one-carbon metabolism and its consequences in unique, medication-naïve first-episode psychotic patients (FEP, n=31) and healthy controls (HC, n=48) matched for confounds such as race, diet and lifestyle to reduce the variability. Significantly lower levels of folate and vitamin B12 in plasma and folate in red blood cells were observed in FEP compared to HC. These reductions paralleled the significant increase in plasma homocysteine and cortisol levels. Significantly reduced levels of membrane DHA were also observed in FEP compared to HC. This study, using a unique cohort, provided a broader mechanism (disturbed folic acid-vitamin B12-DHA balance) of altered one-carbon metabolism and one of its key consequential components, an increased homocysteine level that together with cortisol, can contribute to the neuropathology of psychosis. These data may have important implications for the amelioration of psychopathology in schizophrenia.
Collapse
Affiliation(s)
- Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | | | | | | | | | | | | |
Collapse
|
58
|
Rubio-Rodríguez N, Beltrán S, Jaime I, de Diego SM, Sanz MT, Carballido JR. Production of omega-3 polyunsaturated fatty acid concentrates: A review. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2009.10.006] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
59
|
McNamara RK. Modulation of polyunsaturated fatty acid biosynthesis by antipsychotic medications: implications for the pathophysiology and treatment of schizophrenia. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
60
|
In two minds? Is schizophrenia a state ‘trapped’ between waking and dreaming? Med Hypotheses 2009; 73:572-9. [DOI: 10.1016/j.mehy.2009.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
|
61
|
Dietrich-Muszalska A, Olas B. Isoprostenes as indicators of oxidative stress in schizophrenia. World J Biol Psychiatry 2009; 10:27-33. [PMID: 19673085 DOI: 10.1080/15622970701361263] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Free radicals induce oxidative stress and damage to all types of biological molecules and may be involved in pathology of schizophrenia. A cell membrane dysfunction caused by lipid peroxidation can be secondary to a free radical-mediated pathology and may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment. METHOD The aim of our study was to estimate oxidative stress in a group of schizophrenic patients by using different biomarkers of free radicals-induced lipid peroxidation (isoprostanes, thiobarbituric acid reactive substances (TBARS)). We also determined the products of enzymatic peroxidation of arachidonic acid, such as thromboxane B2 (TXB2) and its metabolite 11-dehydrothromboxane B2. Isoprostanes (IPs) are a family of novel prostaglandin isomers and are produced in free radical-catalysed reactions from arachidonic acid. They are useful as a specific, sensitive, chemically stable, noninvasive index of free radical generation in vivo. We therefore assessed in schizophrenic patients and control subjects the level of urinary excretion of isoprostane--8-epi-prostaglandin F2 alpha, (8-isoPGF2 alpha)--a marker of lipid peroxidation induced by free radicals using an immunoassay kit. We also studied the level of the other marker of enzymatic arachidonic acid peroxidation--11-dehydrothromboxane B2--in urine from schizophrenic patients and healthy volunteers. Moreover, we estimated the production of TBARS and TXB2 in plasma from schizophrenic patients and the control group. Patients hospitalised in the II Psychiatric Department of Medical University in Lodz, Poland, were interviewed with a special questionnaire (treatment, course of diseases, dyskinesis and other EPS). According to DSM-IV criteria, all patients had diagnosis of paranoid type. All patients were treated with second-generation antipsychotic drugs (risperidone, clozapine, and olanzapine). Mean time of schizophrenia duration was about 2 years. RESULTS We observed a statistically increased level of TBARS in plasma (P=0.000162) and isoprostanes (P=3.5 x 10(-12)) in urine of schizophrenic patients in comparison with the control group. The level of markers of enzymatic oxidation of arachidonic acid (TXB2 and its metabolite, 11-dehydrothromboxane B2) did not change. This indicates that free radicals induce peroxidation of unsaturated fatty acid in schizophrenic patients. CONCLUSION Considering the data presented in this study, we suggest that non-invasive measurement of 8-isoPGF2 alpha, is a valuable and sensitive (contrary to TBARS) indicator of oxidative stress status in vivo in schizophrenia.
Collapse
|
62
|
Is 'bipolar disorder' the brain's autopoietic response to schizophrenia? Med Hypotheses 2009; 73:580-4. [PMID: 19589644 DOI: 10.1016/j.mehy.2009.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/22/2022]
Abstract
Evidence is accumulating that schizophrenia and bipolar disorder are related conditions. This paper proposes a particular form of relatedness. If 'schizophrenia' is a mind/brain 'trapped' between waking and dreaming, in a disordered in-between state, then bipolar 'disorder' could actually be an attempt to restore order. The mind/brain is a self-producing, self-organizing system. Autopoiesis applies to such systems. Neuromodulation accomplishes self-organization in the mind/brain. If schizophrenia is a state in-between waking and dreaming, characterized by aminergic/cholinergic interpenetration and dopaminergic imbalance then bipolar 'disorder' could be a modulatory response. This autopoietic reaction may take the form of either aminergic hyperactivity aimed at producing a purer waking state, (precipitating mania in the waking state), or cholinergic hyperactivity aimed at producing a purer dreaming state, (producing depression in the waking state), or both, resulting in rapid cycling bipolar disorder. Thus bipolar activity may be an autopoietic response aimed at restoring differentiation to the in-between state of schizophrenia.
Collapse
|
63
|
Dietrich-Muszalska A, Olas B, Rabe-Jablonska J. Oxidative stress in blood platelets from schizophrenic patients. Platelets 2009; 16:386-91. [PMID: 16236599 DOI: 10.1080/09537100500128872] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oxidative stress in blood platelets is observed in various diseases, including neuropsychiatric disorders. The aim of our study was to evaluate oxidative stress in blood platelets from patients with schizophrenic disorders by measuring the activity of the platelet antioxidative enzyme, superoxide dismutase (SOD), concomitant with the level of thiobarbituric acid reactive species (TBARS). In blood platelets obtained from schizophrenic patients (with paranoid schizophrenia according to DSM-IV criteria) and from healthy volunteers the level of reactive oxygen species was also measured via chemiluminescence. In resting blood platelets from schizophrenic patients the chemiluminescence was higher than in platelets from control subjects (P < 0.05), but in thrombin-activated platelets an increase (about 53%) of chemiluminescence was observed, however this increase was lower than in thrombin-stimulated platelets from healthy subjects (101.5%). The results indicate that in platelets from schizophrenic patients generation of reactive oxygen species is enhanced. Moreover, we observed that SOD activity in blood platelets from schizophrenic patients was significantly lower than in control platelets and that a correlation exists between increased lipid peroxidation and inhibition of the activity of this antioxidative enzyme in schizophrenic platelets.
Collapse
|
64
|
Zhang XY, Zhou DF, Qi LY, Chen S, Cao LY, Chen DC, Xiu MH, Wang F, Wu GY, Lu L, Kosten TA, Kosten TR. Superoxide dismutase and cytokines in chronic patients with schizophrenia: association with psychopathology and response to antipsychotics. Psychopharmacology (Berl) 2009; 204:177-184. [PMID: 19139851 DOI: 10.1007/s00213-008-1447-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Both schizophrenia and oxidative stress have been associated with immune system abnormalities in interleukin-2 and -6 (IL-2; IL-6) and increases in superoxide dismutase (SOD) activity. These abnormalities may improve during antipsychotic drug treatment that reduces symptoms in schizophrenic patients. MATERIALS AND METHODS Subjects included 30 healthy controls (HC) and 78 schizophrenic (SCH) in-patients who were randomly assigned to 12 weeks of double-blind treatment with risperidone 6 mg/day or haloperidol 20 mg/day. Ratings using the Positive and Negative Syndrome Scale (PANSS) were correlated with blood SOD and serum IL-2 levels. RESULTS SCH patients who were medication-free for 2 weeks had greater SOD, IL-2, and IL-6 levels than HC. At baseline, these SOD elevations were associated with higher PANSS total scores and the IL-2 elevations with lower PANSS positive symptom scores. The SOD and IL-2 levels in the SCH were also positively correlated. After treatment, PANSS positive symptoms and both SOD and IL-2 showed a significant decrease, but IL-6 showed no change. The SOD and IL-2 reductions were correlated with the reductions in PANSS total score, and SOD reductions also correlated with positive subscore reductions. Females showed these associations more strongly than males. CONCLUSION Our results suggest that the dysregulation in the cytokine system and oxidative stress in patients with schizophrenia is implicated in clinical symptoms and is improved at least partially with antipsychotic treatment. The stronger associations in females deserve further study and confirmation.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liu Y, Jandacek R, Rider T, Tso P, McNamara RK. Elevated delta-6 desaturase (FADS2) expression in the postmortem prefrontal cortex of schizophrenic patients: relationship with fatty acid composition. Schizophr Res 2009; 109:113-20. [PMID: 19195843 PMCID: PMC8432756 DOI: 10.1016/j.schres.2008.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/18/2022]
Abstract
Although emerging evidence suggests that schizophrenia (SZ) is associated with peripheral and central polyunsaturated fatty acid (PUFA) deficits, there is currently nothing known about the expression of genes that mediate PUFA biosynthesis in SZ patients. Here we determined Delta5 desaturase (FADS1), Delta6 desaturase (FADS2), elongase (HELO1 [ELOVL5]), peroxisomal (PEX19), and Delta9 desaturase (stearoyl-CoA desaturase, SCD) mRNA expression, and relevant fatty acid product:precursor ratios as estimates of enzyme activities, in the postmortem prefrontal cortex (PFC) of patients with SZ (n=20) and non-psychiatric controls (n=20). After correction for multiple comparisons, FADS2 mRNA expression was significantly greater in SZ patients relative to controls (+36%, p=0.002), and there was a positive trend found for FADS1 (+26%, p=0.15). No differences were found for HELO1 (+10%, p=0.44), PEX19 (+12%, p=0.44), or SCD (-6%, p=0.85). Both male (+34%, p=0.02) and female (+42%, p=0.02) SZ patients exhibited greater FADS2 mRNA expression relative to same-gender controls. Drug-free SZ patients (+37%, p=0.02), and SZ patients treated with typical (+40%, p=0.002) or atypical (+31%, p=0.04) antipsychotics, exhibited greater FADS2 mRNA expression relative to controls. Consistent with increased Delta6 desaturase activity, SZ patients exhibited a greater 20:3/18:2 ratio (+20%, p=0.03) and a positive trend was found for 20:4/18:2 (+13%, p=0.07). These data demonstrate abnormal, potentially compensatory, elevations in Delta6 desaturase (FADS2) expression in the PFC of SZ patients that are independent of gender and antipsychotic medications. Greater Delta6 desaturase expression and activity could have implications for central prostaglandin synthesis and proinflammatory signaling.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237, United States
| | - Therese Rider
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237, United States
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237, United States
| | - Robert K. McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
- Corresponding author. Department of Psychiatry, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0559, United States. Tel.: +1 513 558 5601; fax: +1 513 558 2955. (R.K. McNamara)
| |
Collapse
|
66
|
Polymeropoulos MH, Licamele L, Volpi S, Mack K, Mitkus SN, Carstea ED, Getoor L, Thompson A, Lavedan C. Common effect of antipsychotics on the biosynthesis and regulation of fatty acids and cholesterol supports a key role of lipid homeostasis in schizophrenia. Schizophr Res 2009; 108:134-42. [PMID: 19150222 DOI: 10.1016/j.schres.2008.11.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 01/24/2023]
Abstract
For decades, the dopamine hypothesis has gained the most attention in an attempt to explain the origin and the symptoms of schizophrenia. While this hypothesis offers an explanation for the relationship between psychotic symptoms and dopamine kinetics, it does not provide a direct explanation of the etiology of schizophrenia which remains poorly understood. Consequently, current antipsychotics that target neurotransmitter receptors, have limited and inconsistent efficacy. To gain insights into the mechanism of action of these drugs, we studied the expression profile of 12,490 human genes in a cell line treated with 18 antipsychotics, and compared it to that of a library of 448 other compounds used in a variety of disorders. Analysis reveals a common effect of antipsychotics on the biosynthesis and regulation of fatty acids and cholesterol, which is discussed in the context of a lipid hypothesis where alterations in lipid homeostasis might underlie the pathogenesis of schizophrenia. This finding may help research aimed at the development of novel treatments for this devastating disease.
Collapse
|
67
|
McNamara RK, Able JA, Jandacek R, Rider T, Tso P. Chronic risperidone treatment preferentially increases rat erythrocyte and prefrontal cortex omega-3 fatty acid composition: evidence for augmented biosynthesis. Schizophr Res 2009; 107:150-7. [PMID: 18993032 PMCID: PMC2662584 DOI: 10.1016/j.schres.2008.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/23/2008] [Accepted: 09/29/2008] [Indexed: 01/25/2023]
Abstract
Prior clinical studies suggest that chronic treatment with atypical antipsychotic medications increase erythrocyte and postmortem prefrontal cortex (PFC) omega-3 fatty acid composition in patients with schizophrenia (SZ). However, because human tissue phospholipid omega-3 fatty acid composition is potentially influenced by multiple extraneous variables, definitive evaluation of this putative mechanism of action requires an animal model. In the present study, we determined the effects of chronic treatment with the atypical antipsychotic risperidone (RISP, 3.0 mg/kg/d) on erythrocyte and PFC omega-3 fatty acid composition in rats maintained on a diet with or without the dietary omega-3 fatty acid precursor, alpha-linolenic acid (ALA, 18:3n-3). Chronic RISP treatment resulted in therapeutically-relevant plasma RISP and 9-OH-RISP concentrations (18+/-2.6 ng/ml), and significantly increased erythrocyte docosahexaenoic acid (DHA, 22:6n-3, +22%, p=0.0003) and docosapentaenoic acid (22:5n-3, +18%, p=0.01) composition, and increased PFC DHA composition (+7%, p=0.03) in rats maintained on the ALA+ diet. In contrast, chronic RISP did not alter erythrocyte or PFC omega-3 fatty acid composition in rats maintained on the ALA- diet. Chronic RISP treatment did not alter erythrocyte or PFC arachidonic acid (AA, 20:4n-6) composition. These data suggest that chronic RISP treatment significantly augments ALA-DHA biosynthesis, and preferentially increases peripheral and central membrane omega-3 fatty acid composition. Augmented omega-3 fatty acid biosynthesis and membrane composition represents a novel mechanism of action that may contribute in part to the efficacy of RISP in the treatment of SZ.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, United States.
| | | | | | | | | |
Collapse
|
68
|
Igarashi M, Gao F, Kim HW, Ma K, Bell JM, Rapoport SI. Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:132-9. [PMID: 19073280 PMCID: PMC2711683 DOI: 10.1016/j.bbalip.2008.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 11/17/2008] [Indexed: 11/26/2022]
Abstract
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of alpha-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (-86%), brain (-27%), liver (-68%), heart (-39%), testis (-25%), and epididymal adipose tissue (-77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
69
|
McNamara RK, Jandacek R, Rider T, Tso P, Stanford KE, Hahn CG, Richtand NM. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res 2008; 160:285-99. [PMID: 18715653 PMCID: PMC2620106 DOI: 10.1016/j.psychres.2007.08.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/03/2007] [Accepted: 08/29/2007] [Indexed: 12/19/2022]
Abstract
Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Puri BK, Counsell SJ, Hamilton G, Bustos MG, Treasaden IH. Brain cell membrane motion-restricted phospholipids in patients with schizophrenia who have seriously and dangerously violently offended. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:751-4. [PMID: 18164794 DOI: 10.1016/j.pnpbp.2007.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/17/2022]
Abstract
This study directly assessed, for the first time, whether there was a change in brain cell motion-restricted membrane phospholipids in vivo in male forensic patients with schizophrenia who had seriously and violently offended (homicide, attempted murder, or wounding with intent to cause grievous bodily harm) while psychotic, by quantification of the broadband resonance signal from 31-phosphorus neurospectroscopy scans. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 15 such patients, who suffered from positive symptoms of schizophrenia, and in 12 age- and sex-matched normal control subjects. Spectra were obtained from 70 x 70 x 70 mm(3) voxels using an image-selected in vivo spectroscopy pulse sequence. There was no significant difference in the broad resonances between the two groups, with the mean (standard error) percentage broadband signal for the patients being 57.8 (5.6) and that for the control subjects 57.7 (6.0). The phosphomonoesters and phosphodiesters narrow signals also did not differ between the groups. These results suggest that patients with schizophrenia who have predominantly positive symptoms may not show neuroimaging-based signs compatible with the membrane phospholipid hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Basant K Puri
- MRI Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, England, W12 0HS, UK.
| | | | | | | | | |
Collapse
|
71
|
Opposite changes in predominantly docosahexaenoic acid (DHA) in cerebrospinal fluid and red blood cells from never-medicated first-episode psychotic patients. Schizophr Res 2008; 98:295-301. [PMID: 17997280 DOI: 10.1016/j.schres.2007.09.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 09/29/2007] [Indexed: 01/25/2023]
Abstract
Variable levels of essential polyunsaturated fatty acids (EPUFAs) reported in schizophrenia are likely due to differences in age, sex, ethnicity, diet, life style and treatments. The present study examined the EPUFAs levels in plasma, RBC and CSF in never-medicated first-episode psychotic patients and normal controls matched for ethnicity, diet and life style. The plasma EPUFAs levels were similar in both groups. Among the EPUFAs enriched in the brain, predominantly docosahexaenoic acid (DHA) levels were lower in RBC (p=<0.01) whereas higher in CSF (p=<0.01) in male>female patients. This altered DHA metabolism may provide clues for neuropathology and treatment of schizophrenia.
Collapse
|
72
|
Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, Krishnan KRR. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 2007; 12:934-45. [PMID: 17440431 DOI: 10.1038/sj.mp.4002000] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schizophrenia is associated with impairments in neurotransmitter systems and changes in neuronal membrane phospholipids. Several atypical antipsychotic drugs induce weight gain and hypertriglyceridemia. To date, there has not been a comprehensive evaluation and mapping of global lipid changes in schizophrenia, and upon treatment with antipsychotics. Such mapping could provide novel insights about disease mechanisms and metabolic side effects of therapies used for its treatment. We used a specialized metabolomics platform 'lipidomics' that quantifies over 300 polar and nonpolar lipid metabolites (across seven lipid classes) to evaluate global lipid changes in schizophrenia and upon treatment with three commonly used atypical antipsychotics. Lipid profiles were derived for 50 patients with schizophrenia before and after treatment for 2-3 weeks with olanzapine (n=20), risperidone (n=14) or aripiprazole (n=16). Patients were recruited in two cohorts (study I, n=27 and study II, n=23) to permit an internal replication analyses. The change from baseline to post-treatment was then compared among the three drugs. Olanzapine and risperidone affected a much broader range of lipid classes than aripiprazole. Approximately 50 lipids tended to be increased with both risperidone and olanzapine and concentrations of triacylglycerols increased and free fatty acids decreased with both drugs but not with aripiprazole. Phosphatidylethanolamine concentrations that were suppressed in patients with schizophrenia were raised by all three drugs. Drug specific differences were also detected. A principal component analysis (PCA) identified baseline lipid alterations, which correlated with acute treatment response. A more definitive long-term randomized study of these drugs correlating global lipid changes with clinical outcomes could yield biomarkers that define drug-response phenotypes.
Collapse
Affiliation(s)
- R Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
73
|
Puri BK, Richardson AJ, Counsell SJ, Ward PE, Bustos MG, Hamilton G, Bhakoo KK, Treasaden IH. Negative correlation between cerebral inorganic phosphate and the volumetric niacin response in male patients with schizophrenia who have seriously and dangerously violently offended: a (31)P magnetic resonance spectroscopy study. Prostaglandins Leukot Essent Fatty Acids 2007; 77:97-9. [PMID: 17765531 DOI: 10.1016/j.plefa.2007.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 07/16/2007] [Indexed: 11/17/2022]
Abstract
The aim of the study was to examine the association of arachidonic acid-related signal transduction with cerebral metabolism in patients with schizophrenia who have violently and dangerously offended while psychotic. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 11 male patients with schizophrenia who had violently offended (homicide, attempted murder, or wounding with intent to cause grievous bodily harm) while psychotic. Spectra were obtained from 70 x 70 x 70 mm(3) voxels using an image-selected in vivo spectroscopy pulse sequence. Niacin flush testing results were quantified as the volumetric niacin response. There was a strong, and negative, correlation between the volumetric niacin response and the metabolite concentration of inorganic phosphate expressed as a ratio of the total 31-phosphorus signal (p<0.005). Our results suggest that patients with schizophrenia who have violently offended and have poor phospholipid-related signal transduction may have higher levels of cerebral energy metabolism.
Collapse
Affiliation(s)
- B K Puri
- MRI Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Ozyurt B, Ozyurt H, Akpolat N, Erdogan H, Sarsilmaz M. Oxidative stress in prefrontal cortex of rat exposed to MK-801 and protective effects of CAPE. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:832-8. [PMID: 17374554 DOI: 10.1016/j.pnpbp.2007.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/18/2022]
Abstract
MK-801 was shown to be one of the most neurotoxic non-competitive NMDA receptor antagonists. It is known that repeated injection of MK-801 was proposed in an animal model in psychosis. The aims of this study are to investigate the contributing effect of oxidative stress in MK-801-induced experimental psychosis model, and to show that prevention of oxidative stress may improve prognosis. Furthermore, there is evidence that oxygen free radicals play an important role in the pathophysiology of schizophrenia. In this study, Wistar Albino rats were divided into three groups: 1st group: Control, 2nd group: MK-801, 3rd group: MK-801+CAPE (Caffeic acid phenethyl ester) group. MK-801 was given intraperitoneally at the dose of 0.5 mg/kg/day for 5 days. CAPE was given to the treatment group while exposed to MK-801. In control group, saline was given intraperitoneally at the same time. After 7 days, rats were killed by decapitation. Prefrontal cortex (PFC) of rats was removed for biochemical and histological analyses. As a result, malondialdehyde (MDA), protein carbonyl (PC), nitric oxide (NO) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and xanthine oxidase (XO) and adenosine deaminase (AD) enzyme activities were found to be increased significantly in prefrontal cortex (PFC) of MK-801 group (p<0.0001) compared to control group. In CAPE treated rats, prefrontal tissue MDA, PC, NO levels and, GSH-Px, XO, AD enzyme activities were significantly decreased when compared to MK-801 groups (p<0.0001) whereas catalase (CAT) enzyme activity was not changed. Moreover, in the light of microscopic examination of MK-801 groups, a great number of apoptotic cells were observed. CAPE treatment decreased the apoptotic cell count in PFC. The results of this study showed that MK-801-induced neurotoxicity caused oxidative stress in PFC of rats. This experimental study may also provide some evidences for the new treatment strategies with antioxidants in schizophrenia.
Collapse
Affiliation(s)
- Birsen Ozyurt
- Gaziosmanpasa University Faculty of Medicine, Department of Anatomy, Dekanlik Binasi, Tokat, Turkey.
| | | | | | | | | |
Collapse
|
75
|
Clayton EH, Hanstock TL, Garg ML, Hazell PL. Long chain omega-3 polyunsaturated fatty acids in the treatment of psychiatric illnesses in children and adolescents. Acta Neuropsychiatr 2007; 19:92-103. [PMID: 26952820 DOI: 10.1111/j.1601-5215.2007.00189.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) are in increasing use in the general population to treat health problems. The objective of the current article is to review the evidence for the rationale and benefit of LCn-3PUFA in the treatment of common psychiatric disorders in children and adolescents. METHODS A search of Psychlit, PubMed and Cochrane Databases was conducted using the terms child, adolescent, bipolar, depression, psychosis, first-episode psychosis, schizophrenia, attention deficit hyperactivity disorder (ADHD), autism, psychiatric, omega-3, n-3, docosahexaenoic acid and eicosapentaenoic acid. Further studies were identified from the bibliographies of published reviews. RESULTS One small randomized controlled trial with LCn-3PUFA supplementation in depression in children found a small beneficial effect over placebo. Four placebo-controlled trials showed uncertain benefit of LCn-3PUFA for ADHD. Single placebo-controlled trials showed no benefit in autism or bipolar disorder. There is an absence of studies examining benefit for first-episode psychosis or schizophrenia in children and adolescents. CONCLUSIONS While children and adolescents are receiving LCn-3PUFA for a range of psychiatric indications, there is only evidence of likely benefit for unipolar depression.
Collapse
Affiliation(s)
- Edward H Clayton
- 1Nutraceuticals Research Group, University of Newcastle, Callaghan, NSW, Australia
| | - Tanya L Hanstock
- 2The Bipolar Program, Hunter New England Area Health Service, Newcastle, NSW, Australia
| | - Manohar L Garg
- 1Nutraceuticals Research Group, University of Newcastle, Callaghan, NSW, Australia
| | - Philip L Hazell
- 4Central Clinical School, University of Sydney, NSW, Australia
| |
Collapse
|
76
|
McNamara RK, Jandacek R, Rider T, Tso P, Hahn CG, Richtand NM, Stanford KE. Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr Res 2007; 91:37-50. [PMID: 17236749 PMCID: PMC1853256 DOI: 10.1016/j.schres.2006.11.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 01/25/2023]
Abstract
Previous studies have observed significant abnormalities in the fatty acid composition of peripheral tissues from drug-naïve first-episode schizophrenic (SZ) patients relative to normal controls, including deficits in omega-3 and omega-6 polyunsaturated fatty acids, which are partially normalized following chronic antipsychotic treatment. We hypothesized that postmortem cortical tissue from patients with SZ would also exhibit deficits in cortical docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA; 20:4n-6) relative to normal controls, and that these deficits would be greater in drug-free SZ patients. We determined the total fatty acid composition of postmortem orbitofrontal cortex (OFC) (Brodmann area 10) from drug-free and antipsychotic-treated SZ patients (n=21) and age-matched normal controls (n=26) by gas chromatography. After correction for multiple comparisons, significantly lower DHA (-20%) concentrations, and significantly greater vaccenic acid (VA) (+12.5) concentrations, were found in the OFC of SZ patients relative to normal controls. Relative to age-matched same-gender controls, OFC DHA deficits, and elevated AA:DHA, oleic acid:DHA and docosapentaenoic acid (22:5n-6):DHA ratios, were found in male but not female SZ patients. SZ patients that died of cardiovascular-related disease exhibited lower DHA (-31%) and AA (-19%) concentrations, and greater OA (+20%) and VA (+17%) concentrations, relative to normal controls that also died of cardiovascular-related disease. OFC DHA and AA deficits, and elevations in oleic acid and vaccenic acid, were numerically greater in drug-free SZ patients and were partially normalized in SZ patients treated with antipsychotic medications (atypical>typical). Fatty acid abnormalities could not be wholly attributed to lifestyle or postmortem tissue variables. These findings add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of SZ, and suggest that abnormalities in OFC fatty acid composition may be gender-specific and partially normalized by antipsychotic medications.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0559, United States.
| | | | | | | | | | | | | |
Collapse
|
77
|
Lee S, Gura KM, Kim S, Arsenault DA, Bistrian BR, Puder M. Current clinical applications of omega-6 and omega-3 fatty acids. Nutr Clin Pract 2006; 21:323-41. [PMID: 16870801 DOI: 10.1177/0115426506021004323] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Recent years have brought a resurgence of research interest in fatty acids, with studied fields running the gamut of human disease. This movement has run in parallel with an increased interest in using nutrition modalities as therapeutic measures, as opposed to their conventional role as energy sources. The aim of this manuscript is to provide a basic review of current clinical applications of omega-6 and omega-3 fatty acids, with a particular focus on the latter. METHODS A selective review of the voluminous literature, including randomized controlled trials, meta-analyses, population studies, and case reports, was used to compile data and identify trends in pertinent clinical applications of fatty acid therapy. CONCLUSIONS There are a myriad of disorders and maladies that seem to benefit from fatty acid supplementation, specifically omega-3 fatty acids. It has clearly been shown that omega-3 fatty acid supplementation provides a protective benefit in heart disease, and in particular sudden cardiac death. Rheumatoid arthritis (RA) is another disease entity that has been proven to benefit from this nutrition intervention, with improvement in symptoms and diminished nonsteroidal antiinflammatory drug (NSAID) usage. In addition, many psychiatric disorders, particularly schizophrenia and major depressive disorder (MDD), have shown positive results when supplementation has been used as an adjunct to standard pharmacotherapy. The remainder of clinical applications for omega-3 fatty acids requires further investigation. Specifically, according to preliminary clinical evidence, parenteral administration of fatty acids warrants further study.
Collapse
Affiliation(s)
- Sang Lee
- Children's Hospital Boston, 300 Longwood Ave., MA 02115, USA
| | | | | | | | | | | |
Collapse
|
78
|
McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 2006; 75:237-57. [PMID: 16935483 DOI: 10.1016/j.plefa.2006.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phosphoinositide (PI)-protein kinase C (PKC) signal transduction pathway is initiated by pre- and postsynaptic Galphaq-coupled receptors, and regulates several clinically relevant neurochemical events, including neurotransmitter release efficacy, monoamine receptor function and trafficking, monoamine transporter function and trafficking, axonal myelination, and gene expression. Mounting evidence for PI-PKC signaling hyperactivity in the peripheral (platelets) and central (premortem and postmortem brain) tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, coupled with evidence that PI-PKC signal transduction is down-regulated in rat brain following chronic, but not acute, treatment with antipsychotic, mood-stabilizer, and antidepressant medications, suggest that PI-PKC hyperactivity is central to an underlying pathophysiology. Evidence that membrane omega-3 fatty acids act as endogenous antagonists of the PI-PKC signal transduction pathway, coupled with evidence that omega-3 fatty acid deficiency is observed in peripheral and central tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, support the hypothesis that omega-3 fatty acid deficiency may contribute to elevated PI-PKC activity in these illnesses. The data reviewed in this paper outline a potential molecular mechanism by which omega-3 fatty acids could contribute to the pathophysiology and treatment of recurrent neuropsychiatric illness.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
79
|
McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids 2006; 75:329-49. [PMID: 16949263 DOI: 10.1016/j.plefa.2006.07.010] [Citation(s) in RCA: 344] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The principle omega-3 fatty acid in brain, docosahexaenoic acid (DHA), accumulates in the brain during perinatal cortical expansion and maturation. Animal studies have demonstrated that reductions in perinatal brain DHA accrual are associated with deficits in neuronal arborization, multiple indices of synaptic pathology including deficits in serotonin and mesocorticolimbic dopamine neurotransmission, neurocognitive deficits, and elevated behavioral indices of anxiety, aggression, and depression. In primates and humans, preterm delivery is associated with deficits in fetal cortical DHA accrual, and children/adolescents born preterm exhibit deficits in cortical gray matter maturation, neurocognitive deficits particularly in the realm of attention, and increased risk for attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. Individuals diagnosed with ADHD or schizophrenia exhibit deficits in cortical gray matter maturation, and medications found to be efficacious in the treatment of these disorders increase cortical and striatal dopamine neurotransmission. These associations in conjunction with intervention trials showing enhanced cortical visual acuity and cognitive outcomes in preterm and term infants fed DHA, suggest that perinatal deficits in brain DHA accrual may represent a preventable neurodevelopmental risk factor for the subsequent emergence of psychopathology.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | |
Collapse
|
80
|
Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I. The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 2006; 50:196-202. [PMID: 16971021 DOI: 10.1016/j.neuint.2006.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/27/2006] [Accepted: 08/01/2006] [Indexed: 11/28/2022]
Abstract
The aims of this study are to investigate the contribution effect of oxidative stress in MK-801-induced experimental psychosis model, and to show that prevention of oxidative stress may improve prognosis. Because oxidative damage has been suggested in the neuropathophysiology of schizophrenia, the possible protecting agents against lipid peroxidation are potential target for the studies in this field. For this purpose, Wistar Albino rats were divided into three groups: the first group was used as control, MK-801 was given to the rats in the second group and MK-801+omega-3 essential fatty acids (EFA) was given to the third group. MK-801 was given intraperitoneally at the dose of 0.5mg/(kgday) once a day for 5 days in experimental psychosis group. In the second group, 0.8g/(kgday), omega-3 FA (eicosapentaenoic acid, 18%, docosahexaenoic acid, 12%) was given to the rats while exposed MK-801. In control group, saline was given intraperitoneally at the same time. After 7 days, rats were killed by decapitation. Prefrontal brain area was removed for histological and biochemical analyses. As a result, malondialdehyde (MDA), as an indicator of lipid peroxidation, protein carbonyl (PC), as an indicator of protein oxidation, nitric oxide (NO) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities as antioxidant enzymes, and xanthine oxidase (XO) and adenosine deaminase (AD) activities as an indicator of DNA oxidation was found to be increased significantly in prefrontal cortex (PFC) of MK-801 group (P<0.0001) compared to control group. In omega-3 FA treated rats, prefrontal tissue MDA, PC and NO levels as well as SOD, GSH-Px, XO, and AD enzyme activities were significantly decreased when compared to MK-801 groups (P<0.0001) whereas catalase (CAT) enzyme activity was not changed. Moreover, in the light of microscopic examination of MK-801 groups, a great number of apoptotic cells were observed. omega-3 FA supplementation decreased the apoptotic cell count in PFC. The results of this study revealed that oxidative stress and apoptotic changes in PFC may play an important role in the pathogenesis of MK-801-induced neuronal toxicity. This experimental study also provides some evidences for the protective effects of omega-3 FA on MK-801-induced changes in PFC of rats.
Collapse
Affiliation(s)
- Birsen Ozyurt
- Department of Anatomy, Gaziosmanpasa University, Faculty of Medicine, Dekanlik Binasi, Tokat, Turkey.
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
BACKGROUND Limited evidence supports a hypothesis suggesting that schizophrenic symptoms may be the result of altered neuronal membrane structure and metabolism. The structure and metabolism is dependent on blood plasma levels of certain essential fatty acids and their metabolites. OBJECTIVES To review the effects of polyunsaturated fatty acids for people with schizophrenia. SEARCH STRATEGY We have updated the initial searches of 1998 and 2002 (Cochrane Schizophrenia Group's Register, July 2005), and where necessary, we contacted authors and relevant pharmaceutical companies. SELECTION CRITERIA We included all randomised clinical trials of polyunsaturated fatty acid treatment for schizophrenia. DATA COLLECTION AND ANALYSIS Working independently, we selected studies for quality assessment and extracted relevant data. We analysed on an intention-to-treat basis. Where possible and appropriate we calculated the Relative Risk (RR) and their 95% confidence intervals (CI) and estimated the number needed to treat (NNT). For continuous data we calculated weighted mean differences (WMD) and their 95% confidence intervals. We also inspected the data for heterogeneity. MAIN RESULTS When any dose omega-3 (E-EPA or EPA) is compared with placebo, small short trials suggest that the need for neuroleptics appears to be reduced for people allocated omega-3 supplementation (n=30, 1 RCT, RR 0.73 CI 0.54 to 1.00) and mental state may improve (n=30, 1 RCT, RR not gaining 25% change in PANSS scores 0.54 CI 0.30 to 0.96, NNT3 CI 2-29). There are no differences in the number of people leaving the study early (n=271, 4 RCTs, RR 0.91 CI 0.36 to 2.33). There are few data on the comparison of any dose omega-6 (GLA) with placebo. For movement disorder outcomes, the only small study we found does not show any difference for average short-term endpoint AIMS score (n=16, 1 RCT, MD 1.30 CI -1.96 to 4.56). When any dose omega 3 (E-EPA or EPA) is compared with any dose omega-3 (DHA) there is no clear difference for mental state outcome of not gaining 25% change in PANSS scores (n=31, 1 RCT, RR 0.66 CI 0.39 to 1.11). When different doses of omega-3 (E-EPA) are compared with placebo there are no differences in measures of global and mental state between the studies. For the outcome of 'experiencing at least one adverse effect' no differences between groups are found for any dose (1g/day E-EPA vs placebo n=63 1 RCT, RR 0.97 CI 0.60 to 1.56; 2g/day E-EPA vs placebo n=63 1 RCT, RR 0.67 CI 0.37 to 1.20; 4g/day E-EPA vs placebo n=58, 1 RCT, RR 1.15 CI 0.72 to 1.82). AUTHORS' CONCLUSIONS Two updates of this review have resulted in more included studies but relatively little useful additional data. The results remain inconclusive. The new trials all compare the omega-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid and its ester, ethyl-eicosapentaenoic acid. The use of omega-3 polyunsaturated fatty acids for schizophrenia still remains experimental and this review highlights the need for large well designed, conducted and reported studies.
Collapse
Affiliation(s)
- C B Joy
- University of Leeds, Department of Psychiatry & Behavioural Sciences, 15-19 Hyde Terrace, Leeds, UK LS2 9LT.
| | | | | |
Collapse
|
82
|
Isaac G, Fredriksson A, Danielsson R, Eriksson P, Bergquist J. Brain lipid composition in postnatal iron-induced motor behavior alterations following chronic neuroleptic administration in mice. FEBS J 2006; 273:2232-43. [PMID: 16649999 DOI: 10.1111/j.1742-4658.2006.05236.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have shown that deficient uptake or excessive break down of membrane phospholipids may be associated with neurodegenerative and psychiatric disorders. The purpose of the present study was to examine the effects of postnatal iron administration in lipid composition and behavior and whether or not the established effects may be altered by subchronic administration of the neuroleptic compounds, clozapine and haloperidol. In addition to motor activities such as locomotion, rearing and activity, a targeted lipidomics approach has been used to investigated the brains of eight groups of mice (four vehicle groups and four iron groups) containing six individuals in each group treated with vehicle, low dose clozapine, high dose clozapine and haloperidol. Lipids were extracted by the Folch method and analyzed using reversed-phase capillary liquid chromatography coupled on-line to electrospray ionization mass spectrometry (LC/ESI/MS). Identification of phosphatidylcholine (PC) and sphingomyelin (SM) molecular species was based on their retention time, m/z ratio, head group specific up-front fragmentation and analysis of the product ions produced upon fragmentation. A comparison between the Ve-groups and Fe-groups showed that levels of PC and SM molecular species and motor activities were significantly lower in Fe-Ve compared to Ve-Ve. The effects of neuroleptic treatment with and without iron supplementation were studied. In conclusion our results support the hypothesis that an association between psychiatric disorders and lipid and behavior abnormalities in the brain exists.
Collapse
Affiliation(s)
- Giorgis Isaac
- Department of Analytical Chemistry, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
83
|
Abstract
A range of neurotransmitter systems have been implicated in the pathogenesis of schizophrenia based on the antidopaminergic activities of antipsychotic medications, and chemicals that can induce psychotic-like symptoms, such as ketamine or PCP. Such neurotransmitter systems often mediate their cellular response via G-protein-coupled release of arachidonic acid (AA) via the activation of phospholipases A2 (PLA2s). The interaction of three PLA2s are important for the regulation of the release of AA--phospholipase A2 Group 2 A, phospholipase A2 Group 4A and phospholipase A2 Group 6A. Gene variations of these three key enzymes have been associated with schizophrenia with conflicting results. Preclinical data suggest that the activity of these three enzymes are associated with monoaminergic neurotransmission, and may contribute to the differential efficacy of antipsychotic medications, as well as other biological changes thought to underlie schizophrenia, such as altered neurodevelopment and synaptic remodelling. We review the evidence and discuss the potential roles of these three key enzymes for schizophrenia with particular emphasis on published association studies.
Collapse
Affiliation(s)
- M H Law
- Genomic Disorders Research Centre, Melbourne, VI, Australia
| | | | | |
Collapse
|
84
|
Levant B, Crane JF, Carlson SE. Sub-chronic antipsychotic drug treatment does not alter brain phospholipid fatty acid composition in rats. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:728-32. [PMID: 16442197 DOI: 10.1016/j.pnpbp.2005.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2005] [Indexed: 11/19/2022]
Abstract
Altered membrane phospholipid fatty acid composition is reported in schizophrenia and appears to be reduced by antipsychotic drug treatment. To determine whether antipsychotic drugs have a direct effect on brain phospholipid fatty acid composition, the effects of sub-chronic treatment with a "typical" and an "atypical" antipsychotic drug were determined in adult male Sprague-Dawley rats. Rats were treated with haloperidol (1 mg/kg), clozapine (20 mg/kg) or vehicle daily for 21 days. Whole brain total phospholipid composition was determined by gas chromatography. No alterations in brain phospholipid composition were produced by either drug. This suggests that the apparent normalization of membrane phospholipids observed in drug-treated schizophrenic patients is not due to a direct pharmacological effect of these drugs nor can the pharmacological effects of these drugs occurring in this time frame be attributed to alterations in neuronal membrane fatty acid composition.
Collapse
Affiliation(s)
- Beth Levant
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
85
|
Abstract
Tardive dyskinesia (TD) is a movement disorder described in individuals who have been treated with anti-dopaminergic agents. The pathophysiology of this condition remains to be fully elucidated. Several mechanisms like dopaminergic supersensitivity, dysfunction of striatonigral, GABAergic neurons and disturbed balance between dopaminergic and cholinergic systems have been described. Essential fatty acids (EFAs) are important components of neuronal membrane and the EFA content of these membranes can significantly influence neuronal functioning. Lower levels of EFAs have been reported in red blood cells (RBC) and plasma of individuals with moderate to severe TD. Supplementation with EFAs (omega-3 and omega-6 and ethyl-EPA) have been tried to alleviate TD in open and double-blind clinical trials and in some animal models of TD. In addition, antioxidants (Vitamin E) and melatonin have been tried. However, smaller numbers of patients and shortened length of clinical studies make it difficult to draw any definitive conclusions. Large multi-centre studies with sound methodology of both EFAs and antioxidants are needed.
Collapse
Affiliation(s)
- Krishna Vaddadi
- Department of Psychological Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
86
|
Abstract
Bioactive lipids, in particular arachidonic acid (AA), are vital for monoaminergic neurotransmission, brain development and synaptic plasticity. Phospholipases A2 (PLA2) are key-enzymes in AA metabolism and are activated during monoaminergic neurotransmission. Reduced membrane AA levels, and an altered activity of PLA2 have been found in peripheral membranes of drug-naïve patients with schizophrenia with some conflicting results in more chronic patient populations. Furthermore, in vivo brain phosphorus-31 magnetic resonance spectroscopy suggests reduced lipid membrane precursors (phosphomonoesters) and increased membrane breakdown products (phosphodiesters) in drug-naïve or early treated first-episode schizophrenia patients compared to age-matched controls or chronic populations and these changes were correlated with peripheral red blood cell membrane AA levels. We postulate that processes modulating membrane lipid metabolism are associated with psychotic illnesses and might partially explain the mechanism of action of antipsychotic agents, as well as experimental agents such as purified ethyl-eicosapentaenoic acid (E-EPA). Recent supplementation trials suggest that E-EPA is a modestly effective augmentation treatment resulting in reduced doses of antipsychotic medication in acutely ill patients with schizophrenia (but not in residual-type schizophrenia). This review investigates the role of bioactive lipids in schizophrenia and its treatment, as well as its potential use in prevention.
Collapse
Affiliation(s)
- Gregor E Berger
- ORYGEN Youth Health and ORYGEN Research Centre, Department of Psychiatry, University of Melbourne, Australia.
| | | | | |
Collapse
|
87
|
Mahadik SP, Pillai A, Joshi S, Foster A. Prevention of oxidative stress-mediated neuropathology and improved clinical outcome by adjunctive use of a combination of antioxidants and omega-3 fatty acids in schizophrenia. Int Rev Psychiatry 2006; 18:119-31. [PMID: 16777666 DOI: 10.1080/09540260600581993] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Schizophrenia is associated with a broad range of neurodevelopmental, structural and behavioral abnormalities that often progress with or without treatment. Evidence indicates that such neurodevelopmental abnormalities may result from defective genes and/or non-genetic factors such as pre-natal and neonatal infections, birth complications, famines, maternal malnutrition, drug and alcohol abuse, season of birth, sex, birth order and life style. Experimentally, these factors have been found to cause the cellular metabolic stress that often results in oxidative stress, such as increased cellular levels of reactive oxygen species (ROS) over the antioxidant capacity. This can trigger the oxidative cell damage (i.e., DNA breaks, protein inactivation, altered gene expression, loss of membrane lipid-bound essential polyunsaturated fatty acids [EPUFAs] and often apoptosis) contributing to abnormal neural growth and differentiation. The brain is preferentially susceptible to oxidative damage since it is under very high oxygen tension and highly enriched in ROS susceptible proteins, lipids and poor DNA repair. Evidence is increasing for increased oxidative stress and cell damage in schizophrenia. Furthermore, treatments with some anti-psychotics together with the lifestyle and dietary patterns, that are pro-oxidant, can exacerbate the oxidative cell damage and trigger progression of neuropathology. Therefore, adjunctive use of dietary antioxidants and EPUFAs, which are known to regulate the growth factors and neuroplasticity, can effectively improve the clinical outcome. The dietary supplementation of either antioxidants or EPUFAs, particularly omega-3 has already been found to improve some psychopathologies. However, a combination of antioxidants and omega-3 EPUFAs, particularly in the early stages of illness, when brain has high degree of neuroplasticity, potentially may be even more effective for long-term improved clinical outcome of schizophrenia.
Collapse
Affiliation(s)
- Sahebarao P Mahadik
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, 30904, USA.
| | | | | | | |
Collapse
|
88
|
Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 2006; 81:291-300. [PMID: 16309894 DOI: 10.1016/j.schres.2005.10.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 10/12/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
There is accumulating evidence of altered antioxidant enzyme activities and increased levels of lipid peroxidation in schizophrenia. Free radical-mediated abnormalities may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment. However, few studies have evaluated both antioxidant enzymes and lipid peroxidation in the same schizophrenic patient groups treated with typical or atypical antipsychotics. Plasma malondialdehyde (MDA) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were analyzed using established procedures in 92 medicated schizophrenia including paranoid (n=34), disorganized (n=18) and residual subtypes (n=40), as well as in control subjects (n=50). The results showed that activities of SOD and GSH-Px were decreased but levels of MDA were elevated in patients with a chronic form of schizophrenia as compared with normal controls. SOD and GSH-Px activities were found to be significantly lower in paranoid and residual subtypes compared to both disorganized subtype and the control group. MDA levels were significantly higher in all subtypes compared to the control group. There were no significant differences in any parameters measured among all three subgroups treated with clozapine (n=44), risperidone (n=20) and typical antipsychotics (n=28). Additionally, a significantly higher MDA levels, but a significantly lower CAT activity was noted in female than male patients. These results suggest that oxidative stress may be implicated in the pathophysiology of all subtypes of schizophrenia, which may contribute to the increased membrane lipid peroxidation. Long-term treatments with typical and atypical antipsychotics may produce the similar effects on the antioxidant enzymes and lipid peroxidation.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Institute of Mental Health, Peking University, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
89
|
Conley RR, Shim JC, Kelly DL, Feldman S, Yu Y, McMahon RP. Cardiovascular disease in relation to weight in deceased persons with schizophrenia. Compr Psychiatry 2005; 46:460-7. [PMID: 16275214 DOI: 10.1016/j.comppsych.2005.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 03/04/2005] [Indexed: 11/30/2022] Open
Abstract
This study evaluated body mass index, body surface area, subcutaneous fat tissue, and coronary atherosclerosis by autopsy reports for people with schizophrenia who were deceased to evaluate the presence of cardiac atherosclerosis and its association with body weight. Included in the study were autopsy reports for 134 people with schizophrenia and 134 matched normal subjects who had died between January 1990 and December 2000 and whose family had donated brain tissue to Maryland Brain Collection. Cause of death due to cardiovascular disease was observed for 45.7% of people with schizophrenia and 42.3% of the control group (P = NS). Body weight, body mass index, body surface area, and subcutaneous fat were not significantly different between the 2 groups; however, a larger proportion of the schizophrenia group had high (33.3%) and low (20.9%) percentile body weight compared with controls (27.7% vs 10.0%). People with schizophrenia who were underweight had higher rates of cardiac death than the controls (37.7% vs 13%) (chi(2) = 5.79, P = .01); however, no difference was noted in the number of coronary arteries occluded. Twenty-three (48.9%) of 47 of the controls with abnormally high subcutaneous fat showed cardiac atherosclerosis, whereas only 15 (33.3%) of 45 of the schizophrenia group with abnormally high subcutaneous fat had atherosclerosis (P = NS). Overall, the percentage of deaths due to cardiovascular disease was not higher in people with schizophrenia; however, in normal controls, cardiovascular disease appears to be related more to weight than in people with schizophrenia. This may be related to intrinsic metabolic differences associated with schizophrenia, lifestyle differences, or effects of antipsychotic medications. Nonetheless, our study suggests that efforts for the prevention of coronary atherosclerosis in schizophrenia patients should go beyond weight control to target multiple risk factors such as smoking, dyslipidemia, and cardiac side effect of antipsychotic medications.
Collapse
Affiliation(s)
- Robert R Conley
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, 21228, USA
| | | | | | | | | | | |
Collapse
|
90
|
du Bois TM, Deng C, Huang XF. Membrane phospholipid composition, alterations in neurotransmitter systems and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:878-88. [PMID: 16005134 DOI: 10.1016/j.pnpbp.2005.04.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
This review addresses the relationship between modifications in membrane phospholipid composition (MPC) and alterations in dopaminergic, serotonergic and cholinergic neurotransmitter systems in schizophrenia. The main evidence in support of the MPC hypothesis of schizophrenia comes from post-mortem and platelet studies, which show that in schizophrenia, certain omega-3 and omega-6 polyunsaturated fatty acid (PUFA) levels are reduced. Furthermore, examination of several biochemical markers suggests abnormal fatty acid metabolism may be present in schizophrenia. Dietary manipulation of MPC with polyunsaturated fatty acid diets has been shown to affect densities of dopamine, serotonin and muscarinic receptors in rats. Also, supplementation with omega-3 fatty acids has been shown to improve mental health rating scores, and there is evidence that the mechanism behind this involves the serotonin receptor complex. This suggests that a tight relationship exists between essential fatty acid status and normal neurotransmission, and that altered PUFA levels may contribute to the abnormalities in neurotransmission seen in schizophrenia.
Collapse
Affiliation(s)
- Teresa M du Bois
- Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD), NSW 2010, Australia.
| | | | | |
Collapse
|
91
|
Hirai K, Kozuki M, Miyanaga K, Miyagawa F, Takezoe R, Hasegawa M, Mori M. Lower Levels of Eicosapentaenoic Acid and the Ratio of Docosahexaenoic Acid to Arachidonic Acid in Sera of Patients with Multi-Infarct Dementia. J Clin Biochem Nutr 2005. [DOI: 10.3164/jcbn.36.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
92
|
Abstract
The importance of omega-3 fatty acids for physical health is now well recognised and there is increasing evidence that omega-3 fatty acids may also be important to mental health. The two main omega-3 fatty acids in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important biological functions in the CNS. DHA is a major structural component of neuronal membranes, and changing the fatty acid composition of neuronal membranes leads to functional changes in the activity of receptors and other proteins embedded in the membrane phospholipid. EPA has important physiological functions that can affect neuronal activity. Epidemiological studies indicate an association between depression and low dietary intake of omega-3 fatty acids, and biochemical studies have shown reduced levels of omega-3 fatty acids in red blood cell membranes in both depressive and schizophrenic patients. Five of six double-blind, placebo-controlled trials in schizophrenia, and four of six such trials in depression, have reported therapeutic benefit from omega-3 fatty acids in either the primary or secondary statistical analysis, particularly when EPA is added on to existing psychotropic medication. Individual clinical trials have suggested benefits of EPA treatment in borderline personality disorder and of combined omega-3 and omega-6 fatty acid treatment for attention-deficit hyperactivity disorder. The evidence to date supports the adjunctive use of omega-3 fatty acids in the management of treatment unresponsive depression and schizophrenia. As these conditions are associated with increased risk of coronary heart disease and diabetes mellitus, omega-3 fatty acids should also benefit the physical state of these patients. However, as the clinical research evidence is preliminary, large, and definitive randomised controlled trials similar to those required for the licensing of any new pharmacological treatment are needed.
Collapse
Affiliation(s)
- Malcolm Peet
- Swallownest Court Hospital, Doncaster and South Humber Healthcare NHS Trust, Sheffield, UK.
| | | |
Collapse
|
93
|
Peet M, Shah S, Selvam K, Ramchand CN. Polyunsaturated fatty acid levels in red cell membranes of unmedicated schizophrenic patients. World J Biol Psychiatry 2004; 5:92-9. [PMID: 15179668 DOI: 10.1080/15622970410029917] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are several reports of reduced levels of polyunsaturated fatty acids (PUFA), particularly arachidonic acid (AA) and docosahexaenoic acid (DHA), in membrane phospholipid from various tissues including red blood cells (RBC) taken from schizophrenic patients. However, reports have not been entirely consistent and most studies have been confounded by the potential effects of environmental factors including antipsychotic medication and diet. We measured PUFA levels in RBC from two separate groups of unmedicated patients and control subjects from India and Malaysia, populations which have substantial differences in diet. We found no significant difference in levels of AA between patients and control subjects in either population. Levels of adrenic acid were significantly reduced, and levels of DHA significantly increased in both clinical populations. However, diet-related differences in DHA between the populations from India and Malaysia were much greater than differences between schizophrenic patients and controls. It is concluded that reduced RBC membrane levels of AA and DHA are not pathognomic of schizophrenia but that variations in cell membrane fatty acid levels are an epiphenomenon which may reflect underlying abnormalities of phospholipid and fatty acid metabolism and their interaction with environmental factors including medication and diet.
Collapse
Affiliation(s)
- Malcolm Peet
- Rotherham Mental Health Services, Swallownest Court, Aughton Road, Sheffield, S26 4TH, UK.
| | | | | | | |
Collapse
|
94
|
Yao JK, Magan S, Sonel AF, Gurklis JA, Sanders R, Reddy RD. Effects of omega-3 fatty acid on platelet serotonin responsivity in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2004; 71:171-6. [PMID: 15253886 DOI: 10.1016/j.plefa.2004.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Studies suggest that the omega-3 fatty acid supplementation may be beneficial in reducing symptom severity in schizophrenia. The mechanism(s) underlying the clinical effect is not known. Serotonin (5-HT) has been implicated in the pathophysiology of schizophrenia and in the mechanism of some antipsychotic agents. 5-HT receptors are known to be modified by omega-3 fatty acids. We examined whether supplementation with the omega-3 fatty acid eicosapentaenoic acid (EPA)-modified 5-HT amplified ADP-induced platelet aggregation in patients with schizophrenia. Two grams of ethyl-EPA was administered daily for 6 months supplementally to ongoing antipsychotic treatment in 12 patients with chronic schizophrenia, using an open-label design. Red blood cell membrane fatty acids and platelet functions (platelet aggregation and dense granule secretion) were monitored at baseline, 1-, 3- and 6-months. The EPA levels were elevated more than five-fold in RBC membranes of all patients after 3 months supplementation, indicating a high degree of compliance. Consistent with previous reports, there was inhibition of ADP-induced platelet aggregation by EPA supplementation. Moreover, EPA markedly enhanced the 5-HT responsivity as measured by the magnitude of 5-HT amplification on ADP-induced platelet aggregation. Previously, we have demonstrated a significant inverse correlation between 5-HT responsivity and psychosis severity in unmedicated patients with schizophrenia. Taken together, the present data support the notion that EPA may be mediating its therapeutic effects in schizophrenia via modulation of the 5-HT2 receptor complex.
Collapse
Affiliation(s)
- Jeffrey K Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Shinkai T, De Luca V, Zai G, Shaikh S, Matsumoto C, Arnold PD, Hwang R, King N, Trakalo J, Potapova N, Wong G, Hori H, Wong AHC, Ohmori O, Nakamura J, Kennedy JL. No association between the Pro197Leu polymorphism in the glutathione peroxidase (GPX1) gene and schizophrenia. Psychiatr Genet 2004; 14:177-80. [PMID: 15318035 DOI: 10.1097/00041444-200409000-00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Oxidative stress such as free radical-mediated neuronal dysfunction may be involved in the pathophysiology of schizophrenia. The human glutathione peroxidase (GPX1) is a selenium-dependent enzyme, which plays an important role in the detoxification of free radicals. We therefore hypothesized that the GPX1 gene, which is located on chromosome 3p21.3, may be involved in the pathophysiology of schizophrenia. The aim of this study is to examine whether a potentially functional polymorphism, a proline (Pro) to leucine (Leu) substitution at codon 197 (Pro197Leu) of the human GPX1 gene, is associated with susceptibility to schizophrenia. METHODS We genotyped the Pro197Leu polymorphism in a total of 113 nuclear families that had a proband with schizophrenia. Genetic association was tested using the transmission disequilibrium test (TDT), the sib transmission disequilibrium test (STDT), and the family-based association test (FBAT). RESULTS The minor allele (Leu) frequency was calculated to be 0.282. We could not find significant transmission disequilibrium of the alleles for the Pro197Leu polymorphism in the GPX1 gene in association with the presence of schizophrenia in our family sample (TDT, chi2=0.03, degrees of freedom=1, P=0.86; combined TDT-STDT, Z'=-0.052, P=0.47; FBAT, Z=0.000, P=1.000). CONCLUSION The results of this study suggest that the GPX1 polymorphism is unlikely to be associated with susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Takahiro Shinkai
- Neurogenetics Section, Centre for Addiction and Mental Health, Clarke Division, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dakhale G, Khanzode S, Khanzode S, Saoji A, Khobragade L, Turankar A. Oxidative damage and schizophrenia: the potential benefit by atypical antipsychotics. Neuropsychobiology 2004; 49:205-9. [PMID: 15154399 DOI: 10.1159/000077368] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is evidence to suggest the derangement of the oxidant and antioxidant defense system in schizophrenia. The present study examined the effect of atypical antipsychotics on lipid peroxidation, superoxide dismutase (SOD) and ascorbic acid. For this purpose, a prospective, open-label, 8-week study design was utilized. Serum SOD, serum malondialdehyde (MDA) and plasma ascorbic acid were estimated. Schizophrenic patients (n = 48) were compared with age- and sex-matched healthy volunteers (n = 40). There was a significant increase in serum SOD, serum MDA and a decrease in plasma ascorbic acid in schizophrenic patients as compared to control subjects. The trend altered significantly after the treatment with atypical antipsychotics. The results of the Brief Psychiatric Rating Scale for schizophrenia also improved with the treatment. The findings indicate an involvement of free radicals in schizophrenia and its modification by treatment with atypical antipsychotics. This study can also be used as a predictor of drug response by atypical antipsychotics in schizophrenia.
Collapse
Affiliation(s)
- Ganesh Dakhale
- Department of Pharmacology, Government Medical College, Nagpur, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
97
|
Songur A, Sarsilmaz M, Sogut S, Ozyurt B, Ozyurt H, Zararsiz I, Turkoglu AO. Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with fish omega-3 fatty acids. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:693-8. [PMID: 15276695 DOI: 10.1016/j.pnpbp.2004.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Phospholipids located in the cellular membrane play a critical role in the fluid-mosaic model of membrane structure and membrane function. Evidence is mounting for the role of abnormal phospholipid metabolism in some neuropsychiatric disorders including schizophrenia. As an important essential fatty acid (EFA), omega-3 (omega-3) fatty acid series are found in large amounts in fish oil. The aim of this experimental study was to assess the changes of some of the oxidant and antioxidant parameters in the hypothalamus of rats fed with omega-3 EFA diet (0.4 g/kg/day) for 30 days. Eight control rats and nine rats fed with omega-3 were decapitated under ether anesthesia, and hypothalamus was removed immediately. Malondialdehyde (MDA) and nitric oxide (NO) levels as well as superoxide dismutase (SOD) and xanthine oxidase (XO) enzyme activities in the hypothalamus were measured. SOD activity was significantly decreased in omega-3 EFA treated group compared to control group (p < 0.014). Tissue MDA and NO levels were also decreased in omega-3 EFA treated group compared to control rats (p < 0.0001). Xanthine oxidase activity was found to be increased in omega-3 EFA treated rats when compared to the control group (p < 0.0001). Taken together, this preliminary animal study provides strong support for a therapeutic effect of omega-3 EFA in some neuropsychiatric disorders in which reactive oxygen species (ROS) are recently accused to be an important physiopathogenetic factor.
Collapse
Affiliation(s)
- Ahmet Songur
- Department of Anatomy, Afyon Kocatepe University Medical School, Turkey
| | | | | | | | | | | | | |
Collapse
|
98
|
Puri BK, Counsell SJ, Hamilton G, Bustos MG, Horrobin DF, Richardson AJ, Treasaden IH. Cerebral metabolism in male patients with schizophrenia who have seriously and dangerously violently offended: a 31P magnetic resonance spectroscopy study. Prostaglandins Leukot Essent Fatty Acids 2004; 70:409-11. [PMID: 15041035 DOI: 10.1016/j.plefa.2003.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 11/17/2022]
Abstract
There is biochemical evidence to suggest that membrane phospholipid metabolism may be impaired in some patients with schizophrenia. The aim of this study was to test the hypothesis that patients with schizophrenia who have violently offended while psychotic suffer from changes in cerebral phospholipid metabolism. Cerebral 31-phosphorus magnetic resonance spectroscopy was carried out in 15 male patients with schizophrenia who had violently offended (homicide, attempted murder, or wounding with intent to cause grievous bodily harm) while psychotic and in a control group of 13 age-matched healthy male control subjects. Spectra were obtained from 70x70x70mm(3) voxels in the brain using an image-selected in vivo spectroscopy pulse sequence. betaNTP was lower (P < 0.04) and gammaNTP was higher (P < 0.04) in the patient group compared with the normal control group. Our results are suggestive of increased cerebral energy metabolism taking place in the forensic patients.
Collapse
Affiliation(s)
- B K Puri
- MRI Unit, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | | | | | | | | | | | | |
Collapse
|
99
|
Skosnik PD, Yao JK. From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia? Prostaglandins Leukot Essent Fatty Acids 2003; 69:367-84. [PMID: 14623490 DOI: 10.1016/j.plefa.2003.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.
Collapse
Affiliation(s)
- P D Skosnik
- Department of Psychology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
100
|
Messamore E. Relationship between the niacin skin flush response and essential fatty acids in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2003; 69:413-9. [PMID: 14623495 DOI: 10.1016/j.plefa.2003.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The skin flush response to niacin is selectively mediated by the release of vasodilatory prostaglandins from the skin. The normal skin flush response to niacin is attenuated in many individuals with schizophrenia (SCZ). This finding suggests abnormal prostaglandin signaling in SCZ. Since prostaglandins are derived from arachidonic acid (AA), the finding of an abnormal skin flush response is consistent with biochemical data suggesting relative depletion of AA, and other essential fatty acids (EFAs), in a substantial portion of people with SCZ. This paper will describe the mechanism of the skin flush response to niacin, and will review evidence that the response to niacin is abnormal in SCZ, that this abnormality is not related to psychotropic medications, and that it may be a marker of the EFA deficiency which has been documented to be present in many patients with SCZ.
Collapse
Affiliation(s)
- Erik Messamore
- Behavioral Health and Clinical Neurosciences Division and Research Service, Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97201, USA.
| |
Collapse
|