51
|
Landucci E, Scartabelli T, Gerace E, Moroni F, Pellegrini-Giampietro DE. CB1 receptors and post-ischemic brain damage: studies on the toxic and neuroprotective effects of cannabinoids in rat organotypic hippocampal slices. Neuropharmacology 2010; 60:674-82. [PMID: 21130785 DOI: 10.1016/j.neuropharm.2010.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 12/31/2022]
Abstract
Cannabinoids (CBs) are implicated in a number of physiological and pathological mechanisms in the central nervous system, but their exact role in post-ischemic brain injury is unclear. The toxic and neuroprotective effects of synthetic and endogenous CBs were evaluated in rat organotypic hippocampal slices exposed to 20 min oxygen-glucose deprivation (OGD) and in gerbils subjected to bilateral carotid occlusion for 5 min. When present in the incubation medium, the synthetic CB agonists WIN 55212-2 and CP 55940 (1-30 μM) and the CB1 agonist ACEA exacerbated CA1 injury induced by OGD, whereas the CB1 receptor antagonists AM 251 and LY 320135 were neuroprotective with maximal activity at 1 μM. AM 251 (at 3 mg/kg, i.p.) also attenuated CA1 pyramidal cell death in gerbils in vivo. The endocannabinoid 2-arachidonoylglycerol (2-AG) reduced OGD injury in hippocampal slices at 0.1-1 μM, whereas anandamide (AEA) was neurotoxic at the same concentrations. The effects of WIN 55212-2, AEA and 2-AG in slices were all dependent on the activation of CB1 but not CB2 receptors, except for the toxic effects of AEA that were also dependent on vanilloid TRPV1 receptors. Our results suggest that exogenous administration of CB1 agonists and the production of endocannabinoids "on demand" may produce different, if not opposite, effects on the fate of neurons following cerebral ischemia.
Collapse
Affiliation(s)
- Elisa Landucci
- Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
52
|
Lorenzetti V, Lubman DI, Whittle S, Solowij N, Yücel M. Structural MRI findings in long-term cannabis users: what do we know? Subst Use Misuse 2010; 45:1787-808. [PMID: 20590400 DOI: 10.3109/10826084.2010.482443] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In animal studies, tetrahydrocannabinol (THC) has been found to affect brain morphology, particularly within areas rich in cannabinoid receptors (e.g., hippocampus, cerebral cortex). While cannabis remains the most widely used illicit drug worldwide, there has been limited work investigating its effects on human brain tissue. In this paper, we conducted a systematic review of existing structural magnetic resonance imaging studies to examine whether cannabis use is associated with significant changes in brain anatomy. We identified only 13 structural neuroimaging studies, which were diverse in terms of sample characteristics (e.g., age of participants, duration and frequency of use) and methodology (e.g., image analysis). No study found global structural changes in cannabis users, although six studies reported regional alterations. While changes in the hippocampus and parahippocampus were frequently identified, the findings were inconsistent across studies. The available literature also provides some evidence that regional structural changes are associated with cannabis use patterns (particularly cumulative dosage and frequency of use), as well as measures of psychopathology (e.g., measures of depressive and psychotic symptoms). Together, these structural imaging findings suggest that THC exposure does affect brain morphology, especially in medial-temporal regions. Given the small literature available and the limitations of studies to date, further research is clearly required, particularly given the prevalence of cannabis use worldwide.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | | | | | | | | |
Collapse
|
53
|
Bossong MG, Niesink RJM. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 2010; 92:370-85. [PMID: 20624444 DOI: 10.1016/j.pneurobio.2010.06.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/15/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022]
Abstract
Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
54
|
Sewell RA, Skosnik PD, Garcia-Sosa I, Ranganathan M, D'Souza DC. Efeitos comportamentais, cognitivos e psicofisiológicos dos canabinoides: relevância para a psicose e a esquizofrenia. BRAZILIAN JOURNAL OF PSYCHIATRY 2010. [DOI: 10.1590/s1516-44462010000500005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avanços recentes no conhecimento sobre a função do receptor de canabinoide renovaram o interesse na associação entre cannabis e psicose. Linhas convergentes de evidências sugerem que os canabinoides podem produzir uma ampla gama de sintomas transitórios positivos, negativos e cognitivos assemelhados aos de esquizofrenia. Os canabinoides também produzem alguns déficits psicofisiológicos sabidamente presentes na esquizofrenia. É igualmente claro que em indivíduos com um transtorno psicótico estabelecido, os canabinoides podem exacerbar sintomas, desencadear recaídas e ter consequências negativas no curso da doença. Evidências crescentes sugerem que a exposição precoce e pesada à cannabis pode aumentar o risco de se desenvolver um transtorno psicótico como a esquizofrenia. A relação entre exposição à cannabis e esquizofrenia preenche alguns, mas não todos os critérios usuais de causalidade. Porém, a maioria das pessoas que utilizam cannabis não desenvolve esquizofrenia e muitas pessoas diagnosticadas com esquizofrenia nunca utilizaram cannabis. Portanto, é provável que a exposição à cannabis seja uma "causa componente" que interage com outros fatores para "causar" esquizofrenia ou outro transtorno psicótico, mas não é nem necessária nem suficiente para fazê-lo sozinha. No entanto, na ausência de causas conhecidas da esquizofrenia e com as implicações de políticas de saúde pública, se tal vínculo for estabelecido, as causas componentes, tais como a exposição a canabinoide, devem continuar sendo um foco de estudos futuros. Finalmente, são necessárias mais pesquisas para identificar os fatores subjacentes à vulnerabilidade à psicose relacionada a canabinoide e para elucidar os mecanismos biológicos subjacentes a esse risco.
Collapse
Affiliation(s)
- R. Andrew Sewell
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Patrick D. Skosnik
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Icelini Garcia-Sosa
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Mohini Ranganathan
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Deepak Cyril D'Souza
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| |
Collapse
|
55
|
Abstract
OBJETIVO: Evidências de que o uso de cannabis prejudica funções cognitivas em humanos têm-se acumulado nas décadas recentes. O propósito desta revisão é o de atualizar o conhecimento nesta área com novos achados a partir da literatura mais recente. MÉTODO: As buscas na literatura foram realizadas utilizando-se o banco de dados Web of Science até fevereiro de 2010. Foram buscados os termos "cannabi*" ou "marijuana" e "cogniti*" ou "memory" ou "attention" ou "executive function", e os estudos em humanos foram revisados preferencialmente em relação aos estudos em animais. DISCUSSÃO: O uso de cannabis prejudica a memória, a atenção, o controle inibitório, as funções executivas e a tomada de decisões, tanto durante como após o período de intoxicação aguda, persistindo por horas, dias, semanas ou mais após o último uso. Os estudos de desafio farmacológico em humanos estão elucidando a natureza e os substratos neurais das alterações cognitivas associadas a vários canabinoides. O uso pesado ou de longo prazo de cannabis parece resultar em anormalidades cognitivas mais duradouras e possivelmente em alterações cerebrais estruturais. Efeitos cognitivos adversos maiores estão associados ao uso de cannabis quando este começa no início da adolescência. CONCLUSÃO: O sistema canabinoide endógeno está envolvido nos mecanismos de regulação neural que modulam os processos subjacentes a uma gama de funções cognitivas que estão prejudicadas pela cannabis. Os déficits em usuários humanos muito provavelmente refletem, portanto, neuroadaptações e o funcionamento alterado do sistema canabinoide endógeno.
Collapse
Affiliation(s)
- Nadia Solowij
- University of Wollongong, Austrália; Schizophrenia Research Institute, Austrália
| | | |
Collapse
|
56
|
Becker B, Wagner D, Gouzoulis-Mayfrank E, Spuentrup E, Daumann J. Altered parahippocampal functioning in cannabis users is related to the frequency of use. Psychopharmacology (Berl) 2010; 209:361-74. [PMID: 20300735 DOI: 10.1007/s00213-010-1805-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Converging lines of evidence suggest an association between cannabis use and impaired episodic memory as well as related associative learning. These deficits have been associated with the duration, frequency, and age of onset of cannabis use. However, it remains unclear whether these parameters of use differently impact memory-related hippocampal functioning. METHODS Forty-two cannabis users were examined by means of functional magnetic resonance imaging while they encoded and retrieved face-profession associations. Region of interest analysis was subsequently used to compare (para-)hippocampal functioning in users with (1) a longer and shorter duration of use, (2) a higher and lower frequency of use, and (3) an earlier and later onset. To further separate the effects of these parameters of use on performance and (para-)hippocampal activity, linear regression analysis was applied. RESULTS Compared to low-frequency users, high-frequency users displayed stronger blood oxygenation level-dependent response during encoding in the left parahippocampal gyrus. No differences were obvious for the groups separated according to duration of use or an earlier and later onset of use. Linear regression analysis confirmed the association between a higher frequency of use and increased activity in the left parahippocampal gyrus. CONCLUSIONS Our findings suggest that the frequency of use might have a particular critical impact on intact parahippocampal functioning in cannabis users. Increased activity within the encoding-related network might reflect functional compensation to maintain cognitive functioning.
Collapse
Affiliation(s)
- Benjamin Becker
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | | | | | | | | |
Collapse
|
57
|
Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 2010; 1187:148-71. [PMID: 20201852 DOI: 10.1111/j.1749-6632.2009.05143.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) is a noninvasive imaging technique that permits measurement of particular compounds or metabolites within the tissue of interest. In the brain, (1)H MRS provides a snapshot of the neurochemical environment within a defined volume of interest. A search of the literature demonstrates the widespread utility of this technique for characterizing tumors, tracking the progress of neurodegenerative disease, and for understanding the neurobiological basis of psychiatric disorders. As of relatively recently, (1)H MRS has found its way into substance abuse research, and it is beginning to become recognized as a valuable complement in the brain imaging toolbox that also contains positron emission tomography, single-photon-emission computed tomography, and functional magnetic resonance imaging. Drug abuse studies using (1)H MRS have identified several biochemical changes in the brain. The most consistent alterations across drug class were reductions in N-acetylaspartate and elevations in myo-inositol, whereas changes in choline, creatine, and amino acid transmitters also were abundant. Together, the studies discussed herein provide evidence that drugs of abuse may have a profound effect on neuronal health, energy metabolism and maintenance, inflammatory processes, cell membrane turnover, and neurotransmission, and these biochemical changes may underlie the neuropathology within brain tissue that subsequently gives rise to the cognitive and behavioral impairments associated with drug addiction.
Collapse
Affiliation(s)
- Stephanie C Licata
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts 02478, USA.
| | | |
Collapse
|
58
|
Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use. Brain Res 2010; 1317:297-304. [PMID: 20045399 DOI: 10.1016/j.brainres.2009.12.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/23/2022]
Abstract
Although cannabis is the most widely used illicit drug in the world, the long-term effect of its use in the brain remains controversial. In order to determine whether adolescence and early-adulthood cannabis use is associated with gross volumetric and gyrification abnormalities in the brain, we set up a cross-sectional study using structural magnetic resonance imaging in a sample of general population subjects. Thirty cannabis-using subjects (mean age, 25.7 years; mean duration of regular use, 8.4 years, range: 3-21) with no history of polydrug use or neurologic/mental disorder and 44 non-using control subjects (mean age, 25.8 years) were included. Cannabis users showed bilaterally decreased concavity of the sulci and thinner sulci in the right frontal lobe. Among non-users, age was significantly correlated with decreased gyrification (i.e., less concave sulci and more convexe gyri) and decreased cortical thickness, supporting the notion of age-related gyrification changes. However, among cannabis users gyrification indices did not show significant dependency on age, age of regular cannabis use initiation, or cumulative exposure to cannabis. These results suggest that cannabis use in adolescence and early-adulthood might involve a premature alteration in cortical gyrification similar to what is normally observed at a later age, probably through disruption of normal neurodevelopment.
Collapse
|
59
|
Amal H, Fridman-Rozevich L, Senn R, Strelnikov A, Gafni M, Keren O, Sarne Y. Long-term consequences of a single treatment of mice with an ultra-low dose of Delta9-tetrahydrocannabinol (THC). Behav Brain Res 2009; 206:245-53. [PMID: 19766676 DOI: 10.1016/j.bbr.2009.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/07/2009] [Accepted: 09/11/2009] [Indexed: 01/01/2023]
Abstract
A single administration of an extremely low dose (0.002 mg/kg) of Delta9-tetrahydrocannabinol (THC; the psychoactive ingredient of marijuana) to ICR mice induced long-term cognitive deficits that lasted for at least 5 months. The behavioral deficits were detected by several tests that evaluated different aspects of memory and learning, including spatial navigation and spatial and non-spatial recognition. Our findings point to possible deficits in attention or motivation that represent a common upstream cognitive process that may affect the performance of the mice in the different behavioral assays. Similar ultra-low doses of THC (3-4 orders of magnitude lower than doses that are known to evoke the acute effects of THC) also induced sustained activation of extracellular-regulated kinase (ERK1/2) in the cerebellum, indicating that a single injection of such low doses of the cannabinoid drug can stimulate neuronal regulatory mechanisms. The relevance of these findings to the behavioral consequences of chronic exposure to marijuana is discussed.
Collapse
Affiliation(s)
- Haitham Amal
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
60
|
Learning and memory deficits in ecstasy users and their neural correlates during a face-learning task. Brain Res 2009; 1292:71-81. [DOI: 10.1016/j.brainres.2009.07.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/02/2009] [Accepted: 07/15/2009] [Indexed: 11/24/2022]
|
61
|
Ashtari M, Cervellione K, Cottone J, Ardekani BA, Sevy S, Kumra S. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use. J Psychiatr Res 2009; 43:189-204. [PMID: 19111160 PMCID: PMC3314332 DOI: 10.1016/j.jpsychires.2008.12.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/23/2008] [Accepted: 12/01/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is growing evidence that adolescence is a key period for neuronal maturation. Despite the high prevalence of marijuana use among adolescents and young adults in the United States and internationally, very little is known about its impact on the developing brain. Based on neuroimaging literature on normal brain developmental during adolescence, we hypothesized that individuals with heavy cannabis use (HCU) would have brain structure abnormalities in similar brain regions that undergo development during late adolescence, particularly the fronto-temporal connection. METHOD Fourteen young adult males in residential treatment for cannabis dependence and 14 age-matched healthy male control subjects were recruited. Patients had a history of HCU throughout adolescence; 5 had concurrent alcohol abuse. Subjects underwent structural and diffusion tensor magnetic resonance imaging. White matter integrity was compared between subject groups using voxelwise and fiber tractography analysis. RESULTS Voxelwise and tractography analyses revealed that adolescents with HCU had reduced fractional anisotropy, increased radial diffusivity, and increased trace in the homologous areas known to be involved in ongoing development during late adolescence, particularly in the fronto-temporal connection via arcuate fasciculus. CONCLUSIONS Our results support the hypothesis that heavy cannabis use during adolescence may affect the trajectory of normal brain maturation. Due to concurrent alcohol consumption in five HCU subjects, conclusions from this study should be considered preliminary, as the DTI findings reported here may be reflective of the combination of alcohol and marijuana use. Further research in larger samples, longitudinal in nature, and controlling for alcohol consumption is needed to better understand the pathophysiology of the effect of cannabis on the developing brain.
Collapse
Affiliation(s)
- Manzar Ashtari
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | | | | | | | | | | |
Collapse
|
62
|
Mizoguchi K, Ikeda R, Shoji H, Tanaka Y, Maruyama W, Tabira T. Aging attenuates glucocorticoid negative feedback in rat brain. Neuroscience 2008; 159:259-70. [PMID: 19141312 DOI: 10.1016/j.neuroscience.2008.12.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/09/2008] [Accepted: 12/12/2008] [Indexed: 11/16/2022]
Abstract
Aging is thought to be a risk factor to develop vulnerability of the neuroendocrine system, including the hypothalamic-pituitary-adrenal (HPA) axis, and dysregulation of this axis characterized by dexamethasone (DEX)-mediated negative feedback resistance is sometimes observed in elderly humans and animals. However, the influence of aging on the feedback system including an involvement of the brain is not fully understood. In the present study, we examined the suppressive effects of DEX by the systemic injection or the intracranial infusion into the prefrontal cortex (PFC), hippocampus, and hypothalamus on circulating corticosterone levels, and compared between young (3-month-old) and aged (24-month-old) rats. Moreover, we examined expression levels of glucocorticoid receptors (GRs) and their translocation from the cytoplasm to the nucleus using immunohistochemical and Western immunoblot techniques in the pituitary in addition to three brain regions. When DEX was injected systemically, the suppressive response was significantly enhanced in aged rats, compared with young rats. When DEX was infused into three brain regions, the suppressive response to DEX was abolished in aged rats. The immunohistochemical analysis revealed that the number of GR positive cells in the PFC, hippocampus, and hypothalamus was decreased, but that in the pituitary was increased, in aged rats, compared with young rats. The Western immunoblot analysis confirmed these results. Thus, basal expression levels of GRs in three brain regions were decreased, but those in the pituitary were increased, in aged rats. After the injection or infusion of DEX, the translocation of GRs in three brain regions was reduced, but that in the pituitary was enhanced, in aged rats. These results suggest that aging in rats enhances the feedback ability at the systemic level, which mainly involves the pituitary, but it attenuates the ability in the brain. These mechanisms may underlie the vulnerable neuroendocrine systems associated with aging.
Collapse
Affiliation(s)
- K Mizoguchi
- Section of Oriental Medicine, Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan.
| | | | | | | | | | | |
Collapse
|
63
|
Nestor L, Roberts G, Garavan H, Hester R. Deficits in learning and memory: Parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. Neuroimage 2008; 40:1328-39. [PMID: 18296071 DOI: 10.1016/j.neuroimage.2007.12.059] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liam Nestor
- Department of Psychology and Institute of Neuroscience, Trinity College, University of Dublin, Ireland.
| | | | | | | |
Collapse
|
64
|
Gonzalez R. Acute and non-acute effects of cannabis on brain functioning and neuropsychological performance. Neuropsychol Rev 2008; 17:347-61. [PMID: 17680367 DOI: 10.1007/s11065-007-9036-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cannabis has an ancient history of human use and is currently one of the most commonly used drugs worldwide. Understanding its impact on neurobehavioral functioning is of significant public health concern. In recent decades, substantial progress has been made in understanding the impact of cannabis use on neurobehavioral functioning. This has been fueled, in part, by characterization of an endocannabinoid signaling system in the brain through which cannabis exerts its psychoactive effects. Acute intoxication with cannabis causes marked changes in subjective mental status, brain functioning, and neuropsychological performance. Some of these changes are consistently detected and well characterized, yet others are not. Changes in brain functioning and neuropsychological performance are also reported after abstinence, but appear to be mild, circumscribed, and transient. On the other hand, functional neuroimaging often reveals subtle differences in the brain functioning of abstinent cannabis users compared with controls. The persistence and clinical significance of these differences, however, remains to be determined. Neuropsychological deficits and differences in brain functioning are most consistently observed only among frequent, heavy users, who are those most likely addicted to cannabis. The dire impact of drug addiction on a person's life and everyday functioning suggests that the large number of individuals addicted to cannabis experience substantial negative effects from its use. This manuscript reviews the scientific literature on the aforementioned topics in detail, providing evidence for converging findings, and highlighting areas in need of further investigation.
Collapse
Affiliation(s)
- Raul Gonzalez
- Department of Psychiatry, University of Illinois, Chicago, 1601 W. Taylor Street, MC 912, Chicago, IL 60612, USA.
| |
Collapse
|
65
|
Medina KL, Hanson KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Neuropsychological functioning in adolescent marijuana users: subtle deficits detectable after a month of abstinence. J Int Neuropsychol Soc 2007; 13:807-20. [PMID: 17697412 PMCID: PMC2269704 DOI: 10.1017/s1355617707071032] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 11/06/2022]
Abstract
In adults, studies examining the long-lasting cognitive effects of marijuana use demonstrate subtle deficits in attention, executive function, and memory. Because neuromaturation continues through adolescence, these results cannot necessarily generalize to adolescent marijuana users. The goal of this study was to examine neuropsychological functioning in abstinent marijuana using and demographically similar control adolescents. Data were collected from 65 adolescent marijuana users (n=31, 26% females) and controls (n=34, 26% females) 16-18 years of age. Extensive exclusionary criteria included independent psychiatric, medical, and neurologic disorders. Neuropsychological assessments were conducted after>23 days of monitored abstinence. After controlling for lifetime alcohol use and depressive symptoms, adolescent marijuana users demonstrated slower psychomotor speed (p<.05), and poorer complex attention (p<.04), story memory (p<.04), and planning and sequencing ability (p<.001) compared with controls. Post hoc analysis revealed that the number of lifetime marijuana use episodes was associated with poorer cognitive function, even after controlling for lifetime alcohol use. The general pattern of results suggested that, even after a month of monitored abstinence, adolescent marijuana users demonstrate subtle neuropsychological deficits compared with nonusers. It is possible that frequent marijuana use during adolescence may negatively influence neuromaturation and cognitive development.
Collapse
Affiliation(s)
- Krista Lisdahl Medina
- Department of Psychiatry, University of California, San Diego, and Psychology Department, VA San Diego Healthcare System, San Diego, California 92161, USA
| | | | | | | | | | | |
Collapse
|
66
|
Tselnicker I, Keren O, Hefetz A, Pick CG, Sarne Y. A single low dose of tetrahydrocannabinol induces long-term cognitive deficits. Neurosci Lett 2007; 411:108-11. [PMID: 17092651 DOI: 10.1016/j.neulet.2006.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Delta(9)-Tetrahydrocannabinol (THC) was shown to exert either neuroprotective or neurotoxic effects. Based on our in vitro studies and on pharmacokinetic considerations, we have recently presented a hypothesis that explains this dual activity of THC. This explanation is based on the assumption that extremely low doses of cannabinoids are neurotoxic. The present study verifies this assumption and shows that a single injection of 0.001 mg/kg THC (3-4 orders of magnitude lower than conventional doses) significantly affected the performance of mice in the Morris water maze test 3 weeks later. The THC-injected mice showed both longer escape latencies and lower scores in the probe tests compared to their matched controls, indicating the induction of cognitive deficits.
Collapse
Affiliation(s)
- Isabella Tselnicker
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
67
|
Medina KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicol Teratol 2006; 29:141-52. [PMID: 17169528 PMCID: PMC1821342 DOI: 10.1016/j.ntt.2006.10.010] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Converging lines of evidence suggest that the hippocampus may be particularly vulnerable to deleterious effects of alcohol and marijuana use, especially during adolescence. The goal of this study was to examine hippocampal volume and asymmetry in adolescent users of alcohol and marijuana. METHODS Participants were adolescent (aged 15-18) alcohol (ALC) users (n=16), marijuana and alcohol (MJ+ALC) users (n=26), and demographically similar controls (n=21). Extensive exclusionary criteria included prenatal toxic exposure, left handedness, and psychiatric and neurologic disorders. Substance use, cognitive, and anatomical measures were collected after at least 2 days of abstinence from all substances. RESULTS Adolescent ALC users demonstrated a significantly different pattern of hippocampal asymmetry (p<.05) and reduced left hippocampal volume (p<.05) compared to MJ+ALC users and non-using controls. Increased alcohol abuse/dependence severity was associated with increased right>left (R>L) asymmetry and smaller left hippocampal volumes while marijuana abuse/dependence was associated with increased L>R asymmetry and larger left hippocampal volumes. Although MJ+ALC users did not differ from controls in asymmetry, functional relationships with verbal learning were found only among controls, among whom greater right than left hippocampal volume was associated with superior performance (p<.05). CONCLUSIONS Aberrations in hippocampal asymmetry and left hippocampal volumes were found for adolescent heavy drinkers. Further, the functional relationship between hippocampal asymmetry and verbal learning was abnormal among adolescent substance users compared to healthy controls. These findings suggest differential effects of alcohol and combined marijuana and alcohol use on hippocampal morphometry and the relationship between hippocampal asymmetry and verbal learning performance among adolescents.
Collapse
Affiliation(s)
- Krista Lisdahl Medina
- Department of Psychiatry, University of California, San Diego, CA
- Veterans Medical Research Foundation, San Diego, CA
| | - Alecia D. Schweinsburg
- Veterans Medical Research Foundation, San Diego, CA
- Department of Psychology, University of California, San Diego, CA
| | - Mairav Cohen-Zion
- Department of Psychiatry, University of California, San Diego, CA
- Veterans Medical Research Foundation, San Diego, CA
| | - Bonnie J. Nagel
- Department of Psychiatry, Oregon Health and Science University, Portland, OR
| | - Susan F. Tapert
- Veterans Affairs San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, CA
- Veterans Medical Research Foundation, San Diego, CA
| |
Collapse
|
68
|
Kochman LJ, dos Santos AA, Fornal CA, Jacobs BL. Despite strong behavioral disruption, Δ9-tetrahydrocannabinol does not affect cell proliferation in the adult mouse dentate gyrus. Brain Res 2006; 1113:86-93. [PMID: 16930565 DOI: 10.1016/j.brainres.2006.07.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/06/2006] [Accepted: 07/08/2006] [Indexed: 11/17/2022]
Abstract
Marijuana is a widely abused illicit drug known to cause significant cognitive impairments. Marijuana has been hypothesized to target neurons in the hippocampus because of the abundance of cannabinoid receptors present in this structure. While there is no clear evidence of neuropathology in vivo, suppression of brain mitogenesis, and ultimately neurogenesis, may provide a sensitive index of marijuana's more subtle effects on neural mechanisms subserving cognitive functions. We examined the effects of different doses and treatment regimens of Delta(9)-tetrahydrocannabinol (THC), the main active ingredient in marijuana, on cell proliferation in the dentate gyrus of adult male mice. Following drug treatment, the thymidine analog 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, i.p.) was administered two hours prior to sacrifice to assess cell proliferation, the first step in neurogenesis. Administration of THC produced dose-dependent catalepsy and suppression of motor activity. The number of BrdU-labeled cells was not significantly changed from vehicle control levels following either acute (1, 3, 10, 30 mg/kg, i.p.), sequential (two injections of 10 or 30 mg/kg, i.p., separated by 5 h), or chronic escalating (20 to 80 mg/kg, p.o.; for 3 weeks) drug administration. Furthermore, acute administration of the potent synthetic cannabinoid receptor agonist R-(+)-WIN 55,212-2 (WIN; 5 mg/kg, i.p.) also had no significant effect on cell proliferation. These findings provide no evidence for an effect of THC on hippocampal cell proliferation, even at doses producing gross behavioral intoxication. Whether marijuana or THC affects neurogenesis remains to be explored.
Collapse
Affiliation(s)
- Linda J Kochman
- Program in Neuroscience, Department of Psychology, Princeton University, Green Hall, Washington Road, Princeton, NJ 08540-1010, USA.
| | | | | | | |
Collapse
|
69
|
Sommer C, Schomacher M, Berger C, Kuhnert K, Müller HD, Schwab S, Schäbitz WR. Neuroprotective cannabinoid receptor antagonist SR141716A prevents downregulation of excitotoxic NMDA receptors in the ischemic penumbra. Acta Neuropathol 2006; 112:277-86. [PMID: 16871404 DOI: 10.1007/s00401-006-0110-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/16/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Whether cannabinoids act as neuroprotectants or, on the contrary, even worsen neuronal damage after cerebral ischemia is currently under discussion. We have previously shown that treatment with the cannabinoid (CB1) receptor antagonist SR141716A reduces infarct volume by approximately 40% after experimental stroke. Since it is suggested that SR141716A may exert neuroprotection besides its cannabinoid receptor-blocking effect, we addressed the question whether SR141716A may act via modulation of postischemic ligand binding to excitatory NMDA and/or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. For this purpose, rats (n = 12) were treated with either intravenous saline (control) or CB1 receptor antagonist SR141716A (1 mg/kg) 30 min after permanent middle cerebral artery occlusion. Five hours after ischemia, quantitative receptor autoradiography was performed using [(3)H]CP 55,940, [(3)H]MK-801, and [(3)H]AMPA for labeling of CB1, NMDA, and AMPA receptors, respectively. Ligand binding was analyzed within the infarct core, cortical penumbra, and corresponding areas of the contralateral hemisphere and compared to that of sham-operated rats (n = 5). Both in ischemic controls and SR141716A-treated rats [(3)H]CP 55,940 ligand binding was not specifically regulated in the cortical penumbra or contralateral cortex. Importantly, reduced infarct volumes in SR141716A-treated rats were associated with maintained [(3)H]MK-801 binding to excitotoxic NMDA receptors in the penumbra, compared to a decrease in the control group. In summary, our data suggest that SR141716A may possess additional intrinsic neuroprotective properties independent of receptor-coupled pathways or due to action as a partial agonist.
Collapse
Affiliation(s)
- Clemens Sommer
- Department of Neuropathology, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
70
|
Sim-Selley LJ, Schechter NS, Rorrer WK, Dalton GD, Hernandez J, Martin BR, Selley DE. Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 2006; 70:986-96. [PMID: 16760363 DOI: 10.1124/mol.105.019612] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term cannabinoid administration produces region-dependent CB1 receptor desensitization and down-regulation. This study examined the time course for normalization of CB1 receptors and G-protein activation using 3H-labeled N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716A) and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS binding), respectively, in hippocampus and striatum/globus pallidus (GP). Mice were treated with escalating doses of Delta9-tetrahydrocannabinol (Delta9-THC) or R+-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) for 15 days, and tissue was collected 1, 3, 7, or 14 days after final injection. [3H]SR141716A and WIN55,212-2-stimulated [35S]GTPgammaS binding were decreased in both regions 1 day after treatment. WIN55,212-2-stimulated G-protein activation in striatum/GP returned to control level at 3 days after cessation of treatment with either drug but did not return to control level in hippocampus until 14 days. CB1 receptor binding did not recover to control levels until day 7 or 14 after treatment in striatum/GP and hippocampus, respectively. The mechanism of CB1 binding site down-regulation was investigated after long-term Delta9-THC treatment. Analysis of CB1 receptor mRNA in hippocampus and striatum/GP showed that transcriptional regulation could not explain prolonged recovery rates from CB1 receptor down-regulation. In contrast, CB1 receptor protein, as determined by immunoblot analysis, matched the down-regulation and recovery rates of CB1 receptor binding sites relatively closely. These data demonstrate that cannabinoid-induced decreases in CB1 receptor function persist for relatively long time periods after cessation of long-term drug treatment and that CB1 receptor signaling recovers more quickly in striatum/GP than hippocampus. Moreover, down-regulation of CB1 receptor binding sites does not seem to result mainly from transcriptional regulation, suggesting that adaptive regulation of CB1 receptors in brain primarily occurs at the protein level.
Collapse
Affiliation(s)
- Laura J Sim-Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Matochik JA, Eldreth DA, Cadet JL, Bolla KI. Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend 2005; 77:23-30. [PMID: 15607838 DOI: 10.1016/j.drugalcdep.2004.06.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 06/25/2004] [Accepted: 06/25/2004] [Indexed: 11/22/2022]
Abstract
Marijuana is the most widely used illicit substance in the United States; however, previous imaging studies have not detected altered brain structure in marijuana users compared to non-users. Voxel-based morphometry was used to investigate possible differences in brain tissue composition in a group of 11 heavy marijuana users and a group of 8 non-users. All participants were male. Statistical comparisons were made at the voxel level on T1-weighted magnetic resonance images to determine differences in gray matter and white matter tissue density. Compared to non-users, marijuana users had lower gray matter density in a cluster of voxels in the right parahippocampal gyrus (P = 0.0001), and greater density bilaterally near the precentral gyrus and the right thalamus (P < 0.04). Marijuana users also had lower white matter density in the left parietal lobe (P = 0.03), and higher density around the parahippocampal and fusiform gyri on the left side compared to non-users (P < 0.002). Longer duration of marijuana use (in years) was significantly correlated with higher white matter tissue density in the left precentral gyrus (P = 0.045). Our preliminary results suggest evidence of possible structural differences in the brain of heavy marijuana users, and localize regions for further investigation of the effects of marijuana in the brain.
Collapse
Affiliation(s)
- John A Matochik
- Intramural Research Program, Neuroimaging Research Branch, National Institute on Drug Abuse, NIH/DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224-6823, USA.
| | | | | | | |
Collapse
|
72
|
Derkinderen P, Valjent E, Darcel F, Damier P, Girault JA. Cannabis et récepteurs cannabinoïdes : de la physiopathologie aux possibilités thérapeutiques. Rev Neurol (Paris) 2004; 160:639-49. [PMID: 15247852 DOI: 10.1016/s0035-3787(04)71013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although cannabis has been used as a medicine for several centuries, the therapeutic properties of cannabis preparations (essentially haschich and marijuana) make them far most popular as a recreational drugs. STATE OF THE ART Scientific studies on the effects of cannabis were advanced considerably by the identification in 1964 of cannabinoid D9-tetrahydrocannadinol (THC), recognized as the major active constituent of cannabis. Cloning of the centrally located CB1 receptor in 1990 and the identification of the first endogenous ligand of the CB1 receptor, anandamide, in 1992 further advanced our knowledge. PERSPECTIVE AND CONCLUSIONS Progress has incited further research on the biochemistry and pharmacology of the cannabinoids in numerous diseases of the central nervous system. In the laboratory animal, cannabinoids have demonstrated potential in motion disorders, demyelinizing disease, epilepsy, and as anti-tumor and neuroprotector agents. Several clinical studies are currently in progress, but therapeutic use of cannabinoids in humans couls be hindered by undesirable effects, particularly psychotropic effects. CB1 receptor antagonists also have interesting therapeutic potential.
Collapse
Affiliation(s)
- P Derkinderen
- Service de Neurologie et Centre d'investigations cliniques, CHU de Nantes, Hôpital Laënnec, Nantes.
| | | | | | | | | |
Collapse
|
73
|
Sarne Y, Keren O. Are cannabinoid drugs neurotoxic or neuroprotective? Med Hypotheses 2004; 63:187-92. [PMID: 15236773 DOI: 10.1016/j.mehy.2004.02.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/09/2004] [Indexed: 11/25/2022]
Abstract
Chronic exposure to cannabinoids was shown to induce long lasting impairment of learning and memory, which was accompanied by morphological damage to the brain. On the other hand, several studies have shown that cannabinoids can protect from various brain traumas. This enigmatic dualism is explained herein by a comprehensive hypothesis, which is based on our recent in vitro studies and on pharmacokinetic in vivo considerations. The hypothesis predicts that low concentrations of cannabinoids will be neurotoxic while high concentrations of the drugs will protect from neuronal damage, and suggests that chronic administration of cannabinoids will induce neuronal death, while their acute administration will protect the brain. We further propose straight forward experiments, both in vivo (animal models for brain damage) and in vitro (cell death in neuronal cultures) to verify this hypothesis. The outcome of these experiments may have practical applications when considering the use of cannabinoids as therapeutic agents and in evaluating the consequences of their use as recreational drugs.
Collapse
Affiliation(s)
- Y Sarne
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
74
|
Muthian S, Rademacher DJ, Roelke CT, Gross GJ, Hillard CJ. Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience 2004; 129:743-50. [PMID: 15541895 DOI: 10.1016/j.neuroscience.2004.08.044] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 10/26/2022]
Abstract
The role of endocannabinoid signaling in the response of the brain to injury is tantalizing but not clear. In this study, transient middle cerebral artery occlusion (MCAo) was used to produce ischemia/reperfusion injury. Brain content of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol were determined during MCAo. Whole brain AEA content was significantly increased after 30, 60 and 120 min MCAo compared with sham-operated brain. The increase in AEA was localized to the ischemic hemisphere after 30 min MCAo, but at 60 and 120 min, was also increased in the contralateral hemisphere. 2-Arachidonoylglycerol content was unaffected by MCAo. In a second set of studies, injury was assessed 24 h after 2 h MCAo. Rats administered a single dose (3 mg/kg) of the cannabinoid receptor type 1 (CB1) receptor antagonist SR141716 prior to MCAo exhibited a 50% reduction in infarct volume and a 40% improvement in neurological function compared with vehicle control. A second CB1 receptor antagonist, LY320135 (6 mg/kg), also significantly improved neurological function. The CB1 receptor agonist, WIN 55212-2 (0.1-1 mg/kg) did not affect either infarct volume or neurological score.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Benzofurans/administration & dosage
- Benzoxazines
- Blood Pressure/drug effects
- Brain Chemistry/physiology
- Brain Infarction/pathology
- Chromatography, Liquid/methods
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endocannabinoids
- Hemodynamics/drug effects
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Ischemic Attack, Transient/etiology
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/physiopathology
- Ischemic Attack, Transient/prevention & control
- Male
- Mass Spectrometry/methods
- Morpholines/administration & dosage
- Naphthalenes/administration & dosage
- Neurologic Examination
- Piperidines/administration & dosage
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Reperfusion Injury/metabolism
- Reperfusion Injury/prevention & control
- Rimonabant
- Tetrazolium Salts
- Time Factors
Collapse
Affiliation(s)
- S Muthian
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Planck Road, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
75
|
Schneider M, Koch M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 2003; 28:1760-9. [PMID: 12888772 DOI: 10.1038/sj.npp.1300225] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is evidence from studies in humans and animals that a vulnerable period for chronic cannabinoid administration exists during certain phases of development. The present study tested the hypothesis that long-lasting interference of cannabinoids with the developing endogenous cannabinoid system during puberty causes persistent behavioral alterations in adult rats. Chronic treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN) (1.2 mg/kg) or vehicle was extended over 25 days either throughout the rats' puberty or for a similar time period in adult rats. The rats received 20 injections intraperitoneally (i.p.), which were not delivered regularly. Adult rats were tested for object recognition memory, performance in a progressive ratio (PR) operant behavior task, locomotor activity, and prepulse inhibition (PPI) of the acoustic startle response (ASR). PPI was significantly disrupted only by chronic peripubertal cannabinoid treatment. This long-lasting PPI deficit was reversed by the acute administration of the dopamine antagonist haloperidol. Furthermore, we found deficits in recognition memory of pubertal-treated rats and these animals showed lower break points in a PR schedule, whereas food preference and locomotion were not affected. Adult chronic cannabinoid treatment had no effect on the behaviors tested. Therefore, we conclude that puberty in rats is a vulnerable period with respect to the adverse effects of cannabinoid treatment. Since PPI deficits, object recognition memory impairments, and anhedonia/avolition are among the endophenotypes of schizophrenia, we propose chronic cannabinoid administration during pubertal development as an animal model for some aspects of the etiology of schizophrenia.
Collapse
Affiliation(s)
- Miriam Schneider
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Bremen, Germany.
| | | |
Collapse
|
76
|
Liu P, Bilkey DK, Darlington CL, Smith PF. Cannabinoid CB1 receptor protein expression in the rat hippocampus and entorhinal, perirhinal, postrhinal and temporal cortices: regional variations and age-related changes. Brain Res 2003; 979:235-9. [PMID: 12850592 DOI: 10.1016/s0006-8993(03)02872-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cannabinoids have been shown to disrupt memory processes and these effects occur primarily through cannabinoid CB1 receptors in the brain. The present study investigates, for the first time, the regional variations and age-related changes in CB1 protein expression in the hippocampus and its neighbouring entorhinal, perirhinal, postrhinal and temporal cortices using Western blotting. In young adult rats, CB1 protein was highly expressed in the hippocampus and within the hippocampus, the greatest density of CB1 protein was located in CA1. When a comparison was made between young (4-month-old) and aged (24-month-old) rats, CB1 protein expression was significantly increased in the aged entorhinal and temporal cortices and was significantly decreased in the aged postrhinal cortex. The present study demonstrates region-specific changes in CB1 protein expression during ageing and further suggests that cannabinoid CB1 receptors may contribute to the aging process.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
77
|
Abstract
The active compound in herbal cannabis, Delta(9)-tetrahydrocannabinol, exerts all of its known central effects through the CB(1) cannabinoid receptor. Research on cannabinoid mechanisms has been facilitated by the availability of selective antagonists acting at CB(1) receptors and the generation of CB(1) receptor knockout mice. Particularly important classes of neurons that express high levels of CB(1) receptors are GABAergic interneurons in hippocampus, amygdala and cerebral cortex, which also contain the neuropeptides cholecystokinin. Activation of CB(1) receptors leads to inhibition of the release of amino acid and monoamine neurotransmitters. The lipid derivatives anandamide and 2-arachidonylglycerol act as endogenous ligands for CB(1) receptors (endocannabinoids). They may act as retrograde synaptic mediators of the phenomena of depolarization-induced suppression of inhibition or excitation in hippocampus and cerebellum. Central effects of cannabinoids include disruption of psychomotor behaviour, short-term memory impairment, intoxication, stimulation of appetite, antinociceptive actions (particularly against pain of neuropathic origin) and anti-emetic effects. Although there are signs of mild cognitive impairment in chronic cannabis users there is little evidence that such impairments are irreversible, or that they are accompanied by drug-induced neuropathology. A proportion of regular users of cannabis develop tolerance and dependence on the drug. Some studies have linked chronic use of cannabis with an increased risk of psychiatric illness, but there is little evidence for any causal link. The potential medical applications of cannabis in the treatment of painful muscle spasms and other symptoms of multiple sclerosis are currently being tested in clinical trials. Medicines based on drugs that enhance the function of endocannabinoids may offer novel therapeutic approaches in the future.
Collapse
Affiliation(s)
- Leslie Iversen
- Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
78
|
Pope HG, Gruber AJ, Hudson JI, Cohane G, Huestis MA, Yurgelun-Todd D. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend 2003; 69:303-10. [PMID: 12633916 DOI: 10.1016/s0376-8716(02)00334-4] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Individuals who initiate cannabis use at an early age, when the brain is still developing, might be more vulnerable to lasting neuropsychological deficits than individuals who begin use later in life. METHODS We analyzed neuropsychological test results from 122 long-term heavy cannabis users and 87 comparison subjects with minimal cannabis exposure, all of whom had undergone a 28-day period of abstinence from cannabis, monitored by daily or every-other-day observed urine samples. We compared early-onset cannabis users with late-onset users and with controls, using linear regression controlling for age, sex, ethnicity, and attributes of family of origin. RESULTS The 69 early-onset users (who began smoking before age 17) differed significantly from both the 53 late-onset users (who began smoking at age 17 or later) and from the 87 controls on several measures, most notably verbal IQ (VIQ). Few differences were found between late-onset users and controls on the test battery. However, when we adjusted for VIQ, virtually all differences between early-onset users and controls on test measures ceased to be significant. CONCLUSIONS Early-onset cannabis users exhibit poorer cognitive performance than late-onset users or control subjects, especially in VIQ, but the cause of this difference cannot be determined from our data. The difference may reflect (1). innate differences between groups in cognitive ability, antedating first cannabis use; (2). an actual neurotoxic effect of cannabis on the developing brain; or (3). poorer learning of conventional cognitive skills by young cannabis users who have eschewed academics and diverged from the mainstream culture.
Collapse
Affiliation(s)
- Harrison G Pope
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Marijuana smoking is recognised to impair human cognition and learning, but the mechanisms by which this occurs are not well characterised. This article focuses exclusively on the hippocampus to review the effects of cannabinoids on hippocampal function and evaluate the evidence that hippocampal cannabinoid receptors play a role in learning and formation of memory. Activation of cannabinoid receptors inhibits release of a variety of neurotransmitters, and modulates a number of intrinsic membrane conductances. Suppression of inhibitory GABAergic synaptic transmission has been repeatedly described, but whether there is also control of excitatory glutamatergic transmission is more controversial. The recognition that the commonly used WIN55,212-2 also acts via non-cannabinoid receptors may help resolve this issue. The involvement of endocannabinoids in depolarisation induced suppression of inhibition (DSI) and the demonstration that activation of metabotropic glutamate receptors can stimulate endocannabinoid release have provided the first insights into the physiological roles of the cannabinoids. Cannabinoids have consistently been reported to inhibit high frequency stimulation induced synaptic long-term potentiation but the experimental design of most behavioural experiments have meant it is not possible to categorically demonstrate a role for hippocampal cannabinoid receptors in learning and memory.
Collapse
Affiliation(s)
- S N Davies
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
80
|
Goncharova ND, Lapin BA. Effects of aging on hypothalamic-pituitary-adrenal system function in non-human primates. Mech Ageing Dev 2002; 123:1191-201. [PMID: 12044968 DOI: 10.1016/s0047-6374(02)00012-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study was aimed at characterizing the changes in hypothalamic-pituitary-adrenal (HPA) axis function during aging in monkey models (Papio hamadryas and Macaca mulatta). It has been established by specific radioimmunoassay and enzyme immunoassay that basal plasma levels of adrenal androgenes (dehydroepiandrosterone-DHEA, dehydroepiandrosterone sulfate-DHEAS) and the early precursors of steroid hormones (pregnenolone and 17-hydroxypregnenolone) progressively decrease with age in baboons and macaques, while cortisol and 11-desoxycortisol concentrations do not change. The old female rhesus monkeys exhibited a higher cortisol and corticosterone response, but a lower DHEAS response to corticotropin-releasing hormone (CRH) administration then the young monkeys. The aged rhesus monkeys also exhibited a decrease of the adrenal cortex resiliency, that was manifested in the deceleration of the decrease of cortisol concentrations after the peak values had been reached in response to ACTH 1-39 administration. At the same time the ACTH 1-24 depot test revealed no age-related changes in the maximum capacity of monkey adrenals to synthesize and secrete cortisol. The aged monkeys also developed less sensitivity of the HPA axis to dexametasone suppression test. The age-related hormonal changes may play an important role in the age-related involutive processes and in the disorders of the adaptive ability of old organisms.
Collapse
Affiliation(s)
- Nadezhda D Goncharova
- Laboratory of Endocrinology, Institute of Medical Primatology of the Russian Academy of Medical Sciences, 354376, Veseloye 1, Sochi-Adler, Russia.
| | | |
Collapse
|
81
|
Abstract
More than half of US adolescents will experiment with marijuana. Of those who try marijuana more than once, approximately one third will subsequently use marijuana regularly, although most will have stopped by their late 20s. Although genetic predisposition plays the most important role in determining who will develop dependence, environmental factors influence who will initiate marijuana use. One of the challenges for prevention and treatment programs is that the immediate adverse effects of marijuana use are not extreme, and many adolescents have difficulty in making decisions based on future risks. Therefore, the consequences of leaving school early, having unprotected sex, and driving while intoxicated are often insufficient to deter adolescents from using marijuana. Thus, it is not surprising that current prevention and treatment programs have had limited success in decreasing the rates of initiation and regular use of marijuana among adolescents. However, the accumulation of data about marijuana use in adolescents has the potential to enable the development of more effective prevention and treatment programs.
Collapse
Affiliation(s)
- Amanda J Gruber
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
82
|
Hussain RJ, Carpenter DO. Development of synaptic responses and plasticity at the SC-CA1 and MF-CA3 synapses in rat hippocampus. Cell Mol Neurobiol 2001; 21:357-68. [PMID: 11775066 DOI: 10.1023/a:1012602105208] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The development of synaptic transmission and indicators of short- and long-term plasticity was studied by recording from areas CA1 and CA3 upon activation of monosynaptic excitatory inputs in rat hippocampal brain slices obtained from Wistar rats of different ages. 2. Although population field excitatory postsynaptic potentials (fEPSPS) are small in animals at postnatal day 10 (P10), both areas already exhibited short-term [posttetanic potentiation (PTP) and paired pulse potentiation (PPF)] and long-term [long-term potentiation (LTP)] plastic responses. 3. The amplitudes of the fEPSP and LTP increased with age in both regions, but peaked at P30 in CA3 while they were still increasing at the oldest age studied (P60) in CA1. In CA3, but not CA1, LTP at P60 was less than at P30. 4. PTP did not show clear alterations with age in either region. PPF decreased with age in CA1 but not CA3.
Collapse
Affiliation(s)
- R J Hussain
- Department of Environmental Health and Toxicology, School of Public Health, University at Albany, Rensselaer, New York 12144, USA
| | | |
Collapse
|
83
|
Rodríguez De Fonseca F, Gorriti MA, Bilbao A, Escuredo L, García-Segura LM, Piomelli D, Navarro M. Role of the endogenous cannabinoid system as a modulator of dopamine transmission: implications for Parkinson's disease and schizophrenia. Neurotox Res 2001; 3:23-35. [PMID: 15111259 DOI: 10.1007/bf03033228] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The endogenous cannabinoid system is a new signaling system composed by the central (CB1) and the peripheral (CB2) receptors, and several lipid transmitters including anandamide and 2-arachidonylglycerol. This system is the target of natural cannabinoids, the psychoactive constituents of Cannabis sativa preparations (marijuana, hashish). Acute and chronic cannabis exposure has been associated with subjective feelings of pleasure and relaxation, but also to the onset of psychiatric syndromes, a decrease of the efficacy of neuroleptics and alterations in the extrapyramidal system regulation of motor activity. These actions point to a tight association of the cannabinoid system with the brain dopaminergic circuits involved in addiction, the clinical manifestation of positive symptoms of schizophrenia and Parkinson's disease. The present work discusses anatomical, biochemical and pharmacological evidences supporting a role for the endogenous cannabinoid system in the modulation of dopaminergic transmission. Cannabinoid CB1 receptors are present in dopamine projecting brain areas. In primates and certain rat strains it is also located in dopamine cells of the A8, A9 and A10 mesencephalic cell groups, as well as in hypothalamic dopaminergic neurons controlling prolactin secretion. CB1 receptors co-localize with dopamine D1/D2 receptors in dopamine projecting fields. Manipulation of dopaminergic transmission is able to alter the synthesis and release of anandamide as well as the expression of CB1 receptors. Additionally, CB1 receptors can switch its transduction mechanism to oppose to the ongoing dopamine signaling. Acute blockade of CB1 receptor potentiates the facilitatory role of dopamine D2 receptor agonists on movement. CB1 stimulation results in sensitization to the motor effects of indirect dopaminergic agonists. The dynamics of these changes indicate that the cannabinoid system is an activity-dependent modulator of dopaminergic transmission, an hypothesis relevant for the design of new therapeutic strategies for dopamine-related diseases such as the psychosis and Parkinson's disease.
Collapse
Affiliation(s)
- F Rodríguez De Fonseca
- Departamento de Psicobiologia, Facultad de Psicologia, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
84
|
Wilson W, Mathew R, Turkington T, Hawk T, Coleman RE, Provenzale J. Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J Addict Dis 2000; 19:1-22. [PMID: 10772599 DOI: 10.1300/j069v19n01_01] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The focus of this report is on the possible role that the age of first use of marijuana may play on brain morphology and function. METHODS Magnetic resonance imaging (MRI) and positron emission tomography (PET) were utilized to study 57 subjects. Brain volume measures (whole brain, gray matter, white matter and lateral ventricle volumes), global cerebral blood flow (CBF) and body size were evaluated. RESULTS There are three primary findings related to age of first use of marijuana. Subjects who started using marijuana before age 17, compared to those who started later, had smaller whole brain and percent cortical gray matter and larger percent white matter volumes. Functionally, males who started using marijuana before 17 had significantly higher CBF than other males. Both males and females who started younger were physically smaller in height and weight, with the effects being greater in males. CONCLUSIONS These findings suggest that the age at which exposure to marijuana begins is important. Early adolescence may be a critical period for effects that are not present when exposure begins later. These results are discussed in light of reported effects of marijuana on gonadal and pituitary hormones.
Collapse
Affiliation(s)
- W Wilson
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Marijuana consumption elicits diverse physiological and psychological effects in humans, including memory loss. Here we report that Delta9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is toxic for hippocampal neurons. Treatment of cultured neurons or hippocampal slices with THC caused shrinkage of neuronal cell bodies and nuclei as well as genomic DNA strand breaks, hallmarks of neuronal apoptosis. Neuron death induced by THC was inhibited by nonsteroidal anti-inflammatory drugs, including indomethacin and aspirin, as well as vitamin E and other antioxidants. Furthermore, treatment of neurons with THC stimulated a significant increase in the release of arachidonic acid. We hypothesize that THC neurotoxicity is attributable to activation of the prostanoid synthesis pathway and generation of free radicals by cyclooxygenase. These data suggest that some of the memory deficits caused by cannabinoids may be caused by THC neurotoxicity.
Collapse
|
86
|
Navarro M, Rubio P, de Fonseca FR. Behavioural consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology (Berl) 1995; 122:1-14. [PMID: 8711059 DOI: 10.1007/bf02246436] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cannabis sativa preparations (hashish, marijuana) are the most widely used illicit drugs during pregnancy in Western countries. The possible long-term consequences for the child of in utero exposure to cannabis derivatives are still poorly understood. Animal models of perinatal cannabinoid exposure provide a useful tool for examining the developmental effects of cannabinoids. Behavioral consequences of maternal exposure to either cannabis preparations or to its main psychoactive component, delta 9-tetrahydrocannabinol (THC) in rat models are reviewed in this paper. Maternal exposure to cannabinoids resulted in alteration in the pattern of ontogeny of spontaneous locomotor and exploratory behavior in the offspring. Adult animals exposed during gestational and lactational periods exhibited persistent alterations in the behavioral response to novelty, social interactions, sexual orientation and sexual behavior. They also showed a lack of habituation and reactivity to different illumination conditions. Adult offspring of both sexes also displayed a characteristic increase in spontaneous and water-induced grooming behavior. Some of the effects were dependent on the sex of the animals being studied, and the dose of cannabinoid administered to the mother during gestational and lactational periods. Maternal exposure to low doses of THC sensitized the adult offspring of both sexes to the reinforcing effects of morphine, as measured in a conditioned place preference paradigm. The existence of sexual dimorphisms on the developmental effects of cannabinoids, the role of sex steroids, glucocorticoids, and pituitary hormones, the possible participation of cortical projecting monoaminergic systems, and the mediation of the recently described cannabinoid receptors are also analyzed. The information obtained in animal studies is compared to the few data available on the long-term behavioral and cognitive effects on in utero exposure to cannabis in humans.
Collapse
Affiliation(s)
- M Navarro
- Departamento de Psicobiología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
87
|
Abstract
Our previous research with long term cannabis users established an impaired ability to focus attention and filter out irrelevant information, which was progressive with the cumulative duration of exposure to cannabis. The current study examined these processes in a group of ex-cannabis users. The results suggested a partial recovery of function but the past duration of cannabis use continued to have an adverse effect on the ability to effectively reject complex irrelevant information. There was no indication of improvement with increasing length of abstinence. Whilst relatively subtle in nature, the consequences of such an enduring deficit associated with cannabis use are worthy of further investigation.
Collapse
Affiliation(s)
- N Solowij
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| |
Collapse
|
88
|
Quantitative Morphometry for Neurotoxicity Assessment. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
89
|
Struve FA, Straumanis JJ, Patrick G. Persistent topographic quantitative EEG sequelae of chronic marihuana use: a replication study and initial discriminant function analysis. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 1994; 25:63-75. [PMID: 8194190 DOI: 10.1177/155005949402500207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In a previous pilot study using psychiatric patients we reported that daily marihuana users had significant elevations of (1) Absolute Alpha Power, (2) Relative Alpha Power, and (3) Interhemispheric Alpha Coherence over both frontal and frontal-central areas when contrasted with subjects who did not use marihuana. We referred to this phenomenon as Hyperfrontality of Alpha. The study presented here is a successful replication of our previous findings using new samples of subjects and identical methods. Post hoc analyses based on the combined sample from both studies suggest that variables of psychiatric diagnoses and medication did not bias our results. In addition, a discriminant function analysis using quantitative EEG variables as candidate predictors generated a 95% correct THC user versus nonuser classification accuracy which received a successful jackknife replication.
Collapse
Affiliation(s)
- F A Struve
- Psychiatry Department, Louisiana State University School of Medicine, Shreveport 71130-3932
| | | | | |
Collapse
|
90
|
Dobie DJ, Miller MA, Raskind MA, Dorsa DM. Testosterone reverses a senescent decline in extrahypothalamic vasopressin mRNA. Brain Res 1992; 583:247-52. [PMID: 1504830 DOI: 10.1016/s0006-8993(10)80030-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The biosynthetic activity of extra-hypothalamic vasopressin (VP) neurons in the bed nucleus of the stria terminalis (BNST) is regulated by gonadal steroids. These neurons have also been implicated in a number of behaviors that are impaired in aging. We previously reported that VP mRNA labelling in the BNST is decreased in senescent rats. We hypothesized that the age-related decrease in VP mRNA labelling is due to the decline in circulating testosterone (T) levels in aged animals. T or saline was administered peripherally for 1 month in physiologic or superphysiologic doses to 3 month old or 24 month old Fischer 344 male rats. In situ hybridization and quantitative autoradiography for VP mRNA in the BNST were performed using a 48-base 35S-labelled oligonucleotide probe. Administration of T completely reversed the decline in VP mRNA labelling in the aged animals. Superphysiologic T further increased VP gene expression in both age groups. These data are consistent with a previous report of T-induced increase in VP immunoreactive fiber density in other extrahypothalamic regions of the brain in aged rats. This study offers further evidence that alterations in the hormonal milieu may play an important role in modulating neuronal biosynthetic activity in senescence.
Collapse
Affiliation(s)
- D J Dobie
- Department of Psychiatry and Behavioral Science, University of Washington Medical Center, Seattle 98195
| | | | | | | |
Collapse
|
91
|
Abstract
Several laboratories have reported that chronic exposure to delta-9-tetrahydrocannabinol (THC) or marijuana extracts persistently altered the structure and function of the rat hippocampus, a paleocortical brain region involved with learning and memory processes in both rats and humans. Certain choices must be made in designing experiments to evaluate cannabis neurotoxicity, such as dose, route of administration, duration of exposure, age at onset of exposure, species of subjects, whether or how long to allow withdrawal, and which endpoints or biomarkers of neurotoxicity to measure. A review of the literature suggests that both age during exposure and duration of exposure may be critical determinants of neurotoxicity. Cannabinoid administration for at least three months (8-10% of a rat's lifespan) was required to produce neurotoxic effects in peripubertal rodents, which would be comparable to about three years exposure in rhesus monkeys and seven to ten years in humans. Studies of monkeys after up to 12 months of daily exposure have not consistently reported neurotoxicity, and the results of longer exposures have not yet been studied.
Collapse
Affiliation(s)
- A C Scallet
- Division of Reproductive and Developmental Toxicology, National Center for Toxicological Research, Jefferson, AR 72079
| |
Collapse
|
92
|
Margulies JE, Hammer RP. Delta 9-tetrahydrocannabinol alters cerebral metabolism in a biphasic, dose-dependent manner in rat brain. Eur J Pharmacol 1991; 202:373-8. [PMID: 1660815 DOI: 10.1016/0014-2999(91)90281-t] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
delta 9-tetrahydrocannabinol (THC)-induced alterations in limbic and neocortical function are associated with deficiencies in short-term memory and recall. The 2-deoxy-D-glucose (2DG) autoradiographic method was used to examine the effect of acute THC administration (0, 0.2, 0.5, 2.0, 10.0 mg/kg) on regional brain metabolism in limbic and cortical brain regions of male rats. THC altered 2DG uptake in a biphasic, dose-dependent manner in most limbic and cortical structures, however most diencephalic and brainstem structures examined were unaffected. The 0.2 mg/kg THC dose significantly increased 2DG uptake relative to vehicle treatment in all cortical and selected limbic regions, whereas the 2.0 and 10.0 mg/kg THC doses decreased 2DG uptake in most of these regions. Certain limbic regions, particularly the hippocampus, are more sensitive to THC suggesting a selective regional action of the drug at lower doses. The incidence of enhanced metabolic activity in limbic and cortical regions is consistent with the occurrence of high density cannabinoid receptors in these regions.
Collapse
Affiliation(s)
- J E Margulies
- Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Honolulu 96822
| | | |
Collapse
|
93
|
Lester BM, Corwin MJ, Sepkoski C, Seifer R, Peucker M, McLaughlin S, Golub HL. Neurobehavioral syndromes in cocaine-exposed newborn infants. Child Dev 1991; 62:694-705. [PMID: 1935340 DOI: 10.1111/j.1467-8624.1991.tb01563.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of fetal cocaine exposure on newborn cry characteristics were studied in 80 cocaine-exposed and 80 control infants. The groups were stratified to be similar on maternal demographic characteristics and maternal use of other illegal substances and alcohol during pregnancy. The hypothesis was that excitable cry characteristics were related to the direct effects of cocaine, while depressed cry characteristics were related to the indirect effects of cocaine secondary to low birthweight. Structural equation modeling (EQS) showed direct effects of cocaine on cries with a longer duration, higher fundamental frequency, and a higher and more variable first formant frequency. Indirect effects of cocaine secondary to low birthweight resulted in cries with a longer latency, fewer utterances, lower amplitude, and more dysphonation. Cocaine-exposed infants had a lower birthweight, shorter length, and smaller head circumference than the unexposed controls. Findings were consistent with the notion that 2 neurobehavioral syndromes, excitable and depressed, can be described in cocaine-exposed infants, and that these 2 syndromes are due, respectively, to direct neurotoxic effects and indirect effects secondary to intrauterine growth retardation.
Collapse
Affiliation(s)
- B M Lester
- Brown University Program in Medicine, Providence, RI
| | | | | | | | | | | | | |
Collapse
|
94
|
Eldridge JC, Murphy LL, Landfield PW. Cannabinoids and the hippocampal glucocorticoid receptor: recent findings and possible significance. Steroids 1991; 56:226-31. [PMID: 1652167 DOI: 10.1016/0039-128x(91)90038-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has long been recognized that cannabinoids, including delta 9-tetrahydrocannabinol (THC), the major psychoactive substance of marijuana, bear structural similarities to steroid hormones. The hippocampal region of the brain is particularly rich in glucocorticoid receptors (GCRs), and the region also displays dense autoradiographic binding by synthetic cannabinoids. The present report summarizes studies conducted on cannabinoid interaction with hippocampal GCRs, both in vivo and in vitro. Young rats treated for 8 months with THC displayed anatomic and cellular changes in the hippocampus similar to those seen in older, untreated rats, or in rats treated with high levels of glucocorticoids. Binding of [3H]dexamethasone in cytosol prepared from adrenalectomized rat hippocampus was reduced in the presence of 100-fold molar excess of unlabeled THC. However, further increases of THC concentration, to 20,000-fold excess, could displace no more than 50% of radiolabeled dexamethasone. Scatchard analysis of the binding produced a parallel competition plot for THC, versus the plot for dexamethasone, which may reflect a noncompetitive or allosteric interaction with hippocampal GCR. Cannabidiol, a nonpsychoactive cannabinoid, displayed less competition than THC in all parameters. Treatment of adrenalectomized rats for 14 days with 10 mg/kg THC produced down-regulation of hippocampal GCR binding in a manner also reported following high glucocorticoid administration. Although an initial oral administration of THC to intact rats stimulated release of plasma corticosterone, daily repetition of treatment for 7 and 14 days failed to elicit further corticosterone secretion. Taken together, the results indicate that THC may possess some agonist-like properties of glucocorticoids at the hippocampal GCR site.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J C Eldridge
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103
| | | | | |
Collapse
|
95
|
Westlake TM, Howlett AC, Ali SF, Paule MG, Scallet AC, Slikker W. Chronic exposure to delta 9-tetrahydrocannabinol fails to irreversibly alter brain cannabinoid receptors. Brain Res 1991; 544:145-9. [PMID: 1649662 DOI: 10.1016/0006-8993(91)90897-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of chronic delta 9-tetrahydrocannabinol (delta 9-THC) and marijuana administration on the properties of brain cannabinoid receptor populations of the rat and monkey, respectively, were examined in this study. It was determined that the properties of the cannabinoid receptors in the striatum, cerebral cortex, cerebellum, hippocampus, and brainstem/spinal cord of the rat do not appear to be irreversibly altered by chronic exposure to delta 9-THC. Similarly, the cannabinoid receptors in the caudate, prefrontal cortex, and cerebellum of the monkey do not appear to be irreversibly altered by chronic exposure to marijuana smoke.
Collapse
Affiliation(s)
- T M Westlake
- Department of Pharmacological and Physiological Science, St. Louis University Medical Center, MO 63104
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Previous studies have found that chronic administration of delta9-tetrahydrocannabinol (THC), a psychoactive cannabinoid, can induce brain aging-like degenerative changes in hippocampal structures (e.g., pyramidal cell loss, glial reactivity). Normal aging changes in the hippocampus appear to be partly corticosteroid-dependent. Because THC is similar in molecular structure to corticosteroids (CORT), therefore, we have suggested that THC may act to induce pathology in the hippocampus through CORT receptors. The possibility of THC interactions with CORT receptors was tested more directly in the present studies. Binding of [3H]dexamethasone (DEX) to hippocampal cytosol, in vitro, was inhibited partially, but not completely, by 100-fold excess unlabeled THC and cannabidiol (CBD), a non-psychoactive cannabinoid. Even at 10,000-fold molar excess, moreover, THC could displace only 50% of radiolabeled DEX binding and CBD could inhibit only 22% of tracer binding. Scatchard plot analyses also pointed to a possible non-competitive site for cannabinoid interaction with glucocorticoid receptors. In addition, several studies utilizing the synthetic steroid RU-28362 indicated that THC interacts primarily with the type II class of glucocorticoid receptors. In a separate study, adrenalectomized rats were treated daily for 14 days with 5-10 mg/kg THC or vehicle, and examined 24 h later for [3H]CORT binding in hippocampal cytosol. In THC-treated animals, the Bmax for type II binding was reduced to a degree almost comparable to the down-regulation seen after chronic stress or high corticosteroid administration.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J C Eldridge
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103
| | | |
Collapse
|
97
|
Discriminative stimulus properties of intracranial administration of delta-9-tetrahydrocannabinol. Drug Dev Res 1989. [DOI: 10.1002/ddr.430160233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|