51
|
Johnstone M, Hillary RF, St Clair D. Stem Cells to Inform the Neurobiology of Mental Illness. Curr Top Behav Neurosci 2019; 40:13-43. [PMID: 30030769 DOI: 10.1007/7854_2018_57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inception of human-induced pluripotent stem cell (hiPSCs) technology has provided an exciting platform upon which the modelling and treatment of human neurodevelopmental and neuropsychiatric disorders may be expedited. Although the genetic architecture of these disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Animal models of neurodevelopmental disorders, such as schizophrenia and autism spectrum disorders, show limitations in recapitulating the full complexity and heterogeneity of human neurodevelopmental disease states. Indeed, patient-derived hiPSCs offer distinct advantages over classical animal models in the study of human neuropathologies. Here we have discussed the current, relative translational merit of hiPSCs in investigating human neurodevelopmental and neuropsychiatric disorders with a specific emphasis on the utility of such systems to aid in the identification of biomarkers. We have highlighted the promises and pitfalls of reprogramming cell fate for the study of these disorders and provide recommendations for future directions in this field in order to overcome current limitations. Ultimately, this will aid in the development of effective clinical strategies for diverse patient populations affected by these disorders with the aim of also leading to biomarker identification.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, Royal Edinburgh Hospital, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Robert F Hillary
- Division of Psychiatry, Royal Edinburgh Hospital, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David St Clair
- Division of Psychiatry, Royal Edinburgh Hospital, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
52
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
53
|
Fuentes-Villalobos F, Farkas C, Riquelme-Barrios S, Armijo ME, Soto-Rifo R, Pincheira R, Castro AF. DISC1 promotes translation maintenance during sodium arsenite-induced oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:657-669. [DOI: 10.1016/j.bbagrm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
|
54
|
Bray NJ, O’Donovan MC. The genetics of neuropsychiatric disorders. Brain Neurosci Adv 2019; 2:2398212818799271. [PMID: 31179400 PMCID: PMC6551216 DOI: 10.1177/2398212818799271] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric disorders are complex conditions with poorly defined neurobiological bases. In recent years, there have been significant advances in our understanding of the genetic architecture of these conditions and the genetic loci involved. This review article describes historical attempts to identify susceptibility genes for neuropsychiatric disorders, recent progress through genome-wide association studies, copy number variation analyses and exome sequencing, and how these insights can inform the neuroscientific investigation of these conditions.
Collapse
Affiliation(s)
- Nicholas J. Bray
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
55
|
Suh Y, Noh SJ, Lee S, Suh BK, Lee SB, Choi J, Jeong J, Kim S, Park SK. Dopamine D1 Receptor (D1R) Expression Is Controlled by a Transcriptional Repressor Complex Containing DISC1. Mol Neurobiol 2019; 56:6725-6735. [PMID: 30915712 PMCID: PMC6728282 DOI: 10.1007/s12035-019-1566-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/13/2019] [Indexed: 11/26/2022]
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a scaffold protein implicated in various psychiatric diseases. Dysregulation of the dopamine system has been associated with DISC1 deficiency, while the molecular mechanism is unclear. In this study, we propose a novel molecular mechanism underlying the transcriptional regulation of the dopamine D1 receptor (D1R) in the striatum via DISC1. We verified the increase in D1R at the transcriptional level in the striatum of DISC1-deficient mouse models and altered histone acetylation status at the D1r locus. We identified a functional interaction between DISC1 and Krüppel-like factor 16 (KLF16). KLF16 translocates DISC1 into the nucleus and forms a regulatory complex by recruiting SIN3A corepressor complexes to the D1r locus. Moreover, DISC1-deficient mice have altered D1R-mediated signaling in the striatum and exhibit hyperlocomotion in response to cocaine; the blockade of D1R suppresses these effects. Taken together, our results suggest that nuclear DISC1 plays a critical role in the transcriptional regulation of D1R in the striatal neuron, providing a mechanistic link between DISC1 and dopamine-related psychiatric symptoms.
Collapse
Affiliation(s)
- Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su-Jin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Saebom Lee
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University of School of Medicine, Baltimore, MD, USA
- The Center for Nanomedicine at Wilmer Eye Institute, The Johns Hopkins University of School of Medicine, Baltimore, MD, USA
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jinhyuk Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sangjune Kim
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University of School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
56
|
Segal-Gavish H, Barzilay R, Rimoni O, Offen D. Voluntary exercise improves cognitive deficits in female dominant-negative DISC1 transgenic mouse model of neuropsychiatric disorders. World J Biol Psychiatry 2019; 20:243-252. [PMID: 28593819 DOI: 10.1080/15622975.2017.1323118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Physical exercise has gained increasing interest as a treatment modality that improves prognosis in psychiatric patients. The disrupted in schizophrenia 1 (DISC1) gene is a candidate gene for major mental illness. In this study, we aimed to determine whether voluntary wheel running can improve cognitive deficits of dominant-negative DISC1 transgenic mice (DN-DISC1). METHODS DN-DISC1 and control mice (10-week-old male and female) were placed for 14 days in a cage with or without access to a running wheel. Two weeks later, mice underwent behavioural tests evaluating cognition and social approach and recognition. RESULTS Voluntary exercise improved performance in the novel object recognition test, restored the impairment in spatial memory in the Y maze, and reversed the deficit in social recognition memory in DN-DISC1 females. DN-DISC1 males did not exhibit behavioural deficits at baseline. Tissue analysis revealed that exercise induced a significant increase in hippocampal expression of doublecortin (DCX), brain-derived neurotrophic factor (BDNF) and cannabinoid receptor type 1 (CB1R) only in DN-DISC1 females. CONCLUSIONS Voluntary exercise is beneficial in attenuating cognitive deficits observed in a rodent model relevant for neuropsychiatric disorders. The data add a preclinical aspect to the accumulating clinical data supporting the incorporation of physical exercise to patients' care.
Collapse
Affiliation(s)
- Hadar Segal-Gavish
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Ran Barzilay
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel.,b Research Unit , Geha Mental Health Center , Petach Tikva , Israel
| | - Ofri Rimoni
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Daniel Offen
- a Laboratory of Neuroscience , Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
57
|
St Clair D, Johnstone M. Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0037. [PMID: 29352035 PMCID: PMC5790834 DOI: 10.1098/rstb.2017.0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
Solid progress has occurred over the last decade in our understanding of the molecular genetic basis of neurodevelopmental disorders, and of schizophrenia and autism in particular. Although the genetic architecture of both disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Using the DISC1/NDE1 and CYFIP1/EIF4E loci as exemplars, we explore the opportunities and challenges of using animal models and human-induced pluripotent stem cell technologies to further understand/treat and potentially reverse the worst consequences of these debilitating disorders. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’.
Collapse
Affiliation(s)
- David St Clair
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
58
|
OBI-NAGATA K, TEMMA Y, HAYASHI-TAKAGI A. Synaptic functions and their disruption in schizophrenia: From clinical evidence to synaptic optogenetics in an animal model. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:179-197. [PMID: 31080187 PMCID: PMC6742729 DOI: 10.2183/pjab.95.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The adult human brain consists of approximately a hundred billion neurons, which are connected via synapses. The pattern and strength of the synaptic connections are constantly changing (synaptic plasticity), and these changes are considered to underlie learning, memory, and personality. Many psychiatric disorders have been related to disturbances in synaptogenesis and subsequent plasticity. In this review, we summarize findings of synaptic disturbance and its involvement in the pathogenesis and/or pathophysiology of psychiatric disorders. We will focus on schizophrenia, because this condition has a high proven heritability, which offers more unambiguous insights into the biological origins of not only schizophrenia but also related psychiatric disorders. To demonstrate the involvement of synaptopathy in psychiatric disorders, we discuss what knowledge is missing at the circuits level, and what new technologies are needed to achieve a comprehensive understanding of synaptopathy in psychiatric disorders.
Collapse
Affiliation(s)
- Kisho OBI-NAGATA
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yusuke TEMMA
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Akiko HAYASHI-TAKAGI
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Correspondence should be addressed: A. Hayashi-Takagi, Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan (e-mail: )
| |
Collapse
|
59
|
Vasistha NA, Johnstone M, Barton SK, Mayerl SE, Thangaraj Selvaraj B, Thomson PA, Dando O, Grünewald E, Alloza C, Bastin ME, Livesey MR, Economides K, Magnani D, Makedonopolou P, Burr K, Story DJ, Blackwood DHR, Wyllie DJA, McIntosh AM, Millar JK, ffrench-Constant C, Hardingham GE, Lawrie SM, Chandran S. Familial t(1;11) translocation is associated with disruption of white matter structural integrity and oligodendrocyte-myelin dysfunction. Mol Psychiatry 2019; 24:1641-1654. [PMID: 31481758 PMCID: PMC6814440 DOI: 10.1038/s41380-019-0505-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption of white matter integrity compared with familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) derived case oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro. Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced when compared with controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.
Collapse
Affiliation(s)
- Navneet A. Vasistha
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 4905 7710grid.475408.aCentre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK - Post, Bellary Road, Bangalore, 560065 India ,0000 0001 0674 042Xgrid.5254.6Present Address: Biotech Research and Innovation Centre, Ole Maaløes Vej 5, Copenhagen, N 2200 Denmark
| | - Mandy Johnstone
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Samantha K. Barton
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Steffen E. Mayerl
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Bhuvaneish Thangaraj Selvaraj
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Pippa A. Thomson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Owen Dando
- 0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | - Ellen Grünewald
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Clara Alloza
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Mark E. Bastin
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Matthew R. Livesey
- 0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | | | - Dario Magnani
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Paraskevi Makedonopolou
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Karen Burr
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - David J. Story
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Douglas H. R. Blackwood
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - David J. A. Wyllie
- 0000 0004 4905 7710grid.475408.aCentre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK - Post, Bellary Road, Bangalore, 560065 India ,0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | - Andrew M. McIntosh
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - J. Kirsty Millar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Charles ffrench-Constant
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Giles E. Hardingham
- 0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | - Stephen M. Lawrie
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK. .,MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK. .,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK - Post, Bellary Road, Bangalore, 560065, India. .,UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
60
|
Proteomic Studies Reveal Disrupted in Schizophrenia 1 as a Player in Both Neurodevelopment and Synaptic Function. Int J Mol Sci 2018; 20:ijms20010119. [PMID: 30597994 PMCID: PMC6337115 DOI: 10.3390/ijms20010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 02/03/2023] Open
Abstract
A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function. Using an unbiased proteomic approach, we found that the expression of 31 proteins related to neurodevelopment (e.g., CRMP-2, stathmin) and synaptic function (e.g., MUNC-18, NCS-1) is altered by DISC1 in primary mouse neurons. Hence, this study reinforces the idea that DISC1 is a unifying regulator of both neurodevelopment and synaptic function, thereby providing a link between these two key anatomical and cellular circuitries.
Collapse
|
61
|
Kannan G, Prandovszky E, Severance E, Yolken RH, Pletnikov MV. A New T. gondii Mouse Model of Gene-Environment Interaction Relevant to Psychiatric Disease. SCIENTIFICA 2018; 2018:7590958. [PMID: 30631636 PMCID: PMC6305013 DOI: 10.1155/2018/7590958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Infection with the protozoan parasite, Toxoplasma gondii (T. gondii), was linked to several psychiatric disorders. The exact mechanisms of a hypothesized contribution of T. gondii infection are poorly understood, and it appears that only a subset of seropositive individuals go on to develop a mental illness, suggesting genetic vulnerability. In order to stimulate mechanistic studies of how exposure to T. gondii could interact with genetic predisposition to psychiatric disorders, we have generated and characterized a mouse model of chronic T. gondii infection in BALB/c mice with inducible forebrain neuronal expression of a C-terminus truncated dominant-negative form of disrupted-in-schizophrenia 1 (DN-DISC1). In this gene-environment interaction (GxE) model, exposing control and DN-DISC1 male and female mice to T. gondii produced sex-dependent abnormalities in locomotor activity and prepulse inhibition of the acoustic startle. No genotype- or sex-dependent effects were found on levels of anti-Toxoplasma IgG antibodies or anti-NMDAR or C1q antibodies. Our work demonstrates that a psychiatric genetic risk factor, DN-DISC1, modulates the neurobehavioral effects of chronic T. gondii infection in a sex-dependent manner. The present T. gondii model of GxE provides a valuable experimental system for future mechanistic studies and evaluation of new treatments.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emese Prandovszky
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Severance
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert H. Yolken
- Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
62
|
Srikanth P, Lagomarsino VN, Pearse RV, Liao M, Ghosh S, Nehme R, Seyfried N, Eggan K, Young-Pearse TL. Convergence of independent DISC1 mutations on impaired neurite growth via decreased UNC5D expression. Transl Psychiatry 2018; 8:245. [PMID: 30410030 PMCID: PMC6224395 DOI: 10.1038/s41398-018-0281-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
The identification of convergent phenotypes in different models of psychiatric illness highlights robust phenotypes that are more likely to be implicated in disease pathophysiology. Here, we utilize human iPSCs harboring distinct mutations in DISC1 that have been found in families with major mental illness. One mutation was engineered to mimic the consequences on DISC1 protein of a balanced translocation linked to mental illness in a Scottish pedigree; the other mutation was identified in an American pedigree with a high incidence of mental illness. Directed differentiation of these iPSCs using NGN2 expression shows rapid conversion to a homogenous population of mature excitatory neurons. Both DISC1 mutations result in reduced DISC1 protein expression, and show subtle effects on certain presynaptic proteins. In addition, RNA sequencing and qPCR showed decreased expression of UNC5D, DPP10, PCDHA6, and ZNF506 in neurons with both DISC1 mutations. Longitudinal analysis of neurite outgrowth revealed decreased neurite outgrowth in neurons with each DISC1 mutation, which was mimicked by UNC5D knockdown and rescued by transient upregulation of endogenous UNC5D. This study shows a narrow range of convergent phenotypes of two mutations found in families with major mental illness, and implicates dysregulated netrin signaling in DISC1 biology.
Collapse
Affiliation(s)
- Priya Srikanth
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Valentina N. Lagomarsino
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Richard V. Pearse
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Meichen Liao
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Sulagna Ghosh
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Ralda Nehme
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Nicholas Seyfried
- 0000 0001 0941 6502grid.189967.8Department of Biochemistry, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Kevin Eggan
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Tracy L. Young-Pearse
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
63
|
Shen X, Yeung HT, Lai KO. Application of Human-Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Dev Neurobiol 2018; 79:20-35. [PMID: 30304570 DOI: 10.1002/dneu.22644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.
Collapse
Affiliation(s)
- Xuting Shen
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Hoi Ting Yeung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kwok-On Lai
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
64
|
Dahoun T, Pardiñas AF, Veronese M, Bloomfield MAP, Jauhar S, Bonoldi I, Froudist-Walsh S, Nosarti C, Korth C, Hennah W, Walters J, Prata D, Howes OD. The effect of the DISC1 Ser704Cys polymorphism on striatal dopamine synthesis capacity: an [18F]-DOPA PET study. Hum Mol Genet 2018; 27:3498-3506. [PMID: 29945223 PMCID: PMC6168972 DOI: 10.1093/hmg/ddy242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/14/2022] Open
Abstract
Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX37 JX, UK
| | - Antonio F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | - Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Psychiatry, University College London, London, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sameer Jauhar
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | - Ilaria Bonoldi
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | | | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Imaging Sciences & Biomedical Engineering, Centre for the Developing Brain, King’s College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Mental Health Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - James Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Instituto Universitário de Lisboa (ISCTE-IUL), Cis-IUL, Lisbon, Portugal
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| |
Collapse
|
65
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
66
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
67
|
Pizzo L, Jensen M, Polyak A, Rosenfeld JA, Mannik K, Krishnan A, McCready E, Pichon O, Le Caignec C, Van Dijck A, Pope K, Voorhoeve E, Yoon J, Stankiewicz P, Cheung SW, Pazuchanics D, Huber E, Kumar V, Kember RL, Mari F, Curró A, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Mandarà L, Vincent M, Nizon M, Mercier S, Bénéteau C, Blesson S, Martin-Coignard D, Mosca-Boidron AL, Caberg JH, Bucan M, Zeesman S, Nowaczyk MJM, Lefebvre M, Faivre L, Callier P, Skinner C, Keren B, Perrine C, Prontera P, Marle N, Renieri A, Reymond A, Kooy RF, Isidor B, Schwartz C, Romano C, Sistermans E, Amor DJ, Andrieux J, Girirajan S. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genet Med 2018; 21:816-825. [PMID: 30190612 PMCID: PMC6405313 DOI: 10.1038/s41436-018-0266-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/30/2018] [Indexed: 12/08/2022] Open
Abstract
Purpose To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. Methods We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. Results The number of rare likely deleterious variants in functionally intolerant genes (“other hits”) correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. Conclusion Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Andrew Polyak
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,St. George's University School of Medicine, True Blue Point, Grenada
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katrin Mannik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Cedric Le Caignec
- CHU Nantes, Medical genetics department, Nantes, France.,INSERM, UMR1238, Bone sarcoma and remodeling of calcified tissue, Nantes, France
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Kate Pope
- Department of Paediatrics, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia
| | - Els Voorhoeve
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jieun Yoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau Wai Cheung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Damian Pazuchanics
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Vijay Kumar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Rachel L Kember
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aurora Curró
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | | | - Teresa Mattina
- Medical Genetics, University of Catania School of Medicine, Catania, Italy
| | - Marco Fichera
- Oasi Research Institute-IRCCS, Troina, Italy.,Medical Genetics, University of Catania School of Medicine, Catania, Italy
| | | | - Marie Vincent
- CHU Nantes, Medical genetics department, Nantes, France
| | | | | | | | - Sophie Blesson
- Department of genetics, Bretonneau university hospital, Tours, France
| | | | | | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Maja Bucan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Laurence Faivre
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Patrick Callier
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | | | | | | | - Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Nathalie Marle
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - R Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | | | | | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - David J Amor
- Department of Paediatrics, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia
| | - Joris Andrieux
- Institut de Genetique Medicale, Hopital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
68
|
Gao X, Mi Y, Guo N, Xu H, Jiang P, Zhang R, Xu L, Gou X. Glioma in Schizophrenia: Is the Risk Higher or Lower? Front Cell Neurosci 2018; 12:289. [PMID: 30233327 PMCID: PMC6129591 DOI: 10.3389/fncel.2018.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Whether persons with schizophrenia have a higher or lower incidence of cancer has been discussed for a long time. Due to the complex mechanisms and characteristics of different types of cancer, it is difficult to evaluate the exact relationship between cancers and schizophrenia without considering the type of tumor. Schizophrenia, a disabling mental illness that is now recognized as a neurodevelopmental disorder, is more correlated with brain tumors, such as glioma, than other types of tumors. Thus, we mainly focused on the relationship between schizophrenia and glioma morbidity. Glioma tumorigenesis and schizophrenia may share similar mechanisms; gene/pathway disruption would affect neurodevelopment and reduce the risk of glioma. The molecular defects of disrupted-in-schizophrenia-1 (DISC1), P53, brain-derived neurotrophic factor (BDNF) and C-X-C chemokine receptors type 4 (CXCR4) involved in schizophrenia pathogenesis might play opposite roles in glioma development. Many microRNAs (miRNAs) such as miR-183, miR-9, miR-137 and miR-126 expression change may be involved in the cross talk between glioma prevalence and schizophrenia. Finally, antipsychotic drugs may have antitumor effects. All these factors show that persons with schizophrenia have a decreased incidence of glioma; therefore, epidemiological investigation and studies comparing genetic and epigenetic aberrations involved in both of these complex diseases should be performed. These studies can provide more insightful knowledge about glioma and schizophrenia pathophysiology and help to determine the target/strategies for the prevention and treatment of the two diseases.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
69
|
Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment. Dev Psychopathol 2018; 30:1157-1178. [DOI: 10.1017/s0954579418000317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractPrenatal inflammation is an established risk factor for schizophrenia. However, the specific inflammatory pathways that mediate this association remain unclear. Potential candidate systems include inflammatory markers produced by microglia, such as cytokines and complement. Accumulating evidence suggests that these markers play a role in typical neurodevelopmental processes, such as synapse formation and interneuron migration. Rodent models demonstrate that altered marker levels during the prenatal period can cause lasting deficits in these systems, leading to cognitive deficits that resemble schizophrenia. This review assesses the potential role of prenatal cytokine and complement elevations on the etiology of schizophrenia. The current neurobiological understanding of the development of schizophrenia is reviewed to identify candidate cellular mechanisms that may be influenced by prenatal inflammation. We discuss the functions that cytokines and complement may play in prenatal neurodevelopment, review evidence that links exposure to these factors with risk for schizophrenia, and consider how these markers may interact with genetic vulnerabilities to influence the neurodevelopment of schizophrenia. We consider how prenatal inflammatory exposure may influence childhood and adolescent developmental risk trajectories for schizophrenia. Finally, we identify areas of further research needed to support the development of anti-inflammatory treatments to prevent the development of schizophrenia in at-risk neonates.
Collapse
|
70
|
Li N, Cui L, Song G, Guo L, Gu H, Cao H, Li GD, Zhou Y. Adolescent Isolation Interacts With DISC1 Point Mutation to Impair Adult Social Memory and Synaptic Functions in the Hippocampus. Front Cell Neurosci 2018; 12:238. [PMID: 30116177 PMCID: PMC6082952 DOI: 10.3389/fncel.2018.00238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a strong candidate susceptibility gene for a spectrum of neuropsychiatric diseases including schizophrenia, bipolar disorder and major depression, all of which are thought to result from interactions between gene mutations and environmental risk factors such as influenza, trauma and stress. Adolescence is a key period susceptible to stress and stress-related mental illnesses. In a previous study, we found that although DISC1 L100P point mutation mice shows object recognition deficits, their sociability and social memory are relatively normal. Therefore, in this article, we investigated whether the interaction between adolescent stress and DISC1 L100P point mutation affects adult social memory, and we explored the underlying mechanisms. We found that adolescent stress (isolation from 5 weeks to 8 weeks of age) specifically impaired social memory of adult DISC1 L100P mice but not that of WT littermates, which could be rescued by administration of atypical antipsychotic drug clozapine. On the other hand, it did not induce anxiety or depression in adult mice. Adolescent isolation exacerbated adult neurogenesis deficits in the hippocampus of DISC1 L100P mice, while it had no effect on WT mice. In addition, we found that adolescent isolation led to long lasting changes in synaptic transmission and plasticity in the hippocampal circuits, some of which are specific for DISC1 L100P mice. In summary, we identified here the specific interaction between genetic mutation (DISC1 L100P) and adolescence social stress that damages synaptic function and social memory in adult hippocampal circuits. HighlightsAdolescent isolation (from 5 weeks to 8 weeks of age) impairs adult social memory when combined with DISC1 L100P point mutation. Adolescent isolation exacerbates adult neurogenesis deficit in the hippocampus of L100P mice but has no similar effect on WT mice. Adolescent isolation causes long lasting changes in synaptic transmission and plasticity of the hippocampal network in DISC1 L100P mice.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, China
| | - Ge Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Huating Gu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Haisheng Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Guo-Dong Li
- Department of Surgery, Valley Presbyterian Hospital, Van Nuys, CA, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
71
|
Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci 2018; 19:ijms19082226. [PMID: 30061532 PMCID: PMC6121884 DOI: 10.3390/ijms19082226] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an ubiquitously expressed serine-threonine kinase, which senses and integrates several intracellular and environmental cues to orchestrate major processes such as cell growth and metabolism. Altered mTOR signalling is associated with brain malformation and neurological disorders. Emerging evidence indicates that even subtle defects in the mTOR pathway may produce severe effects, which are evident as neurological and psychiatric disorders. On the other hand, administration of mTOR inhibitors may be beneficial for a variety of neuropsychiatric alterations encompassing neurodegeneration, brain tumors, brain ischemia, epilepsy, autism, mood disorders, drugs of abuse, and schizophrenia. mTOR has been widely implicated in synaptic plasticity and autophagy activation. This review addresses the role of mTOR-dependent autophagy dysfunction in a variety of neuropsychiatric disorders, to focus mainly on psychiatric syndromes including schizophrenia and drug addiction. For instance, amphetamines-induced addiction fairly overlaps with some neuropsychiatric disorders including neurodegeneration and schizophrenia. For this reason, in the present review, a special emphasis is placed on the role of mTOR on methamphetamine-induced brain alterations.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy.
| |
Collapse
|
72
|
Runs of homozygosity, copy number variation, and risk for depression and suicidal behavior in an Arab Bedouin kindred. Psychiatr Genet 2018; 27:169-177. [PMID: 28570395 DOI: 10.1097/ypg.0000000000000177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Inbreeding increases the probability of homozygosity of deleterious alleles. Inbreeding and runs of homozygosity (ROH) are associated with an increased risk for disease phenotypes, including schizophrenia and other psychiatric disorders. The effects of inbreeding, ROH, homozygous deletions, and other copy number variations (CNVs) on risk for depression and suicide attempt (SA) were quantified in an Arab Bedouin Kindred. METHODS We carried out genetic analyses of 439 individuals from an Arab kindred with high rates of depression and suicidal behavior. We obtained complete ascertainment of SAs and first-degree relatives of individuals who have attempted or died by suicide. RESULTS We found extensive regions of ROH. On average, 5% of the genome is covered by ROH for these individuals, two-fold higher than ROH rates for individuals from populations of European ancestry. Inbreeding and total length of ROH were not associated with risk for depression or attempt. For CNVs, an increased number of duplications more than 500 kb was associated with an increased risk for attempt (odds ratio: 2.9; P=0.01; 95% confidence interval: 1.3-6.6). Although not significant after correction for multiple testing, the risk for SA appears to increase with copy number for a CNV on chromosome 9p24.1. This possibility is intriguing because the CNV covers GLDC, which encodes glycine dehydrogenase that binds to glycine, a co-agonist at N-methyl-D-aspartate glutamate receptors, and is involved in glutamatergic neurotransmission. CONCLUSION Our findings add to the growing evidence of genetic risk factors that act pleiotropically to increase the risk for several neuropsychiatric disorders, including depression and SA, irrespective of ancestry.
Collapse
|
73
|
Hübel C, Leppä V, Breen G, Bulik CM. Rigor and reproducibility in genetic research on eating disorders. Int J Eat Disord 2018; 51:593-607. [PMID: 30194862 DOI: 10.1002/eat.22896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We explored both within-method and between-method rigor and reproducibility in the field of eating disorders genetics. METHOD We present critical evaluation and commentary on component methods of genetic research (family studies, twin studies, molecular genetic studies) and discuss both successful and unsuccessful efforts in the field. RESULTS Eating disorders genetics has had a number of robust results that converge across component methodologies. Familial aggregation of eating disorders, twin-based heritability estimates of eating disorders, and genome-wide association studies (GWAS) all point toward a substantial role for genetics in eating disorders etiology and support the premise that genes do not act alone. Candidate gene and linkage studies have been less informative historically. DISCUSSION The eating disorders field has entered the GWAS era with studies of anorexia nervosa. Continued growth of sample sizes is essential for rigorous discovery of actionable variation. Molecular genetic studies of bulimia nervosa, binge-eating disorder, and other eating disorders are virtually nonexistent and lag seriously behind other major psychiatric disorders. Expanded efforts are necessary to reveal the fundamental biology of eating disorders, inform clinical practice, and deliver new therapeutic targets.
Collapse
Affiliation(s)
- Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, United Kingdom.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Virpi Leppä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, United Kingdom
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
74
|
Proteostasis and Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives. Neural Plast 2018; 2018:6798712. [PMID: 30050571 PMCID: PMC6040257 DOI: 10.1155/2018/6798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.
Collapse
|
75
|
Mammalian TRIM67 Functions in Brain Development and Behavior. eNeuro 2018; 5:eN-NWR-0186-18. [PMID: 29911180 PMCID: PMC6002264 DOI: 10.1523/eneuro.0186-18.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Class I members of the tripartite motif (TRIM) family of E3 ubiquitin ligases evolutionarily appeared just prior to the advent of neuronal like cells and have been implicated in neuronal development from invertebrates to mammals. The single Class I TRIM in Drosophila melanogaster and Caenorhabditis elegans and the mammalian Class I TRIM9 regulate axon branching and guidance in response to the guidance cue netrin, whereas mammalian TRIM46 establishes the axon initial segment. In humans, mutations in TRIM1 and TRIM18 are implicated in Opitz Syndrome, characterized by midline defects and often intellectual disability. We find that although TRIM67 is the least studied vertebrate Class I TRIM, it is the most evolutionarily conserved. Here we show that mammalian TRIM67 interacts with both its closest paralog TRIM9 and the netrin receptor DCC and is differentially enriched in specific brain regions during development and adulthood. We describe the anatomical and behavioral consequences of deletion of murine Trim67. While viable, mice lacking Trim67 exhibit abnormal anatomy of specific brain regions, including hypotrophy of the hippocampus, striatum, amygdala, and thalamus, and thinning of forebrain commissures. Additionally, Trim67-/- mice display impairments in spatial memory, cognitive flexibility, social novelty preference, muscle function, and sensorimotor gating, whereas several other behaviors remain intact. This study demonstrates the necessity for TRIM67 in appropriate brain development and behavior.
Collapse
|
76
|
Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:35-51. [PMID: 29998117 PMCID: PMC6032037 DOI: 10.1159/000488679] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
77
|
NDE1 positively regulates oligodendrocyte morphological differentiation. Sci Rep 2018; 8:7644. [PMID: 29769557 PMCID: PMC5955916 DOI: 10.1038/s41598-018-25898-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Oligodendrocytes, the myelin-forming cells in the central nervous system (CNS), undergo morphological differentiation characterized by elaborated branched processes to enwrap neuronal axons. However, the basic molecular mechanisms underlying oligodendrocyte morphogenesis remain unknown. Herein, we describe the essential roles of Nuclear Distribution E Homolog 1 (NDE1), a dynein cofactor, in oligodendrocyte morphological differentiation. In the mouse corpus callosum, Nde1 mRNA expression was detected in oligodendrocyte lineage cells at the postnatal stage. In vitro analysis revealed that downregulation of NDE1 by siRNA impaired the outgrowth and extensive branching of oligodendrocyte processes and led to a decrease in the expression of myelin-related markers, namely, CNPase and MBP. In myelinating co-cultures with dorsal root ganglion (DRG) neurons, NDE1-knockdown oligodendrocyte precursor cells (OPCs) failed to develop into MBP-positive oligodendrocytes with multiple processes contacting DRG axons. Immunoprecipitation studies showed that NDE1 interacts with the dynein intermediate chain (DIC) in oligodendrocytes, and an overexpressed DIC-binding region of NDE1 exerted effects on oligodendrocyte morphogenesis that were similar to those following NDE1 knockdown. Furthermore, NDE1-knockdown-impaired oligodendrocyte process formation was rescued by siRNA-resistant wild-type NDE1 but not by DIC-binding region-deficient NDE1 overexpression. These results suggest that NDE1 plays a crucial role in oligodendrocyte morphological differentiation via interaction with dynein.
Collapse
|
78
|
Cardarelli RA, Martin R, Jaaro-Peled H, Sawa A, Powell EM, O'Donnell P. Dominant-Negative DISC1 Alters the Dopaminergic Modulation of Inhibitory Interneurons in the Mouse Prefrontal Cortex. MOLECULAR NEUROPSYCHIATRY 2018; 4:20-29. [PMID: 29998115 DOI: 10.1159/000488030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022]
Abstract
A truncated disrupted in schizophrenia 1 (Disc1) gene increases the risk of psychiatric disorders, probably affecting cortical interneurons. Here, we sought to determine whether this cell population is affected in mice carrying a truncated (Disc1) allele (DN-DISC1). We utilized whole cell recordings to assess electrophysiological properties and modulation by dopamine (DA) in two classes of interneurons: fast-spiking (FS) and low threshold-spiking (LTS) interneurons in wild-type and DN-DISC1 mice. In DN-DISC1 mice, FS interneurons, but not LTS interneurons, exhibited altered action potentials. Further, the perineuronal nets that surround FS interneurons exhibited abnormal morphology in DN-DISC1 mice, and the DA modulation of this cell type was altered in DN-DISC1 mice. We conclude that early-life manipulation of a gene associated with risk of psychiatric disease can result in dysfunction, but not loss, of specific GABAergic interneurons. The resulting alteration of excitatory-inhibitory balance is a critical element in DISC1 pathophysiology.
Collapse
Affiliation(s)
- Ross A Cardarelli
- Program in Neuroscience, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Rolicia Martin
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akira Sawa
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M Powell
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Psychiatry, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Patricio O'Donnell
- Program in Neuroscience, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Psychiatry, University of Maryland Medical School, Baltimore, Maryland, USA
| |
Collapse
|
79
|
Sullivan CR, O'Donovan SM, McCullumsmith RE, Ramsey A. Defects in Bioenergetic Coupling in Schizophrenia. Biol Psychiatry 2018; 83:739-750. [PMID: 29217297 PMCID: PMC5891385 DOI: 10.1016/j.biopsych.2017.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Synaptic neurotransmission relies on maintenance of the synapse and meeting the energy demands of neurons. Defects in excitatory and inhibitory synapses have been implicated in schizophrenia, likely contributing to positive and negative symptoms as well as impaired cognition. Recently, accumulating evidence has suggested that bioenergetic systems, important in both synaptic function and cognition, are abnormal in psychiatric illnesses such as schizophrenia. Animal models of synaptic dysfunction demonstrated endophenotypes of schizophrenia as well as bioenergetic abnormalities. We report findings on the bioenergetic interplay of astrocytes and neurons and discuss how dysregulation of these pathways may contribute to the pathogenesis of schizophrenia, highlighting metabolic systems as important therapeutic targets.
Collapse
Affiliation(s)
- Courtney R Sullivan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Sinead M O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio.
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| |
Collapse
|
80
|
Wulaer B, Nagai T, Sobue A, Itoh N, Kuroda K, Kaibuchi K, Nabeshima T, Yamada K. Repetitive and compulsive-like behaviors lead to cognitive dysfunction in Disc1Δ2-3/Δ2-3mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12478. [DOI: 10.1111/gbb.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Affiliation(s)
- B. Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - T. Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - A. Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - N. Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - K. Kuroda
- Department of Cell Pharmacology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - K. Kaibuchi
- Department of Cell Pharmacology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - T. Nabeshima
- Advanced Diagnostic System Research Laboratory; Fujita Health University, Graduate School of Health Sciences; Toyoake Japan
- Aino University; Ibaragi Japan
| | - K. Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
81
|
LaMarca EA, Powell SK, Akbarian S, Brennand KJ. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Front Pediatr 2018; 6:82. [PMID: 29666786 PMCID: PMC5891587 DOI: 10.3389/fped.2018.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.
Collapse
Affiliation(s)
- Elizabeth A. LaMarca
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel K. Powell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J. Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
82
|
Katsel P, Fam P, Tan W, Khan S, Yang C, Jouroukhin Y, Rudchenko S, Pletnikov MV, Haroutunian V. Overexpression of Truncated Human DISC1 Induces Appearance of Hindbrain Oligodendroglia in the Forebrain During Development. Schizophr Bull 2018; 44:515-524. [PMID: 28981898 PMCID: PMC5890457 DOI: 10.1093/schbul/sbx106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic, neuroimaging, and gene expression studies suggest a role for oligodendrocyte (OLG) dysfunction in schizophrenia (SZ). Disrupted-in-schizophrenia 1 (DISC1) is a risk gene for major psychiatric disorders, including SZ. Overexpression of mutant truncated (hDISC1), but not full-length sequence of human DISC1 in forebrain influenced OLG differentiation and proliferation of glial progenitors in the developing cerebral cortex concurrently with reduction of OLG progenitor markers in the hindbrain. We examined gene and protein expression of the molecular determinants of hindbrain OLG development and their interactions with DISC1 in mutant hDISC1 mice. We found ectopic upregulation of hindbrain glial progenitor markers (early growth response 2 [Egr2] and NK2 homeobox 2 [Nkx2-2]) in the forebrain of hDISC1 (E15) embryos. DISC1 and Nkx2-2 were coexpressed and interacted in progenitor cells. Overexpression of truncated hDISC1 impaired interactions between DISC1 and Nkx2-2, which was associated with increased differentiation of OLG and upregulation of hindbrain mature OLG markers (laminin alpha-1 [LAMA1] and myelin protein zero [MPZ]) suggesting a suppressive function of endogenous DISC1 in OLG specialization of hindbrain glial progenitors during embryogenesis. Consistent with findings in hDISC1 mice, several hindbrain OLG markers (PRX, LAMA1, and MPZ) were significantly upregulated in the superior temporal cortex of persons with SZ. These findings show a significant effect of truncated hDISC1 on glial identity cells along the rostrocaudal axis and their OLG specification. Appearance of hindbrain OLG lineage cells and their premature differentiation may affect cerebrocortical organization and contribute to the pathophysiology of SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,To whom correspondence should be addressed; JJ Peters VA Medical Center, 151 Research Build, Room 5F-04C, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-9000 ext. 6067, fax: 718-741-4746, e-mail:
| | - Peter Fam
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunxia Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yan Jouroukhin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mikhail V Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| |
Collapse
|
83
|
The Altered Supramolecular Structure of Dopamine D2 Receptors in Disc1-deficient Mice. Sci Rep 2018; 8:1692. [PMID: 29374282 PMCID: PMC5785963 DOI: 10.1038/s41598-018-20090-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 12/04/2022] Open
Abstract
Disc1 is a susceptibility gene for psychiatric disorders including schizophrenia. It has been suggested that excess transmission through dopamine type 2 receptors (D2Rs) in the striatum is an underlying mechanism of pathogenesis. In this study, we used super-resolution microscopy to study the distribution of D2Rs at the nanoscale in mice lacking exons 2 and 3 of Disc1 (Disc1-deficient mice). We found that D2Rs in the nucleus accumbens (NAc) of wild-type mice form nanoclusters (~ 20,000 nm2), and that Disc1-deficient mice have larger and more D2R nanoclusters than wild-type mice. Interestingly, administration of clozapine reduced the size and spatial distribution of the nanoclusters only in Disc1-deficient mice. Moreover, we observed that medium spiny neurons in the NAc of Disc1-deficient mice had reduced spine density on their dendrites than did wild-type mice, and this was also reversed by clozapine administration. The altered D2R nanoclusters might be morphological representations of the altered dopaminergic transmission in disease states such as schizophrenia.
Collapse
|
84
|
Hunter R. Developing tomorrow's antipsychotics: the need for a more personalised approach. ACTA ACUST UNITED AC 2018. [DOI: 10.1192/apt.bp.110.008235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SummaryThere has been little pharmacological advance in the treatment of schizophrenia since the introduction of chlorpromazine in the 1950s. This may be set to change as recent advances in molecular biology offer the prospect of a better understanding of the pathophysiology of the disorder and allow investigation of the complex interplay of genetic and environmental risk factors. In this review I discuss future approaches to antipsychotic drug development, highlighting the need to better define symptom areas and develop drugs based on an understanding of neurobiological mechanisms. The development of biomarkers has the potential in future to improve differential diagnosis and help predict response to treatment. These developments herald the possibility of a more integrated drug discovery approach and the subsequent provision of more stratified healthcare, and hopefully significant improvements in patient care and improved long-term outcomes.
Collapse
|
85
|
Mei YY, Wu DC, Zhou N. Astrocytic Regulation of Glutamate Transmission in Schizophrenia. Front Psychiatry 2018; 9:544. [PMID: 30459650 PMCID: PMC6232167 DOI: 10.3389/fpsyt.2018.00544] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
According to the glutamate hypothesis of schizophrenia, the abnormality of glutamate transmission induced by hypofunction of NMDA receptors (NMDARs) is causally associated with the positive and negative symptoms of schizophrenia. However, the underlying mechanisms responsible for the changes in glutamate transmission in schizophrenia are not fully understood. Astrocytes, the major regulatory glia in the brain, modulate not only glutamate metabolism but also glutamate transmission. Here we review the recent progress in understanding the role of astrocytes in schizophrenia. We focus on the astrocytic mechanisms of (i) glutamate synthesis via the glutamate-glutamine cycle, (ii) glutamate clearance by excitatory amino acid transporters (EAATs), (iii) D-serine release to activate NMDARs, and (iv) glutamatergic target engagement biomarkers. Abnormality in these processes is highly correlated with schizophrenia phenotypes. These findings will shed light upon further investigation of pathogenesis as well as improvement of biomarkers and therapies for schizophrenia.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Dong Chuan Wu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ning Zhou
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
86
|
Abstract
Distinct neurodevelopmental disorders have a common genetic etiology that explains the high degree of comorbidity among these disorders. A recent study sought to identify copy number variants across five neurodevelopmental disorders, and detected an enrichment for chromosome 9p24.3 duplication encompassing DOCK8 and KANK1 in affected individuals. Such large-scale studies will help uncover additional causative and modifier loci within common pathways, which will enable the development of therapeutic targets for the treatment of multiple disorders. See related research 10.1186/s13073-017-0494-1
Collapse
Affiliation(s)
- Matthew Jensen
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Santhosh Girirajan
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
87
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
88
|
Intra-nasal dopamine alleviates cognitive deficits in tgDISC1 rats which overexpress the human DISC1 gene. Neurobiol Learn Mem 2017; 146:12-20. [PMID: 29107702 DOI: 10.1016/j.nlm.2017.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/15/2023]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) gene has been associated with mental illnesses such as major depression and schizophrenia. The transgenic DISC1 (tgDISC1) rat, which overexpresses the human DISC1 gene, is known to exhibit deficient dopamine (DA) homeostasis. To ascertain whether the DISC1 gene also impacts cognitive functions, 14-15 months old male tgDISC1 rats and wild-type controls were subjected to the novel object preference (NOP) test and the object-based attention test (OBAT) in order to assess short-term memory (1 h), long-term memory (24 h), and attention. RESULTS The tgDISC1 group exhibited intact short-term memory, but deficient long-term-memory in the NOP test and deficient attention-related behavior in the OBAT. In a different group of tgDISC1 rats, 3 mg/kg intranasally applied dopamine (IN-DA) or its vehicle was applied prior to the NOP or the OBAT test. IN-DA reversed cognitive deficits in both the NOP and OBAT tests. In a further cohort of tgDISC1 rats, post-mortem levels of DA, noradrenaline, serotonin and acetylcholine were determined in a variety of brain regions. The tgDISC1 group had less DA in the neostriatum, hippocampus and amygdala, less acetylcholine in neostriatum, nucleus accumbens, hippocampus, and amygdala, more serotonin in the nucleus accumbens, and less serotonin and noradrenaline in the amygdala. CONCLUSIONS Our findings show that DISC1 overexpression and misassembly is associated with deficits in long-term memory and attention-related behavior. Since behavioral impairments in tgDISC1 rats were reversed by IN-DA, DA deficiency may be a major cause for the behavioral deficits expressed in this model.
Collapse
|
89
|
Giegling I, Hosak L, Mössner R, Serretti A, Bellivier F, Claes S, Collier DA, Corrales A, DeLisi LE, Gallo C, Gill M, Kennedy JL, Leboyer M, Maier W, Marquez M, Massat I, Mors O, Muglia P, Nöthen MM, Ospina-Duque J, Owen MJ, Propping P, Shi Y, St Clair D, Thibaut F, Cichon S, Mendlewicz J, O'Donovan MC, Rujescu D. Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. World J Biol Psychiatry 2017; 18:492-505. [PMID: 28112043 DOI: 10.1080/15622975.2016.1268715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Schizophrenia is a severe psychiatric disease affecting about 1% of the general population. The relative contribution of genetic factors has been estimated to be up to 80%. The mode of inheritance is complex, non-Mendelian, and in most cases involving the combined action of large numbers of genes. METHODS This review summarises recent efforts to identify genetic variants associated with schizophrenia detected, e.g., through genome-wide association studies, studies on copy-number variants or next-generation sequencing. RESULTS A large, new body of evidence on genetics of schizophrenia has accumulated over recent years. Many new robustly associated genetic loci have been detected. Furthermore, there is consensus that at least a dozen microdeletions and microduplications contribute to the disease. Genetic overlap between schizophrenia, other psychiatric disorders, and neurodevelopmental syndromes raised new questions regarding the current classification of psychiatric and neurodevelopmental diseases. CONCLUSIONS Future studies will address especially the functional characterisation of genetic variants. This will hopefully open the doors to our understanding of the pathophysiology of schizophrenia and other related diseases. Complementary, integrated systems biology approaches to genomics, transcriptomics, proteomics and metabolomics may also play crucial roles in enabling a precision medicine approach to the treatment of individual patients.
Collapse
Affiliation(s)
- Ina Giegling
- a Department of Psychiatry, Psychotherapy, and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
- b Department of Psychiatry , Ludwig-Maximilians-University Munich , Munich , Germany
| | - Ladislav Hosak
- c Department of Psychiatriy , Charles University, Faculty of Medicine and University Hospital in Hradec Králové, Prague , Czech Republic
| | - Rainald Mössner
- d Department of Psychiatry and Psychotherapy , University of Tübingen , Tübingen , Germany
| | - Alessandro Serretti
- e Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Frank Bellivier
- f Fondation Fondamental, Créteil, France AP-HP, GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences , Paris , France
- g Equipe 1, Université Paris Diderot , Paris , France
| | - Stephan Claes
- h GRASP-Research Group, Department of Neuroscience , University of Leuven , Leuven , Belgium
- i Department of Neurosciences, University Psychiatric Center KU Leuven , Leuven , Belgium
| | - David A Collier
- j Social, Genetic and Developmental Psychiatry Centre , Institute of Psychiatry, King's College London , London , UK
- k Eli Lilly and Company Ltd, Erl Wood Manor , Surrey , UK
| | - Alejo Corrales
- l Argentinean Association of Biological Psychiatry , National University, UNT, Buenos Aires , Argentina
| | - Lynn E DeLisi
- m VA Boston Health Care System , Brockton , MA , USA
- n Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Carla Gallo
- o Departamento de Ciencias Celulares y Moleculares, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Michael Gill
- p Neuropsychiatric Genetics Research Group, Department of Psychiatry , Trinity College Dublin , Dublin , Ireland
| | - James L Kennedy
- q Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , ON , Canada
- r Centre for Addiction and Mental Health , Campbell Family Mental Health Research Institute , Toronto , ON , Canada
- s Department of Psychiatry , University of Toronto , Toronto , ON , Canada
- t Collaborative Program in Neuroscience, Institute of Medical Science, University of Toronto , Toronto , ON , Canada
| | - Marion Leboyer
- u Equipe Psychiatrie Translationnelle, Faculté de Médecine, Université Paris-Est Créteil, Inserm U955 , Créteil , France
- v DHU Pe-Psy, Pôle de Psychiatrie et d'Addictologie , AP-HP, Hôpitaux Universitaires Henri Mondor , Créteil , France
- w Pôle de Psychiatrie , Hôpital Albert Chenevier , Créteil , France
- x Fondation FondaMental , Créteil , France
| | - Wolfgang Maier
- y Department of Psychiatry and Psychotherapy , University of Bonn, Bonn , Germany
| | - Miguel Marquez
- z Asistencia, Docencia e Investigación en Neurociencia , Buenos Aires , Argentina
| | - Isabelle Massat
- aa UNI - ULB Neurosciences Institute, ULB , Bruxelles , Belgium
- ab National Fund of Scientific Research (FNRS) , Bruxelles , Belgium
- ac Laboratory of Experimental Neurology , ULB , Bruxelles , Belgium
- ad UR2NF - Neuropsychology and Functional Neuroimaging Research Unit, Centre de Recherche Cognition et Neurosciences , Université Libre de Bruxelles (ULB) , Bruxelles , Belgium
| | - Ole Mors
- ae Psychosis Research Unit , Aarhus University Hospital , Risskov , Denmark
- af The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus , Denmark
| | | | - Markus M Nöthen
- ah Head, Institute of Human Genetics, University of Bonn , Bonn , Germany
- ai Department of Genomics , Life and Brain Center , Bonn , Germany
| | - Jorge Ospina-Duque
- aj Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | - Michael J Owen
- ak MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine , Cardiff University , Cardiff , UK
- al National Centre for Mental Health, Cardiff University , Cardiff , UK
| | | | - YongYong Shi
- an Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai , China
- ao Shandong Provincial Key Laboratory of Metabloic Disease, The Affiliated Hospital of Qingdao University , Qingdao , P.R. China
- ap Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University , Shanghai , P.R. China
| | - David St Clair
- aq Department of Psychiatry, University of Aberdeen, Institute of Medical Sciences , Aberdeen , UK
| | - Florence Thibaut
- ar INSERM U 894 Centre Psychiatry and Neurosciences , University Hospital Cochin (Site Tarnier), University Sorbonne Paris Cité (Faculty of Medicine Paris Descartes) , Paris , France
| | - Sven Cichon
- ah Head, Institute of Human Genetics, University of Bonn , Bonn , Germany
- ai Department of Genomics , Life and Brain Center , Bonn , Germany
- as Division of Medical Genetics, Department of Biomedicine , University of Basel , Basel , Switzerland
- at Genomic Imaging, Institute of Neuroscience and Medicine , Research Center Juelich , Juelich , Germany
| | - Julien Mendlewicz
- au Laboratoire de Psychologie Medicale, Centre Europe´en de Psychologie Medicale , Universite´ Libre de Bruxelles and Psy Pluriel , Brussels , Belgium
| | - Michael C O'Donovan
- ak MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine , Cardiff University , Cardiff , UK
- al National Centre for Mental Health, Cardiff University , Cardiff , UK
| | - Dan Rujescu
- a Department of Psychiatry, Psychotherapy, and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
- b Department of Psychiatry , Ludwig-Maximilians-University Munich , Munich , Germany
| |
Collapse
|
90
|
Viana J, Hannon E, Dempster E, Pidsley R, Macdonald R, Knox O, Spiers H, Troakes C, Al-Saraj S, Turecki G, Schalkwyk LC, Mill J. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum Mol Genet 2017; 26:210-225. [PMID: 28011714 PMCID: PMC5351932 DOI: 10.1093/hmg/ddw373] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/26/2016] [Indexed: 01/29/2023] Open
Abstract
Genetic association studies provide evidence for a substantial polygenic component to schizophrenia, although the neurobiological mechanisms underlying the disorder remain largely undefined. Building on recent studies supporting a role for developmentally regulated epigenetic variation in the molecular aetiology of schizophrenia, this study aimed to identify epigenetic variation associated with both a diagnosis of schizophrenia and elevated polygenic risk burden for the disease across multiple brain regions. Genome-wide DNA methylation was quantified in 262 post-mortem brain samples, representing tissue from four brain regions (prefrontal cortex, striatum, hippocampus and cerebellum) from 41 schizophrenia patients and 47 controls. We identified multiple disease-associated and polygenic risk score-associated differentially methylated positions and regions, which are not enriched in genomic regions identified in genetic studies of schizophrenia and do not reflect direct genetic effects on DNA methylation. Our study represents the first analysis of epigenetic variation associated with schizophrenia across multiple brain regions and highlights the utility of polygenic risk scores for identifying molecular pathways associated with aetiological variation in complex disease.
Collapse
Affiliation(s)
- Joana Viana
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ruth Pidsley
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Olivia Knox
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Helen Spiers
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Saraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gustavo Turecki
- Douglas Mental Health Institute, McGill University, Montreal, QC, Canada and
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
91
|
Norkett R, Modi S, Kittler JT. Mitochondrial roles of the psychiatric disease risk factor DISC1. Schizophr Res 2017; 187:47-54. [PMID: 28087269 DOI: 10.1016/j.schres.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
Ion transport during neuronal signalling utilizes the majority of the brain's energy supply. Mitochondria are key sites for energy provision through ATP synthesis and play other important roles including calcium buffering. Thus, tightly regulated distribution and function of these organelles throughout the intricate architecture of the neuron is essential for normal synaptic communication. Therefore, delineating mechanisms coordinating mitochondrial transport and function is essential for understanding nervous system physiology and pathology. While aberrant mitochondrial transport and dynamics have long been associated with neurodegenerative disease, they have also more recently been linked to major mental illness including schizophrenia, autism and depression. However, the underlying mechanisms have yet to be elucidated, due to an incomplete understanding of the combinations of genetic and environmental factors contributing to these conditions. Consequently, the DISC1 gene has undergone intense study since its discovery at the site of a balanced chromosomal translocation, segregating with mental illness in a Scottish pedigree. The precise molecular functions of DISC1 remain elusive. Reported functions of DISC1 include regulation of intracellular signalling pathways, neuronal migration and dendritic development. Intriguingly, a role for DISC1 in mitochondrial homeostasis and transport is fast emerging. Therefore, a major function of DISC1 in regulating mitochondrial distribution, ATP synthesis and calcium buffering may be disrupted in psychiatric disease. In this review, we discuss the links between DISC1 and mitochondria, considering both trafficking of these organelles and their function, and how, via these processes, DISC1 may contribute to the regulation of neuronal behavior in normal and psychiatric disease states.
Collapse
Affiliation(s)
- R Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - S Modi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - J T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.
| |
Collapse
|
92
|
|
93
|
Smith AK, Jovanovic T, Kilaru V, Lori A, Gensler L, Lee SS, Norrholm SD, Massa N, Cuthbert B, Bradley B, Ressler KJ, Duncan E. A Gene-Based Analysis of Acoustic Startle Latency. Front Psychiatry 2017; 8:117. [PMID: 28729842 PMCID: PMC5498475 DOI: 10.3389/fpsyt.2017.00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Latency of the acoustic startle response is the time required from the presentation of startling auditory stimulus until the startle response is elicited and provides an index of neural processing speed. Latency is prolonged in subjects with schizophrenia compared to controls in some but not all studies and is 68-90% heritable in baseline startle trials. In order to determine the genetic association with latency as a potential inroad into genetically based vulnerability to psychosis, we conducted a gene-based study of latency followed by an independent replication study of significant gene findings with a single-nucleotide polymorphism (SNP)-based analysis of schizophrenia and control subjects. 313 subjects from an urban population of low socioeconomic status with mixed psychiatric diagnoses were included in the gene-based study. Startle testing was conducted using a Biopac M150 system according to our published methods. Genotyping was performed with the Omni-Quad 1M or the Omni Express BeadChip. The replication study was conducted on 154 schizophrenia subjects and 123 psychiatric controls. Genetic analyses were conducted with Illumina Human Omni1-Quad and OmniExpress BeadChips. Twenty-nine SNPs were selected from four genes that were significant in the gene-based analysis and also associated with startle and/or schizophrenia in the literature. Linear regressions on latency were conducted, controlling for age, race, and diagnosis as a dichotomous variable. In the gene-based study, 2,870 genes demonstrated the evidence of association after correction for multiple comparisons (false discovery rate < 0.05). Pathway analysis of these genes revealed enrichment for relevant biological processes including neural transmission (p = 0.0029), synaptic transmission (p = 0.0032), and neuronal development (p = 0.024). The subsequent SNP-based replication analysis revealed a strong association of onset latency with the SNP rs901561 on the neuregulin gene (NRG1) in an additive model (beta = 0.21, p = 0.001), indicating that subjects with the AA and AG genotypes had slower mean latency than subjects with GG genotype. In conclusion, startle latency, a highly heritable measure that is slowed in schizophrenia, may be a useful biological probe for genetic contributions to psychotic disorders. Our analyses in two independent populations point to a significant prediction of startle latency by genetic variation in NRG1.
Collapse
Affiliation(s)
- Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Varun Kilaru
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lauren Gensler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Samuel S. Lee
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Nicholas Massa
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Bruce Cuthbert
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
94
|
Liu J, Zhang HX, Li ZQ, Li T, Li JY, Wang T, Li Y, Feng GY, Shi YY, He L. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:172-177. [PMID: 28414084 DOI: 10.1016/j.pnpbp.2017.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia and major depressive disorder are two major psychiatric illnesses that may share specific genetic risk factors to a certain extent. Increasing evidence suggests that the two disorders might be more closely related than previously considered. To investigate whether YWHAE gene plays a significant role in major depressive disorder in Han Chinese population, we recruited 1135 unrelated major depressive disorder patients (485 males, 650 females) and 989 unrelated controls (296 males, 693 females) of Chinese Han origin. Eleven common SNPs were genotyped using TaqMan® technology. In male-group, the allele and genotype frequencies of rs34041110 differed significantly between patients and control (Pallele=0.036486, OR[95%CI]: 1.249442(1.013988-1.539571); Pgenotype=0.045301). Also in this group, allele and genotype frequencies of rs1532976 differed significantly (Pallele=0.013242, OR[95%CI]: 1.302007(1.056501-1.604563); genotype: P=0.039152). Haplotype-analyses showed that, in male-group, positive association with major depressive disorder was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ2=20.397, P=6.38E-06, OR[95%CI]: 7.442 [2.691-20.583]), its C-A-C-G haplotype (χ2=19.122, P=1.24E-05, OR and 95%CI: 0.402 [0.264-0.612]), its C-C-T-G haplotype (χ2=9.766, P=0.001785, OR[95%CI]: 5.654 [1.664-19.211]). In female-group, positive association was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ2=78.628, P=7.94E-19, OR[95%CI]: 50.043 [11.087-225.876]), its A-C-T-G haplotype (χ2=38.806, P=4.83E-10, OR[95%CI]: 0.053 [0.015-0.192]), the C-A-C-G haplotype (χ2=18.930, P=1.37E-05, OR[95%CI]: 0.526 [0.392-0.705]), and the C-C-T-G haplotype (χ2=38.668, P=5.18E-10, OR[95%CI]: 6.130 [3.207-11.716]). Our findings support YWHAE being a risk gene for Major Depressive Disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hong-Xin Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Qiang Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tao Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Yan Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ti Wang
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - You Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yin Feng
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Yong Shi
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Lin He
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
95
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
96
|
Steinberg S, Gudmundsdottir S, Sveinbjornsson G, Suvisaari J, Paunio T, Torniainen-Holm M, Frigge ML, Jonsdottir GA, Huttenlocher J, Arnarsdottir S, Ingimarsson O, Haraldsson M, Tyrfingsson T, Thorgeirsson TE, Kong A, Norddahl GL, Gudbjartsson DF, Sigurdsson E, Stefansson H, Stefansson K. Truncating mutations in RBM12 are associated with psychosis. Nat Genet 2017. [PMID: 28628109 DOI: 10.1038/ng.3894] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thus far, a handful of highly penetrant mutations conferring risk of psychosis have been discovered. Here we used whole-genome sequencing and long-range phasing to investigate an Icelandic kindred containing ten individuals with psychosis (schizophrenia, schizoaffective disorder or psychotic bipolar disorder). We found that all affected individuals carry RBM12 (RNA-binding-motif protein 12) c.2377G>T (P = 2.2 × 10-4), a nonsense mutation that results in the production of a truncated protein lacking a predicted RNA-recognition motif. We replicated the association in a Finnish family in which a second RBM12 truncating mutation (c.2532delT) segregates with psychosis (P = 0.020). c.2377G>T is not fully penetrant for psychosis; however, we found that carriers unaffected by psychosis resemble patients with schizophrenia in their non-psychotic psychiatric disorder and neuropsychological test profile (P = 0.0043) as well as in their life outcomes (including an increased chance of receiving disability benefits, P = 0.011). As RBM12 has not previously been linked to psychosis, this work provides new insight into psychiatric disease.
Collapse
Affiliation(s)
| | | | | | - Jaana Suvisaari
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Tiina Paunio
- National Institute for Health and Welfare (THL), Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Torniainen-Holm
- National Institute for Health and Welfare (THL), Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | | | | | - Johanna Huttenlocher
- deCODE Genetics/Amgen, Reykjavik, Iceland.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sunna Arnarsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland.,Department of Psychiatry, Landspitali, National University Hospital, Reykjavik, Iceland
| | - Oddur Ingimarsson
- Department of Psychiatry, Landspitali, National University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Magnus Haraldsson
- Department of Psychiatry, Landspitali, National University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Engilbert Sigurdsson
- Department of Psychiatry, Landspitali, National University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
97
|
Expression of mutant DISC1 in Purkinje cells increases their spontaneous activity and impairs cognitive and social behaviors in mice. Neurobiol Dis 2017; 103:144-153. [PMID: 28392471 DOI: 10.1016/j.nbd.2017.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000μm3) and an increased number of smaller somata PCs (volume: 750-1000μm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.
Collapse
|
98
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
99
|
Kitanishi T, Ito HT, Hayashi Y, Shinohara Y, Mizuseki K, Hikida T. Network mechanisms of hippocampal laterality, place coding, and goal-directed navigation. J Physiol Sci 2017; 67:247-258. [PMID: 27864684 PMCID: PMC10717435 DOI: 10.1007/s12576-016-0502-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
The hippocampus and associated structures are responsible for episodic memory in humans. In rodents, the most prominent behavioral correlate of hippocampal neural activity is place coding, which is thought to underlie spatial navigation. While episodic memory is considered to be unique to humans in a restricted context, it has been proposed that the same neural circuitry and algorithms that enable spatial coding and navigation also support episodic memory. Here we review the recent progress in neural circuit mechanisms of hippocampal activity by introducing several topics: (1) cooperation and specialization of the bilateral hippocampi, (2) the role of synaptic plasticity in gamma phase-locking of spikes and place cell formation, (3) impaired goal-related activity and oscillations in a mouse model of mental disorders, and (4) a prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation.
Collapse
Affiliation(s)
- Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
- Center for Brain Science, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Yuichiro Hayashi
- Frontier Research Center for Post-genome Science and Technology, Hokkaido University, Hokkaido, 001-0021, Japan
| | - Yoshiaki Shinohara
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
- Center for Brain Science, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| | - Takatoshi Hikida
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
100
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|