51
|
Wang X, Jiang H, Zhang N, Cai C, Li G, Hao J, Yu G. Anti-diabetic activities of agaropectin-derived oligosaccharides from Gloiopeltis furcata via regulation of mitochondrial function. Carbohydr Polym 2019; 229:115482. [PMID: 31826412 DOI: 10.1016/j.carbpol.2019.115482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to investigate whether agaropectin-derived oligosaccharides from Gloiopeltis furcata (SAOs) exert an anti-diabetic effect in sodium palmitate (PA)-induced insulin resistant HepG2 cells. We found that SAOs were co-localized with mitochondria and regulated mitochondrial function. SAOs reduced respiratory chain activities, which led to reduced respiratory oxygen consumption and increased the cellular ADP/ATP ratio in a certain degree of dose-dependent manner. Thus, SAOs alleviated the oxidative stress state in PA-treated cells and, moreover, concurrently regulated the ROS-JNK-IRS-1 pathway. As a result, SAOs enhanced insulin sensitivity and glucose metabolism by activating the IRS-1-AKT-GSK-3β-GS pathway. Additionally, SAOs activated AMPK through both PKA-LKB1 and mitochondrial-regulated energy metabolism pathways. Therefore, SAOs decreased accumulation of lipids and improved lipid metabolism via regulating HMGCR, ACC and SREBP-1 proteins in HepG2 cells. Taken together, we conclude that SAOs could significantly ameliorate diabetic states in vitro via regulating mitochondria and their downstream signaling pathways.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Ning Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
52
|
Wang Q, Mu H, Shen H, Gu Z, Liu D, Yang M, Zhang Y, Xu W, Zhang W, Mai K. Comparative analysis of glucose metabolism responses of large yellow croaker Larimichthys crocea fed diet with fish oil and palm oil. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1603-1614. [PMID: 31054044 DOI: 10.1007/s10695-019-00646-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In order to study the effects of dietary fatty acid compositions on glucose metabolism, large yellow croaker juveniles Larimichthys crocea (initial weight, 36.80 ± 0.39 g) were fed with two experiment diets for 12 weeks. The two diets contained 6.5% of fish oil (FO) and palm oil (PO), respectively. Results showed that the contents of saturated fatty acids in liver and muscle, levels of glucose, triglyceride (TG), non-esterified fatty acid (NEFA), and leptin in blood were significantly higher in PO group, while the hepatic glycogen and muscle glycogen significantly decreased (P < 0.05). There were no significant differences in blood insulin and adiponectin levels between the two groups (P > 0.05). Compared with the FO group, the expressions of glucokinase (GK), glucose-6-phosphate dehydrogenase, glycogen synthase (GYS), glucose transporter 2 (GLUT2), insulin receptor 1 (IR1), insulin receptor substrate 1 (IRS1), insulin receptor substrate (IRS2), and protein kinase B (AKT2) were significantly decreased, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) in liver were significantly increased in the PO group. Meanwhile, the expressions of GK, phosphofructokinase, GYS, GLUT4, and insulin receptor 2 (IR2) were significantly reduced, and the expressions PEPCK, fructose-1 and 6-diphosphatase in muscle were significantly increased in the PO group. In conclusion, palm oil in diet could inhibit the utilization of glucose and promote the endogenous glucose production in large yellow croaker by reducing the sensitivity of insulin, so as to increase the blood glucose level.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Hua Mu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Haohao Shen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhixiang Gu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Dong Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yue Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Weiqi Xu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
53
|
Kusu H, Yoshida H, Kudo M, Okuyama M, Harada N, Tsuji‐Naito K, Akagawa M. Tomatidine Reduces Palmitate‐Induced Lipid Accumulation by Activating AMPK via Vitamin D Receptor‐Mediated Signaling in Human HepG2 Hepatocytes. Mol Nutr Food Res 2019; 63:e1801377. [DOI: 10.1002/mnfr.201801377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hikari Kusu
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture University Sakai 599‐8531 Japan
| | - Hiroki Yoshida
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture University Sakai 599‐8531 Japan
| | - Michiko Kudo
- DHC Corporation LaboratoriesDivision 2, 2‐42 Hamada Mihama‐ku Chiba 261‐0025 Japan
| | - Mai Okuyama
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture University Sakai 599‐8531 Japan
| | - Naoki Harada
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture University Sakai 599‐8531 Japan
| | - Kentaro Tsuji‐Naito
- DHC Corporation LaboratoriesDivision 2, 2‐42 Hamada Mihama‐ku Chiba 261‐0025 Japan
| | - Mitsugu Akagawa
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture University Sakai 599‐8531 Japan
| |
Collapse
|
54
|
Marafie SK, Al-Shawaf EM, Abubaker J, Arefanian H. Palmitic acid-induced lipotoxicity promotes a novel interplay between Akt-mTOR, IRS-1, and FFAR1 signaling in pancreatic β-cells. Biol Res 2019; 52:44. [PMID: 31426858 PMCID: PMC6699284 DOI: 10.1186/s40659-019-0253-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Background Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic β-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of β-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of β-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic β-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1β), were selected as candidates to be analyzed under lipotoxic conditions. Results We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1β and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1β mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus. Conclusions In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR–Akt and IRS-1 signaling in β-cells under lipotoxic conditions.
Collapse
Affiliation(s)
- Sulaiman K Marafie
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait.
| | - Eman M Al-Shawaf
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait
| | - Jehad Abubaker
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait
| | - Hossein Arefanian
- Microbiology & Immunology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
55
|
Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch Biochem Biophys 2019; 672:108057. [PMID: 31356781 DOI: 10.1016/j.abb.2019.07.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are generated by gut microbial fermentation of dietary fiber. SCFAs may exert multiple beneficial effects on human lipid and glucose metabolism. However, their actions and underlying mechanisms are not fully elucidated. In this study, we examined the direct effects of propionate on hepatic glucose and lipid metabolism using human HepG2 hepatocytes. Here, we demonstrate that propionate at a physiologically-relevant concentration effectively suppresses palmitate-enhanced glucose production in HepG2 cells but does not affect intracellular neutral lipid levels. Our results indicated that propionate can decline in gluconeogenesis by down-regulation of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) through activation of AMP-activated protein kinase (AMPK), which is a major regulator of the hepatic glucose metabolism. Mechanistic studies also revealed that propionate-stimulated AMPK phosphorylation can be ascribed to Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation in response to an increase in intracellular Ca2+ concentration. Moreover, siRNA-mediated knockdown of the propionate receptor GPR43 prevented propionate-inducible activation of AMPK and abrogates the gluconeogenesis-inhibitory action. Thus, our data indicate that the binding of propionate to hepatic GPR43 elicits CaMKKβ-dependent activation of AMPK through intracellular Ca2+ increase, leading to suppression of gluconeogenesis. The present study suggests the potential efficacy of propionate in preventive and therapeutic management of diabetes.
Collapse
|
56
|
Kim K, Bae GD, Lee M, Park EY, Baek DJ, Kim CY, Jun HS, Oh YS. Allomyrina dichotoma Larva Extract Ameliorates the Hepatic Insulin Resistance of High-Fat Diet-Induced Diabetic Mice. Nutrients 2019; 11:nu11071522. [PMID: 31277481 PMCID: PMC6683090 DOI: 10.3390/nu11071522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Allomyrina dichotoma larva is a nutritional-worthy future food resource and it contributes to multiple pharmacological functions. However, its antidiabetic effect and molecular mechanisms are not yet fully understood. Therefore, we investigated the hypolipidemic effect of A. dichotoma larva extract (ADLE) in a high-fat diet (HFD)-induced C57BL/6J mice model. Glucose tolerance and insulin sensitivity in HFD-induced diabetic mice significantly improved after ADLE administration for six weeks. The levels of serum triglyceride (TG), aspartate aminotransferase (AST), alanine transferase (ALT) activity, and lipid accumulation were increased in the liver of HFD-fed mice, but the levels were significantly reduced by the ADLE treatment. Moreover, hepatic fibrosis and inflammatory gene expression in the liver from HFD-treated mice were ameliorated by the ADLE treatment. Dephosphorylation of AMP-activated protein kinase (AMPK) by palmitate was inhibited in the ADLE treated HepG2 cells, and subsequently reduced expression of lipogenic genes, such as SREPBP-1c, ACC, and FAS were observed. The reduced expression of lipogenic genes and an increased phosphorylation of AMPK was also observed in the liver from diabetic mice treated with ADLE. In conclusion, ADLE ameliorates hyperlipidemia through inhibition of hepatic lipogenesis via activating the AMPK signaling pathway. These findings suggest that ADLE and its constituent bioactive compounds are valuable to prevent or treat hepatic insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Kyong Kim
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea
| | - Gong Deuk Bae
- Lee Gil Ya Cancer and Diabetes Institute, Department of molecular medicine, Gachon University, Incheon 21999, Korea
| | - Minho Lee
- Department of Food Technology and Services, Eulji University, Seongnam 13135, Korea
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea
| | - Dong Jae Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan 15888, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of molecular medicine, Gachon University, Incheon 21999, Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea.
| |
Collapse
|
57
|
Kariya T, Takahashi K, Itagaki D, Hasegawa Y. Scallop mantle extract inhibits insulin signaling in HepG2 cells. Food Sci Nutr 2019; 7:2159-2166. [PMID: 31289664 PMCID: PMC6593379 DOI: 10.1002/fsn3.1061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Scallops are important marine products in Hokkaido, Japan. Not only scallop adductor muscle but also mantle is often eaten at sashimi or smoking in Japan. We showed previously that feeding the scallop mantle epithelial cell layer causes an increase in serum glucose concentration and the death of rats. To clarify the mechanism of glucose metabolism disorder by mantle epithelial cell layer, we investigated whether extracts from mantle tissue (mantle extract) induce insulin resistance using HepG2 cells. Mantle extract suppressed insulin-stimulated phosphorylation of Akt, key protein which is involved in insulin signaling. In addition, treatment of HepG2 cells with mantle extract decreased significantly glycogen content and mRNA expression levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) involved in gluconeogenesis, suggesting that mantle extract inhibits insulin signaling. These results show that mantle extract inhibits insulin signaling in HepG2 cells, suggesting that an increase in serum glucose concentration in vivo may be due to the inhibition of insulin signaling.
Collapse
Affiliation(s)
- Takahide Kariya
- College of Environmental TechnologyMuroran Institute of TechnologyMuroranJapan
| | - Koto Takahashi
- College of Environmental TechnologyMuroran Institute of TechnologyMuroranJapan
| | - Daisuke Itagaki
- College of Environmental TechnologyMuroran Institute of TechnologyMuroranJapan
| | - Yasushi Hasegawa
- College of Environmental TechnologyMuroran Institute of TechnologyMuroranJapan
| |
Collapse
|
58
|
Ren X, Chen N, Chen Y, Liu W, Hu Y. TRB3 stimulates SIRT1 degradation and induces insulin resistance by lipotoxicity via COP1. Exp Cell Res 2019; 382:111428. [PMID: 31125554 DOI: 10.1016/j.yexcr.2019.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
Fatty acid-induced lipotoxicity plays an important role in the pathogenesis of diabetes mellitus. Our previous studies have documented that lipotoxicity contributes to the onset and development of diabetes via insulin resistance and/or compromised function of the pancreatic β-cells. However, the underlying molecular mechanisms associating lipotoxicity with insulin resistance remain to be fully elucidated. In this study, we explored the role of TRB3-COP1-SIRT1 in lipotoxicity leading to insulin resistance in hepatocytes. High fat diet (HFD)-fed mice and hepG2 cells stimulated with palmitate were utilized as models of lipid metabolism disorders. We analyzed the interactions of SIRT1 and COP1 with each other and with TRB3 using co-immunoprecipitation, western blotting. SIRT1 ubiquitination was also explored. Animal and cell experiments showed that lipotoxicity induced SIRT1 down-regulation at the protein level without altering the mRNA level, whereas, lipotoxicity led to up-regulation of TRB3 and COP1 at both the gene and protein levels. Mechanistic analysis indicated that COP1 functioned as an E3 Ub-ligase of SIRT1, responsible for its proteasomal degradation under lipotoxic conditions. TRB3 recruited COP1 to SIRT1 to promote its ubiquitination. Our data indicated for the first time that TRB3-COP1-SIRT1 pathway played an important role in lipotoxicity leading to insulin resistance in hepatocytes, and suggested that COP1 could be a potential therapeutic choice for the treatment of diabetes mellitus, with lipotoxicity being the important pathomechanism.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ningxin Chen
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yawen Chen
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Yaomin Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
59
|
Li L, Xue J, Wan J, Zhou Q, Wang S, Zhou Y, Zhao H, Wang X. LRP6 Knockdown Ameliorates Insulin Resistance via Modulation of Autophagy by Regulating GSK3β Signaling in Human LO2 Hepatocytes. Front Endocrinol (Lausanne) 2019; 10:73. [PMID: 30809197 PMCID: PMC6379257 DOI: 10.3389/fendo.2019.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 01/12/2023] Open
Abstract
Recent studies suggest that autophagy is highly involved in insulin resistance (IR). Inhibition of the PI3K/AKT/mTOR signaling pathway induces autophagy activation. Additionally, depletion of LRP6 has been shown to increase insulin sensitivity but its mechanism is still not clear. We hypothesized that LRP6 contributes to IR by regulating mTOR mediated autophagy through GSK3β in hepatocytes. LO2 hepatocytes were treated with palmitate (PA) and insulin to induced IR. Levels of LRP6 mRNA and protein expression were measured by real time-PCR and western blot analysis. LRP6 knock down was achieved by adenovirus mediated Si-LRP6 expression and its roles in IR, glucose, GSK3β, mTOR signaling, and autophagy were explored. Finally, GSK3β was overexpressed and its involvement in autophagy and IR was examined. We found that PA treatment led to a reduced glucose uptake and IR in hepatocytes, which was accompanied by an upregulation of LRP6 expression. Knocking down of LRP6 enhanced glucose uptake and insulin sensitivity in PA treated cells, probably through increasing GSK3b activity. Overexpression of GSK3b mimicked LRP6 reduction by enhancing autophagy and ameliorating IR. Our study revealed a significant molecular mechanism connecting LRP6 to insulin sensitivity through GSK3β-mTOR mediated autophagy.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xue
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jipeng Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shan Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yu Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Heyong Zhao
- Maternal and Child Health Care of Shandong Province, Jinan, China
- *Correspondence: Heyong Zhao
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Maternal and Child Health Care of Shandong Province, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, China
- Xietong Wang
| |
Collapse
|
60
|
Chen K, Ma J, Jia X, Ai W, Ma Z, Pan Q. Advancing the understanding of NAFLD to hepatocellular carcinoma development: From experimental models to humans. Biochim Biophys Acta Rev Cancer 2018; 1871:117-125. [PMID: 30528647 DOI: 10.1016/j.bbcan.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/28/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been recognized as an important etiology contributing to the increased incidence of hepatocellular carcinoma (HCC). NAFLD, characterized by fat accumulation in the liver, is affecting at least one-third of the global population. The more aggressive form, nonalcoholic steatohepatitis (NASH), is characterized by hepatocyte necrosis and inflammation. The development of effective approaches for disease prevention and/or treatment heavily relies on deep understanding of the mechanisms underlying NAFLD to HCC development. However, this has been largely hampered by the lack of robust experimental models that recapitulate the full disease spectrum. This review will comprehensively describe the current in vitro and mouse models for studying NAFLD/NASH/HCC, and further emphasize their applications and possible future improvement for better understanding the molecular mechanisms involved in the cascade of NAFLD to HCC progression.
Collapse
Affiliation(s)
- Kan Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jianbo Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Xiaoyuan Jia
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen Ai
- Department of Cardiology, Shenzhen Nanshan People's Hospital, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Qiuwei Pan
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
61
|
Yang CP, Shiau MY, Lai YR, Ho KT, Hsiao CW, Chen CJ, Lo YL, Chang YH. Interleukin-4 Boosts Insulin-Induced Energy Deposits by Enhancing Glucose Uptake and Lipogenesis in Hepatocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6923187. [PMID: 30584465 PMCID: PMC6280305 DOI: 10.1155/2018/6923187] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/14/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM), with dysregulated hepatic gluconeogenesis as the major cause of fasting hyperglycemia, is closely associated with chronic inflammation. We previously demonstrated interleukin-4 (IL-4) improves insulin sensitivity and glucose tolerance while reducing lipid deposits. The present study examined the in vitro effects of IL-4 on insulin signaling molecules, glucose uptake, and lipid metabolism in hepatocytes, as well as in vivo effects on hepatic adiposity, for elucidating the roles of IL-4 in hepatic energy metabolism. Potential interaction between IL-4 and insulin in regulating hepatic metabolism was also investigated. Our results showed that IL-4 enhanced Akt and GSK-3α/β phosphorylations, which in turn promoted glycogen synthesis. IL-4 not only potentiated basal glucose uptake by upregulating glucose transporter 2 expression but also promoted insulin-induced glucose uptake. Additionally, IL-4 increased triglyceride contents through facilitating free fatty acid uptake and expression/activity of lipogenic enzymes. The major effects of IL-4 on the liver were to promote energy storage by boosting insulin-stimulated glucose uptake and lipid synthesis. This study provides evidence to implicate the novel roles of IL-4 in mediating hepatic glucose and lipid metabolism, interactions between immune responses and metabolic homeostasis, and the involvement of IL-4 in metabolic abnormalities.
Collapse
Affiliation(s)
- Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yi-Ren Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Ting Ho
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taiwan
| |
Collapse
|
62
|
Yagi M, Nakatsuji Y, Maeda A, Ota H, Kamikubo R, Miyoshi N, Nakamura Y, Akagawa M. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS One 2018; 13:e0206748. [PMID: 30383868 PMCID: PMC6211728 DOI: 10.1371/journal.pone.0206748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity, a principal risk factor for the development of diabetes mellitus, heart disease, and hypertension, is a growing and serious health problem all over the world. Leptin is a weight-reducing hormone produced by adipose tissue, which decreases food intake via hypothalamic leptin receptors (Ob-Rb) and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates leptin signaling by dephosphorylating JAK2, and the increased activity of PTP1B is implicated in the pathogenesis of obesity. Hence, inhibition of PTP1B may help prevent and reduce obesity. In this study, we revealed that phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate in certain cruciferous vegetables, potently inhibits recombinant PTP1B by binding to the reactive cysteinyl thiol. Moreover, we found that PEITC causes the ligand-independent phosphorylation of Ob-Rb, JAK2, and STAT3 by inhibiting cellular PTP1B in differentiated human SH-SY5Y neuronal cells. PEITC treatment also induced nuclear accumulation of phosphorylated STAT3, resulting in enhanced anorexigenic POMC expression and suppressed orexigenic NPY/AGRP expression. We demonstrated that oral administration of PEITC to mice significantly reduces food intake, and stimulates hypothalamic leptin signaling. Our results suggest that PEITC might help prevent and improve obesity.
Collapse
Affiliation(s)
- Miho Yagi
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yukiko Nakatsuji
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ayumi Maeda
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hiroki Ota
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ryosuke Kamikubo
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- * E-mail:
| |
Collapse
|
63
|
Hoang NA, Richter F, Schubert M, Lorkowski S, Klotz LO, Steinbrenner H. Differential capability of metabolic substrates to promote hepatocellular lipid accumulation. Eur J Nutr 2018; 58:3023-3034. [PMID: 30368556 DOI: 10.1007/s00394-018-1847-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Excessive storage of triacylglycerides (TAGs) in lipid droplets within hepatocytes is a hallmark of non-alcoholic fatty liver disease (NAFLD), one of the most widespread metabolic disorders in Western societies. For the purpose of exploring molecular pathways in NAFLD development and testing potential drug candidates, well-characterised experimental models of ectopic TAG storage in hepatocytes are needed. METHODS Using an optimised Oil Red O assay, immunoblotting and real-time qRT-PCR, we compared the capability of dietary monosaccharides and fatty acids to promote lipid accumulation in HepG2 human hepatoma cells. RESULTS Both high glucose and high fructose resulted in intracellular lipid accumulation after 48 h, and this was further augmented (up to twofold, as compared to basal levels) by co-treatment with the lipogenesis-stimulating hormone insulin and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α), respectively. The fatty acids palmitic and oleic acid were even more effective than these carbohydrates, inducing significantly elevated TAG storage already after 24 h of treatment. Highest (about threefold) increases in lipid accumulation were observed upon treatment with oleic acid, alone as well as in combinations with palmitic acid or with high glucose and insulin. Increases in protein levels of a major lipid droplet coat protein, perilipin-2 (PLIN2), mirrored intracellular lipid accumulation following different treatment regimens. CONCLUSIONS Several treatment regimens of excessive fat and sugar supply promoted lipid accumulation in HepG2 cells, albeit with differences in the extent and rapidity of steatogenesis. PLIN2 is a candidate molecular marker of sustained lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Ngoc Anh Hoang
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Friederike Richter
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Martin Schubert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
64
|
Rial SA, Ravaut G, Malaret TB, Bergeron KF, Mounier C. Hexanoic, Octanoic and Decanoic Acids Promote Basal and Insulin-Induced Phosphorylation of the Akt-mTOR Axis and a Balanced Lipid Metabolism in the HepG2 Hepatoma Cell Line. Molecules 2018; 23:molecules23092315. [PMID: 30208604 PMCID: PMC6225498 DOI: 10.3390/molecules23092315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points to medium chain fatty acids (MCFA), more efficiently oxidized than LCFA, as a promising dietary alternative against NAFLD. However, reports on the hepatic effects of MCFA are sometimes conflicting. In this study we exposed HepG2 cells, a human hepatocellular model, to 0.25 mM of hexanoic (C6), or octanoic (C8), and decanoic (C10) acids separately or in a C8 + C10 equimolar mix reflecting commercially available MCFA-rich oils. We found that C6, a poorly studied MCFA, as well as C8 and C10 did not provoke the deleterious lipid anabolism runaway typically induced by LCFA palmitate. MCFA tended, instead, to promote a balanced metabolic profile and were generally non-cytotoxic. Accordingly, mitochondrial integrity was mostly preserved following MCFA treatment. However, treatments with C8 induced a mitochondrial membrane potential decrease, suggesting prolonged exposure to this lipid could be problematic. Finally, MCFA treatments maintained optimal insulin sensitivity and even fostered basal and insulin-dependent phosphorylation of the Akt-mTOR pathway. Overall, MCFA could constitute an effective nutritional tool to manage liver steatosis and hepatic insulin resistance.
Collapse
Affiliation(s)
- Sabri Ahmed Rial
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Gaetan Ravaut
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Tommy B Malaret
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Karl-F Bergeron
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Catherine Mounier
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
65
|
Li X, Jin SJ, Su J, Li XX, Xu M. Acid Sphingomyelinase Down-regulation Alleviates Vascular Endothelial Insulin Resistance in Diabetic Rats. Basic Clin Pharmacol Toxicol 2018; 123:645-659. [PMID: 29923306 DOI: 10.1111/bcpt.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
Insulin resistance in endothelial cells contributes to the development of cardiovascular disease in patients with type 2 diabetes. Acid sphingomyelinase (ASM) is a soluble glycoprotein which plays a vital role in the development and progression of various diseases such as cardiovascular and metabolic diseases. However, it remains unknown if ASM regulates insulin resistance in vascular endothelial cells in type 2 diabetes. ASM down-regulation with gene silencing and selective inhibitor amitriptyline was used in the rat aortic endothelial cells (RAECs) treated with palmitic acid (PA), a common saturated free fatty acid, which is thought to be the major cause of insulin resistance. It was shown that ASM down-regulation increased glucose uptake and glucose transporter-4 (Glut4) expression and reversed the phosphorylation of pIRS-1-ser307 and AKT-ser473 via ceramide, consequently resulting in the decrease of the production of endothelial nitric oxide synthase (eNOS) and nitric oxide in PA-induced RAECs. We further found that ASM down-regulation blocked the Nox2- and Nox4-dependent superoxide (O2 -· ) generation, which regulated glucose metabolism in RAECs during PA stimulation. In vivo, amitriptyline relieved the vasodilatory response to acetylcholine and restored the level of ceramide, Nox2 and Nox4 in the aorta endothelium of high-fat diet-fed rats following an injection of streptozotocin. Taken together, these results suggest that ASM down-regulation can improve endothelial insulin resistance which is attributed to inhibiting redox signalling in RAECs. Thus, these data support the idea that ASM is a promising clinical biomarker and potential therapeutic target for diabetic vascular complication.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shi-Jie Jin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Xue Li
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
66
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
67
|
Lyall MJ, Cartier J, Thomson JP, Cameron K, Meseguer-Ripolles J, O'Duibhir E, Szkolnicka D, Villarin BL, Wang Y, Blanco GR, Dunn WB, Meehan RR, Hay DC, Drake AJ. Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0362. [PMID: 29786565 PMCID: PMC5974453 DOI: 10.1098/rstb.2017.0362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation (TET) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Marcus J Lyall
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John P Thomson
- MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Eoghan O'Duibhir
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Giovanny Rodriguez Blanco
- Phenome Centre Birmingham, School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Warwick B Dunn
- Phenome Centre Birmingham, School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
68
|
Kim JS, Lee H, Jung CH, Lee SJ, Ha TY, Ahn J. Chicoric acid mitigates impaired insulin sensitivity by improving mitochondrial function. Biosci Biotechnol Biochem 2018; 82:1197-1206. [DOI: 10.1080/09168451.2018.1451742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Mitochondrial dysfunction is associated with insulin resistance. Although chicoric acid (CA) is known to have beneficial effects on insulin sensitivity, the involvement of mitochondrial function has not been elucidated yet. Here, we investigated the effect of CA on insulin resistance and mitochondrial dysfunction. In palmitate-induced insulin-resistant C2C12 myotubes, CA improved impaired glucose uptake and insulin signaling pathways, along with enhanced mitochondrial membrane potential and oxygen consumption. CA treatment in diet-induced obese mice ameliorated glucose tolerance and increased insulin sensitivity. CA treatment also recovered the dysregulated expression of glucose metabolism-related genes in the high-fat-fed mice. CA significantly increased the mitochondrial DNA content, citrate synthase, and ATP content, as well as the expression of genes related to mitochondrial biogenesis and oxidative phosphorylation in the liver and skeletal muscle in high-fat- fed obese mice. These findings suggested that CA attenuates insulin resistance and promotes insulin sensitivity by enhancing mitochondrial function.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul, Republic of Korea
- Division of Nutrition and Metabolism Research, Korea Food Research Institute , Wanju, Republic of Korea
| | - Hyunjung Lee
- Division of Nutrition and Metabolism Research, Korea Food Research Institute , Wanju, Republic of Korea
| | - Chang Hwa Jung
- Division of Nutrition and Metabolism Research, Korea Food Research Institute , Wanju, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul, Republic of Korea
| | - Tae-Youl Ha
- Division of Nutrition and Metabolism Research, Korea Food Research Institute , Wanju, Republic of Korea
| | - Jiyun Ahn
- Division of Nutrition and Metabolism Research, Korea Food Research Institute , Wanju, Republic of Korea
| |
Collapse
|
69
|
Zhu Y, Tsai MY, Sun Q, Hinkle SN, Rawal S, Mendola P, Ferrara A, Albert PS, Zhang C. A prospective and longitudinal study of plasma phospholipid saturated fatty acid profile in relation to cardiometabolic biomarkers and the risk of gestational diabetes. Am J Clin Nutr 2018; 107:1017-1026. [PMID: 29868913 PMCID: PMC6248709 DOI: 10.1093/ajcn/nqy051] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background Data on saturated fatty acids (SFAs) in relation to metabolic function and glucose homeostasis remain controversial. Such data are lacking among pregnant women. Objective We prospectively investigated objectively measured individual and subclasses of plasma phospholipid SFAs throughout pregnancy in relation to cardiometabolic markers and gestational diabetes mellitus (GDM) risk. Design Within the National Institute of Child Health and Human Development Fetal Growth Studies-Singleton Cohort of 2802 singleton pregnancies, 107 GDM cases were ascertained via medical record review and matched to 214 non-GDM controls on age, race/ethnicity, and gestational week (GW) at blood collection. Individual plasma phospholipid SFA concentrations were repeatedly measured throughout pregnancy at GWs 10-14, 15-26, 23-31, and 33-39 and also grouped into subclasses of even- or odd-chain SFAs. Results From GW 10, even-chain SFA concentrations were significantly higher among women who later developed GDM, whereas odd-chain SFAs were significantly lower among GDM cases compared with controls. At GWs 10-14, the SFA palmitic acid (16:0) was positively associated with impaired insulin resistance and cardiometabolic markers and the risk of GDM [adjusted OR comparing the highest with the lowest quartile (aORQ4-Q1): 4.76; 95% CI: 1.72, 13.10; P-trend = 0.001]. In contrast, odd-chain SFAs were inversely related to the previously mentioned markers and GDM risk [aORQ4-Q1 for pentadecanoic acid (15:0): 0.32; 95% CI: 0.11, 0.92; P-trend = 0.025; for heptadecanoic acid (17:0): 0.20; 95% CI: 0.07, 0.58; P-trend = 0.003]. Women with high (median or greater) even-chain SFA concentrations and low (less than median) odd-chain SFAs had a 9.43-fold (95%: CI 3.26-, 27.30-fold) increased risk compared with women with low even-chain and high odd-chain SFA concentrations. Similar results were observed at GWs 15-26. Conclusions The study provided one of the first lines of evidence suggesting that circulating concentrations of SFAs varying by SFA chain length, as early as GWs 10-14, were significantly and differentially associated with subsequent risk of GDM. Our findings highlight the importance of assessing objectively measured, individual, and subclasses of SFAs to investigate their distinct biological and pathophysiologic roles in glucose homeostasis and cardiometabolic outcomes. This study was registered at www.clinicaltrials.gov as NCT00912132.
Collapse
Affiliation(s)
- Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA,Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Qi Sun
- Department of Nutrition, Harvard TH Chan School of Public Health and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Stefanie N Hinkle
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Shristi Rawal
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Department of Nutritional Sciences, School of Health Professions, Rutgers University, Newark, NJ
| | - Pauline Mendola
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Paul S Albert
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Address correspondence to CZ (e-mail: )
| |
Collapse
|
70
|
Zhang X, Wang Y, Ge HY, Gu YJ, Cao FF, Yang CX, Uzan G, Peng B, Zhang DH. Celastrol reverses palmitic acid (PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA. J Cell Physiol 2018; 233:6814-6824. [PMID: 29667734 DOI: 10.1002/jcp.26547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
Abstract
Elevated plasma statured fatty acids (FFAs) cause TLR4/MD2 activation-dependent inflammation and insulin tolerance, which account for the occurrence and development of obesity. It has been confirmed that statured palmitic acid (PA) (the most abundant FFA) could bind MD2 to cause cellular inflammation. The natural compound celastrol could improve obesity, which is suggested via inhibiting inflammation, yet the detailed mechanism for celastrol is still unclear. As celastrol is reported to directly target MD2, we thought disrupting the binding between FFAs and MD2 might be one of the ways for celastrol to inhibit FFAs-caused inflammation and insulin resistance. In this study, we found evidence to support our hypothesis: celastrol could reverse PA-caused TLR4/MD2 activation-dependent insulin resistance, as determined by glucose-lowering ability, cellular glucose uptake, insulin action-related proteins and TLR4/MD2/NF-κB activation. Bioinformatics and cellular experiments showed that both celastrol and PA could bind MD2, and that celastrol could expel PA from cells. Finally, celastrol could reverse high fat diet caused hyperglycemia and obesity, and liver NF-kB activations. Taking together, we proved that celastrol could reverses PA-caused TLR4-MD2 activation-dependent insulin resistance via disrupting PA binding to MD2.
Collapse
Affiliation(s)
- Xue Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Ying Wang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Hui-Ya Ge
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,Graduate School, Ningxia Medical University, Ningxia, China
| | - Yi-Jun Gu
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Fan-Fan Cao
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Chun-Xin Yang
- Pharmaceutical Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Georges Uzan
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,U972, Inserm, Paul Brousse Hospital, Villejuif Cedex, France
| | - Bin Peng
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Deng-Hai Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,U972, Inserm, Paul Brousse Hospital, Villejuif Cedex, France
| |
Collapse
|
71
|
Song C, Yan H, Wang H, Zhang Y, Cao H, Wan Y, Kong L, Chen S, Xu H, Pan B, Zhang J, Fan G, Xin H, Liang Z, Jia W, Tian XL. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism. J Genet Genomics 2018; 45:111-120. [PMID: 29502958 DOI: 10.1016/j.jgg.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent GWAS datasets of T2DM and found that rs3743121, located 1 kb downstream of AQR, was a novel susceptibility SNP associated with T2DM. The risk allele C of rs3743121 was correlated with the increased expression of AQR in white blood cells, similar to that observed in T2DM models. The knockdown of AQR in HepG2 facilitated the glucose uptake, decreased the expression level of PCK2, increased the phosphorylation of GSK-3β, and restored the insulin sensitivity. Furthermore, the suppression of AQR inhibited the mTOR pathway and the protein ubiquitination process. Our study suggests that AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism.
Collapse
Affiliation(s)
- Chun Song
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Han Yan
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hanming Wang
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yiqi Wan
- Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China
| | - Lingbao Kong
- Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China
| | - Shenghan Chen
- Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China
| | - Hong Xu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Bingxing Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Guohuang Fan
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao-Li Tian
- Laboratory of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Human Population Genetics, Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
72
|
Alsabeeh N, Chausse B, Kakimoto PA, Kowaltowski AJ, Shirihai O. Cell culture models of fatty acid overload: Problems and solutions. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:143-151. [PMID: 29155055 DOI: 10.1016/j.bbalip.2017.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
High plasma levels of fatty acids occur in a variety of metabolic diseases. Cellular effects of fatty acid overload resulting in negative cellular responses (lipotoxicity) are often studied in vitro, in an attempt to understand mechanisms involved in these diseases. Fatty acids are poorly soluble, and thus usually studied when complexed to albumins such as bovine serum albumin (BSA). The conjugation of fatty acids to albumin requires care pertaining to preparation of the solutions, effective free fatty acid concentrations, use of different fatty acid species, types of BSA, appropriate controls and ensuring cellular fatty acid uptake. This review discusses lipotoxicity models, the potential problems encountered when using these cellular models, as well as practical solutions for difficulties encountered.
Collapse
Affiliation(s)
- Nour Alsabeeh
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Bruno Chausse
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Pamela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Orian Shirihai
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
73
|
Calvo-Ochoa E, Sánchez-Alegría K, Gómez-Inclán C, Ferrera P, Arias C. Palmitic acid stimulates energy metabolism and inhibits insulin/PI3K/AKT signaling in differentiated human neuroblastoma cells: The role of mTOR activation and mitochondrial ROS production. Neurochem Int 2017; 110:75-83. [DOI: 10.1016/j.neuint.2017.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022]
|
74
|
Abstract
Enlarged fat cells in obese adipose tissue diminish capacity to store fat and are resistant to the anti-lipolytic effect of insulin. Insulin resistance (IR)-associated S-nitrosylation of insulin-signaling proteins increases in obesity. In accordance with the inhibition of insulin-mediated anti-lipolytic action, plasma free fatty acid (FFA) levels increase. Additionally, endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) and extracellular signal-regulated kinase ½ (ERK1/2) signaling in adipocytes. Failure of packaging of excess lipid into lipid droplets causes chronic elevation of circulating fatty acids, which can reach to toxic levels within non-adipose tissues. Deleterious effects of lipid accumulation in non-adipose tissues are known as lipotoxicity. In fact, triglycerides may also serve a storage function for long-chain non-esterified fatty acids and their products such as ceramides and diacylglycerols (DAGs). Thus, excess DAG, ceramide and saturated fatty acids in obesity can induce chronic inflammation and have harmful effect on multiple organs and systems. In this context, chronic adipose tissue inflammation, mitochondrial dysfunction and IR have been discussed within the scope of lipotoxicity.
Collapse
|
75
|
Meng XH, Chen B, Zhang JP. Intracellular Insulin and Impaired Autophagy in a Zebrafish model and a Cell Model of Type 2 diabetes. Int J Biol Sci 2017; 13:985-995. [PMID: 28924380 PMCID: PMC5599904 DOI: 10.7150/ijbs.19249] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/13/2017] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance. However, the complete molecular mechanism remains unclear. In this study, zebrafish were fed a long-term high-fat diet to induce type 2 diabetes, which resulted in a higher body weight, body mass index, more lipid vacuoles in liver, increased insulin transcription level in liver, brain and muscle, and high fasting blood glucose in the high-fat diet zebrafish. Oppositely, the transcription levels of insulin substrate-2 and glucose transporter 2 were significantly decreased, indicating insulin signaling pathway and glucose transport impaired in the insulin-targeting tissues. Transcription of the autophagy-related genes, ATG3, ATG4B, ATG5, ATG7, ATG12, and FOXO3, were decreased but autophagy inhibitor gene m-TOR increased, and autophagy-flux was inhibited in liver of the high-fat diet zebrafish. Main of these changes were confirmed in palmitic acid-treated HepG2 cells. Further, in co-immunoprecipitation and subcellular co-localization experiments, the conjunction of preproinsulin with cargo-recognition protein p62 increased, but conjuncts of autophagosome with p62-cargo, lysosomes with p62-cargo, and autolysosomes decreased apparently. Interestingly, lysosomes, autolysosomes and conjuncts of p62-insulin localized at the periphery of palmitic acid-treated cells, the margination of lysosomes may mediate deactivation of proteases activity. These findings suggest that intracellular high-lipid may trigger defective autophagy, defective downstream signaling of insulin and accumulated intracellular preproinsulin, leading to dysregulation of cell homeostasis mechanism, which may be one of reasons involved in insulin-resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Xiang-Hui Meng
- Laboratory of pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Laboratory of pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Laboratory of pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
76
|
Yang X, Sun L, Zhao A, Hu X, Qing Y, Jiang J, Yang C, Xu T, Wang P, Liu J, Zhang J, He L, Jia W, Wan C. Serum fatty acid patterns in patients with schizophrenia: a targeted metabonomics study. Transl Psychiatry 2017; 7:e1176. [PMID: 28742081 PMCID: PMC5538128 DOI: 10.1038/tp.2017.152] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies have indicated that schizophrenia is linked to abnormal lipid metabolism. Free fatty acids (FFAs) in peripheral blood can reflect the status of lipid metabolism in human body. The purpose of this study was to scan the FFA pattern and elucidate the characteristics of lipid metabolic abnormality in schizophrenia patients. One hundred and ten patients with schizophrenia (SCZs) and 109 healthy controls (HCs) were included in the study and divided into a discovery set and a validation set. Forty-seven serum FFAs were detected by UPLC-QTOF-MS and 39 of them were absolutely quantified by establishing standard curves. Monounsaturated fatty acids (MUFAs) and ω-6 polyunsaturated fatty acids (ω-6 PUFAs) were significantly increased in SCZs compared with HCs. Desaturation from saturated fatty acids to MUFAs and β-oxidation were enhanced, as estimated by the ratios of products to precursors. These results suggest that lipolysis and β-oxidation are upregulated in SCZ, presumably resulting from insufficient brain energy supply.
Collapse
Affiliation(s)
- X Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - L Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - A Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - X Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Y Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - J Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - C Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - T Xu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - P Wang
- The Fourth People’s Hospital of Wuhu, Wuhu, China
| | - J Liu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - J Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - L He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - W Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China E-mail:
| | - C Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China,Collaborative Innovation Center of Genetics and Development, Shanghai, China,Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China. E-mail:
| |
Collapse
|
77
|
Rheiner S, Reichel D, Rychahou P, Izumi T, Yang HS, Bae Y. Polymer nanoassemblies with hydrophobic pendant groups in the core induce false positive siRNA transfection in luciferase reporter assays. Int J Pharm 2017. [PMID: 28629980 DOI: 10.1016/j.ijpharm.2017.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(ethylene glycol)-conjugated polyethylenimine (PEG-PEI) is a widely studied cationic polymer used to develop non-viral vectors for siRNA therapy of genetic disorders including cancer. Cell lines stably expressing luciferase reporter protein typically evaluate the transfection efficacy of siRNA/PEG-PEI complexes, however recent findings revealed that PEG-PEI can reduce luciferase expression independent of siRNA. This study elucidates a cause of the false positive effect in luciferase assays by using polymer nanoassemblies (PNAs) made from PEG, PEI, poly-(l-lysine) (PLL), palmitate (PAL), and deoxycholate (DOC): PEG-PEI (2P), PEG-PEI-PAL (3P), PEG-PLL (2P'), PEG-PLL-PAL (3P'), and PEG-PEI-DOC (2PD). In vitro transfection and western blot assays of luciferase using a colorectal cancer cell line expressing luciferase (HT29/LUC) concluded that 2P and 2P' caused no luciferase expression reduction while hydrophobically modified PNAs induced a 35-50% reduction (3P'<2PD<3P). Although cell viability remained stagnant, 3P triggered cellular stress responses including increased membrane porosity and decreased ATP and cellular protein concentrations. Raman spectroscopy suggested that hydrophobic groups influence PNA conformation changes, which may have caused over-ubiquitination and degradation of luciferase in the cells. These results indicate that hydrophobically modified PEG-PEI induces cellular distress causing over-ubiquitination of the luciferase protein, producing false positive siRNA transfection in the luciferase assay.
Collapse
Affiliation(s)
- Steven Rheiner
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536, USA
| | - Derek Reichel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536, USA; Department of Surgery, College of Medicine, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - Hsin-Sheng Yang
- Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536, USA.
| |
Collapse
|
78
|
Zhou Q, Gu Y, Lang H, Wang X, Chen K, Gong X, Zhou M, Ran L, Zhu J, Mi M. Dihydromyricetin prevents obesity-induced slow-twitch-fiber reduction partially via FLCN/FNIP1/AMPK pathway. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1282-1291. [PMID: 28363698 DOI: 10.1016/j.bbadis.2017.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Obesity is often accompanied by decreases in the proportion of skeletal muscle slow-twitch fibers and insulin sensitivity. Increased plasma non-esterified fatty acids (NEFA) levels are responsible for obesity-associated insulin resistance. Palmitate, one of the most elevated plasma NEFA in obesity, has been recognized as the principle inducer of insulin resistance. The present study showed that increased plasma NEFA levels were negatively linked to slow-twitch fiber proportion and insulin sensitivity, while slow-twitch fiber proportion was positively correlated to insulin sensitivity in high fat diet (HFD)-fed and ob/ob mice. Dihydromyricetin (DHM) intervention increased slow-twitch fiber proportion and improved insulin resistance. In cultured C2C12 myotubes, palmitate treatment resulted in decrease of slow-twitch fiber specific Myh7 expression and insulin resistance, concomitant with folliculin (FLCN) and folliculin-interacting protein 1 (FNIP1) expression increase, AMP-activated protein kinase (AMPK) inactivation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression decrease. Those palmitate-induced effects could be blocked by knock-down of FLCN expression or DHM intervention. Meanwhile, the protective effects of DHM were alleviated by over-expression of FLCN. In addition, the changes in AMPK activity and expression of FLCN and FNIP1 in vivo were consistent with those occurring in vitro. These findings suggest that DHM treatment prevents palmitate-induced slow-twitch fibers decrease partially via FLCN-FNIP1-AMPK pathway thereby improving insulin resistance in obesity.
Collapse
Affiliation(s)
- Qicheng Zhou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Yeyun Gu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Xiaolan Wang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Xinhua Gong
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China.
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China.
| |
Collapse
|
79
|
Nagarajan SR, Brandon AE, McKenna JA, Shtein HC, Nguyen TQ, Suryana E, Poronnik P, Cooney GJ, Saunders DN, Hoy AJ. Insulin and diet-induced changes in the ubiquitin-modified proteome of rat liver. PLoS One 2017; 12:e0174431. [PMID: 28329008 PMCID: PMC5362237 DOI: 10.1371/journal.pone.0174431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin is a crucial post-translational modification regulating numerous cellular processes, but its role in metabolic disease is not well characterized. In this study, we identified the in vivo ubiquitin-modified proteome in rat liver and determined changes in this ubiquitome under acute insulin stimulation and high-fat and sucrose diet-induced insulin resistance. We identified 1267 ubiquitinated proteins in rat liver across diet and insulin-stimulated conditions, with 882 proteins common to all conditions. KEGG pathway analysis of these proteins identified enrichment of metabolic pathways, TCA cycle, glycolysis/gluconeogenesis, fatty acid metabolism, and carbon metabolism, with similar pathways altered by diet and insulin resistance. Thus, the rat liver ubiquitome is sensitive to diet and insulin stimulation and this is perturbed in insulin resistance.
Collapse
Affiliation(s)
- Shilpa R. Nagarajan
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Amanda E. Brandon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jessie A. McKenna
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Harrison C. Shtein
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Thinh Q. Nguyen
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Philip Poronnik
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Gregory J. Cooney
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Darren N. Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- * E-mail: (AJH); (DNS)
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- * E-mail: (AJH); (DNS)
| |
Collapse
|
80
|
Ye M, Qiu H, Cao Y, Zhang M, Mi Y, Yu J, Wang C. Curcumin Improves Palmitate-Induced Insulin Resistance in Human Umbilical Vein Endothelial Cells by Maintaining Proteostasis in Endoplasmic Reticulum. Front Pharmacol 2017; 8:148. [PMID: 28377722 PMCID: PMC5359258 DOI: 10.3389/fphar.2017.00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
Abstract
Dysfunction of proteasome and autophagy will result in disturbance of endoplasmic reticulum (ER) proteostasis, and thus lead to long-term and chronic ER stress and subsequent unfolded protein response (UPR), which is implicated in the occurrence and development of insulin resistance. Curcumin exerts beneficial metabolic effects in in vitro cells and in vivo animal models of diabetes and diabetic complications including cardiovascular diseases, due to its powerful anti-oxidative and anti-inflammatory properties. However, its impacts on insulin resistance of endothelial cells and its underlying mechanism(s) remain ill-defined. Herein, we tested the hypothesis that curcumin action in ER protein quality control was related to improvement of insulin resistance in human umbilical vein endothelial cells (HUVECs) cultured with saturated fatty acid palmitate. We found that palmitate treatment induced insulin resistance of HUVECs and activated both the ubiquitin-proteasome system (UPS) and autophagy. Palmitate-stimulated activation of the UPS and autophagy was attenuated by pharmacological inhibition of ER stress. In addition, curcumin supplementation mitigated palmitate-induced insulin resistance, inhibited the UPS, and activated autophagy. Furthermore, curcumin administration suppressed palmitate-induced protein aggregation and ER stress. Genetic inhibition of autophagy by silencing autophagy protein 5 (Atg5) completely restored total protein ubiquitination and protein aggregation in HUVECs treated with combined curcumin and palmitate. Atg5-knockdown also abolished the beneficial effects of curcumin on palmitate-induced ER stress, JNK/IRS-1 pathway as well as insulin signaling. Our results reveal that curcumin-activated autophagy could maintain proteostasis in ER leading to attenuation of ER stress and subsequent inhibition of JNK/IRS-1 pathway and improvement of insulin resistance.
Collapse
Affiliation(s)
- Mao Ye
- Department of Endocrinology, The Central Hospital of Enshi Autonomous PrefectureEnshi, China; Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan UniversityWuhan, China
| | - Hong Qiu
- Department of Laboratory, Dongfeng General Hospital of Hubei Medical University Shiyan, China
| | - Yingkang Cao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University Wuhan, China
| | - Min Zhang
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture Enshi, China
| | - Yan Mi
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture Enshi, China
| | - Jing Yu
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture Enshi, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University Wuhan, China
| |
Collapse
|
81
|
Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 2016; 18:747-54. [PMID: 27097743 DOI: 10.1111/dom.12677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/09/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022]
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyse the ubiquitination of many proteins for degradation by the 26S proteasome. E3 ubiquitin ligases play pivotal roles in the process of insulin resistance and diabetes. In this review, we summarize the currently available studies to analyse the potential role of E3 ubiquitin ligases in the development of insulin resistance. We propose two mechanisms by which E3 ubiquitin ligases can affect the process of insulin resistance. First, E3 ubiquitin ligases directly degrade the insulin receptor, insulin receptor substrate and other key insulin signalling molecules via the UPS. Second, E3 ubiquitin ligases indirectly regulate insulin signalling by regulating pro-inflammatory mediators that are involved in the regulation of insulin signalling molecules, such as tumour necrosis factor-α, interleukin (IL)-6, IL-4, IL-13, IL-1β, monocyte chemoattractant protein-1 and hypoxia-inducible factor 1α. Determining the mechanism by which E3 ubiquitin ligases affect the development of insulin resistance can identify a novel strategy to protect against insulin resistance and diabetes.
Collapse
Affiliation(s)
- X-D Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - D-X Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Y-Y Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
82
|
Kamikubo R, Kai K, Tsuji-Naito K, Akagawa M. β-Caryophyllene attenuates palmitate-induced lipid accumulation through AMPK signaling by activating CB2 receptor in human HepG2 hepatocytes. Mol Nutr Food Res 2016; 60:2228-2242. [PMID: 27234712 DOI: 10.1002/mnfr.201600197] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
SCOPE Nonalcoholic fatty liver disease is currently the most common chronic liver disease worldwide, characterized by excessive hepatic lipid accumulation without significant ethanol consumption. We have performed a screening for medicinal foods that inhibit hepatocytic lipid accumulation through activation of AMP-activated protein kinase (AMPK), which is a critical regulator of the hepatic lipid metabolism. METHODS AND RESULTS We found that clove (Syzygium aromaticum), which is commonly used as a spice, markedly inhibits palmitate-inducible lipid accumulation in human HepG2 hepatocytes. Analyses of the clove extracts found that β-caryophyllene, an orally-active cannabinoid, is the principal suppressor of the lipid accumulation, and stimulates the phosphorylation of AMPK and acetyl-CoA carboxylase 1 (ACC1). Our data also showed that β-caryophyllene prevents the translocation of sterol regulatory element-binding protein-1c (SREBP-1c) into the nucleus and forkhead box protein O1 (FoxO1) into the cytoplasm through AMPK signaling, and consequently, induces a significant downregulation of fatty acid synthase (FAS) and upregulation of adipose triglyceride lipase, respectively. Moreover, we demonstrated that the β-caryophyllene-induced activation of AMPK could be mediated by the cannabinoid type 2 receptor-dependent Ca2+ signaling pathway. CONCLUSION Our results suggest that β-caryophyllene has the potential efficacy in preventing and ameliorating nonalcoholic fatty liver disease and its associated metabolic disorders.
Collapse
Affiliation(s)
- Ryosuke Kamikubo
- Department of Biological Chemistry, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kenji Kai
- Department of Biological Chemistry, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | | | - Mitsugu Akagawa
- Department of Biological Chemistry, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan.
| |
Collapse
|
83
|
Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules 2015; 20:17339-61. [PMID: 26393565 PMCID: PMC6331788 DOI: 10.3390/molecules200917339] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed.
Collapse
|
84
|
Díaz-Ruiz A, Guzmán-Ruiz R, Moreno NR, García-Rios A, Delgado-Casado N, Membrives A, Túnez I, El Bekay R, Fernández-Real JM, Tovar S, Diéguez C, Tinahones FJ, Vázquez-Martínez R, López-Miranda J, Malagón MM. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity. Antioxid Redox Signal 2015; 23:597-612. [PMID: 25714483 PMCID: PMC4554552 DOI: 10.1089/ars.2014.5939] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. RESULTS Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. INNOVATION This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. CONCLUSION Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity.
Collapse
Affiliation(s)
- Alberto Díaz-Ruiz
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Rocío Guzmán-Ruiz
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Natalia R Moreno
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Antonio García-Rios
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Nieves Delgado-Casado
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Antonio Membrives
- 4 Unidad de Gestión Clínica de Cirugía General y Digestivo. Sección de Obesidad, IMIBIC/Reina Sofia University Hospital , Córdoba, Spain
| | - Isaac Túnez
- 5 Department of Biochemistry and Molecular Biology, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Rajaa El Bekay
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,6 Biomedical Research Laboratory, Endocrinology Department, Hospital Virgen de la Victoria , Málaga, Spain
| | - José M Fernández-Real
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,7 Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona (IdIBGi) , Girona, Spain
| | - Sulay Tovar
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,8 Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela , Santiago de Compostela, A Coruña, Spain
| | - Carlos Diéguez
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,8 Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela , Santiago de Compostela, A Coruña, Spain
| | - Francisco J Tinahones
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,6 Biomedical Research Laboratory, Endocrinology Department, Hospital Virgen de la Victoria , Málaga, Spain
| | - Rafael Vázquez-Martínez
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - José López-Miranda
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - María M Malagón
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| |
Collapse
|
85
|
Bei F, Jia J, Jia YQ, Sun JH, Liang F, Yu ZY, Cai W. Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats. Lipids Health Dis 2015; 14:96. [PMID: 26302954 PMCID: PMC4549095 DOI: 10.1186/s12944-015-0094-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/14/2015] [Indexed: 01/09/2023] Open
Abstract
Background Increasing evidence suggests that overnutrition during the early postnatal period, a critical window of development, increases the risk of adult-onset obesity and insulin resistance. In this study, we investigated the impact of overnutrition during the suckling period on body weight, serum biochemistry and serum fatty acid metabolomics in male rats. Methods Rats raised in small litters (SL, 3 pups/dam) and normal litters (NL, 10 pups/dam) were used to model early postnatal overnutrition and control, respectively. Serum glucose, triglyceride, high-density lipoprotein-cholesterol, free fatty acid, insulin and leptin concentrations were assayed using standard biochemical techniques. Serum fatty acids were identified and quantified using a gas chromatography–mass spectrometry-based metabolomic approach. mRNA and protein levels of key components of the insulin receptor signaling pathway were measured in epididymal fat and gastrocnemius muscle by quantitative PCR and western blotting. Results SL rats were 37.3 % and 15.1 % heavier than NL rats at weaning and 16-weeks-old, respectively. They had increased visceral fat mass, adult-onset insulin resistance and glucose intolerance as well as elevated serum levels of free fatty acids and triglycerides. All detectable fatty acids were elevated in the serum of SL pups at weaning compared to NL controls, and significant increases in the levels of four fatty acids (palmitic acid, palmitoleic acid, oleic acid and arachidonic acid) persisted into adulthood. Moreover, a significantly positive correlation was identified between an insulin resistance index (HOMA-IR) and concentrations of myristic, palmitic, palmitoleic and oleic acid in serum at postnatal 16 weeks. Early postnatal overnutrition also resulted in a significant downregulation of insulin receptor substrate-1 (Irs-1), protein kinase B (Akt2) and glucose transporter 4 (Glut4) at the protein level in epididymal fat of SL rats at 16 weeks, accompanied by decreased mRNA levels for Irs-1 and Glut4. In gastrocnemius muscle, Akt2 and Glut4 mRNA and Glut4 protein levels were significantly decreased in SL rats. Conclusions This study demonstrates that early postnatal overnutrition can have long-lasting effects on body weight and serum fatty acid profiles and can lead to impaired insulin signaling pathway in visceral white adipose tissue and skeletal muscle, which may play a major role in IR.
Collapse
Affiliation(s)
- Fei Bei
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia Jia
- Shanghai Center for Bioformation Technology, 1278 Keyuan Road, Shanghai, 201203, China.
| | - Yi-Qun Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian-Hua Sun
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Fei Liang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Zhong-Yi Yu
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Wei Cai
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
86
|
LUBAC Formation Is Impaired in the Livers of Mice with MCD-Dependent Nonalcoholic Steatohepatitis. Mediators Inflamm 2015; 2015:125380. [PMID: 26170532 PMCID: PMC4478366 DOI: 10.1155/2015/125380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 01/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a disorder characterized by hepatic lipid accumulation followed by the inflammation-induced death of hepatocytes and fibrosis. In this process, oxidative stress contributes to the induction of several inflammatory cytokines including TNF-α andIL-1β in macrophages, while, in hepatocytes, NF-κB reportedly induces the expressions of cell survival genes for protection from apoptosis. Recently, it was reported that the new ubiquitin ligase complex termed linear ubiquitin chain assembly complex (LUBAC), composed of SHARPIN (SHANK-associated RH domain-interacting protein), HOIL-1L (longer isoform of heme-oxidized iron-regulatory protein 2 ubiquitin ligase-1), and HOIP (HOIL-1L interacting protein), forms linear ubiquitin on NF-κB essential modulator (NEMO) and thereby induces NF-κB pathway activation. In this study, we demonstrated the formation of LUBAC to be impaired in the livers of NASH rodent models produced by methionine and choline deficient (MCD) diet feeding, first by either gel filtration or Blue Native-PAGE, with subsequent confirmation by western blotting. The reduction of LUBAC is likely to be attributable to markedly reduced expression of SHARPIN, one of its components. Thus, impaired LUBAC formation, which would result in insufficient NF-κB activation, may be one of the molecular mechanisms underlying the enhanced apoptotic response of hepatocytes in MCD diet-induced NASH livers.
Collapse
|
87
|
Lipina C, Nardi F, Grace H, Hundal HS. NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cell Signal 2015; 27:1742-50. [PMID: 26022181 DOI: 10.1016/j.cellsig.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The plasma membrane-associated enzyme NEU3 sialidase functions to cleave sialic acid residues from the ganglioside GM3 thereby promoting its degradation, and has been implicated in the modulation of insulin action. Herein, we report for the first time that impaired insulin sensitivity in skeletal muscle and liver of obese Zucker fatty rats and aged C57BL/6 mice coincides with reduced NEU3 protein abundance. In addition, high fat feeding was found to significantly reduce NEU3 protein in white adipose tissue of rats. Notably, we also demonstrate the ability of the fatty acids palmitate and oleate to repress and induce NEU3 protein in L6 myotubes, concomitant with their insulin desensitising and enhancing effects, respectively. Moreover, we show that the palmitate-driven loss in NEU3 protein is mediated, at least in part, by intracellular ceramide synthesis but does not involve the proteasomal pathway. Strikingly, we further reveal that protein kinase B (PKB/Akt) acts as a key positive modulator of NEU3 protein abundance. Together, our findings implicate NEU3 as a potential biomarker of insulin sensitivity, and provide novel mechanistic insight into the regulation of NEU3 expression.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Grace
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|