51
|
Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry 2021; 11:176. [PMID: 33731700 PMCID: PMC7969935 DOI: 10.1038/s41398-021-01297-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Anomalous patterns of brain gyrification have been reported in major psychiatric disorders, presumably reflecting their neurodevelopmental pathology. However, previous reports presented conflicting results of patients having hyper-, hypo-, or normal gyrification patterns and lacking in transdiagnostic consideration. In this article, we systematically review previous magnetic resonance imaging studies of brain gyrification in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder at varying illness stages, highlighting the gyral pattern trajectory for each disorder. Patients with each psychiatric disorder may exhibit deviated primary gyri formation under neurodevelopmental genetic control in their fetal life and infancy, and then exhibit higher-order gyral changes due to mechanical stress from active brain changes (e.g., progressive reduction of gray matter volume and white matter integrity) thereafter, representing diversely altered pattern trajectories from those of healthy controls. Based on the patterns of local connectivity and changes in neurodevelopmental gene expression in major psychiatric disorders, we propose an overarching model that spans the diagnoses to explain how deviated gyral pattern trajectories map onto clinical manifestations (e.g., psychosis, mood dysregulation, and cognitive impairments), focusing on the common and distinct gyral pattern changes across the disorders in addition to their correlations with specific clinical features. This comprehensive understanding of the role of brain gyrification pattern on the pathophysiology may help to optimize the prediction and diagnosis of psychiatric disorders using objective biomarkers, as well as provide a novel nosology informed by neural circuits beyond the current descriptive diagnostics.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,Arisawabashi Hospital, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
52
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
53
|
Wu Q, Ripp I, Emch M, Koch K. Cortical and subcortical responsiveness to intensive adaptive working memory training: An MRI surface-based analysis. Hum Brain Mapp 2021; 42:2907-2920. [PMID: 33724600 PMCID: PMC8127158 DOI: 10.1002/hbm.25412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Working memory training (WMT) has been shown to have effects on cognitive performance, the precise effects and the underlying neurobiological mechanisms are, however, still a matter of debate. In particular, the impact of WMT on gray matter morphology is still rather unclear. In the present study, 59 healthy middle‐aged participants (age range 50–65 years) were pseudo‐randomly single‐blinded allocated to an 8‐week adaptive WMT or an 8‐week nonadaptive intervention. Before and after the intervention, high resolution magnetic resonance imaging (MRI) was performed and cognitive test performance was assessed in all participants. Vertex‐wise cortical volume, thickness, surface area, and cortical folding was calculated. Seven subcortical volumes of interest and global mean cortical thickness were also measured. Comparisons of symmetrized percent change (SPC) between groups were conducted to identify group by time interactions. Greater increases in cortical gyrification in bilateral parietal regions, including superior parietal cortex and inferior parietal lobule as well as precuneus, greater increases in cortical volume and thickness in bilateral primary motor cortex, and changes in surface area in bilateral occipital cortex (medial and lateral occipital cortex) were detected in WMT group after training compared to active controls. Structural training‐induced changes in WM‐related regions, especially parietal regions, might provide a better brain processing environment for higher WM load.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Institute of Medical PsychologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Isabelle Ripp
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der IsarTechnical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| | - Mónica Emch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| |
Collapse
|
54
|
Li H, Zhang H, Yin L, Zhang F, Chen Z, Chen T, Jia Z, Gong Q. Altered cortical morphology in major depression disorder patients with suicidality. PSYCHORADIOLOGY 2021; 1:13-22. [PMID: 38665310 PMCID: PMC10917214 DOI: 10.1093/psyrad/kkaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
Background Major depressive disorder (MDD) is associated with high risk of suicide, but the biological underpinnings of suicidality in MDD patients are far from conclusive. Previous neuroimaging studies using voxel-based morphometry (VBM) demonstrated that depressed individuals with suicidal thoughts or behaviors exhibit specific cortical structure alterations. To complement VBM findings, surface-based morphometry (SBM) can provide more details into gray matter structure, including the cortical complexity, cortical thickness and sulcal depth for brain images. Objective This study aims to use SBM to investigate cortical morphology alterations to obtain evidence for neuroanatomical alterations in depressed patients with suicidality. Methods Here, 3D T1-weighted MR images of brain from 39 healthy controls, 40 depressed patients without suicidality (patient controls), and 39 with suicidality (suicidal groups) were analyzed based on SBM to estimate the fractal dimension, gyrification index, sulcal depth, and cortical thickness using the Computational Anatomy Toolbox. Correlation analyses were performed between clinical data and cortical surface measurements from patients. Results Surface-based morphometry showed decreased sulcal depth in the parietal, frontal, limbic, occipital and temporal regions and decreased fractal dimension in the frontal regions in depressed patients with suicidality compared to both healthy and patient controls. Additionally, in patients with depression, the sulcal depth of the left caudal anterior cingulate cortex was negatively correlated with Hamilton Depression Rating Scale scores. Conclusions Depressed patients with suicidality had abnormal cortical morphology in some brain regions within the default mode network, frontolimbic circuitry and temporal regions. These structural deficits may be associated with the dysfunction of emotional processing and impulsivity control. This study provides insights into the underlying neurobiology of the suicidal brain.
Collapse
Affiliation(s)
- Huiru Li
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Huawei Zhang
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Ziqi Chen
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Chengdu, China, 610041
| |
Collapse
|
55
|
Lin HY, Huang CC, Chou KH, Yang AC, Lo CYZ, Tsai SJ, Lin CP. Differential Patterns of Gyral and Sulcal Morphological Changes During Normal Aging Process. Front Aging Neurosci 2021; 13:625931. [PMID: 33613271 PMCID: PMC7886979 DOI: 10.3389/fnagi.2021.625931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
The cerebral cortex is a highly convoluted structure with distinct morphologic features, namely the gyri and sulci, which are associated with the functional segregation or integration in the human brain. During the lifespan, the brain atrophy that is accompanied by cognitive decline is a well-accepted aging phenotype. However, the detailed patterns of cortical folding change during aging, especially the changing age-dependencies of gyri and sulci, which is essential to brain functioning, remain unclear. In this study, we investigated the morphology of the gyral and sulcal regions from pial and white matter surfaces using MR imaging data of 417 healthy participants across adulthood to old age (21–92 years). To elucidate the age-related changes in the cortical pattern, we fitted cortical thickness and intrinsic curvature of gyri and sulci using the quadratic model to evaluate their age-dependencies during normal aging. Our findings show that comparing to gyri, the sulcal thinning is the most prominent pattern during the aging process, and the gyrification of pial and white matter surfaces were also affected differently, which implies the vulnerability of functional segregation during aging. Taken together, we propose a morphological model of aging that may provide a framework for understanding the mechanisms underlying gray matter degeneration.
Collapse
Affiliation(s)
- Hsin-Yu Lin
- Centre for Research and Development in Learning, Nanyang Technological University, Singapore, Singapore.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,School of Psychology and Cognitive Science, East China Normal University, Institute of Cognitive Neuroscience, Shanghai, China
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
56
|
Chen H, Shi M, Geng W, Jiang L, Yin X, Chen YC. A preliminary study of cortical morphology changes in acute brainstem ischemic stroke patients. Medicine (Baltimore) 2021; 100:e24262. [PMID: 33429834 PMCID: PMC7793415 DOI: 10.1097/md.0000000000024262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/13/2020] [Indexed: 01/05/2023] Open
Abstract
The study aimed to explore the cortical thickness and gyrification abnormalities in acute brainstem ischemic patients in both the ipsilateral and contralateral hemisphere compared with healthy controls. Structural magnetic resonance imaging data were prospectively acquired in 48 acute brainstem ischemic patients, 21 patients with left lesion and 27 with right lesion, respectively. Thirty healthy controls were recruited. Cortical morphometry based on surface-based data analysis driven by CAT12 toolbox implemented in SPM12 was used to compare changes in cortical thickness and gyrification. Significant decreases of cortical thickness loss were found in bilateral cerebral hemispheres of the brainstem ischemic patients compared to the healthy controls (P < .05, family-wise error (FWE)-corrected). We also found significant gyrification decreases in the insula, transverse temporal, supramarginal of the ipsilateral on hemisphere in the right brainstem ischemic patients compared to the healthy controls (P < .05, FWE-corrected). Brainstem ischemic patients have widely morphological changes in the early phase and may be helpful in designing individualized rehabilitative strategies for these patients.
Collapse
|
57
|
Li Z, Zhang J, Wang F, Yang Y, Hu J, Li Q, Tian M, Li T, Huang B, Liu H, Zhang T. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1150. [PMID: 33240999 PMCID: PMC7576069 DOI: 10.21037/atm-20-5845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The study aimed to explore cortical morphology in benign childhood epilepsy with centrotemporal spikes (BECTS) and the relationship between cortical characteristics and age of onset and intelligence quotient (IQ). Methods Cortical morphometry with surface-based morphometry (SBM) was used to compare changes in cortical thickness, gyrification, sulcal depth, and fractal dimension of the cerebral cortex between 25 BECTS patients and 20 healthy controls (HCs) with two-sample t-tests [P<0.05, family-wise error (FWE) corrected]. Relationships between abnormal cortical morphological changes and age of onset and IQ, which included verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), and full-scale intelligence quotient (FIQ) were investigated with Spearman correlation analysis (P<0.05, uncorrected). Results The BECTS patients showed extensive cortical thinning predominantly in bilateral frontal, temporal regions, and limbic system. Cortical gyrification increased in the left hemisphere and partial right hemisphere, and the decreased cortical gyrification was only in the left hemisphere. The increased sulcal depth was the left fusiform gyrus. There are no statistically significant differences in the fractal dimension. Correlation analysis revealed the negative correlation between age of onset and cortical thickness in the right precentral gyrus. It also revealed the negative correlation between the age of onset and cortical gyrification in the left inferior parietal gyrus. Also, there was negative correlation between VIQ and cortical gyrification in the left supramarginal gyrus of BECTS patients. Conclusions This study reveals aberrant cortical thickness, cortical gyrification, and sulcal depth of BECTS in areas related to cognitive functions including language, attention and memory, and the correlation between some brain regions and VIQ and age of onset, providing a potential marker of early neurodevelopmental disturbance and cognitive dysfunction in BECTS.
Collapse
Affiliation(s)
- Zhengzhen Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yang Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Jie Hu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Qinghui Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Maoqiang Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tonghuan Li
- Department of Neurological Rehabilitation of Children, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Tijiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| |
Collapse
|
58
|
Schmitt JE, Raznahan A, Liu S, Neale MC. The Heritability of Cortical Folding: Evidence from the Human Connectome Project. Cereb Cortex 2020; 31:702-715. [PMID: 32959043 DOI: 10.1093/cercor/bhaa254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying cortical folding are incompletely understood. Prior studies have suggested that individual differences in sulcal depth are genetically mediated, with deeper and ontologically older sulci more heritable than others. In this study, we examine FreeSurfer-derived estimates of average convexity and mean curvature as proxy measures of cortical folding patterns using a large (N = 1096) genetically informative young adult subsample of the Human Connectome Project. Both measures were significantly heritable near major sulci and primary fissures, where approximately half of individual differences could be attributed to genetic factors. Genetic influences near higher order gyri and sulci were substantially lower and largely nonsignificant. Spatial permutation analysis found that heritability patterns were significantly anticorrelated to maps of evolutionary and neurodevelopmental expansion. We also found strong phenotypic correlations between average convexity, curvature, and several common surface metrics (cortical thickness, surface area, and cortical myelination). However, quantitative genetic models suggest that correlations between these metrics are largely driven by nongenetic factors. These findings not only further our understanding of the neurobiology of gyrification, but have pragmatic implications for the interpretation of heritability maps based on automated surface-based measurements.
Collapse
Affiliation(s)
- J Eric Schmitt
- Departments of Radiology and Psychiatry, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Michael C Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298-980126, USA
| |
Collapse
|
59
|
Grewal JS, Gloe T, Hegedus J, Bitterman K, Billings BK, Chengetanai S, Bentil S, Wang VX, Ng JC, Tang CY, Geletta S, Wicinski B, Bertelson M, Tendler BC, Mars RB, Aguirre GK, Rusbridge C, Hof PR, Sherwood CC, Manger PR, Spocter MA. Brain gyrification in wild and domestic canids: Has domestication changed the gyrification index in domestic dogs? J Comp Neurol 2020; 528:3209-3228. [PMID: 32592407 DOI: 10.1002/cne.24972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Over the last 15 years, research on canid cognition has revealed that domestic dogs possess a surprising array of complex sociocognitive skills pointing to the possibility that the domestication process might have uniquely altered their brains; however, we know very little about how evolutionary processes (natural or artificial) might have modified underlying neural structure to support species-specific behaviors. Evaluating the degree of cortical folding (i.e., gyrification) within canids may prove useful, as this parameter is linked to functional variation of the cerebral cortex. Using quantitative magnetic resonance imaging to investigate the impact of domestication on the canine cortical surface, we compared the gyrification index (GI) in 19 carnivore species, including six wild canid and 13 domestic dog individuals. We also explored correlations between global and local GI with brain mass, cortical thickness, white and gray matter volume and surface area. Our results indicated that GI values for domestic dogs are largely consistent with what would be expected for a canid of their given brain mass, although more variable than that observed in wild canids. We also found that GI in canids is positively correlated with cortical surface area, cortical thickness and total cortical gray matter volumes. While we found no evidence of global differences in GI between domestic and wild canids, certain regional differences in gyrification were observed.
Collapse
Affiliation(s)
- Jagmeet S Grewal
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Tyler Gloe
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Joseph Hegedus
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | | | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Sarah Bentil
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Victoria X Wang
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnny C Ng
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Simon Geletta
- Department of Public Health, Des Moines University, Des Moines, Iowa, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | - Benjamin C Tendler
- Wellcome Centre for Intergrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Intergrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, Pennsylvania, USA
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Fitzpatrick Referrals Ltd, Godalming, UK.,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
60
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
61
|
van Eijk L, Hansell NK, Strike LT, Couvy-Duchesne B, de Zubicaray GI, Thompson PM, McMahon KL, Zietsch BP, Wright MJ. Region-specific sex differences in the hippocampus. Neuroimage 2020; 215:116781. [DOI: 10.1016/j.neuroimage.2020.116781] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
|
62
|
Ruffini G, Salvador R, Tadayon E, Sanchez-Todo R, Pascual-Leone A, Santarnecchi E. Realistic modeling of mesoscopic ephaptic coupling in the human brain. PLoS Comput Biol 2020; 16:e1007923. [PMID: 32479496 PMCID: PMC7289436 DOI: 10.1371/journal.pcbi.1007923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022] Open
Abstract
Several decades of research suggest that weak electric fields may influence neural processing, including those induced by neuronal activity and proposed as a substrate for a potential new cellular communication system, i.e., ephaptic transmission. Here we aim to model mesoscopic ephaptic activity in the human brain and explore its trajectory during aging by characterizing the electric field generated by cortical dipoles using realistic finite element modeling. Extrapolating from electrophysiological measurements, we first observe that modeled endogenous field magnitudes are comparable to those in measurements of weak but functionally relevant self-generated fields and to those produced by noninvasive transcranial brain stimulation, and therefore possibly able to modulate neuronal activity. Then, to evaluate the role of these fields in the human cortex in large MRI databases, we adapt an interaction approximation that considers the relative orientation of neuron and field to estimate the membrane potential perturbation in pyramidal cells. We use this approximation to define a simplified metric (EMOD1) that weights dipole coupling as a function of distance and relative orientation between emitter and receiver and evaluate it in a sample of 401 realistic human brain models from healthy subjects aged 16-83. Results reveal that ephaptic coupling, in the simplified mesoscopic modeling approach used here, significantly decreases with age, with higher involvement of sensorimotor regions and medial brain structures. This study suggests that by providing the means for fast and direct interaction between neurons, ephaptic modulation may contribute to the complexity of human function for cognition and behavior, and its modification across the lifespan and in response to pathology.
Collapse
Affiliation(s)
- Giulio Ruffini
- Neuroelectrics Corporation, Cambridge, Massachusetts, United States of America
- Neuroelectrics Barcelona, Barcelona, Spain
- Starlab Barcelona, Barcelona, Spain
| | | | - Ehsan Tadayon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, Massachusetts, United States of America
- Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
63
|
Mathias SR, Knowles EEM, Mollon J, Rodrigue A, Koenis MMC, Alexander-Bloch AF, Winkler AM, Olvera RL, Duggirala R, Göring HHH, Curran JE, Fox PT, Almasy L, Blangero J, Glahn DC. Minimal Relationship between Local Gyrification and General Cognitive Ability in Humans. Cereb Cortex 2020; 30:3439-3450. [PMID: 32037459 DOI: 10.1093/cercor/bhz319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Previous studies suggest that gyrification is associated with superior cognitive abilities in humans, but the strength of this relationship remains unclear. Here, in two samples of related individuals (total N = 2882), we calculated an index of local gyrification (LGI) at thousands of cortical surface points using structural brain images and an index of general cognitive ability (g) using performance on cognitive tests. Replicating previous studies, we found that phenotypic and genetic LGI-g correlations were positive and statistically significant in many cortical regions. However, all LGI-g correlations in both samples were extremely weak, regardless of whether they were significant or nonsignificant. For example, the median phenotypic LGI-g correlation was 0.05 in one sample and 0.10 in the other. These correlations were even weaker after adjusting for confounding neuroanatomical variables (intracranial volume and local cortical surface area). Furthermore, when all LGIs were considered together, at least 89% of the phenotypic variance of g remained unaccounted for. We conclude that the association between LGI and g is too weak to have profound implications for our understanding of the neurobiology of intelligence. This study highlights potential issues when focusing heavily on statistical significance rather than effect sizes in large-scale observational neuroimaging studies.
Collapse
Affiliation(s)
- Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Marinka M C Koenis
- Olin Neuropsychiatric Research Center, Hartford Hospital, Harford, CT 06106, USA
| | - Aaron F Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, and Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Anderson M Winkler
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Rene L Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ravi Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Harald H H Göring
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,South Texas Veterans Health System, San Antonio, TX 78229, USA
| | - Laura Almasy
- Department of Genetics, University of Pennsylvania and Department of Biomedical and Health Informatics at Children's Hospital of Philadelphia, Philadelphia, PA19104, USA
| | - John Blangero
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Olin Neuropsychiatric Research Center, Hartford Hospital, Harford, CT 06106, USA
| |
Collapse
|
64
|
Cortical Thickness in Crouzon-Pfeiffer Syndrome: Findings in Relation to Primary Cranial Vault Expansion. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e3204. [PMID: 33173703 PMCID: PMC7647527 DOI: 10.1097/gox.0000000000003204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Background Episodes of intracranial hypertension are associated with reductions in cerebral cortical thickness (CT) in syndromic craniosynostosis. Here we focus on Crouzon-Pfeiffer syndrome patients to measure CT and evaluate associations with type of primary cranial vault expansion and synostosis pattern. Methods Records from 34 Crouzon-Pfeiffer patients were reviewed along with MRI data on CT and intracranial volume to examine associations. Patients were grouped according to initial cranial vault expansion (frontal/occipital). Data were analyzed by multiple linear regression controlled for age and brain volume to determine an association between global/lobar CT and vault expansion type. Synostosis pattern effect sizes on global/lobar CT were calculated as secondary outcomes. Results Occipital expansion patients demonstrated 0.02 mm thicker cortex globally (P = 0.81) with regional findings, including: thicker cortex in frontal (0.02 mm, P = 0.77), parietal (0.06 mm, P = 0.44) and occipital (0.04 mm, P = 0.54) regions; and thinner cortex in temporal (-0.03 mm, P = 0.69), cingulate (-0.04 mm, P = 0.785), and, insula (-0.09 mm, P = 0.51) regions. Greatest effect sizes were observed between left lambdoid synostosis and the right cingulate (d = -1.00) and right lambdoid synostosis and the left cingulate (d = -1.23). Left and right coronal synostosis yielded effect sizes of d = -0.56 and d = -0.42 on respective frontal lobes. Conclusions Both frontal and occipital primary cranial vault expansions correlate to similar regional CT in Crouzon-Pfeiffer patients. Lambdoid synostosis appears to be associated with cortical thinning, particularly in the cingulate gyri.
Collapse
|
65
|
Hua JPY, Piasecki TM, McDowell YE, Boness CL, Trela CJ, Merrill AM, Sher KJ, Kerns JG. Alcohol use in young adults associated with cortical gyrification. Drug Alcohol Depend 2020; 209:107925. [PMID: 32088591 PMCID: PMC7127958 DOI: 10.1016/j.drugalcdep.2020.107925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Young adulthood has the highest rates of alcohol use and high-risk drinking behavior. This period is also a critical neurodevelopmental stage, with neural insults having a profound neurotoxic effect on the brain. Cortical gyrification is thought, in part, to reflect early brain maturation (e.g., hypogyrification in fetal alcohol syndrome). There is also evidence that cortical gyrification is sensitive to later-life events (e.g., fluctuations in malnutrition in young adults). However, no study has examined how alcohol use in young adulthood is associated with cortical gyrification. METHODS We examined the associations between cortical gyrification with lifetime alcohol use and past year hangover symptoms in young adults (N = 78). RESULTS Lifetime alcohol use was associated with hypogyria in multiple cortical regions (rs ≤ -.27, ps ≤ .0159; right orbitofrontal, right temporal pole, and left lateral occipital). Further, past year hangover symptoms were associated with hypogyria (rs ≤ -.27, ps ≤ .0034), overlapping with lifetime alcohol use (right orbitofrontal and left lateral occipital). Hangover symptoms were also uniquely associated with hypogyria of other cortical regions (rs ≤ -.30, ps ≤ .0002; right parahippocampal gyrus, left inferior temporal/parahippocampal gyrus and right anterior insula). CONCLUSIONS Thus, results suggest that young adulthood is a critical period for targeted prevention and intervention, especially for individuals exhibiting heavy alcohol consumption and high-risk drinking behavior.
Collapse
Affiliation(s)
- Jessica P. Y. Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211,San Francisco VA Medical Center, San Francisco, CA 94121
| | - Thomas M. Piasecki
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211
| | - Yoanna E. McDowell
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211
| | - Cassandra L. Boness
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211
| | - Constantine J. Trela
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211
| | - Anne M. Merrill
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211
| | - Kenneth J. Sher
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211
| | - John G. Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211,To whom correspondence should be addressed; tel: 573-882-6860, fax: 573-882-7710,
| |
Collapse
|
66
|
Altered Cortical Gyrification in Adults Who Were Born Very Preterm and Its Associations With Cognition and Mental Health. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:640-650. [PMID: 32198001 DOI: 10.1016/j.bpsc.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The last trimester of pregnancy is a critical period for the establishment of cortical gyrification, and altered folding patterns have been reported following very preterm birth (< 33 weeks of gestation) in childhood and adolescence. However, research is scant on the persistence of such alterations in adulthood and their associations with cognitive and psychiatric outcomes. METHODS We studied 79 very preterm and 81 age-matched full-term control adults. T1-weighted magnetic resonance images were used to measure a local gyrification index (LGI), indicating the degree of folding across multiple vertices of the reconstructed cortical surface. Group and group-by-sex LGI differences were assessed by means of per-vertex adjustment for cortical thickness and overall intracranial volume. Within-group correlations were also computed between LGI and functional outcomes, including general intelligence (IQ) and psychopathology. RESULTS Very preterm adults had significantly reduced LGI in extensive cortical regions encompassing the frontal, anterior temporal, and occipitoparietal lobes. Alterations in lateral fronto-temporal-parietal and medial occipitoparietal regions were present in both men and women, although men showed more extensive alterations. In both very preterm and control adults, higher LGI was associated with higher IQ and lower psychopathology scores, with the spatial distribution of these associations substantially differing between the two groups. CONCLUSIONS Very preterm adults' brains are characterized by significant and widespread local hypogyria, and these alterations might be implicated in cognitive and psychiatric outcomes. Gyrification reflects an early developmental process and provides a fingerprint for very preterm birth.
Collapse
|
67
|
Sasabayashi D, Takayanagi Y, Takahashi T, Nemoto K, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Increased brain gyrification in the schizophrenia spectrum. Psychiatry Clin Neurosci 2020; 74:70-76. [PMID: 31596011 DOI: 10.1111/pcn.12939] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
AIM Increased brain gyrification in diverse cortical regions has been reported in patients with schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unknown whether patients with schizotypal disorder exhibit similar changes. METHODS This magnetic resonance imaging study investigated brain gyrification in 46 patients with schizotypal disorder (29 male, 17 female), 101 patients with schizophrenia (55 male, 46 female), and 77 healthy controls (44 male, 33 female). T1-weighted magnetic resonance images were obtained for each participant. Using FreeSurfer software, the local gyrification index (LGI) of the entire cortex was compared across the groups. RESULTS Both schizophrenia and schizotypal disorder patients showed a significantly higher LGI in diverse cortical regions, including the bilateral prefrontal and left parietal cortices, as compared with controls, but its extent was broader in schizophrenia especially for the right prefrontal and left occipital regions. No significant correlations were found between the LGI and clinical variables (e.g., symptom severity, medication) for either of the patient groups. CONCLUSION Increased LGI in the frontoparietal regions was common to both patient groups and might represent vulnerability to schizophrenia, while more diverse changes in schizophrenia patients might be associated with the manifestation of florid psychosis.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
68
|
Luders E, Kurth F. Structural differences between male and female brains. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:3-11. [PMID: 33008534 DOI: 10.1016/b978-0-444-64123-6.00001-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research based on structural magnetic resonance imaging (MRI) has revealed a number of sex differences in the anatomy of the human brain. The first part of this chapter presents an excerpt of these findings discriminating among effects on a global, regional, and local level. While findings are far from consistent and conclusive, there is general consensus with respect to sex-specific brain size, with male brains being bigger on average than female brains. So, the question arises as to whether any of the observed sex differences are merely driven by brain size. The second part of this chapter thus sheds light on a unique scientific attempt to discriminate between brain size effects and sex effects. The overarching goal of this chapter is to exemplify the variety of findings and to demonstrate that the presence, magnitude, and direction of significant sex differences strongly depend on the measurement applied. The assumption that sex differences are simply a by-product of brain size, rather than pure (size independent) sex effects has proven to be true for some but certainly not all findings. Therefore, when examining the possible sexual dimorphism of the brain, it is imperative to avoid oversimplification and generalization.
Collapse
Affiliation(s)
- Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
69
|
A novel voxel-based method to estimate cortical sulci width and its application to compare patients with Alzheimer's disease to controls. Neuroimage 2019; 207:116343. [PMID: 31734431 DOI: 10.1016/j.neuroimage.2019.116343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
A voxel-based method for measuring sulcal width was developed, validated and applied to a database. This method (EDT-based LM) employs the 3D Euclidean Distance Transform (EDT) of the pial surface and a Local Maxima labeling algorithm. A computational phantom was designed to test method performance; results revealed the method's inaccuracy δ, to range between 0.1 and 0.5 voxels, for a width that varied between 1 and 7 voxels. Two morphological descriptors were computed to characterize each defined sulcus: mean sulcal width (MSW) and mean absolute deviation (MAD). The former is the average width for all available width measurements within the sulcus, and the latter is the deviation of these measurements. The EDT-based LM method was applied to the Minimal Interval Resonance Imaging in the Alzheimer's Disease (MIRIAD) database, for a set of high-resolution Magnetic Resonance (MR) images of 66 subjects: 43 patients with Alzheimer Disease (AD) and 23 control subjects. AD causes significant gray matter loss; hence, some sulci were expected to broaden. Methodological results concurred with this hypothesis. After a Wilcoxon test, MSW was grater in the case of all sulci pertaining to AD patients, (p < 0.05, FDR corrected), whereas MAD showed significant differences in 8 sulci (p < 0.05, FDR corrected). This work presents a novel voxel-based method for measuring sulcal width and extracting descriptors to characterize and compare the sulci within and across subjects.
Collapse
|
70
|
Del Maschio N, Fedeli D, Sulpizio S, Abutalebi J. The relationship between bilingual experience and gyrification in adulthood: A cross-sectional surface-based morphometry study. BRAIN AND LANGUAGE 2019; 198:104680. [PMID: 31465990 DOI: 10.1016/j.bandl.2019.104680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Neuroimaging evidence suggests that bilingualism may act as a source of neural plasticity. However, prior work has mostly focused on bilingualism-induced alterations in gray matter volume and white matter tract microstructure, with additional effects related to other neurostructural indices that might have remained undetected. The degree of cortical folding or gyrification is a morphometric parameter which provides information about changes on the brain's surface during development, aging and disease. We used Surface-based Morphometry (SBM) to investigate the contribution of bilingual experience to gyrification from early adulthood to old age in a sample of bilinguals and monolingual controls. Despite widespread cortical folding reductions for all participants with increasing age, preserved gyrification exclusive to bilinguals was detected in the right cingulate and entorhinal cortices, regions vulnerable with normal and pathological brain aging. Our results provide novel insights on experience-related cortical reshaping and bilingualism-induced cortical plasticity in adulthood.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), University Vita-Salute San Raffaele, Milano 20132, Italy
| | - Davide Fedeli
- Centre for Neurolinguistics and Psycholinguistics (CNPL), University Vita-Salute San Raffaele, Milano 20132, Italy
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), University Vita-Salute San Raffaele, Milano 20132, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), University Vita-Salute San Raffaele, Milano 20132, Italy.
| |
Collapse
|
71
|
Choi M, Youn H, Kim D, Lee S, Suh S, Seong JK, Jeong HG, Han CE. Comparison of neurodegenerative types using different brain MRI analysis metrics in older adults with normal cognition, mild cognitive impairment, and Alzheimer's dementia. PLoS One 2019; 14:e0220739. [PMID: 31369629 PMCID: PMC6675320 DOI: 10.1371/journal.pone.0220739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022] Open
Abstract
Several metrics of analysis of magnetic resonance imaging (MRI) have been used to assess Alzheimer’s disease (AD)-related neurodegeneration. We compared four structural brain MRI analysis metrics, cortical thickness, volume, surface area, and local gyrification index (LGI), in different stages of AD-related cognitive decline. Participants with normal cognition, mild cognitive impairment, and AD were included (34 participants per group). All undertook the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) battery of neuropsychological tests and brain MRI scanning. We analyzed associations between morphometric measures and CERAD total/ Mini Mental State Examination (MMSE) scores for the regions of interest (ROIs), identifying three types of curves: U-shaped, inverted U-shaped, and linear. Cortical thickness and volume analyses showed linear types in most of the significant ROIs. Significant ROIs for the cortical thickness analysis were located in the temporal and limbic lobes, whereas those for volume and surface area were distributed over more diffuse areas of the brain. LGI analysis showed few significant ROIs. CERAD total scores were more sensitive to early changes of cortical structures than MMSE scores. Cortical thickness analysis may be preferable in assessing brain structural MRI changes during AD-related cognitive decline, whereas LGI analysis may have limited capability to reflect the cognitive decrease. Our findings may provide a reference for future studies and help to establish optimal analytical approaches to brain structural MRI in neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungwon Choi
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - HyunChul Youn
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daegyeom Kim
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - Suji Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea
| | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon-Kyung Seong
- Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Korea University Research Institute of Mental Health, Seoul, Republic of Korea
- * E-mail: (HGJ); (CEH)
| | - Cheol E. Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
- * E-mail: (HGJ); (CEH)
| |
Collapse
|
72
|
Cortical neurodevelopment in pre-manifest Huntington's disease. NEUROIMAGE-CLINICAL 2019; 23:101913. [PMID: 31491822 PMCID: PMC6627026 DOI: 10.1016/j.nicl.2019.101913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Background The expression of the HTT CAG repeat expansion mutation causes neurodegeneration in Huntington's disease (HD). Objectives: In light of the – mainly in-vitro – evidence suggesting an additional role of huntingtin in neurodevelopment we used 3T MRI to test the hypothesis that in CAG-expanded individuals without clinical signs of HD (preHD) there is evidence for neurodevelopmental abnormalities. Methods We specifically investigated the complexity of cortical folding, a measure of cortical neurodevelopment, employing a novel method to quantify local fractal dimension (FD) measures that uses spherical harmonic reconstructions. Results The complexity of cortical folding differed at a group level between preHD (n = 57) and healthy volunteers (n = 57) in areas of the motor and visual system as well as temporal cortical areas. However, there was no association between the complexity of cortical folding and the loss in putamen volume that was clearly evident in preHD. Conclusions Our results suggest that HTT CAG repeat length may have an influence on cortical folding without evidence that this leads to developmental pathology or was clinically meaningful. This suggests that the HTT CAG-repeat expansion mutation may influence the processes governing cortical neurodevelopment; however, that influence seems independent of the events that lead to neurodegeneration. Measures of cortical neurodevelopment in preclinical Huntington's disease (HD) gene carriers differ from healthy volunteers The influence on cortical folding of the HD gene was not associated with developmental pathology or clinically meaningful The influence of the HD gene on cortical neurodevelopment may differ from that on neurodegeneration
Collapse
|
73
|
Cortical morphology of chronic users of codeine-containing cough syrups: association with sulcal depth, gyrification, and cortical thickness. Eur Radiol 2019; 29:5901-5909. [DOI: 10.1007/s00330-019-06165-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
74
|
Kinno R, Mori Y, Kubota S, Nomoto S, Futamura A, Shiromaru A, Kuroda T, Yano S, Ishigaki S, Murakami H, Baba Y, Ono K. High serum high-density lipoprotein-cholesterol is associated with memory function and gyrification of insular and frontal opercular cortex in an elderly memory-clinic population. Neuroimage Clin 2019; 22:101746. [PMID: 30856540 PMCID: PMC6411909 DOI: 10.1016/j.nicl.2019.101746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/05/2019] [Accepted: 03/02/2019] [Indexed: 12/03/2022]
Abstract
The issue of whether serum lipid marker values are cognitively and neurologically significant for elderly individuals attending a memory clinic has been controversial. We investigated the associations of serum lipid markers with the memory function and cortical structure in 52 patients aged ≥75 years who had attended our memory clinic based on their subjective memory complaints. None had a history of medication for hyperlipidemia. The Wechsler Memory Scale-Revised (WMS-R) was administered to all patients for the assessment of their memory function. Serum low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDLC), and triglyceride (TG) were measured for each patient. Surface-based morphometry (SBM) was performed for the calculation of each patient's cortical thickness and gyrification index based on structural MRI data. Our analyses revealed that the serum HDLC level was positively and significantly correlated with the WMS-R subtests of visual paired associates I/II and logical memory I (p < 0.05). The serum TG level was negatively correlated with the logical memory I subtest. The SBM results showed positive correlations between the serum HDLC level and the gyrification indices of the bilateral insular and frontal opercular cortices, and those two gyrification indices were positively correlated with the logical memory I and visual paired associates I/II. These results suggest that in these elderly patients, a high serum HDLC level was associated with not only preserved memory function but also gyrification of the insular and frontal opercular cortex. We conclude that elderly individuals' serum lipid markers should be carefully assessed in memory clinic settings, because serum HDLC may be a biomarker for memory function and cortical structure.
Collapse
Affiliation(s)
- Ryuta Kinno
- Department of Neurology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka Aoba-ku, Yokohama-Shi, Kanagawa 227-8501, Japan.
| | - Yukiko Mori
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Satomi Kubota
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Shohei Nomoto
- Department of Neurology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka Aoba-ku, Yokohama-Shi, Kanagawa 227-8501, Japan
| | - Akinori Futamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Azusa Shiromaru
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Takeshi Kuroda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Satoshi Yano
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Seiichiro Ishigaki
- Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo Tsuzuki-ku, Yokohama-Shi, Kanagawa 224-8503, Japan
| | - Hidetomo Murakami
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan
| | - Yasuhiko Baba
- Department of Neurology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka Aoba-ku, Yokohama-Shi, Kanagawa 227-8501, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8666, Japan.
| |
Collapse
|
75
|
Takayanagi Y, Sasabayashi D, Takahashi T, Komori Y, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Altered brain gyrification in deficit and non-deficit schizophrenia. Psychol Med 2019; 49:573-580. [PMID: 29739476 DOI: 10.1017/s0033291718001228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients with the deficit form of schizophrenia (D-SZ) are characterized by severe primary negative symptoms and differ from patients with the non-deficit form of schizophrenia (ND-SZ) in several aspects. No study has measured brain gyrification, which is a potential marker of neurodevelopment, in D-SZ and ND-SZ. METHODS We obtained magnetic resonance scans from 135 schizophrenia patients and 50 healthy controls. The proxy scale for deficit syndrome (PDS) was used for the classification of D-SZ and ND-SZ. The local gyrification index (LGI) of the entire cortex was measured using FreeSurfer. Thirty-seven D-SZ and 36 ND-SZ patients were included in the LGI analyses. We compared LGI across the groups. RESULTS SZ patients exhibited hyper-gyral patterns in the bilateral dorsal medial prefrontal and ventromedial prefrontal cortices, bilateral anterior cingulate gyri and right lateral parietal/occipital cortices as compared with HCs. Although patients with D-SZ or ND-SZ had higher LGI in similar regions compared with HC, the hyper-gyral patterns were broader in ND-SZ. ND-SZ patients exhibited a significantly higher LGI in the left inferior parietal lobule relative to D-SZ patients. Duration of illness inversely associated with LGI in broad regions only among ND-SZ patients. CONCLUSIONS The common hyper-gyral patterns among D-SZ and ND-SZ suggest that D-SZ and ND-SZ may share neurodevelopmental abnormalities. The different degrees of cortical gyrification seen in the left parietal regions, and the distinct correlation between illness chronicity and LGI observed in the prefrontal and insular cortices may be related to the differences in the clinical manifestations among D-SZ and ND-SZ.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Yuko Komori
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Mikio Kido
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Kyo Noguchi
- Department of Radiology,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| | - Michio Suzuki
- Department of Neuropsychiatry,University of Toyama Graduate School of Medicine and Pharmaceutical Sciences,Toyama,Japan
| |
Collapse
|
76
|
Fonville L, Drakesmith M, Zammit S, Lewis G, Jones DK, David AS. MRI Indices of Cortical Development in Young People With Psychotic Experiences: Influence of Genetic Risk and Persistence of Symptoms. Schizophr Bull 2019; 45:169-179. [PMID: 29385604 PMCID: PMC6293214 DOI: 10.1093/schbul/sbx195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Psychotic experiences (PEs) are considered part of an extended psychosis phenotype and are associated with an elevated risk of developing a psychotic disorder. Risk of transition increases with persistence of PEs, and this is thought to be modulated by genetic and environmental factors. However, it is unclear if persistence is associated with progressive schizophrenia-like changes in neuroanatomy. Methods We examined cortical morphometry using MRI in 247 young adults, from a population-based cohort, assessed for the presence of PEs at ages 18 and 20. We then incorporated a polygenic risk score for schizophrenia (PRS) to elucidate the effects of high genetic risk. Finally, we used atlas-based tractography data to examine the underlying white matter. Results Individuals with persisting PEs showed reductions in gyrification (local gyrification index: lGI) in the left temporal gyrus as well as atypical associations with brain volume (TBV) in the left occipital and right prefrontal gyri. No main effect was found for the PRS, but interaction effects with PEs were identified in the orbitofrontal, parietal, and temporal regions. Examination of underlying white matter did not provide strong evidence of further disturbances. Conclusions Disturbances in lGI were similar to schizophrenia but findings were mostly limited to those with persistent PEs. These could reflect subtle changes that worsen with impending psychosis or reflect an early vulnerability associated with the persistence of PEs. The lack of clear differences in underlying white matter suggests our findings reflect early disturbances in cortical expansion rather than progressive changes in brain structure.
Collapse
Affiliation(s)
- Leon Fonville
- Section of Cognitive Neuropsychiatry (Box 68), Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King ’s College London, UK
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Stanley Zammit
- Institute of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Centre for Academic Mental Health, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Glyn Lewis
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony S David
- Section of Cognitive Neuropsychiatry (Box 68), Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King ’s College London, UK
| |
Collapse
|
77
|
Kaczkurkin AN, Raznahan A, Satterthwaite TD. Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology 2019; 44:71-85. [PMID: 29930385 PMCID: PMC6235840 DOI: 10.1038/s41386-018-0111-z] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Youth (including both childhood and adolescence) is a period when the brain undergoes dramatic remodeling and is also a time when neuropsychiatric conditions often emerge. Many of these illnesses have substantial sex differences in prevalence, suggesting that sex differences in brain development may underlie differential risk for psychiatric symptoms between males and females. Substantial evidence documents sex differences in brain structure and function in adults, and accumulating data suggests that these sex differences may be present or emerge during development. Here we review the evidence for sex differences in brain structure, white matter organization, and perfusion during development. We then use these normative differences as a framework to understand sex differences in brain development associated with psychopathology. In particular, we focus on sex differences in the brain as they relate to anxiety, depression, psychosis, and attention-deficit/hyperactivity symptoms. Finally, we highlight existing limitations, gaps in knowledge, and fertile avenues for future research.
Collapse
Affiliation(s)
- Antonia N Kaczkurkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD, 20814, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
78
|
Rodrigue AL, McDowell JE, Tandon N, Keshavan MS, Tamminga CA, Pearlson GD, Sweeney JA, Gibbons RD, Clementz BA. Multivariate Relationships Between Cognition and Brain Anatomy Across the Psychosis Spectrum. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:992-1002. [PMID: 29759822 PMCID: PMC6167203 DOI: 10.1016/j.bpsc.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognitive and structural brain abnormalities range from mild to severe in psychosis. The relationships of specific cognitive functions to specific brain structures across the psychosis spectrum is less certain. METHODS Participants (n = 678) with bipolar, schizoaffective, or schizophrenia psychoses and healthy control subjects were recruited via the Bipolar-Schizophrenia Network for Intermediate Phenotypes. The Schizo-Bipolar Scale was used to create a psychosis continuum (from purely affective to purely nonaffective). Canonical correlation between 14 cognitive measures and structural brain measures (gray matter volume, cortical thickness, cortical surface area, and local gyrification indices) for 68 neocortical regions yielded constructs that defined shared cognition-brain structure relationships. Canonical discriminant analysis was used to integrate these constructs and efficiently summarize cognition-brain structure relationships across the psychosis continuum. RESULTS General cognition was associated with larger gray matter volumes and thicker cortices but smaller cortical surface area in frontoparietal regions. Working memory was associated with larger volume and surface area in frontotemporal regions. Faster response speed was associated with thicker frontal cortices. Constructs that captured general cognitive ability and working memory and their relationship to cortical volumes primarily defined an ordered psychosis spectrum (purely affective, least abnormal through purely nonaffective, and most abnormal). A construct that captured general cognitive ability and its relationship to cortical surface area differentiated purely affective cases from other groups. CONCLUSIONS General cognition and working memory with cortical volume deviations characterized more nonaffective psychoses. Alternatively, affective psychosis cases with general cognitive deficits had deviations in cortical surface area, perhaps accounting for heterogeneous findings across previous studies.
Collapse
Affiliation(s)
- Amanda L Rodrigue
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Robert D Gibbons
- Department of Medicine and Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia.
| |
Collapse
|
79
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
80
|
Duret P, Samson F, Pinsard B, Barbeau EB, Boré A, Soulières I, Mottron L. Gyrification changes are related to cognitive strengths in autism. NEUROIMAGE-CLINICAL 2018; 20:415-423. [PMID: 30128280 PMCID: PMC6095946 DOI: 10.1016/j.nicl.2018.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022]
Abstract
Background Behavioral, cognitive and functional particularities in autism differ according to autism subgroups and might be associated with domain-specific cognitive strengths. It is unknown whether structural changes support this specialization. We investigated the link between cortical folding, its maturation and cognitive strengths in autism subgroups presenting verbal or visuo-spatial peaks of abilities. Methods We measured gyrification, a structural index related to function, in 55 autistic participants with (AS-SOD, N = 27) or without (AS-NoSOD, N = 28) a speech onset delay (SOD) with similar symptom severity but respectively perceptual and verbal cognitive strengths, and 37 typical adolescents and young adults matched for intelligence and age. We calculated the local Gyrification Index (lGI) throughout an occipito-temporal region of interest and independently modeled age and peak of ability effects for each group. Results Unique gyrification features in both autistic groups were detected in localized clusters. When comparing the three groups, gyrification was found lower in AS-SOD in a fusiform visual area, whereas it was higher in AS-NoSOD in a temporal language-related region. These particular areas presented age-related gyrification differences reflecting contrasting local maturation pathways in AS. As expected, peaks of ability were found in a verbal subtest for the AS-NoSOD group and in the Block Design IQ subtest for the AS-SOD group. Conclusions Irrespective of their direction, regional gyrification differences in visual and language processing areas respectively reflect AS-SOD perceptual and AS-NoSOD language-oriented peaks. Unique regional maturation trajectories in the autistic brain may underline specific cognitive strengths, which are key variables for understanding heterogeneity in autism. Subgrouping the autism spectrum (AS) partly accounts for its heterogeneity. AS individuals with a speech onset delay (SOD) show perceptual cognitive strengths. AS individuals without a SOD show language-related cognitive strengths. AS subgroups show unique gyrification patterns in areas related to their strengths. Cortical structural maturation may be related to domain-specific strengths in AS.
Collapse
Affiliation(s)
- P Duret
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, (CETEDUM), Montréal, Canada; Département de Neurosciences, Université de Montréal, Montréal, Canada; École Normale Supérieure de Lyon, Lyon, France; Brain Dynamics and Cognition, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Lyon, France & University Lyon 1, F-69000 Lyon, France
| | - F Samson
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, (CETEDUM), Montréal, Canada
| | - B Pinsard
- Unité de Neuroimagerie Fonctionnelle, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7371, INSERM UMR_S 1146, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - E B Barbeau
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, (CETEDUM), Montréal, Canada
| | - A Boré
- Unité de Neuroimagerie Fonctionnelle, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - I Soulières
- Département de Psychologie, Université du Québec à Montréal, Montréal, Canada
| | - L Mottron
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal, (CETEDUM), Montréal, Canada; Département de Psychiatrie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
81
|
Bajaj S, Raikes A, Smith R, Dailey NS, Alkozei A, Vanuk JR, Killgore WDS. The Relationship Between General Intelligence and Cortical Structure in Healthy Individuals. Neuroscience 2018; 388:36-44. [PMID: 30012372 DOI: 10.1016/j.neuroscience.2018.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
Abstract
Considerable work in recent years has examined the relationship between cortical thickness (CT) and general intelligence (IQ) in healthy individuals. It is not known whether specific IQ variables (i.e., perceptual reasoning [PIQ], verbal comprehension IQ [VIQ], and full-scale IQ [FSIQ]) are associated with multiple cortical measures (i.e., CT, cortical volume (CV), cortical surface area (CSA) and cortical gyrification (CG)) within the same individuals. Here we examined the association between these neuroimaging metrics and IQ in 56 healthy adults. At a cluster-forming threshold (CFT) of p < 0.05, we observed significant positive relationships between CT and all three IQ variables in regions within the posterior frontal and superior parietal lobes. Regions within the temporal and posterior frontal lobes exhibited positive relationships between CV and two IQ variables (PIQ and FSIQ) and regions within the inferior parietal lobe exhibited positive relationships between CV and PIQ. Additionally, CV was positively associated with VIQ in the left insula and with FSIQ within the inferior frontal gyrus. At a more stringent CFT (p < 0.01), the CT-PIQ, CT-VIQ, CT-FSIQ, and CV-PIQ relationships remained significant within the posterior frontal lobe, as did the CV-PIQ relationship within the temporal and inferior parietal lobes. We did not observe statistically significant relationships between IQ and either CSA or CG. Our findings suggest that the neural basis of IQ extends beyond previously observed relationships with fronto-parietal regions. We also conclude that CT and CV may be more useful metrics than CSA or CG in the study of intellectual abilities.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | - Adam Raikes
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Ryan Smith
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Natalie S Dailey
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Anna Alkozei
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - John R Vanuk
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
82
|
Nwosu EC, Robertson FC, Holmes MJ, Cotton MF, Dobbels E, Little F, Laughton B, van der Kouwe A, Meintjes EM. Altered brain morphometry in 7-year old HIV-infected children on early ART. Metab Brain Dis 2018; 33:523-535. [PMID: 29209922 PMCID: PMC5866746 DOI: 10.1007/s11011-017-0162-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Even with the increased roll out of combination antiretroviral therapy (cART), paediatric HIV infection is associated with neurodevelopmental delays and neurocognitive deficits that may be accompanied by alterations in brain structure. Few neuroimaging studies have been done in children initiating ART before 2 years of age, and even fewer in children within the critical stage of brain development between 5 and 11 years. We hypothesized that early ART would limit HIV-related brain morphometric deficits at age 7. Study participants were 7-year old HIV-infected (HIV+) children from the Children with HIV Early Antiretroviral Therapy (CHER) trial whose viral loads were supressed at a young age, and age-matched uninfected controls. We used structural magnetic resonance imaging (MRI) and FreeSurfer ( http://www.freesurfer.net/ ) software to investigate effects of HIV and age at ART initiation on cortical thickness, gyrification and regional brain volumes. HIV+ children showed reduced gyrification compared to controls in bilateral medial parietal regions, as well as reduced volumes of the right putamen, left hippocampus, and global white and gray matter and thicker cortex in small lateral occipital region. Earlier ART initiation was associated with lower gyrification and thicker cortex in medial frontal regions. Although early ART appears to preserve cortical thickness and volumes of certain brain structures, HIV infection is nevertheless associated with reduced gyrification in the parietal cortex, and lower putamen and hippocampus volumes. Our results indicate that in early childhood gyrification is more sensitive than cortical thickness to timing of ART initiation. Future work will clarify the implications of these morphometric effects for neuropsychological function.
Collapse
Affiliation(s)
- Emmanuel C Nwosu
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Frances C Robertson
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martha J Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark F Cotton
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Els Dobbels
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
83
|
Reess TJ, Rus OG, Gürsel DA, Schmitz-Koep B, Wagner G, Berberich G, Koch K. Network-based decoupling of local gyrification in obsessive-compulsive disorder. Hum Brain Mapp 2018; 39:3216-3226. [PMID: 29603846 DOI: 10.1002/hbm.24071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Gyrification is associated with cortical maturation and closely linked to neurodevelopmental processes. Obsessive-compulsive disorder has previously been associated with neurodevelopmental risk factors. Using graph theoretical modeling we examined structural covariance patterns to assess potential disruptions in processes associated with neurodevelopment in OCD. In total 97 patients and 92 healthy controls underwent magnetic resonance imaging. Structural covariance networks based on local gyrification indices were constructed using an atlas-based parcellation scheme. Network properties were assessed using the network-based statistic as well as global and local graph theoretical measures. Correlations between gyrification and symptom severity as well as age of disease onset were examined. Network-based statistic analysis revealed one cluster with significantly decreased structural covariance in patients comprising mainly ventral brain regions (p = .041). Normalized characteristic path length was found to be impaired in patients (p = .051). On a nodal level, left middle frontal sulcus displayed a significantly decreased local clustering coefficient (p < .001). Finally, gyrification in several inferior frontal nodes significantly correlated with age of onset but not symptom severity. The decrease in a gyrification-based covariance network in OCD appears to be mostly confined to ventral areas in which gyrification starts the latest during development. This pattern may indicate that alterations taking place during development are potentially time locked to specific periods. Correlations between gyrification in inferio-frontal nodes and age of onset potentially indicate a structural trait rather than state marker for OCD. Finally, a trend in impaired global integration capabilities may point towards potentially widespread global alterations during neurodevelopment in patients.
Collapse
Affiliation(s)
- Tim Jonas Reess
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, Munich, 81675, Germany.,Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Groβhaderner Strasse 2, Munich, 82152, Germany
| | - Oana Georgiana Rus
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, Munich, 81675, Germany.,Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Groβhaderner Strasse 2, Munich, 82152, Germany
| | - Deniz A Gürsel
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, Munich, 81675, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, Munich, 81675, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena, 07743, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Schützenstr. 100, Windach, 86949, Germany
| | - Kathrin Koch
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, Munich, 81675, Germany.,Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Groβhaderner Strasse 2, Munich, 82152, Germany
| |
Collapse
|
84
|
Bajaj S, Dailey NS, Rosso IM, Rauch SL, Killgore WDS. Time-dependent differences in cortical measures and their associations with behavioral measures following mild traumatic brain injury. Hum Brain Mapp 2018; 39:1886-1897. [PMID: 29359498 DOI: 10.1002/hbm.23951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022] Open
Abstract
There is currently a critical need to establish an improved understanding of time-dependent differences in brain structure following mild traumatic brain injury (mTBI). We compared differences in brain structure, specifically cortical thickness (CT), cortical volume (CV), and cortical surface area (CSA) in 54 individuals who sustained a recent mTBI and 33 healthy controls (HCs). Individuals with mTBI were split into three groups, depending on their time since injury. By comparing structural measures between mTBI and HC groups, differences in CT reflected cortical thickening within several areas following 0-3 (time-point, TP1) and 3-6 months (TP2) post-mTBI. Compared with the HC group, the mTBI group at TP2 showed lower CSA within several areas. Compared with the mTBI group at TP2, the mTBI group during the most chronic stage (TP3: 6-18 months post-mTBI) showed significantly higher CSA in several areas. All the above reported differences in CT and CSA were significant at a cluster-forming p < .01 (corrected for multiple comparisons). We also found that in the mTBI group at TP2, CT within two clusters (i.e., the left rostral middle frontal gyrus (L. RMFG) and the right postcentral gyrus (R. PostCG)) was negatively correlated with basic attention abilities (L. RMFG: r = -.41, p = .05 and R. PostCG: r = -.44, p = .03). Our findings suggest that alterations in CT and associated neuropsychological assessments may be more prominent during the early stages of mTBI. However, alterations in CSA may reflect compensatory structural recovery during the chronic stages of mTBI.
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, University of Arizona, Tucson, Arizona
| | - Natalie S Dailey
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, University of Arizona, Tucson, Arizona
| | - Isabelle M Rosso
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - Scott L Rauch
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| | - William D S Killgore
- Social, Cognitive and Affective Neuroscience Laboratory (SCAN Lab), Department of Psychiatry, University of Arizona, Tucson, Arizona.,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
85
|
Naumczyk P, Sawicka AK, Brzeska B, Sabisz A, Jodzio K, Radkowski M, Czachowska K, Winklewski PJ, Finc K, Szurowska E, Demkow U, Szarmach A. Cognitive Predictors of Cortical Thickness in Healthy Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1116:51-62. [PMID: 30267304 DOI: 10.1007/5584_2018_265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This study seeks to define the role of predictive values of the motor speed, inhibition control, and fluid and crystallized intelligence in estimating the cortical thickness in healthy elderly. Forty-six older healthy subjects (37 women, 9 men) over 60 years of age were included in the study. The participants were examined on 3.0 T MRI scanners. The protocol included standard anatomical sequences, to exclude brain pathology, and a high-resolution T1-weighted sequence used to estimate the cortical thickness. The neuropsychological protocol included fluid intelligence assessment (Raven Progressive Matrices), crystalized intelligence assessment (information or vocabulary subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R)), and executive functioning (Color Traits Test). The findings unraveled several interdependencies. The higher the intelligence, the thicker was the grey matter in nine regions of both hemispheres, but also some paradoxical reversed associations were found in four areas; all of them were localized along different sections of the cingulate gyrus in both hemispheres. An inverse association was found between crystallized intelligence and the thickness of the pars opecularis of the right hemisphere. The better the executive functioning, the thicker was the grey matter of a given region. The better the motor performance, the thicker was the grey matter of the rostral middle frontal area of the left hemisphere and the lingual gyrus of both hemispheres. In conclusion, the associations unraveled demonstrate that the neural mechanisms underlying healthy aging are complex and heterogenic across different cognitive domains and neuroanatomical regions. No brain aging theory seems to provide a suitable interpretative framework for all the results. A novel, more integrative approach to the brain aging should be considered.
Collapse
Affiliation(s)
| | - Angelika K Sawicka
- Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Beata Brzeska
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Gdansk Medical University, Gdansk, Poland.,Department of Human Physiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland.,Second Department of Radiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland
| | - Agnieszka Sabisz
- Second Department of Radiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Karolina Czachowska
- Department of Human Physiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland
| | - Paweł J Winklewski
- Department of Human Physiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland.,Second Department of Radiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland.,Department of Clinical Anatomy and Physiology, Faculty of Health Sciences, Pomeranian University in Slupsk, Slupsk, Poland
| | - Karolina Finc
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Edyta Szurowska
- Second Department of Radiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland
| | - Arkadiusz Szarmach
- Second Department of Radiology, Faculty of Health Sciences, Gdansk Medical University, Gdansk, Poland
| |
Collapse
|
86
|
Fish AM, Cachia A, Fischer C, Mankiw C, Reardon PK, Clasen LS, Blumenthal JD, Greenstein D, Giedd JN, Mangin JF, Raznahan A. Influences of Brain Size, Sex, and Sex Chromosome Complement on the Architecture of Human Cortical Folding. Cereb Cortex 2017; 27:5557-5567. [PMID: 27799275 PMCID: PMC6075547 DOI: 10.1093/cercor/bhw323] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/01/2016] [Accepted: 01/01/2016] [Indexed: 11/12/2022] Open
Abstract
Gyrification is a fundamental property of the human cortex that is increasingly studied by basic and clinical neuroscience. However, it remains unclear if and how the global architecture of cortical folding varies with 3 interwoven sources of anatomical variation: brain size, sex, and sex chromosome dosage (SCD). Here, for 375 individuals spanning 7 karyotype groups (XX, XY, XXX, XYY, XXY, XXYY, XXXXY), we use structural neuroimaging to measure a global sulcation index (SI, total sulcal/cortical hull area) and both determinants of sulcal area: total sulcal length and mean sulcal depth. We detail large and patterned effects of sex and SCD across all folding metrics, but show that these effects are in fact largely consistent with the normative scaling of cortical folding in health: larger human brains have disproportionately high SI due to a relative expansion of sulcal area versus hull area, which arises because disproportionate sulcal lengthening overcomes a lack of proportionate sulcal deepening. Accounting for these normative allometries reveals 1) brain size-independent sulcal lengthening in males versus females, and 2) insensitivity of overall folding architecture to SCD. Our methodology and findings provide a novel context for future studies of human cortical folding in health and disease.
Collapse
Affiliation(s)
- Ari M Fish
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Arnaud Cachia
- CNRS-University Paris Descartes UMR 8240, Laboratory for the Psychology of Child Development and Education, La Sorbonne, Paris 75005, France
- INSERM-Paris Descartes University UMR 894, Imaging Biomarkers of Brain Development and Disorders, Ste Anne Hospital, Paris 75014, France
| | - Clara Fischer
- UNATI, Neurospin, CEA, Gif-sur-Yvette 91191, France
- CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.com, Gif-sur-Yvette 91191, France
| | - Catherine Mankiw
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - P K Reardon
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Liv S Clasen
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jonathan D Blumenthal
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Deanna Greenstein
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jay N Giedd
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean-François Mangin
- UNATI, Neurospin, CEA, Gif-sur-Yvette 91191, France
- CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.com, Gif-sur-Yvette 91191, France
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
87
|
Sasabayashi D, Takayanagi Y, Takahashi T, Koike S, Yamasue H, Katagiri N, Sakuma A, Obara C, Nakamura M, Furuichi A, Kido M, Nishikawa Y, Noguchi K, Matsumoto K, Mizuno M, Kasai K, Suzuki M. Increased Occipital Gyrification and Development of Psychotic Disorders in Individuals With an At-Risk Mental State: A Multicenter Study. Biol Psychiatry 2017; 82:737-745. [PMID: 28709499 DOI: 10.1016/j.biopsych.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anomalies of brain gyrification have been reported in schizophrenia, possibly reflecting its neurodevelopmental pathology. However, it remains elusive whether individuals at risk for psychotic disorders exhibit deviated gyrification patterns, and whether such findings, if present, are predictive of transition to psychotic disorders. METHODS This multicenter magnetic resonance imaging study investigated brain gyrification and its relationship to later transition to psychotic disorders in a large sample of at-risk mental state (ARMS) individuals. T1-weighted magnetic resonance imaging scans were obtained from 104 ARMS individuals, of whom 21 (20.2%) exhibited the transition to psychotic disorders during clinical follow-up (mean = 4.9 years, SD = 2.6 years), and 104 healthy control subjects at 4 different sites. The local gyrification index (LGI) of the entire cortex was compared across the groups using FreeSurfer software. RESULTS Compared with the control subjects, ARMS individuals showed a significantly higher LGI in widespread cortical areas, including the bilateral frontal, temporal, parietal, and occipital regions, which was partly associated with prodromal symptomatology. ARMS individuals who exhibited the transition to psychotic disorders showed a significantly higher LGI in the left occipital region compared with individuals without transition. CONCLUSIONS These findings suggested that increased LGI in diverse cortical regions might represent vulnerability to psychopathology, while increased LGI in the left occipital cortex might be related to subsequent manifestation of florid psychotic disorders as a possible surrogate marker.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Chika Obara
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan; Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
88
|
Hirjak D, Northoff G, Thomann PA, Kubera KM, Wolf RC. Genuine motorische Phänomene bei schizophrenen Psychosen. DER NERVENARZT 2017; 89:27-43. [DOI: 10.1007/s00115-017-0434-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Wild HM, Heckemann RA, Studholme C, Hammers A. Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases. PLoS One 2017; 12:e0180866. [PMID: 28846692 PMCID: PMC5573296 DOI: 10.1371/journal.pone.0180866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG), angular gyrus (AG), superior parietal lobe (supPL) and postcentral gyrus (postCG). There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ) separating SMG and AG was identified in nearly all (59/60) hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2%) larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled) T1-weighted brain images, we applied multi-atlas label propagation software (MAPER) in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%). Stereotaxic probabilistic atlases of each subregion were obtained. They illustrate the physiological brain torque, with structures in the right hemisphere positioned more anteriorly than in the left, and right/left positional differences of up to 10 mm. They also allow an assessment of sulcal variability, e.g. low variability for parietooccipital fissure and cingulate sulcus. Illustrated protocols, individual label sets, probabilistic atlases, and a maximum-probability atlas which takes into account surrounding structures are available for free download under academic licences.
Collapse
Affiliation(s)
- Heather M. Wild
- Neurodis Foundation, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rolf A. Heckemann
- Neurodis Foundation, Lyon, France
- MedTech West at Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Colin Studholme
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| | - Alexander Hammers
- Neurodis Foundation, Lyon, France
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
90
|
Corporaal SHA, Gooijers J, Chalavi S, Cheval B, Swinnen SP, Boisgontier MP. Neural predictors of motor control and impact of visuo-proprioceptive information in youth. Hum Brain Mapp 2017; 38:5628-5647. [PMID: 28782899 DOI: 10.1002/hbm.23754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023] Open
Abstract
For successful motor control, the central nervous system is required to combine information from the environment and the current body state, which is provided by vision and proprioception respectively. We investigated the relative contribution of visual and proprioceptive information to upper limb motor control and the extent to which structural brain measures predict this performance in youth (n = 40; age range 9-18 years). Participants performed a manual tracking task, adopting in-phase and anti-phase coordination modes. Results showed that, in contrast to older participants, younger participants performed the task with lower accuracy in general and poorer performance in anti-phase than in-phase modes. However, a proprioceptive advantage was found at all ages, that is, tracking accuracy was higher when proprioceptive information was available during both in- and anti-phase modes at all ages. The microstructural organization of interhemispheric connections between homologous dorsolateral prefrontal cortices, and the cortical thickness of the primary motor cortex were associated with sensory-specific accuracy of tracking performance. Overall, the findings suggest that manual tracking performance in youth does not only rely on brain regions involved in sensorimotor processing, but also on prefrontal regions involved in attention and working memory. Hum Brain Mapp 38:5628-5647, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharissa H A Corporaal
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Boris Cheval
- Department of General Internal Medicine, Rehabilitation and Geriatrics, University of Geneva, Geneva, Switzerland.,Swiss NCCR "LIVES - Overcoming Vulnerability: Life Course Perspectives", University of Geneva, Geneva, Switzerland
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Matthieu P Boisgontier
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
91
|
Chung YS, Hyatt CJ, Stevens MC. Adolescent maturation of the relationship between cortical gyrification and cognitive ability. Neuroimage 2017; 158:319-331. [PMID: 28676299 DOI: 10.1016/j.neuroimage.2017.06.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Abstract
There are changes to the degree of cortical folding from gestation through adolescence into young adulthood. Recent evidence suggests that degree of cortical folding is linked to individual differences in general cognitive ability in healthy adults. However, it is not yet known whether age-related cortical folding changes are related to maturation of specific cognitive abilities in adolescence. To address this, we examined the relationship between frontoparietal cortical folding as measured by a Freesurfer-derived local gyrification index (lGI) and performance on subtests from the Wechsler Abbreviated Scale of Intelligence and scores from Conner's Continuous Performance Test-II in 241 healthy adolescents (ages 12-25 years). We hypothesized that age-related lGI changes in the frontoparietal cortex would contribute to cognitive development. A secondary goal was to explore if any gyrification-cognition relationships were either test-specific or sex-specific. Consistent with previous studies, our results showed a reduction of frontoparietal local gyrification with age. Also, as predicted, all cognitive test scores (i.e., Vocabulary, Matrix Reasoning, the CPT-II Commission, Omission, Variabiltiy, d') showed age × cognitive ability interaction effects in frontoparietal and temporoparietal brain regions. Mediation analyses confirmed a causal role of age-related cortical folding changes only for CPT-II Commission errors. Taken together, the results support the functional significance of cortical folding, as well as provide the first evidence that cortical folding maturational changes play a role in cognitive development.
Collapse
Affiliation(s)
- Yu Sun Chung
- Clinical Neuroscience and Development Laboratory, Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building, Institute of Living, Hartford, CT 06106, USA
| | - Christopher J Hyatt
- Clinical Neuroscience and Development Laboratory, Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building, Institute of Living, Hartford, CT 06106, USA
| | - Michael C Stevens
- Clinical Neuroscience and Development Laboratory, Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building, Institute of Living, Hartford, CT 06106, USA; Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
92
|
Improvement of spatial learning and memory, cortical gyrification patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin. J Tradit Complement Med 2017; 8:190-202. [PMID: 29322009 PMCID: PMC5755998 DOI: 10.1016/j.jtcme.2017.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/07/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the fact that Ficus deltoidea and vitexin played important roles in controlling hyperglycemia, an effective mitigation strategy dealing with cognitive deficit observed in diabetes, little is known about its neuroprotective effects. The study is aimed to determine changes in behavioral, gyrification patterns and brain oxidative stress markers in streptozotocin (STZ)-induced diabetic rats following F. deltoidea and vitexin treatments. Diabetic rats were treated orally with metformin, methanolic extract of F. deltoidea leaves and vitexin for eight weeks. Morris water maze (MWM) test was performed to evaluate learning and memory functions. The patterns of cortical gyrification were subsequently visualized using micro-computed tomography (micro-CT). Quantification of brain oxidative stress biomarkers, insulin, amylin as well as serum testosterone were measured using a spectrophotometer. The brain fatty acid composition was determined using gas chromatography (GC). Biochemical variation in brain was estimated using Fourier transform infrared (FT-IR) spectroscopy. Results showed that oral administration of F. deltoidea extract and vitexin to diabetic rats attenuated learning and memory impairment, along with several clusters of improved gyrification. Both treatments also caused a significant increase in the superoxide dismutase (SOD) and glutathione peroxidase (GPx) values, as well as a significant reduction of TBARS. Strikingly, improvement of cortical gyrification, spatial learning and memory are supported by serum testosterone levels, fatty acid composition of brain and FT-IR spectra.
Collapse
|
93
|
PKBγ/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: Relevance for schizophrenia. PLoS One 2017; 12:e0175993. [PMID: 28467426 PMCID: PMC5414975 DOI: 10.1371/journal.pone.0175993] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Psychiatric genetic studies have identified genome-wide significant loci for schizophrenia. The AKT3/1q44 locus is a principal risk region and gene-network analyses identify AKT3 polymorphisms as a constituent of several neurobiological pathways relevant to psychiatric risk; the neurobiological mechanisms remain unknown. AKT3 shows prenatal enrichment during human neocortical development and recurrent copy number variations involving the 1q43-44 locus are associated with cortical malformations and intellectual disability, implicating an essential role in early brain development. Here, we investigated the role of AKT3 as it relates to aspects of learning and memory and behavioral function, relevant to schizophrenia and cognitive disability, utilizing a novel murine model of Akt3 genetic deficiency. Akt3 heterozygous (Akt3-/+) or null mice (Akt3-/-) were assessed in a comprehensive test battery. Brain biochemical studies were conducted to assess the impact of Akt3 deficiency on cortical Akt/mTOR signaling. Akt3-/+ and Akt3-/- mice exhibited selective deficits of temporal order discrimination and spatial memory, tasks critically dependent on intact prefrontal-hippocampal circuitry, but showed normal prepulse inhibition, fear conditioned learning, memory for novel objects and social function. Akt3 loss-of-function, reduced brain size and dramatically impaired cortical Akt Ser473 activation in an allele-dose dependent manner. Such changes were observed in the absence of altered Akt1 or Akt2 protein expression. Concomitant reduction of the mTORC2 complex proteins, Rictor and Sin1 identifies a potential mechanism. Our findings provide novel insight into the neurodevelopmental role of Akt3, identify a non-redundant role for Akt3 in the development of prefrontal cortical-mediated cognitive function and show that Akt3 is potentially the dominant regulator of AKT/mTOR signaling in brain.
Collapse
|
94
|
|
95
|
Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. Neuroimage 2016; 131:55-72. [DOI: 10.1016/j.neuroimage.2015.08.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022] Open
|
96
|
Sasabayashi D, Takayanagi Y, Nishiyama S, Takahashi T, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Increased Frontal Gyrification Negatively Correlates with Executive Function in Patients with First-Episode Schizophrenia. Cereb Cortex 2016; 27:2686-2694. [DOI: 10.1093/cercor/bhw101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
97
|
Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Hagler DJ, Franz CE, Jak AJ, Lyons MJ, Neale MC, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS. Is bigger always better? The importance of cortical configuration with respect to cognitive ability. Neuroimage 2016; 129:356-366. [PMID: 26827810 PMCID: PMC4838639 DOI: 10.1016/j.neuroimage.2016.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 02/08/2023] Open
Abstract
General cognitive ability (GCA) has substantial explanatory power for behavioral and health outcomes, but its cortical substrate is still not fully established. GCA is highly polygenic and research to date strongly suggests that its cortical substrate is highly polyregional. We show in map-based and region-of-interest-based analyses of adult twins that a complex cortical configuration underlies GCA. Having relatively greater surface area in evolutionary and developmentally high-expanded prefrontal, lateral temporal, and inferior parietal regions is positively correlated with GCA, whereas relatively greater surface area in low-expanded occipital, medial temporal, and motor cortices is negatively correlated with GCA. Essentially the opposite pattern holds for relative cortical thickness. The phenotypic positive-to-negative gradients in our cortical-GCA association maps were largely driven by a similar pattern of genetic associations. The patterns are consistent with regional cortical stretching whereby relatively greater surface area is related to relatively thinner cortex in high-expanded regions. Thus, the typical "bigger is better" view does not adequately capture cortical-GCA associations. Rather, cognitive ability is influenced by complex configurations of cortical development patterns that are strongly influenced by genetic factors. Optimal cognitive ability appears to be driven both by the absolute size and the polyregional configuration of the entire cortex rather than by small, circumscribed regions.
Collapse
Affiliation(s)
- Eero Vuoksimaa
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Department of Public Health, and Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland.
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chi-Hua Chen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Fiecas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa T Eyler
- Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amy J Jak
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23220, USA
| | - Daniel A Rinker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA 92093, USA.
| |
Collapse
|
98
|
Gerrelli D, Lisgo S, Copp AJ, Lindsay S. Enabling research with human embryonic and fetal tissue resources. Development 2016; 142:3073-6. [PMID: 26395135 DOI: 10.1242/dev.122820] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle, UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large-scale genomic/transcriptomic studies. Increasingly, HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long-term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention.
Collapse
Affiliation(s)
| | - Steven Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | | | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| |
Collapse
|
99
|
Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques. Neuropsychol Rev 2015; 25:224-49. [PMID: 26280751 DOI: 10.1007/s11065-015-9290-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.
Collapse
|
100
|
Infante MA, Moore EM, Bischoff-Grethe A, Migliorini R, Mattson SN, Riley EP. Atypical cortical gyrification in adolescents with histories of heavy prenatal alcohol exposure. Brain Res 2015; 1624:446-454. [PMID: 26275919 DOI: 10.1016/j.brainres.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 02/02/2023]
Abstract
Prenatal alcohol exposure can adversely affect brain development, although little is known about the effects of prenatal alcohol exposure on gyrification. Gyrification reflects cortical folding complexity and is a process by which the surface of the brain creates sulci and gyri. Prior studies have shown that prenatal alcohol exposure is associated with reduced gyrification in childhood, but no studies have examined adolescents. Subjects (12-16 years) comprised two age-equivalent groups: 30 adolescents with histories of heavy prenatal alcohol exposure (AE) and 19 non-exposed controls (CON). A T1-weighted image was obtained for all participants. Local gyrification index (LGI) was estimated using FreeSurfer. General linear models were used to determine between group differences in LGI controlling for age and sex. Age-by-group interactions were also investigated while controlling for sex. The AE group displayed reduced LGI relative to CON in the bilateral superior parietal region, right postcentral region, and left precentral and lateral occipital regions (ps<.001). Significant age-by-group interactions were observed in the right precentral and lateral occipital regions, and in the left pars opercularis and inferior parietal regions (ps<.01). The AE group showed age-related reductions in gyrification in all regions whereas the CON group showed increased gyrification with age in the lateral occipital region only. While cross-sectional, the age-related reduction in gyrification observed in the AE group suggests alterations in cortical development throughout adolescence and provides further insight into the pathophysiology and brain maturation of adolescents prenatally exposed to alcohol.
Collapse
Affiliation(s)
- M Alejandra Infante
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA; San Diego State University / University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120-4913, USA.
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | | | - Robyn Migliorini
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA; San Diego State University / University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120-4913, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA; San Diego State University / University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120-4913, USA
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA; San Diego State University / University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120-4913, USA
| |
Collapse
|