51
|
Sun J, Liu H, Yao XY, Zhang YQ, Lv ZH, Shao JW. Circulation of four species of Anaplasmataceae bacteria in ticks in Harbin, northeastern China. Ticks Tick Borne Dis 2023; 14:102136. [PMID: 36736131 DOI: 10.1016/j.ttbdis.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Ticks play an important role in the evolution and transmission of Anaplasmataceae bacteria which are agents of emerging infectious diseases. In this study, a total of 1286 adult ticks belonging to five species were collected from cattle, goats, horses and vegetation in Harbin area, Heilongjiang province, northeastern China. The tick-borne Anaplasmataceae bacteria were identified by amplifying and sequencing the 16S rRNA (rrs) and heat shock protein-60 encoding (groEL) genes. The results showed that Ixodes persulcatus was dominant (38.8%, 499/1283) among the five tick species, and Anaplasmataceae bacteria were detected in all tick species with an overall prevalence of 7.4%. Four species of Anaplasmataceae bacteria (Anaplasma phagocytophilum, Anaplasma ovis, Anaplasma bovis, and "Candidatus Neoehrlichia mikurensis"), which are pathogenic to humans and/or animals, were identified from tick samples by phylogenetic analyzes of the rrs and groEL gene sequences. Interestingly, the cluster 1 strains were first identified in Asian, and a novel cluster was also detected in this study. These data revealed the genetic diversity of Anaplasmataceae bacteria circulating in ticks in Harbin area, highlighting the need to investigate these tick-borne pathogens and their risks to human and animal health.
Collapse
Affiliation(s)
- Jing Sun
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Hong Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Yu-Qian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Zhi-Hang Lv
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
52
|
Mans BJ. Paradigms in tick evolution. Trends Parasitol 2023; 39:475-486. [PMID: 37061441 DOI: 10.1016/j.pt.2023.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/17/2023]
Abstract
The study of tick evolution may be classified into disciplines such as taxonomy and systematics, biogeography, evolution and development (evo-devo), ecology, and hematophagy. These disciplines overlap and impact each other to various extents. Advances in one field may lead to paradigm shifts in our understanding of tick evolution not apparent to other fields. The current study considers paradigm shifts that occurred, are in the process, or may occur in future for the disciplines that study tick evolution. Some disciplines have undergone significant changes, while others may still be developing their own paradigms. Integration of these various disciplines is essential to come to a holistic view of tick evolution; however, maturation of paradigms may be necessary before this vision can be attained.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa; Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa.
| |
Collapse
|
53
|
Zhu B, Jin P, Zhang Y, Shen Y, Wang W, Li S. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. BMC Biol 2023; 21:82. [PMID: 37055766 PMCID: PMC10099834 DOI: 10.1186/s12915-023-01581-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Spiders comprise a hyperdiverse lineage of predators with venom systems, yet the origin of functionally novel spider venom glands remains unclear. Previous studies have hypothesized that spider venom glands originated from salivary glands or evolved from silk-producing glands present in early chelicerates. However, there is insufficient molecular evidence to indicate similarity among them. Here, we provide comparative analyses of genome and transcriptome data from various lineages of spiders and other arthropods to advance our understanding of spider venom gland evolution. RESULTS We generated a chromosome-level genome assembly of a model spider species, the common house spider (Parasteatoda tepidariorum). Module preservation, GO semantic similarity, and differentially upregulated gene similarity analyses demonstrated a lower similarity in gene expressions between the venom glands and salivary glands compared to the silk glands, which questions the validity of the salivary gland origin hypothesis but unexpectedly prefers to support the ancestral silk gland origin hypothesis. The conserved core network in the venom and silk glands was mainly correlated with transcription regulation, protein modification, transport, and signal transduction pathways. At the genetic level, we found that many genes in the venom gland-specific transcription modules show positive selection and upregulated expressions, suggesting that genetic variation plays an important role in the evolution of venom glands. CONCLUSIONS This research implies the unique origin and evolutionary path of spider venom glands and provides a basis for understanding the diverse molecular characteristics of venom systems.
Collapse
Affiliation(s)
- Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
54
|
Ma H, Galon EM, Lao Y, Kang M, Xuan X, Li J, Sun Y. De novo assembled transcriptomics assisted label-free quantitative proteomics analysis reveals sex-specific proteins in the intestinal tissue of Haemaphysalis qinghaiensis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105409. [PMID: 36773671 DOI: 10.1016/j.meegid.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The hard tick Haemaphysalis qinghaiensis is the vector of a wide variety of infectious agents, such as spirochetes and other bacteria as well as viruses in the western plateau of China. Tick midgut is the key tissue involved in the host-pathogen-vector interface. Multiple midgut proteins are related to key functions in blood digestion, tick survival, and tick-borne pathogen transmission. However, information on the sex-specific proteins expressed in the midgut tissue of H. qinghaiensis for which the genome has not been sequenced is limited. Hence, we assembled and characterized the transcriptome of the H. qinghaiensis midgut and identified the differentially expressed genes (DEGs) in female and male ticks. The sequencing of the mRNA for this nonmodel species is essential for producing a protein database for mass spectrometry-based identification. Here, we combined high-throughput parallel sequencing and label-free quantitative proteomics analysis to extensively characterize the tick midgut using massive RNA sequencing and mass spectrometry, which allowed the detection of genes and proteins. A total of 279,186 transcripts were annotated into 125,790 coding sequences (CDSs), which were manually curated into 96 different gene families. A total of 12,837 DEGs between the two sexes were found by RNA-seq analysis. Of these, 5401 were upregulated genes, while 7436 were downregulated genes. The most common molecular functions were those related to the endocrine system, translation, signal transduction, transport, and catabolism. Meanwhile, the most common biological processes were related to cellular processes, metabolic processes, cellular anatomical entities, and cargo receptor activities. An analysis of the label-free protein quantitation dataset showed 272 upregulated proteins and 46 downregulated proteins when the fold-change was >2.0 (LC-MS/MS). Association analysis of the transcriptome and proteome with GO functional enrichment showed that the majority of the genes (proteins) were those related to catalytic activity, binding, cellular processes, metabolic processes, and responses to stimuli. This study aims to elucidate the digestive physiology of H. qinghaiensis as well as its physiological sexual dimorphism. This will allow the identification of protein candidates with physiological importance that could be used as targets to control the vector as well as the transmission of tick-borne pathogens to humans and animals.
Collapse
Affiliation(s)
- Hejia Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, PR China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, PR China
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 0808555, Hokkaido, Japan
| | - Yanjun Lao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, PR China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, PR China
| | - Ming Kang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, PR China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, PR China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining 810016, PR China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 0808555, Hokkaido, Japan
| | - Jixu Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, PR China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, PR China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining 810016, PR China
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, PR China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, PR China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining 810016, PR China.
| |
Collapse
|
55
|
Gebremedhin MB, Xu Z, Kuang C, Shumuye NA, Cao J, Zhou Y, Zhang H, Zhou J. Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller's Organ. INSECTS 2023; 14:294. [PMID: 36975979 PMCID: PMC10053194 DOI: 10.3390/insects14030294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Ticks are obligatory hematophagous ectoparasites and vectors of many animal and human pathogens. Chemosensation plays a significant role in tick communication with their environment, including seeking out blood meal hosts. Studies on the structure and function of Haller's organ and its components have improved our understanding regarding tick olfaction and its chemical ecology. Compared with the knowledge on insect olfaction, less is known about the molecular basis of olfaction in ticks. This review focused on the chemosensory-related candidate molecules likely involved in tick olfaction. Members of the ionotropic receptor family and a new class of odorant-binding proteins are now known to be involved in tick olfaction, which appear to differ from that of insects. These candidate molecules are more closely related to those of mites and spiders than to other arthropods. The amino acid sequences of candidate niemann-pick type C2 and microplusin-like proteins in ticks exhibit features indicating their potential role as binding proteins. In the future, more comprehensive pertinent research considering the existing shortcomings will be required to fully understand the molecular basis of tick olfactory chemoreception. This information may contribute to the development of new molecular-based control mechanisms to reduce tick populations and related disease transmission.
Collapse
Affiliation(s)
- Mebrahtu Berhe Gebremedhin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Nigus Abebe Shumuye
- State Key Laboratory of Veterinary Etiological Biology, National Animal Echinococcosis Para-Reference Laboratory, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
56
|
Du LF, Zhang MZ, Yuan TT, Ni XB, Wei W, Cui XM, Wang N, Xiong T, Zhang J, Pan YS, Zhu DY, Li LJ, Xia LY, Wang TH, Wei R, Liu HB, Sun Y, Zhao L, Lam TTY, Cao WC, Jia N. New insights into the impact of microbiome on horizontal and vertical transmission of a tick-borne pathogen. MICROBIOME 2023; 11:50. [PMID: 36915209 PMCID: PMC10012463 DOI: 10.1186/s40168-023-01485-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The impact of host skin microbiome on horizontal transmission of tick-borne pathogens , and of pathogen associated transstadial and transovarial changes in tick microbiome are largely unknown, but are important to control increasingly emerging tick-borne diseases worldwide. METHODS Focusing on a rickettsiosis pathogen, Rickettsia raoultii, we used R. raoultii-positive and R. raoultii-negative Dermacentor spp. tick colonies to study the involvement of skin microbiota in cutaneous infection with rickettsiae in laboratory mice, and the function of the tick microbiome on maintenance of rickettsiae through all tick developmental stages (eggs, larvae, nymphs, adults) over two generations. RESULTS We observed changes in the skin bacteria community, such as Chlamydia, not only associated with rickettsial colonization but also with tick feeding on skin. The diversity of skin microbiome differed between paired tick-bitten and un-bitten sites. For vertical transmission, significant differences in the tick microbiota between pathogenic rickettsia-positive and -negative tick chorts was observed across all developmental stages at least over two generations, which appeared to be a common pattern not only for R. raoultii but also for another pathogenic species, Candidatus Rickettsia tarasevichiae. More importantly, bacterial differences were complemented by functional shifts primed for genetic information processing during blood feeding. Specifically, the differences in tick microbiome gene repertoire between pathogenic Rickettsia-positive and -negative progenies were enriched in pathways associated with metabolism and hormone signals during vertical transmission. CONCLUSIONS We demonstrate that host skin microbiome might be a new factor determining the transmission of rickettsial pathogens through ticks. While pathogenic rickettsiae infect vertebrate hosts during blood-feeding by the tick, they may also manipulate the maturation of the tick through changing the functional potential of its microbiota over the tick's life stages. The findings here might spur the development of new-generation control methods for ticks and tick-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ting-Ting Yuan
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tian-Hong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China.
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China.
- EKIH (Gewuzhikang) Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China.
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong SAR, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
57
|
Šlapeta J, Halliday B, Dunlop JA, Nachum-Biala Y, Salant H, Ghodrati S, Modrý D, Harrus S. The “southeastern Europe” lineage of the brown dog tick Rhipicephalus sanguineus (sensu lato) identified as Rhipicephalus rutilus Koch, 1844: Comparison with holotype and generation of mitogenome reference from Israel. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100118. [PMID: 37009554 PMCID: PMC10064234 DOI: 10.1016/j.crpvbd.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The brown dog tick Rhipicephalus sanguineus (sensu lato) in the southeastern Mediterranean region and the Middle East is difficult to identify due to the presence of multiple mitochondrial DNA haplogroup lineages. The purpose of this study was to clarify the identity of the "southeastern Europe" lineage of this tick species complex. Our research shows that female ticks of the "southeastern Europe" lineage correspond to the morphology of R. rutilus Koch, 1844 as found in type-material at the Museum für Naturkunde Berlin in Germany. We characterised the complete mitogenomes of R. rutilus, R. turanicus Pomerantsev, 1940 and Rhipicephalus sanguineus (Latreille, 1806) in order to improve our understanding of the phylogenetic relationships among species within the R. sanguineus (sensu lato) complex. The material associated with the morphology of R. rutilus was previously labelled as the "southeastern Europe" lineage and found in Israel and Egypt, including Lower Egypt and the Nile Delta, where the original type-material was collected. Based on the morphology, genetic identity, and geographical distribution of the species, we conclude that the name R. rutilus is correctly linked to the "southeastern Europe" lineage of R. sanguineus (sensu lato).
Collapse
|
58
|
Zhang Y, Zhong P, Wang L, Zhang Y, Li N, Li Y, Jin Y, Bibi A, Huang Y, Xu Y. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with SFTS. J Infect Public Health 2023; 16:393-398. [PMID: 36706468 DOI: 10.1016/j.jiph.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high mortality. Early identification of patients who may advance to critical stages is crucial. This investigation aimed to establish models to predict SFTS before it reaches the critical illness stage. METHODS Between January 2016 and September 2022, 278 cases have been included in this study. There were 87 demographic and systemic chosen variables. For selecting the predictive variables from the cohort, the LASSO was utilized, and for identifying independent predictors, multivariate logistic regression was performed. Based on these factors, a nomogram was established for critical illness. Concordance index values, decision curve analysis and the area under the curve (AUC) were also examined. RESULTS Multivariate logistic regression demonstrated the most important differentiating factors as;> 65 years old (P < 0.001, OR 3.388, 95 % CI 1.767-6.696), elevated serum PT (P = 0.011, OR 6.641, 95 % CI 1.584-31.934), elevated serum TT (P = 0.005, OR 3.384, 95 % CI 1.503-8.491), and elevated serum bicarbonate (P = 0.014, OR 0.242, 95 % CI 0.070-0.707). The C-index of the nomogram was 0.812 (95 % CI: 0.754-0.869), representing good discrimination. The model also showed excellent calibration. The AUC of the nomogram established based on four factors, as mentioned earlier, was 0.806. Furthermore, the model had the excellent net benefit, as revealed by the decision curve analysis. CONCLUSION An accurate risk score system built on manifestations noted in patients with SFTS upon admission to hospital, might be advantageous in managing SFTS.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, No. 81 Meishan Rd, Hefei, China
| | - Pei Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, No. 81 Meishan Rd, Hefei, China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, No. 81 Meishan Rd, Hefei, China
| | - Yu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yaoyao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yangyang Jin
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Asma Bibi
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, No. 81 Meishan Rd, Hefei, China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, No. 81 Meishan Rd, Hefei, China.
| |
Collapse
|
59
|
Ribeiro JMC, Bayona-Vásquez NJ, Budachetri K, Kumar D, Frederick JC, Tahir F, Faircloth BC, Glenn TC, Karim S. A draft of the genome of the Gulf Coast tick, Amblyomma maculatum. Ticks Tick Borne Dis 2023; 14:102090. [PMID: 36446165 PMCID: PMC9898150 DOI: 10.1016/j.ttbdis.2022.102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The Gulf Coast tick, Amblyomma maculatum, inhabits the Southeastern states of the USA bordering the Gulf of Mexico, Mexico, and other Central and South American countries. More recently, its U.S. range has extended West to Arizona and Northeast to New York state and Connecticut. It is a vector of Rickettsia parkeri and Hepatozoon americanum. This tick species has become a model to study tick/Rickettsia interactions. To increase our knowledge of the basic biology of A. maculatum we report here a draft genome of this tick and an extensive functional classification of its proteome. The DNA from a single male tick was used as a genomic source, and a 10X genomics protocol determined 28,460 scaffolds having equal or more than 10 Kb, totaling 1.98 Gb. The N50 scaffold size was 19,849 Kb. The BRAKER pipeline was used to find the protein-coding gene boundaries on the assembled A. maculatum genome, discovering 237,921 CDS. After trimming and classifying the transposable elements, bacterial contaminants, and truncated genes, a set of 25,702 were annotated and classified as the core gene products. A BUSCO analysis revealed 83.4% complete BUSCOs. A hyperlinked spreadsheet is provided, allowing browsing of the individual gene products and their matches to several databases.
Collapse
Affiliation(s)
- Jose M C Ribeiro
- NIAID NIH Laboratory of Malaria and Vector Research, Bethesda, MD 20892-8132, USA.
| | - Natalia J Bayona-Vásquez
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Khemraj Budachetri
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA; The Ohio State University, Columbus, OH 43210, USA
| | - Deepak Kumar
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Julia Catherine Frederick
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Faizan Tahir
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Brant C Faircloth
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Travis C Glenn
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Shahid Karim
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
60
|
Yang Z, Wang H, Yang S, Wang X, Shen Q, Ji L, Zeng J, Zhang W, Gong H, Shan T. Virome diversity of ticks feeding on domestic mammals in China. Virol Sin 2023; 38:208-221. [PMID: 36781125 PMCID: PMC10176445 DOI: 10.1016/j.virs.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Ticks are considered the second most common pathogen vectors transmitting a broad range of vital human and veterinary viruses. From 2017 to 2018, 640 ticks were collected in eight different provinces in central and western China. Six species were detected, including H.longicornis, De.everestianus, Rh.microplus, Rh.turanicus, Rh.sanguineous, and Hy.asiaticum. Sixty-four viral metagenomic libraries were constructed on the MiSeq Illumina platform, resulting in 13.44 G (5.88 × 107) of 250-bp-end reads, in which 2,437,941 are viral reads. We found 27 nearly complete genome sequences, including 16 genome sequences encoding entire protein-coding regions (lack of 3' or 5' end non-coding regions) and complete viral genomes, distributed in the arboviral family (Chuviridae, Rhabdoviridae, Nairoviridae, Phenuiviridae, Flaviviridae, Iflaviridae) as well as Parvoviridae and Polyomaviridae that cause disease in mammals and even humans. In addition, 13 virus sequences found in Chuviridae, Nairoviridae, Flaviviridae, Iflaviridae, Hepeviridae, Parvoviridae, and Polyomaviridae were identified as belonging to a new virus species in the identified viral genera. Besides, an epidemiological survey shows a high prevalence (9.38% and 15.63%) of two viruses (Ovine Copiparvovirus and Bovine parvovirus 2) in the tick cohort.
Collapse
Affiliation(s)
- Zijun Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China; Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Wang
- Department of Clinical Laboratory, Huai'an Hospital, Xuzhou Medical University, Huai'an, 223002, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Zeng
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Haiyan Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
61
|
De S, Kingan SB, Kitsou C, Portik DM, Foor SD, Frederick JC, Rana VS, Paulat NS, Ray DA, Wang Y, Glenn TC, Pal U. A high-quality Ixodes scapularis genome advances tick science. Nat Genet 2023; 55:301-311. [PMID: 36658436 DOI: 10.1038/s41588-022-01275-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023]
Abstract
Ixodes spp. and related ticks transmit prevalent infections, although knowledge of their biology and development of anti-tick measures have been hindered by the lack of a high-quality genome. In the present study, we present the assembly of a 2.23-Gb Ixodes scapularis genome by sequencing two haplotypes within one individual, complemented by chromosome-level scaffolding and full-length RNA isoform sequencing, yielding a fully reannotated genome featuring thousands of new protein-coding genes and various RNA species. Analyses of the repetitive DNA identified transposable elements, whereas the examination of tick-associated bacterial sequences yielded an improved Rickettsia buchneri genome. We demonstrate how the Ixodes genome advances tick science by contributing to new annotations, gene models and epigenetic functions, expansion of gene families, development of in-depth proteome catalogs and deciphering of genetic variations in wild ticks. Overall, we report critical genetic resources and biological insights impacting our understanding of tick biology and future interventions against tick-transmitted infections.
Collapse
Affiliation(s)
- Sandip De
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Shelby D Foor
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Julia C Frederick
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Nicole S Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA. .,Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
62
|
Luker HA, Salas KR, Esmaeili D, Holguin FO, Bendzus-Mendoza H, Hansen IA. Repellent efficacy of 20 essential oils on Aedes aegypti mosquitoes and Ixodes scapularis ticks in contact-repellency assays. Sci Rep 2023; 13:1705. [PMID: 36717735 PMCID: PMC9886999 DOI: 10.1038/s41598-023-28820-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cases of mosquito- and tick-borne diseases are rising worldwide. Repellent products can protect individual users from being infected by such diseases. In a previous study, we identified five essential oils that display long-distance mosquito repellency using a Y-tube olfactometer assay. In the current study, the contact repellent efficacy of 20 active ingredients from the Environmental Protection Agency's (EPA) Minimum Risk Pesticides list were tested using Aedes aegypti and Ixodes scapularis. We utilized an arm-in-cage assay to measure complete protection time from mosquito bites for these active ingredients. To measure tick repellency, we used an EPA-recommended procedure to measure the complete protection time from tick crossings. We found that of the 20 ingredients tested, 10% v/v lotion emulsions with clove oil or cinnamon oil provided the longest protection from both mosquito bites and tick crossings. We conclude that in a 10% v/v emulsion, specific active ingredients from the EPA Minimum Risk Pesticides list can provide complete protection from mosquito bites and tick crossings for longer than one hour.
Collapse
Affiliation(s)
- Hailey A Luker
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA.
| | - Keyla R Salas
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - Delaram Esmaeili
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - F Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Skeen Hall, Las Cruces, NM, 88003, USA
| | - Harley Bendzus-Mendoza
- Department of Computer Science, New Mexico State University, 1290 Frenger Mall, Las Cruces, NM, 88003, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
- Institute for Applied Biosciences, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| |
Collapse
|
63
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
64
|
Qin T, Shi M, Zhang M, Liu Z, Feng H, Sun Y. Diversity of RNA viruses of three dominant tick species in North China. Front Vet Sci 2023; 9:1057977. [PMID: 36713863 PMCID: PMC9880493 DOI: 10.3389/fvets.2022.1057977] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Background A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. Methods Here, we used metagenomic sequencing to characterize the diverse viromes in three principal tick species associated with pathogens, Haemaphysalis concinna, Dermacentor silvarum, and Ixodes persulcatus, in North China. Results A total of 28 RNA viruses were identified and belonged to more than 12 viral families, including single-stranded positive-sense RNA viruses (Flaviviridae, Picornaviridae, Luteoviridae, Solemoviridae, and Tetraviridae), negative-sense RNA viruses (Mononegavirales, Bunyavirales, and others) and double-stranded RNA viruses (Totiviridae and Partitiviridae). Of these, Dermacentor pestivirus-likevirus, Chimay-like rhabdovirus, taiga tick nigecruvirus, and Mukawa virus are presented as novel viral species, while Nuomin virus, Scapularis ixovirus, Sara tick-borne phlebovirus, Tacheng uukuvirus, and Beiji orthonairovirus had been established as human pathogens with undetermined natural circulation and pathogenicity. Other viruses include Norway mononegavirus 1, Jilin partitivirus, tick-borne tetravirus, Pico-like virus, Luteo-like virus 2, Luteo-likevirus 3, Vovk virus, Levivirus, Toti-like virus, and Solemo-like virus as well as others with unknown pathogenicity to humans and wild animals. Conclusion In conclusion, extensive virus diversity frequently occurs in Mononegavirales and Bunyavirales among the three tick species. Comparatively, I. persulcatus ticks had been demonstrated as such a kind of host with a significantly higher diversity of viral species than those of H. concinna and D. silvarum ticks. Our analysis supported that ticks are reservoirs for a wide range of viruses and suggested that the discovery and characterization of tick-borne viruses would have implications for viral taxonomy and provide insights into tick-transmitted viral zoonotic diseases.
Collapse
Affiliation(s)
- Tong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China,Medical Corps, Naval Logistics Academy, PLA, Beijing, China
| | - Mingjie Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Meina Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhitong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China,*Correspondence: Yi Sun ✉
| |
Collapse
|
65
|
Rana VS, Kitsou C, Dutta S, Ronzetti MH, Zhang M, Bernard Q, Smith AA, Tomás-Cortázar J, Yang X, Wu MJ, Kepple O, Li W, Dwyer JE, Matias J, Baljinnyam B, Oliver JD, Rajeevan N, Pedra JHF, Narasimhan S, Wang Y, Munderloh U, Fikrig E, Simeonov A, Anguita J, Pal U. Dome1-JAK-STAT signaling between parasite and host integrates vector immunity and development. Science 2023; 379:eabl3837. [PMID: 36634189 PMCID: PMC10122270 DOI: 10.1126/science.abl3837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK-STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1-JAK-STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells-including stem cells-and dictates metamorphosis through the Hedgehog and Notch-Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.
Collapse
Affiliation(s)
- Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Alexis A. Smith
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Julen Tomás-Cortázar
- CIC bioGUNE-BRTA (Basque Research & Technology Alliance), 48160 Derio, Bizkaia, Spain
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Oleksandra Kepple
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Weizhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jennifer E. Dwyer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | - Nallakkandi Rajeevan
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, Minneapolis, MN, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan Anguita
- CIC bioGUNE-BRTA (Basque Research & Technology Alliance), 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Bizkaia, Spain
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA
| |
Collapse
|
66
|
Feng C, Torimaru K, Lim MYT, Chak LL, Shiimori M, Tsuji K, Tanaka T, Iida J, Okamura K. A novel eukaryotic RdRP-dependent small RNA pathway represses antiviral immunity by controlling an ERK pathway component in the black-legged tick. PLoS One 2023; 18:e0281195. [PMID: 36996253 PMCID: PMC10062562 DOI: 10.1371/journal.pone.0281195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are involved in antiviral defense and gene regulation. Although roles of RNA-dependent RNA Polymerases (RdRPs) in sRNA biology are extensively studied in nematodes, plants and fungi, understanding of RdRP homologs in other animals is still lacking. Here, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We find abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP1-dependent sRNAs possess 5'-monophosphates and are mainly derived from RNA polymerase III-transcribed genes and repetitive elements. Knockdown of some RdRP homologs misregulates genes including RNAi-related genes and the regulator of immune response Dsor1. Sensor assays demonstrate that Dsor1 is downregulated by RdRP1 through the 3'UTR that contains a target site of RdRP1-dependent repeat-derived sRNAs. Consistent with viral gene repression by the RNAi mechanism using virus-derived small interfering RNAs, viral transcripts are upregulated by AGO knockdown. On the other hand, RdRP1 knockdown unexpectedly results in downregulation of viral transcripts. This effect is dependent on Dsor1, suggesting that antiviral immunity is enhanced by RdRP1 knockdown through Dsor1 upregulation. We propose that tick sRNA pathways control multiple aspects of immune response via RNAi and regulation of signaling pathways.
Collapse
Affiliation(s)
- Canran Feng
- Nara Institute of Science and Technology, Nara, Japan
| | | | - Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Li-Ling Chak
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | | | - Kosuke Tsuji
- Nara Institute of Science and Technology, Nara, Japan
| | - Tetsuya Tanaka
- Joint Faculty of Veterinary Medicine, Laboratory of Infectious Diseases, Kagoshima University, Kagoshima, Japan
| | - Junko Iida
- Nara Institute of Science and Technology, Nara, Japan
| | - Katsutomo Okamura
- Nara Institute of Science and Technology, Nara, Japan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
67
|
A systems biology approach to better understand human tick-borne diseases. Trends Parasitol 2023; 39:53-69. [PMID: 36400674 DOI: 10.1016/j.pt.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Tick-borne diseases (TBDs) are a growing global health concern. Despite extensive studies, ill-defined tick-associated pathologies remain with unknown aetiologies. Human immunological responses after tick bite, and inter-individual variations of immune-response phenotypes, are not well characterised. Current reductive experimental methodologies limit our understanding of more complex tick-associated illness, which results from the interactions between the host, tick, and microbes. An unbiased, systems-level integration of clinical metadata and biological host data - obtained via transcriptomics, proteomics, and metabolomics - offers to drive the data-informed generation of testable hypotheses in TBDs. Advanced computational tools have rendered meaningful analysis of such large data sets feasible. This review highlights the advantages of integrative system biology approaches as essential for understanding the complex pathobiology of TBDs.
Collapse
|
68
|
Zhang J, Zheng YC, Chu YL, Cui XM, Wei R, Bian C, Liu HB, Yao NN, Jiang RR, Huo QB, Yuan TT, Li J, Zhao L, Li LF, Wang Q, Wei W, Zhu JG, Chen MC, Gao Y, Wang F, Ye JL, Song JL, Jiang JF, Lam TTY, Ni XB, Jia N. Skin infectome of patients with a tick bite history. Front Cell Infect Microbiol 2023; 13:1113992. [PMID: 36923591 PMCID: PMC10008932 DOI: 10.3389/fcimb.2023.1113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction Ticks are the most important obligate blood-feeding vectors of human pathogens. With the advance of high-throughput sequencing, more and more bacterial community and virome in tick has been reported, which seems to pose a great threat to people. Methods A total of 14 skin specimens collected from tick-bite patients with mild to severe symptoms were analyzed through meta-transcriptomic sequencings. Results Four bacteria genera were both detected in the skins and ticks, including Pseudomonas, Acinetobacter, Corynebacterium and Propionibacterium, and three tick-associated viruses, Jingmen tick virus (JMTV), Bole tick virus 4 (BLTV4) and Deer tick mononegavirales-like virus (DTMV) were identified in the skin samples. Except of known pathogens such as pathogenic rickettsia, Coxiella burnetii and JMTV, we suggest Roseomonas cervicalis and BLTV4 as potential new agents amplified in the skins and then disseminated into the blood. As early as 1 day after a tick-bite, these pathogens can transmit to skins and at most four ones can co-infect in skins. Discussion Advances in sequencing technologies have revealed that the diversity of tick microbiome and virome goes far beyond our previous understanding. This report not only identifies three new potential pathogens in humans but also shows that the skin barrier is vital in preventing horizontal transmissions of tick-associated bacteria or virus communities to the host. It is the first research on patients' skin infectome after a tick bite and demonstrates that more attention should be paid to the cutaneous response to prevent tick-borne illness.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan-Chun Zheng
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Yan-Li Chu
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ran Wei
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cai Bian
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Hong-Bo Liu
- Department of Infectious Diseases Control and Prevention, Chinese People's Liberation Army of China (PLA) Center for Disease Control and Prevention, Beijing, China
| | - Nan-Nan Yao
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Rui-Ruo Jiang
- Institute of Nuclear, Biological, and Chemical weapons (NBC) Defence, PLA Army, Beijing, China
| | - Qiu-Bo Huo
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | | | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Guo Zhu
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Mei-Chao Chen
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Yan Gao
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Fei Wang
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Jin-Ling Ye
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Ju-Liang Song
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| |
Collapse
|
69
|
Bai Y, Li Y, Liu W, Li J, Tian F, Liu L, Han X, Tong Y. Analysis of the diversity of tick-borne viruses at the border areas in Liaoning Province, China. Front Microbiol 2023; 14:1179156. [PMID: 37200913 PMCID: PMC10187663 DOI: 10.3389/fmicb.2023.1179156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Abstract
Ticks play a significant role in transmitting arboviruses, which pose a risk to human and animal health. The region of Liaoning Province, China, with abundant plant resources with multiple tick populations, has reported several tick-borne diseases. However, there remains a scarcity of research on the composition and evolution of the tick virome. In this study, we conducted the metagenomic analysis of 561 ticks in the border area of Liaoning Province in China and identified viruses related to known diseases in humans and animals, including severe fever with thrombocytopenia syndrome virus (SFTSV) and nairobi sheep disease virus (NSDV). Moreover, the groups of tick viruses were also closely related to the families of Flaviviridae, Parvoviridae, Phenuiviridae, and Rhabdoviridae. Notably, the Dabieshan tick virus (DBTV) of the family Phenuiviridae was prevalent in these ticks, with the minimum infection rate (MIR) of 9.09%, higher than previously reported in numerous provinces in China. In addition, sequences of tick-borne viruses of the family Rhabdoviridae have first been reported from the border area of Liaoning Province, China, after being described from Hubei Province, China. This research furthered the insight into pathogens carried by ticks in the northeastern border areas of China, offering epidemiological information for possible forthcoming outbreaks of infectious diseases. Meanwhile, we provided an essential reference for assessing the risk of tick bite infection in humans and animals, as well as for exploring into the evolution of the virus and the mechanisms of species transmission.
Collapse
Affiliation(s)
- Yu Bai
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Li
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenli Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lei Liu
- Jiamusi University School of Basic Medicine, Jiamusi, China
- *Correspondence: Lei Liu,
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Xiaohu Han,
| | - Yigang Tong
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|
70
|
Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 2023; 8:162-173. [PMID: 36604510 PMCID: PMC9816062 DOI: 10.1038/s41564-022-01275-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023]
Abstract
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
Collapse
|
71
|
Zheng J, Wang X, Feng T, Rehman SU, Yan X, Shan H, Ma X, Zhou W, Xu W, Lu L, Liu J, Luo X, Cui K, Qin C, Chen W, Yu J, Li Z, Ruan J, Liu Q. Molecular mechanisms underlying hematophagia revealed by comparative analyses of leech genomes. Gigascience 2022; 12:giad023. [PMID: 37039117 PMCID: PMC10087013 DOI: 10.1093/gigascience/giad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/14/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Leeches have been used in traditional Chinese medicine since prehistoric times to treat a spectrum of ailments, but very little is known about their physiological, genetic, and evolutionary characteristics. FINDINGS We sequenced and assembled chromosome-level genomes of 3 leech species (bloodsucking Hirudo nipponia and Hirudinaria manillensis and nonbloodsucking Whitmania pigra). The dynamic population histories and genome-wide expression patterns of the 2 bloodsucking leech species were found to be similar. A combined analysis of the genomic and transcriptional data revealed that the bloodsucking leeches have a presumably enhanced auditory sense for prey location in relatively deep fresh water. The copy number of genes related to anticoagulation, analgesia, and anti-inflammation increased in the bloodsucking leeches, and their gene expressions responded dynamically to the bloodsucking process. Furthermore, the expanded FBN1 gene family may help in rapid body swelling of leeches after bloodsucking, and the expanded GLB3 gene family may be associated with long-term storage of prey blood in a leech's body. CONCLUSIONS The high-quality reference genomes and comprehensive datasets obtained in this study may facilitate innovations in the artificial culture and strain optimization of leeches.
Collapse
Affiliation(s)
- Jinghui Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise
Breeding, School of Life Science and Engineering, Foshan University,
Foshan 528225, China
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University
of Chinese Medicine, Nanning 530011, China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
- Department of Bioinformatics and Systems Biology, College of Life Science
and Technology, Huazhong University of Science and Technology, Wuhan,
Hubei 430074, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Xiaocong Ma
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University
of Chinese Medicine, Nanning 530011, China
| | - Weiguan Zhou
- Biological Institute of Guangxi Academy of Sciences, Nanning
530007, China
| | - Wenhua Xu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University
of Chinese Medicine, Nanning 530011, China
| | - Liying Lu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University
of Chinese Medicine, Nanning 530011, China
| | - Jiasheng Liu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University
of Chinese Medicine, Nanning 530011, China
| | - Xier Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise
Breeding, School of Life Science and Engineering, Foshan University,
Foshan 528225, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural
Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen,
Guangdong 518120, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise
Breeding, School of Life Science and Engineering, Foshan University,
Foshan 528225, China
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Chaobin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Weihua Chen
- Department of Bioinformatics and Systems Biology, College of Life Science
and Technology, Huazhong University of Science and Technology, Wuhan,
Hubei 430074, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of
Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Jue Ruan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural
Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen,
Guangdong 518120, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise
Breeding, School of Life Science and Engineering, Foshan University,
Foshan 528225, China
- State Key Laboratory for Conservation and Utilization of Subtropical
Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
72
|
Microbiota Community Structure and Interaction Networks within Dermacentor silvarum, Ixodes persulcatus, and Haemaphysalis concinna. Animals (Basel) 2022; 12:ani12233237. [PMID: 36496758 PMCID: PMC9735619 DOI: 10.3390/ani12233237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ticks carry and transmit a variety of pathogens, which are very harmful to humans and animals. To characterize the microbial interactions in ticks, we analysed the microbiota of the hard ticks, Dermacentor silvarum, Ixodes persulcatus, and Haemaphysalis concinna, using 16S rRNA, showing that microbial interactions are underappreciated in terms of shaping arthropod microbiomes. The results show that the bacterial richness and microbiota structures of these three tick species had significant differences. Interestingly, the bacterial richness (Chao1 index) of all ticks decreased significantly after they became engorged. All the operational taxonomic units (OTUs) were assigned to 26 phyla, 67 classes, 159 orders, 279 families, and 627 genera. Microbial interactions in D. silvarum demonstrated more connections than in I. persulcatus and H. concinna. Bacteria with a high abundance were not important families in microbial interactions. Positive interactions of Bacteroidaceae and F_Solibacteraceae Subgroup 3 with other bacterial families were detected in all nine groups of ticks. This study provides an overview of the microbiota structure and interactions of three tick species and improves our understanding of the role of the microbiota in tick physiology and vector capacity, thus being conducive to providing basic data for the prevention of ticks and tick-borne diseases.
Collapse
|
73
|
Jin L, Jiang BG, Yin Y, Guo J, Jiang JF, Qi X, Crispell G, Karim S, Cao WC, Lai R. Interference with LTβR signaling by tick saliva facilitates transmission of Lyme disease spirochetes. Proc Natl Acad Sci U S A 2022; 119:e2208274119. [PMID: 36383602 PMCID: PMC9704693 DOI: 10.1073/pnas.2208274119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTβR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTβR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTβR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTβR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Yizhu Yin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Jingya Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Gary Crispell
- Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406
| | - Shahid Karim
- Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| |
Collapse
|
74
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
75
|
Kneubehl AR, Muñoz-Leal S, Filatov S, de Klerk DG, Pienaar R, Lohmeyer KH, Bermúdez SE, Suriyamongkol T, Mali I, Kanduma E, Latif AA, Sarih M, Bouattour A, de León AAP, Teel PD, Labruna MB, Mans BJ, Lopez JE. Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. Sci Rep 2022; 12:19310. [PMID: 36369253 PMCID: PMC9652274 DOI: 10.1038/s41598-022-23393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genome (mitogenome) has proven to be important for the taxonomy, systematics, and population genetics of ticks. However, current methods to generate mitogenomes can be cost-prohibitive at scale. To address this issue, we developed a cost-effective approach to amplify and sequence the whole mitogenome of individual tick specimens. Using two different primer sites, this approach generated two full-length mitogenome amplicons that were sequenced using the Oxford Nanopore Technologies' Mk1B sequencer. We used this approach to generate 85 individual tick mitogenomes from samples comprised of the three tick families, 11 genera, and 57 species. Twenty-six of these species did not have a complete mitogenome available on GenBank prior to this work. We benchmarked the accuracy of this approach using a subset of samples that had been previously sequenced by low-coverage Illumina genome skimming. We found our assemblies were comparable or exceeded the Illumina method, achieving a median sequence concordance of 99.98%. We further analyzed our mitogenome dataset in a mitophylogenomic analysis in the context of all three tick families. We were able to sequence 72 samples in one run and achieved a cost/sample of ~ $10 USD. This cost-effective strategy is applicable for sample identification, taxonomy, systematics, and population genetics for not only ticks but likely other metazoans; thus, making mitogenome sequencing equitable for the wider scientific community.
Collapse
Affiliation(s)
- Alexander R Kneubehl
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Serhii Filatov
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniel G de Klerk
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Ronel Pienaar
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Kimberly H Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX, USA
| | - Sergio E Bermúdez
- Medical Entomology Department, Gorgas Memorial Institute for Health Research, City of Panamá, Panama
| | - Thanchira Suriyamongkol
- Department of Biology, Eastern New Mexico University, Portales, NM, USA.,Southern Illinois University-Carbondale, Cooperative Wildlife Research Laboratory, Carbondale, IL, USA
| | - Ivana Mali
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, USA
| | - Esther Kanduma
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Abdalla A Latif
- University of KwaZulu-Natal, School of Life Sciences, Durban, Westville, South Africa
| | - M'hammed Sarih
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Casablanca, Morocco
| | - Ali Bouattour
- Institut Pasteur de Tunis, Université Tunis El Manar, Laboratoire Virus, Vecteurs, Hôtes, Service d'Entomologie Médicale, Tunis, Tunisia
| | - Adalberto A Pérez de León
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, CA, USA
| | - Pete D Teel
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, USA
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Ben J Mans
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Job E Lopez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
76
|
Liu J, Yu J, Yu X, Bi W, Yang H, Xue F, Zhang G, Zhang J, Yi D, Ma R, Zhou Y, Lan G, Gu J, Wu W, Li Z, Qi G. Complete Mitogenomes of Ticks Ixodes acutitarsus and Ixodes ovatus Parasitizing Giant Panda: Deep Insights into the Comparative Mitogenomic and Phylogenetic Relationship of Ixodidae Species. Genes (Basel) 2022; 13:2049. [PMID: 36360286 PMCID: PMC9691169 DOI: 10.3390/genes13112049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 04/11/2024] Open
Abstract
Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of Ixodes acutitarsus and Ixodes ovatus parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that I. ovatus is a species complex with high genetic divergence, indicating that different clades of I. ovatus represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the trnY-COX1-trnS1-COX2-trnK-ATP8-ATP6-COX3-trnG fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship (Ixodes + (Robertsicus + ((Bothriocroton + Haemaphysalis) + (Amblyomma + (Dermacentor + (Rhipicentor + (Hyalomma + Rhipicephalus))))))) with very strong supports. Remarkably, Archaeocroton sphenodonti is embedded in the Haemaphysalis clade with strong supports, resulting in paraphyly of the Haemaphysalis genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of A. sphenodonti and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.
Collapse
Affiliation(s)
- Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Hong Yang
- Management Center of Daxiangling Nature Reserve in Yingjing County, Ya’an 625200, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Gexiang Zhang
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guanwei Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guilan Qi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|
77
|
Lu XY, Zhang QF, Jiang DD, Liu YF, Chen B, Yang SP, Shao ZT, Jiang H, Wang J, Fang YH, Du CH, Yang X. Complete mitogenomes and phylogenetic relationships of Haemaphysalis nepalensis and Haemaphysalis yeni. Front Vet Sci 2022; 9:1007631. [PMID: 36406060 PMCID: PMC9666481 DOI: 10.3389/fvets.2022.1007631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 09/26/2023] Open
Abstract
The mitochondrial genome may include crucial data for understanding phylogenetic and molecular evolution. We sequenced the complete mitogenome of Haemaphysalis nepalensis and Haemaphysalis yeni for the first time. H. nepalensis and H. yeni's complete mitogenomes were 14,720 and 14,895 bp in size, respectively, and both contained two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes (PCG). Haemaphysalis nepalensis have one control region (D-loop). The adenine + thymine concentration of the genomes of H. nepalensis and H. yeni was 77.75 and 78.41%, respectively. The codon use pattern and amino acid content of proteins were both observed to be affected by the AT bias. Genes in the mitogenome were organized and located in a comparable manner to previously known genes from Haemaphysalis ticks. Mitochondrial PCGs were used to perform phylogenetic relationships based on the Minimum Evolution (ME) approach using MEGA 7.0 software, the results reveal that H. nepalensis has tight links with H. tibetensis, H. yeni and H. kolonini share a sister group relationship, and that H. nepalensis and H. yeni belong to Haemaphysalis. The results of this study include the following: (i) discovered and supplied new tick records (H. nepalensis) for China, (ii) provided the first complete mitochondrial genome for H. nepalensis and H. yeni and revealed their phylogenetic relationships, and (iii) the features of the mitochondrial genome of H. nepalensis and H. yeni provided more genetic reference for Phylogeography, systematics, and population genetics of the Haemaphysalis species.
Collapse
Affiliation(s)
- Xin-yan Lu
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | - Quan-fu Zhang
- Department of Digestion, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dan-dan Jiang
- School of Public Health, Dali University, Dali, China
| | - Ya-fang Liu
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | - Bin Chen
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | | | - Zong-ti Shao
- Yunnan Provincial Key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Puer, China
| | - Hang Jiang
- Yunnan Provincial Key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Puer, China
| | - Jian Wang
- Yunnan Provincial Key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Puer, China
| | - Yi-hao Fang
- Fu-gong Administration Bureau, Gaoligong Mountain National Nature Reserve, Yunnan, China
| | - Chun-hong Du
- Yunnan Provincial Key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Puer, China
| | - Xing Yang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| |
Collapse
|
78
|
Yuan C, Yang Q, Wu J, Peng Y, Li Y, Xiong S, Zhou J, Wang M, Hu Z, Zou Z, Xia Q. Proteomics reveals the hemolymph components of partially fed Hyalomma asiaticum ticks. Ticks Tick Borne Dis 2022; 13:102032. [PMID: 36088665 DOI: 10.1016/j.ttbdis.2022.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Hemolymph infection facilitates pathogen invasion of internal tick tissues. However, the overall protein composition of the hemolymph has not been analyzed for any tick species. Here, a gel based liquid chromatography tandem mass spectrometry method was used to characterize the hemolymph proteome of Hyalomma asiaticum females during blood feeding. A total of 311 proteins were identified. Hemelipoglyco-carrier proteins, apolipophorin-like proteins, and intracellular proteins were the most abundant proteins. Thirteen immunity-related proteins were identified, including peptidoglycan recognition protein (PGRP), Thioester-containing proteins (TEPs), clip‑serine proteinases, serpins and Dome. The presence of hemocytin, proclotting enzyme homologs, serpins, TEPs, factor D-like protein and the lack of coagulin, hemocyanin, and prophenoloxidase suggest ticks may possess a unique coagulation system, which is largely different from that of insects. Taken together, the study revealed the constitution, level, and possible functions of global hemolymph proteins in H. asiaticum and could facilitate the discovery of new targets for control of tick-borne pathogens.
Collapse
Affiliation(s)
- Chuanfei Yuan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qingtai Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wu
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Peng
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shirui Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
79
|
Pathak A, Chakraborty S, Oyen K, Rosendale AJ, Benoit JB. Dual assessment of transcriptional and metabolomic responses in the American dog tick following exposure to different pesticides and repellents. Ticks Tick Borne Dis 2022; 13:102033. [PMID: 36099731 PMCID: PMC9971363 DOI: 10.1016/j.ttbdis.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 02/03/2023]
Abstract
The American dog tick, Dermacentor variabilis, is a major pest to humans and animals, serving as a vector to Rickettsia rickettsii, a bacterium responsible for Rocky Mountain spotted fever, and Francisella tularensis, which is responsible for tularemia. Although several tactics for management have been deployed, very little is known about the molecular response following pesticidal treatments in ticks. In this study, we used a combined approach utilizing transcriptomics and metabolomics to understand the response of the American dog tick to five common pesticides (amitraz, chlorpyrifos, fipronil, permethrin, and propoxur), and analyzed previous experimental data utilizing DEET repellent. Exposure to different chemicals led to significant differential expression of a varying number of transcripts, where 42 were downregulated and only one was upregulated across all treatments. A metabolomic analysis identified significant changes in acetate and aspartate levels following exposure to chlorpyrifos and propoxur, which was attributed to reduced cholinesterase activity. Integrating the metabolomics study with RNA-seq analysis, we found the physiological manifestations of the combined metabolic and transcriptional differences, revealing several novel biomolecular pathways. In particular, we discovered the downregulation of amino sugar metabolism and methylhistidine metabolism after permethrin exposure, as well as an upregulation of glutamate metabolism in amitraz treated samples. Understanding these altered biochemical pathways following pesticide and repellent exposure can help us formulate more effective chemical treatments to reduce the burden of ticks.
Collapse
Affiliation(s)
- Atit Pathak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211; Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211.
| |
Collapse
|
80
|
Wagner DM, Birdsell DN, McDonough RF, Nottingham R, Kocos K, Celona K, Özsürekci Y, Öhrman C, Karlsson L, Myrtennäs K, Sjödin A, Johansson A, Keim PS, Forsman M, Sahl JW. Genomic characterization of Francisella tularensis and other diverse Francisella species from complex samples. PLoS One 2022; 17:e0273273. [PMID: 36223396 PMCID: PMC9555625 DOI: 10.1371/journal.pone.0273273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis, the bacterium that causes the zoonosis tularemia, and its genetic near neighbor species, can be difficult or impossible to cultivate from complex samples. Thus, there is a lack of genomic information for these species that has, among other things, limited the development of robust detection assays for F. tularensis that are both specific and sensitive. The objective of this study was to develop and validate approaches to capture, enrich, sequence, and analyze Francisella DNA present in DNA extracts generated from complex samples. RNA capture probes were designed based upon the known pan genome of F. tularensis and other diverse species in the family Francisellaceae. Probes that targeted genomic regions also present in non-Francisellaceae species were excluded, and probes specific to particular Francisella species or phylogenetic clades were identified. The capture-enrichment system was then applied to diverse, complex DNA extracts containing low-level Francisella DNA, including human clinical tularemia samples, environmental samples (i.e., animal tissue and air filters), and whole ticks/tick cell lines, which was followed by sequencing of the enriched samples. Analysis of the resulting data facilitated rigorous and unambiguous confirmation of the detection of F. tularensis or other Francisella species in complex samples, identification of mixtures of different Francisella species in the same sample, analysis of gene content (e.g., known virulence and antimicrobial resistance loci), and high-resolution whole genome-based genotyping. The benefits of this capture-enrichment system include: even very low target DNA can be amplified; it is culture-independent, reducing exposure for research and/or clinical personnel and allowing genomic information to be obtained from samples that do not yield isolates; and the resulting comprehensive data not only provide robust means to confirm the presence of a target species in a sample, but also can provide data useful for source attribution, which is important from a genomic epidemiology perspective.
Collapse
Affiliation(s)
- David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- * E-mail:
| | - Dawn N. Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Roxanne Nottingham
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Karisma Kocos
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kimberly Celona
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Yasemin Özsürekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Linda Karlsson
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Kerstin Myrtennäs
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Andreas Sjödin
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Paul S. Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
81
|
The Arginine Kinase from the Tick Rhipicephalus sanguineus Is an Efficient Biocatalyst. Catalysts 2022. [DOI: 10.3390/catal12101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arginine kinase (AK) is a reversible enzyme that regulates invertebrates’ phosphagen arginine phosphate levels. AK also elicits an immune response in humans, and it is a major food allergen in crustacea and may be a target for novel antiparasitic drugs. Although AK has been primarily described in the shrimp, it is also present in other invertebrates, such as the brown tick Rhipicephalus sanguineus (Rs), the vector for Rocky Mountain Spotted Fever. Here we report the enzymatic activity and the crystal structure of AK from Rhipicephalus sanguineus (RsAK) in an open conformation without substrate or ligands and a theoretical structure of RsAK modeled bound with the substrate/product (Arg-ADP) in a closed conformation. The Michaelis-Menten kinetics confirmed that RsAK is an efficient biocatalyst due to its high kcat/Km parameter. The recombinant enzyme was expressed in bacteria and purified to a 20 mg/L culture yield. AK is an essential enzyme in invertebrates. Future work will be focused on the RsAK enzymatic inhibition that may lead to novel strategies to control this pest, a burden to animal and human health.
Collapse
|
82
|
Tian J, Hou X, Ge M, Xu H, Yu B, Liu J, Shao R, Holmes EC, Lei C, Shi M. The diversity and evolutionary relationships of ticks and tick-borne bacteria collected in China. Parasit Vectors 2022; 15:352. [PMID: 36182913 PMCID: PMC9526939 DOI: 10.1186/s13071-022-05485-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background Ticks (order Ixodida) are ectoparasites, vectors and reservoirs of many infectious agents affecting humans and domestic animals. However, the lack of information on tick genomic diversity leaves significant gaps in the understanding of the evolution of ticks and associated bacteria. Results We collected > 20,000 contemporary and historical (up to 60 years of preservation) tick samples representing a wide range of tick biodiversity across diverse geographic regions in China. Metagenomic sequencing was performed on individual ticks to obtain the complete or near-complete mitochondrial (mt) genome sequences from 46 tick species, among which mitochondrial genomes of 23 species were recovered for the first time. These new mt genomes data greatly expanded the diversity of many tick groups and revealed five cryptic species. Utilizing the same metagenomic sequence data we identified divergent and abundant bacteria in Haemaphysalis, Ixodes, Dermacentor and Carios ticks, including nine species of pathogenetic bacteria and potentially new species within the genus Borrelia. We also used these data to explore the evolutionary relationship between ticks and their associated bacteria, revealing a pattern of long-term co-divergence relationship between ticks and Rickettsia and Coxiella bacteria. Conclusions In sum, our study provides important new information on the genetic diversity of ticks based on an analysis of mitochondrial DNA as well as on the prevalence of tick-borne pathogens in China. It also sheds new light on the long-term evolutionary and ecological relationships between ticks and their associated bacteria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05485-3.
Collapse
Affiliation(s)
- JunHua Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.,Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei Province, 430015, China
| | - Xin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518107, China
| | - MiHong Ge
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430345, China
| | - HongBin Xu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi Province, 330029, China
| | - Bin Yu
- Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei Province, 430015, China
| | - Jing Liu
- Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei Province, 430015, China
| | - RenFu Shao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - ChaoLiang Lei
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518107, China.
| |
Collapse
|
83
|
El-Ansary RE, El-Dabae WH, Bream AS, El Wakil A. Isolation and molecular characterization of lumpy skin disease virus from hard ticks, Rhipicephalus (Boophilus) annulatus in Egypt. BMC Vet Res 2022; 18:302. [PMID: 35932057 PMCID: PMC9354321 DOI: 10.1186/s12917-022-03398-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lumpy skin disease (LSD), a disease of cattle and buffaloes, has recently become widely prevalent in Egypt. The aim of this study was to ascertain the potential role of Rhipicephalus (Boophilus) annulatus ticks in the transmission of this disease. Samples collected from suspected lumpy skin disease virus (LSDV) infected cows that had previously been vaccinated with the Romanian sheep pox virus (SPPV) in various Egyptian governorates were obtained between May to November over two consecutive years, namely 2018 and 2019. Ticks were morphologically identified and the partial cytochrome oxidase subunit I gene (COI) were sequenced, revealing that they were closely related to R. (Boophilus) annulatus. The G-protein-coupled chemokine receptor (GPCR) gene of the LSDV was used to test hard ticks. RESULTS Two positive samples from Kafr El-Sheikh province and one positive sample from Al-Behera province were reported. BLAST analysis revealed that the positive samples were closely related to the Kazakhstani Kubash/KAZ/16 strain (accession number MN642592). Phylogenetic analysis revealed that the GPCR gene of the LSDV recently circulating in Egypt belongs to a global cluster of field LSDV with a nucleotide identity of 98-100%. LSDV isolation was successfully performed four days after inoculation using 9 to 11-day-old embryonated chicken eggs showing characteristic focal white pock lesions dispersed on the choriallantoic membrane after three blind passages. Intracytoplasmic inclusion bodies, cell rupture, vacuoles in cells, and virus particles ovoid in shape were demonstrated by electron microscopy. CONCLUSION In this study the role of hard ticks in the transmission of the LSDV to susceptible animals in Egypt was revealed and confirmed by various methods.
Collapse
Affiliation(s)
- Ramy E El-Ansary
- Zoology and Entomology Department, Faculty of Science Al-Azhar University, Cairo, Egypt.
| | - Wahid H El-Dabae
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Ahmed S Bream
- Zoology and Entomology Department, Faculty of Science Al-Azhar University, Cairo, Egypt
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
84
|
Medina JM, Jmel MA, Cuveele B, Gómez-Martín C, Aparicio-Puerta E, Mekki I, Kotál J, Martins LA, Hackenberg M, Bensaoud C, Kotsyfakis M. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front Cell Infect Microbiol 2022; 12:919786. [PMID: 35992165 PMCID: PMC9386188 DOI: 10.3389/fcimb.2022.919786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022] Open
Abstract
Ticks are blood-feeding arthropods that use the components of their salivary glands to counter the host’s hemostatic, inflammatory, and immune responses. The tick midgut also plays a crucial role in hematophagy. It is responsible for managing blood meals (storage and digestion) and protecting against host immunity and pathogen infections. Previous transcriptomic studies revealed the complexity of tick sialomes (salivary gland transcriptomes) and mialomes (midgut transcriptomes) which encode for protease inhibitors, lipocalins (histamine-binding proteins), disintegrins, enzymes, and several other tick-specific proteins. Several studies have demonstrated that mammalian hosts acquire tick resistance against repeated tick bites. Consequently, there is an urgent need to uncover how tick sialomes and mialomes respond to resistant hosts, as they may serve to develop novel tick control strategies and applications. Here, we mimicked natural repeated tick bites in a laboratory setting and analyzed gene expression dynamics in the salivary glands and midguts of adult female ticks. Rabbits were subjected to a primary (feeding on a naive host) and a secondary infestation of the same host (we re-exposed the hosts but to other ticks). We used single salivary glands and midguts dissected from individual siblings adult pathogen-free female Ixodes ricinus to reduce genetic variability between individual ticks. The comprehensive analysis of 88 obtained RNA-seq data sets allows us to provide high-quality annotated sialomes and mialomes from individual ticks. Comparisons between fed/unfed, timepoints, and exposures yielded as many as 3000 putative differentially expressed genes (DEG). Interestingly, when classifying the exposure DEGs by means of a clustering approach we observed that the majority of these genes show increased expression at early feeding time-points in the mid-gut of re-exposed ticks. The existence of clearly defined groups of genes with highly similar responses to re-exposure suggests the existence of molecular swiches. In silico functional analysis shows that these early feeding reexposure response genes form a dense interaction network at protein level being related to virtually all aspects of gene expression regulation and glycosylation. The processed data is available through an easy-to-use database-associated webpage (https://arn.ugr.es/IxoriDB/) that can serve as a valuable resource for tick research.
Collapse
Affiliation(s)
- José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Granada, Spain
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
| | - Brent Cuveele
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
| | - Cristina Gómez-Martín
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Program Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Granada, Spain
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Imen Mekki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Kotál
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
| | | | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Granada, Spain
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
- *Correspondence: Michail Kotsyfakis, ; Chaima Bensaoud,
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czechia
- *Correspondence: Michail Kotsyfakis, ; Chaima Bensaoud,
| |
Collapse
|
85
|
Virome of Giant Panda-Infesting Ticks Reveals Novel Bunyaviruses and Other Viruses That Are Genetically Close to Those from Giant Pandas. Microbiol Spectr 2022; 10:e0203422. [PMID: 35916407 PMCID: PMC9430136 DOI: 10.1128/spectrum.02034-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tick infestations have been reported as one of the factors threatening the health of giant pandas, but studies of viral pathogens carried by ticks feeding on the blood of giant pandas are limited. To assess whether blood-sucking ticks of giant pandas can carry viral pathogens and if so, whether the viruses in ticks are associated with those previously detected in giant panda hosts, we determined the viromes of ticks detached from giant pandas in a field stocking area in Sichuan Province, southwest China. Using viral metagenomics we identified 32 viral species in ticks, half of which (including anellovirus [n = 9], circovirus [n = 3], and gemycircularvirus [n = 4]) showed homology to viruses carried by giant pandas and their associated host species (such as red pandas and mosquitoes) in the same living domain. Remarkably, several viruses in this study phylogenetically assigned as bunyavirus, hepe-like virus, and circovirus were detected with relatively high abundance, but whether these newly identified tick-associated viruses can replicate in ticks and then transmit to host animals during a blood meal will require further investigation. These findings further expand our understanding of the role of giant panda-infesting ticks in the local ecosystem, especially related to viral acquisition and transmission, and lay a foundation to assess the risk for giant panda exposure to tick-borne viruses. IMPORTANCE Ticks rank only second to mosquitoes as blood-feeding arthropods, capable of spreading pathogens (including viruses, bacteria, and parasites) to hosts during a blood meal. To better understand the relationship between viruses carried by ticks and viruses that have been reported in giant pandas, it is necessary to analyze the viromes of giant panda-parasitic blood-sucking ticks. This study collected 421 ticks on the body surface of giant pandas in Sichuan Province, China. We characterized the extensive genetic diversity of viruses harbored by these ticks and reported frequent communication of viruses between giant pandas and their ticks. While most of the virome discovered here are nonpathogenic viruses from giant pandas and potentially tick-specific viruses, we revealed some possible tick-borne viruses, represented by novel bunyaviruses. This research contributes to the literature because currently there are few studies on the virome of giant panda-infesting ticks.
Collapse
|
86
|
Wulff JP, Temeyer KB, Tidwell JP, Schlechte KG, Xiong C, Lohmeyer KH, Pietrantonio PV. Pyrokinin receptor silencing in females of the southern cattle tick Rhipicephalus (Boophilus) microplus is associated with a reproductive fitness cost. Parasit Vectors 2022; 15:252. [PMID: 35818078 PMCID: PMC9272880 DOI: 10.1186/s13071-022-05349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rhipicephalus microplus is the vector of deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. However, R. microplus populations worldwide have developed resistance to available acaricides, prompting the search for novel acaricide targets. G protein-coupled receptors (GPCRs) are involved in the regulation of many physiological processes and have been suggested as druggable targets for the control of arthropod vectors. Arthropod-specific signaling systems of small neuropeptides are being investigated for this purpose. The pyrokinin receptor (PKR) is a GPCR previously characterized in ticks. Myotropic activity of pyrokinins in feeding-related tissues of Rhipicephalus sanguineus and Ixodes scapularis was recently reported. METHODS The R. microplus pyrokinin receptor (Rhimi-PKR) was silenced through RNA interference (RNAi) in female ticks. To optimize RNAi, a dual-luciferase assay was applied to determine the silencing efficiency of two Rhimi-PKR double-stranded RNAs (dsRNA) prior to injecting dsRNA in ticks to be placed on cattle. Phenotypic variables of female ticks obtained at the endpoint of the RNAi experiment were compared to those of control female ticks (non-injected and beta-lactamase dsRNA-injected). Rhimi-PKR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS The Rhimi-PKR transcript was expressed in all developmental stages. Rhimi-PKR silencing was confirmed in whole ticks 4 days after injection, and in the tick carcass, ovary and synganglion 6 days after injection. Rhimi-PKR silencing was associated with an increased mortality and decreased weight of both surviving females and egg masses (P < 0.05). Delays in repletion, pre-oviposition and incubation periods were observed (P < 0.05). CONCLUSIONS Rhimi-PKR silencing negatively affected female reproductive fitness. The PKR appears to be directly or indirectly associated with the regulation of female feeding and/or reproductive output in R. microplus. Antagonists of the pyrokinin signaling system could be explored for tick control.
Collapse
Affiliation(s)
- Juan P. Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kevin B. Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Jason P. Tidwell
- Cattle Fever Tick Research Laboratory, USDA-ARS, 22675 N. Moorefield Rd. Building 6419, Edinburg, TX 78541-5033 USA
| | - Kristie G. Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kimberly H. Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Patricia V. Pietrantonio
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| |
Collapse
|
87
|
Teng AY, Che TL, Zhang AR, Zhang YY, Xu Q, Wang T, Sun YQ, Jiang BG, Lv CL, Chen JJ, Wang LP, Hay SI, Liu W, Fang LQ. Mapping the viruses belonging to the order Bunyavirales in China. Infect Dis Poverty 2022; 11:81. [PMID: 35799306 PMCID: PMC9264531 DOI: 10.1186/s40249-022-00993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral pathogens belonging to the order Bunyavirales pose a continuous background threat to global health, but the fact remains that they are usually neglected and their distribution is still ambiguously known. We aim to map the geographical distribution of Bunyavirales viruses and assess the environmental suitability and transmission risk of major Bunyavirales viruses in China. METHODS We assembled data on all Bunyavirales viruses detected in humans, animals and vectors from multiple sources, to update distribution maps of them across China. In addition, we predicted environmental suitability at the 10 km × 10 km pixel level by applying boosted regression tree models for two important Bunyavirales viruses, including Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV). Based on model-projected risks and air travel volume, the imported risk of RVFV was also estimated from its endemic areas to the cities in China. RESULTS Here we mapped all 89 species of Bunyavirales viruses in China from January 1951 to June 2021. Nineteen viruses were shown to infect humans, including ten species first reported as human infections. A total of 447,848 cases infected with Bunyavirales viruses were reported, and hantaviruses, Dabie bandavirus and Crimean-Congo hemorrhagic fever virus (CCHFV) had the severest disease burden. Model-predicted maps showed that Xinjiang and southwestern Yunnan had the highest environmental suitability for CCHFV occurrence, mainly related to Hyalomma asiaticum presence, while southern China had the highest environmental suitability for Rift Valley fever virus (RVFV) transmission all year round, mainly driven by livestock density, mean precipitation in the previous month. We further identified three cities including Guangzhou, Beijing and Shanghai, with the highest imported risk of RVFV potentially from Egypt, South Africa, Saudi Arabia and Kenya. CONCLUSIONS A variety of Bunyavirales viruses are widely distributed in China, and the two major neglected Bunyavirales viruses including CCHFV and RVFV, both have the potential for outbreaks in local areas of China. Our study can help to promote the understanding of risk distribution and disease burden of Bunyavirales viruses in China, and the risk maps of CCHFV and RVFV occurrence are crucial to the targeted surveillance and control, especially in seasons and locations at high risk.
Collapse
Affiliation(s)
- Ai-Ying Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - An-Ran Zhang
- Department of Research, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| |
Collapse
|
88
|
Duncan KT, Elshahed MS, Sundstrom KD, Little SE, Youssef NH. Influence of tick sex and geographic region on the microbiome of Dermacentor variabilis collected from dogs and cats across the United States. Ticks Tick Borne Dis 2022; 13:102002. [PMID: 35810549 DOI: 10.1016/j.ttbdis.2022.102002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
Abstract
As tick-borne diseases continue to increase across North America, current research strives to understand how the tick microbiome may affect pathogen acquisition, maintenance, and transmission. Prior high throughput amplicon-based microbial diversity surveys of the widespread tick Dermacentor variabilis have suggested that life stage, sex, and geographic region may influence the composition of the tick microbiome. Here, adult D. variabilis ticks (n = 145) were collected from dogs and cats from 32 states with specimens originating from all four regions of the United States (West, Midwest, South, and Northeast), and the tick microbiome was examined via V4-16S rRNA gene amplification and Illumina sequencing. A total of 481,246 bacterial sequences were obtained (median 2924 per sample, range 399-11,990). Fifty genera represented the majority (>80%) of the sequences detected, with the genera Allofrancisella and Francisella being the most abundant. Further, 97%, 23%, and 5.5% of the ticks contained sequences belonging to Francisella spp., Rickettsia spp., and Coxiella spp., respectively. No Ehrlichia spp. or Anaplasma spp. were identified. Co-occurrence analysis, by way of correlation coefficients, between the top 50 most abundant genera demonstrated five strong positive and no strong negative correlation relationships. Geographic region had a consistent effect on species richness with ticks from the Northeast having a significantly greater level of richness. Alpha diversity patterns were dependent on tick sex, with males exhibiting higher levels of diversity, and geographical region, with higher level of diversity observed in ticks obtained from the Northeast, but not on tick host. Community structure, or beta diversity, of tick microbiome was impacted by tick sex and geographic location, with microbiomes of ticks from the western US exhibiting a distinct community structure when compared to those from the other three regions (Northeast, South, and Midwest). In total, LEfSe (Linear discriminant analysis Effect Size) identified 18 specific genera driving these observed patterns of diversity and community structure. Collectively, these findings highlight the differences in bacterial diversity of D. variabilis across the US and supports the interpretation that tick sex and geographic region affects microbiome composition across a broad sampling distribution.
Collapse
Affiliation(s)
- Kathryn T Duncan
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Kellee D Sundstrom
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Susan E Little
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Room 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
89
|
Rispe C, Hervet C, de la Cotte N, Daveu R, Labadie K, Noel B, Aury JM, Thany S, Taillebois E, Cartereau A, Le Mauff A, Charvet CL, Auger C, Courtot E, Neveu C, Plantard O. Transcriptome of the synganglion in the tick Ixodes ricinus and evolution of the cys-loop ligand-gated ion channel family in ticks. BMC Genomics 2022; 23:463. [PMID: 35733088 PMCID: PMC9219234 DOI: 10.1186/s12864-022-08669-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ticks represent a major health issue for humans and domesticated animals. Exploring the expression landscape of the tick's central nervous system (CNS), known as the synganglion, would be an important step in understanding tick physiology and in managing tick-borne diseases, but studies on that topic are still relatively scarce. Neuron-specific genes like the cys-loop ligand-gated ion channels (cys-loop LGICs, or cysLGICs) are important pharmacological targets of acaricides. To date their sequence have not been well catalogued for ticks, and their phylogeny has not been fully studied. RESULTS We carried out the sequencing of transcriptomes of the I. ricinus synganglion, for adult ticks in different conditions (unfed males, unfed females, and partially-fed females). The de novo assembly of these transcriptomes allowed us to obtain a large collection of cys-loop LGICs sequences. A reference meta-transcriptome based on synganglion and whole body transcriptomes was then produced, showing high completeness and allowing differential expression analyses between synganglion and whole body. Many of the genes upregulated in the synganglion were associated with neurotransmission and/or localized in neurons or the synaptic membrane. As the first step of a functional study of cysLGICs, we cloned the predicted sequence of the resistance to dieldrin (RDL) subunit homolog, and functionally reconstituted the first GABA-gated receptor of Ixodes ricinus. A phylogenetic study was performed for the nicotinic acetylcholine receptors (nAChRs) and other cys-loop LGICs respectively, revealing tick-specific expansions of some types of receptors (especially for Histamine-like subunits and GluCls). CONCLUSIONS We established a large catalogue of genes preferentially expressed in the tick CNS, including the cysLGICs. We discovered tick-specific gene family expansion of some types of cysLGIC receptors, and a case of intragenic duplication, suggesting a complex pattern of gene expression among different copies or different alternative transcripts of tick neuro-receptors.
Collapse
Affiliation(s)
| | | | | | - Romain Daveu
- INRAE, Oniris, BIOEPAR, Nantes, France.,Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Steeve Thany
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | - Emiliane Taillebois
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | - Alison Cartereau
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | - Anaïs Le Mauff
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | | | | | | | | | | |
Collapse
|
90
|
Perner J, Hajdusek O, Kopacek P. Independent somatic distribution of heme and iron in ticks. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100916. [PMID: 35346896 DOI: 10.1016/j.cois.2022.100916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 05/27/2023]
Abstract
Ticks are blood-feeding ectoparasites with distinct genomic reductions, inevitably linking them to a parasitic lifestyle. Ticks have lost the genomic coding and, thus, biochemical capacity to synthesize heme, an essential metabolic cofactor, de novo. Instead, they are equipped with acquisition and distribution pathways for reuse of host heme. Unlike insects or mammals, ticks and mites cannot cleave the porphyrin ring of heme to release iron. Bioavailable iron is thus acquired by ticks from the host serum transferrin. Somatic trafficking of iron, however, is independent of heme and is mediated by a secretory type of ferritin. Heme and iron systemic homeostasis in ticks represents, therefore, key adaptive traits enabling successful feeding and reproduction.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
91
|
Guizzo MG, Tirloni L, Gonzalez SA, Farber MD, Braz G, Parizi LF, Dedavid E Silva LA, da Silva Vaz I, Oliveira PL. Coxiella Endosymbiont of Rhipicephalus microplus Modulates Tick Physiology With a Major Impact in Blood Feeding Capacity. Front Microbiol 2022; 13:868575. [PMID: 35591999 PMCID: PMC9111531 DOI: 10.3389/fmicb.2022.868575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States.,Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Sergio A Gonzalez
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Marisa D Farber
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Glória Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
92
|
Lu XY, Zhang QF, Jiang DD, Wang T, Sun Y, Du CH, Zhang L, Yang X. Characterization of the complete mitochondrial genome of Haemaphysalis (Alloceraea) kolonini (Ixodidae) and its phylogenetic implications. Parasitol Res 2022; 121:1951-1962. [PMID: 35505098 DOI: 10.1007/s00436-022-07535-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
Ticks transmit diverse pathogens that cause human and animal diseases, leading to an increasing number of new challenges around the world. Genomic data research could help advance our learning of phylogenetic analysis and molecular evolution. Mitochondrial genome DNA has been helpful in illustrating the phylogenetic analysis of eukaryotes containing ticks. In this research, we sequenced and assembled the circular complete mitogenome information of Haemaphysalis kolonini. The 14,948-bp mitogenome consists of 37 genes which included 13 genes for protein-coding, two genes for ribosomal RNA, 22 genes for transfer RNA, and two control regions (D-loops). Overall, the composition and arrangement of genes were compared with Haemaphysalis ticks previously recorded in Genbank. The phylogenetic tree based on Maximum likelihood (ML) and Bayesian inference (BI) computational algorithms showed that H. kolonini has a close relationship with Haemaphysalis inermis. The complete mitogenome data provide a preferable perception to the phylogenetic relationship than the single-gene data analysis. To our knowledge, this is the first research exploring the complete mitogenome for the species H. kolonini. Our results provide new insights for further research on the evolution, population genetics, systematics, and molecular ecology of ticks.
Collapse
Affiliation(s)
- Xin-Yan Lu
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Quan-Fu Zhang
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dan-Dan Jiang
- School of Public Health, Dali University, Dali, 671000, People's Republic of China
| | - Tao Wang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Chun-Hong Du
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.
| | - Lei Zhang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China.
| | - Xing Yang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China.
| |
Collapse
|
93
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
94
|
Li SS, Zhang XY, Zhou XJ, Chen KL, Masoudi A, Liu JZ, Zhang YK. Bacterial microbiota analysis demonstrates that ticks can acquire bacteria from habitat and host blood meal. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:81-95. [PMID: 35532740 DOI: 10.1007/s10493-022-00714-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Ticks have a diversity of habitats and host blood meals. Whether and how factors such as tick developmental stages, habitats and host blood meals affect tick bacterial microbiota is poorly elucidated. In the present study, we investigated the bacterial microbiotas of the hard tick Haemaphysalis longicornis, their blood meals and habitats using 16S rRNA gene high-throughput sequencing. The bacterial richness and diversity in ticks varied depending on the tick developmental stage and feeding status. Results showed that fed ticks present a higher bacterial richness suggesting that ticks may acquire bacteria from blood meals. The significant overlap of the bacteria of fed ticks and the host blood also supports this possibility. Another possibility is that blood meals can stimulate the proliferation of certain bacteria. However, most shared bacteria cannot transmit throughout the tick life cycle, as they were not present in tick eggs. The most shared bacteria between ticks and habitats are members of the genera Staphylococcus, Pseudomonas, Enterobacter, Acinetobacter and Stenotrophomonas, suggesting that these environmental bacteria cannot be completely washed away and can be acquired by ticks. The predominant proportion of Coxiella in fed females further demonstrates that this genus is involved in H. longicornis physiology, such as feeding activity and nutritional provision. These findings further reveal that the bacterial composition of ticks is influenced by a variety of factors and will help in subsequent studies of the function of these bacteria.
Collapse
Affiliation(s)
- Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, 053000, Hebei, China
| | - Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xue-Jiao Zhou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Kai-Li Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
95
|
Buysse M, Binetruy F, Leibson R, Gottlieb Y, Duron O. Ecological Contacts and Host Specificity Promote Replacement of Nutritional Endosymbionts in Ticks. MICROBIAL ECOLOGY 2022; 83:776-788. [PMID: 34235554 DOI: 10.1007/s00248-021-01773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Symbiosis with vitamin-provisioning microbes is essential for the nutrition of animals with some specialized feeding habits. While coevolution favors the interdependence between symbiotic partners, their associations are not necessarily stable: Recently acquired symbionts can replace ancestral symbionts. In this study, we demonstrate successful replacement by Francisella-like endosymbionts (-LE), a group of B-vitamin-provisioning endosymbionts, across tick communities driven by horizontal transfers. Using a broad collection of Francisella-LE-infected tick species, we determined the diversity of Francisella-LE haplotypes through a multi-locus strain typing approach and further characterized their phylogenetic relationships and their association with biological traits of their tick hosts. The patterns observed showed that Francisella-LE commonly transfer through similar ecological networks and geographic distributions shared among different tick species and, in certain cases, through preferential shuffling across congeneric tick species. Altogether, these findings reveal the importance of geographic, ecological, and phylogenetic proximity in shaping the replacement pattern in which new nutritional symbioses are initiated.
Collapse
Affiliation(s)
- Marie Buysse
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France.
| | - Florian Binetruy
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Raz Leibson
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France.
| |
Collapse
|
96
|
Nganso BT, Pines G, Soroker V. Insights into gene manipulation techniques for Acari functional genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103705. [PMID: 35134533 DOI: 10.1016/j.ibmb.2021.103705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Functional genomics is an essential tool for elucidating the structure and function of genes in any living organism. Here, we review the use of different gene manipulation techniques in functional genomics of Acari (mites and ticks). Some of these Acari species inflict severe economic losses to managed crops and health problems to humans, wild and domestic animals, but many also provide important ecosystem services worldwide. Currently, RNA interference (RNAi) is the leading gene expression manipulation tool followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 system (CRISPR-Cas9). Whilst RNAi, via siRNA, does not always lead to expected outcomes, the exploitations of the CRISPR systems in Acari are still in their infancy and are limited only to CRISP/Cas9 to date. In this review, we discuss the advantages and disadvantages of RNAi and CRISPR-Cas9 and the technical challenges associated with their exploitations. We also compare the biochemical machinery of RNAi and CRISPR-Cas9 technologies. We highlight some potential solutions for experimental optimization of each mechanism in gene function studies. The potential benefits of adopting various CRISPR-Cas9 systems for expanding on functional genomics experiments in Acari are also discussed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Gur Pines
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Victoria Soroker
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
97
|
Moustafa MAM, Mohamed WMA, Lau AC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Mastuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 2022; 20:1979-1992. [PMID: 35521555 PMCID: PMC9062450 DOI: 10.1016/j.csbj.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Research on vector-associated microbiomes has been expanding due to increasing emergence of vector-borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance.
Collapse
|
98
|
Human infections with neglected vector-borne pathogens in China: A systematic review. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 22:100427. [PMID: 35308575 PMCID: PMC8928082 DOI: 10.1016/j.lanwpc.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Emerging vector-borne pathogens (VBPs) pose a continuous background threat to the global health. Knowledge of the occurrence, distributions and epidemiological characteristics of VBP are lacking in many countries. Outbreaks of novel VBP are of increasing global interest including those arising in China. Methods A systematic review of published literature was undertaken to characterize the spectrum of VBPs causing human illness in China. We searched five databases for VBP-related articles in English and Chinese published between January 1980 and June 2021, that excluded those listed in the National Notifiable Diseases Surveillance System of China. The study is registered with PROSPERO, CRD42021259540. Findings A total of 906 articles meeting the selection criteria were included in this study. A total of 44,809 human infections with 82 species of VBPs including 40 viruses, 33 bacteria (20 Rickettsiales bacteria, eight Spirochaetales bacteria, and five other bacteria) and nine parasites, were identified in China. Rickettsiales bacteria were the most common and widely distributed pathogens with 18,042 cases reported in 33 provinces by 347 reviewed articles, followed by Spirochaetales bacteria with 15,745 cases in 32 provinces (299 articles), viruses with 8455 cases in 30 provinces (139 articles), other bacteria with 2053 cases in 19 provinces (65 articles), parasites with 514 cases in 17 provinces (44 articles), and multiple pathogens with 3626 cases in 14 provinces (23 articles). Coxiella burnetii, Bartonella henselae and Rickettsia sibirica were the most frequently reported pathogens. A total of 18 new pathogens were reported in China during this period (these also represented their first identification globally). Based on 419 articles with clinical information, a meta-analysis revealed that flu-like illness was the most common manifestation among infections with VBPs. Interpretation This review helps improve the understanding of VBPs in China, demonstrating the need to consider a wider surveillance of VBPs in many different settings, thus helping to inform future research and surveillance efforts. Funding Natural Science Foundation of China.
Collapse
|
99
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
100
|
Rosendale AJ, Leonard RK, Patterson IW, Arya T, Uhran MR, Benoit JB. Metabolomic and transcriptomic responses of ticks during recovery from cold shock reveal mechanisms of survival. J Exp Biol 2022; 225:275159. [PMID: 35179594 DOI: 10.1242/jeb.236497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Ticks are blood-feeding ectoparasites but spend most of their life off-host where they may have to tolerate low winter temperatures. Rapid cold-hardening (RCH) is a process commonly used by arthropods, including ticks, to improve survival of acute low temperature exposure. However, little is known about the underlying mechanisms in ticks associated with RCH, cold shock, and recovery from these stresses. In the present study, we investigated the extent to which RCH influences gene expression and metabolism during recovery from cold stress in Dermacentor variabilis, the American dog tick, using a combined transcriptomics and metabolomics approach. Following recovery from RCH, 1,860 genes were differentially expressed in ticks, whereas only 99 genes responded during recovery to direct cold shock. Recovery from RCH resulted in an upregulation of various pathways associated with ion binding, transport, metabolism, and cellular structures seen in the response of other arthropods to cold. The accumulation of various metabolites, including several amino acids and betaine, corresponded to transcriptional shifts in the pathways associated with these molecules, suggesting congruent metabolome and transcriptome changes. Ticks receiving exogenous betaine and valine demonstrated enhanced cold tolerance, suggesting cryoprotective effects of these metabolites. Overall, many of the responses during recovery from cold shock in ticks were similar to those observed in other arthropods, but several adjustments may be distinct from other currently examined taxa.
Collapse
Affiliation(s)
- Andrew J Rosendale
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Ryan K Leonard
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Isaac W Patterson
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Melissa R Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|