51
|
Palzer EF, Safo SE. mvlearnR and Shiny App for multiview learning. BIOINFORMATICS ADVANCES 2024; 4:vbae005. [PMID: 38304121 PMCID: PMC10833139 DOI: 10.1093/bioadv/vbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Summary The package mvlearnR and accompanying Shiny App is intended for integrating data from multiple sources or views or modalities (e.g. genomics, proteomics, clinical, and demographic data). Most existing software packages for multiview learning are decentralized and offer limited capabilities, making it difficult for users to perform comprehensive integrative analysis. The new package wraps statistical and machine learning methods and graphical tools, providing a convenient and easy data integration workflow. For users with limited programming language, we provide a Shiny Application to facilitate data integration anywhere and on any device. The methods have potential to offer deeper insights into complex disease mechanisms. Availability and implementation mvlearnR is available from the following GitHub repository: https://github.com/lasandrall/mvlearnR. The web application is hosted on shinyapps.io and available at: https://multi-viewlearn.shinyapps.io/MultiView_Modeling/.
Collapse
Affiliation(s)
- Elise F Palzer
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Sandra E Safo
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
52
|
Huang B, Huang J, Chiang NH, Chen Z, Lui G, Ling L, Kwan MYW, Wong JSC, Mak PQ, Ling JWH, Lam ICS, Ng RWY, Wang X, Gao R, Hui DSC, Ma SL, Chan PKS, Tang NLS. Interferon response and profiling of interferon response genes in peripheral blood of vaccine-naive COVID-19 patients. Front Immunol 2024; 14:1315602. [PMID: 38268924 PMCID: PMC10806211 DOI: 10.3389/fimmu.2023.1315602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction There is insufficient understanding on systemic interferon (IFN) responses during COVID-19 infection. Early reports indicated that interferon responses were suppressed by the coronavirus (SARS-CoV-2) and clinical trials of administration of various kinds of interferons had been disappointing. Expression of interferon-stimulated genes (ISGs) in peripheral blood (better known as interferon score) has been a well-established bioassay marker of systemic IFN responses in autoimmune diseases. Therefore, with archival samples of a cohort of COVID-19 patients collected before the availability of vaccination, we aimed to better understand this innate immune response by studying the IFN score and related ISGs expression in bulk and single cell RNAs sequencing expression datasets. Methods In this study, we recruited 105 patients with COVID-19 and 30 healthy controls in Hong Kong. Clinical risk factors, disease course, and blood sampling times were recovered. Based on a set of five commonly used ISGs (IFIT1, IFIT2, IFI27, SIGLEC1, IFI44L), the IFN score was determined in blood leukocytes collected within 10 days after onset. The analysis was confined to those blood samples collected within 10 days after disease onset. Additional public datasets of bulk gene and single cell RNA sequencing of blood samples were used for the validation of IFN score results. Results Compared to the healthy controls, we showed that ISGs expression and IFN score were significantly increased during the first 10 days after COVID infection in majority of patients (71%). Among those low IFN responders, they were more commonly asymptomatic patients (71% vs 25%). 22 patients did not mount an overall significant IFN response and were classified as low IFN responders (IFN score < 1). However, early IFN score or ISGs level was not a prognostic biomarker and could not predict subsequent disease severity. Both IFI27 and SIGLEC1 were monocyte-predominant expressing ISGs and IFI27 were activated even among those low IFN responders as defined by IFN score. In conclusion, a substantial IFN response was documented in this cohort of COVID-19 patients who experience a natural infection before the vaccination era. Like innate immunity towards other virus, the ISGs activation was observed largely during the early course of infection (before day 10). Single-cell RNA sequencing data suggested monocytes were the cell-type that primarily accounted for the activation of two highly responsive ISGs (IFI44L and IFI27). Discussion As sampling time and age were two major confounders of ISG expression, they may account for contradicting observations among previous studies. On the other hand, the IFN score was not associated with the severity of the disease.
Collapse
Affiliation(s)
- Baozhen Huang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinghan Huang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nim Hang Chiang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mike Yat Wah Kwan
- Paediatric Infectious Disease Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Joshua Sung Chih Wong
- Paediatric Infectious Disease Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Phoebe Qiaozhen Mak
- Paediatric Infectious Disease Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Janet Wan Hei Ling
- Paediatric Infectious Disease Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Ivan Cheuk San Lam
- Paediatric Infectious Disease Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Rita Wai Yin Ng
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xingyan Wang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ruonan Gao
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David Shu-Cheong Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Suk Ling Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nelson Leung Sang Tang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
53
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
54
|
Ragnoli B, Purghè B, Manfredi M, Baldanzi G, Malerba M. New insights in circulating peptidome to differentiate mild to severe COVID-19 patients: Preliminary report. Pulmonology 2024; 30:82-84. [PMID: 37210341 PMCID: PMC10150194 DOI: 10.1016/j.pulmoe.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/22/2023] Open
Affiliation(s)
- B Ragnoli
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy
| | - B Purghè
- Department of Traslational Medicine, University of Eastern Piedmont, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - M Manfredi
- Department of Traslational Medicine, University of Eastern Piedmont, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - G Baldanzi
- Department of Traslational Medicine, University of Eastern Piedmont, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - M Malerba
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; Department of Traslational Medicine, University of Eastern Piedmont, 28100 Novara, Italy.
| |
Collapse
|
55
|
Warren RL, Abraham R, Calingo M, Garant JM, Jones SJM, Birol I. Establishing association between HLA-C*04:01 and severe COVID-19. HLA 2024; 103:e15355. [PMID: 38273454 DOI: 10.1111/tan.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Affiliation(s)
- René L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Rohan Abraham
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Marc Calingo
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Canadian Centre for Computational Genomics, McGill University, Montréal, Québec, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
56
|
Hanke M, Dijkstra L, Foraita R, Didelez V. Variable selection in linear regression models: Choosing the best subset is not always the best choice. Biom J 2024; 66:e2200209. [PMID: 37643390 DOI: 10.1002/bimj.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023]
Abstract
We consider the question of variable selection in linear regressions, in the sense of identifying the correct direct predictors (those variables that have nonzero coefficients given all candidate predictors). Best subset selection (BSS) is often considered the "gold standard," with its use being restricted only by its NP-hard nature. Alternatives such as the least absolute shrinkage and selection operator (Lasso) or the Elastic net (Enet) have become methods of choice in high-dimensional settings. A recent proposal represents BSS as a mixed-integer optimization problem so that large problems have become computationally feasible. We present an extensive neutral comparison assessing the ability to select the correct direct predictors of BSS compared to forward stepwise selection (FSS), Lasso, and Enet. The simulation considers a range of settings that are challenging regarding dimensionality (number of observations and variables), signal-to-noise ratios, and correlations between predictors. As fair measure of performance, we primarily used the best possible F1-score for each method, and results were confirmed by alternative performance measures and practical criteria for choosing the tuning parameters and subset sizes. Surprisingly, it was only in settings where the signal-to-noise ratio was high and the variables were uncorrelated that BSS reliably outperformed the other methods, even in low-dimensional settings. Furthermore, FSS performed almost identically to BSS. Our results shed new light on the usual presumption of BSS being, in principle, the best choice for selecting the correct direct predictors. Especially for correlated variables, alternatives like Enet are faster and appear to perform better in practical settings.
Collapse
Affiliation(s)
- Moritz Hanke
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Louis Dijkstra
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Ronja Foraita
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Vanessa Didelez
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| |
Collapse
|
57
|
Gao H, Wang S, Duan H, Wang Y, Zhu H. Biological analysis of the potential pathogenic mechanisms of Infectious COVID-19 and Guillain-Barré syndrome. Front Immunol 2023; 14:1290578. [PMID: 38115996 PMCID: PMC10728822 DOI: 10.3389/fimmu.2023.1290578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Background Guillain-Barré syndrome (GBS) is a medical condition characterized by the immune system of the body attacking the peripheral nerves, including those in the spinal nerve roots, peripheral nerves, and cranial nerves. It can cause limb weakness, abnormal sensations, and facial nerve paralysis. Some studies have reported clinical cases associated with the severe coronavirus disease 2019 (COVID-19) and GBS, but how COVID-19 affects GBS is unclear. Methods We utilized bioinformatics techniques to explore the potential genetic connection between COVID-19 and GBS. Differential expression of genes (DEGs) related to COVID-19 and GBS was collected from the Gene Expression Omnibus (GEO) database. By taking the intersection, we obtained shared DEGs for COVID-19 and GBS. Subsequently, we utilized bioinformatics analysis tools to analyze common DEGs, conducting functional enrichment analysis and constructing Protein-protein interaction networks (PPI), Transcription factors (TF) -gene networks, and TF-miRNA networks. Finally, we validated our findings by constructing the Receiver Operating Characteristic (ROC) curves. Results This study utilizes bioinformatics tools for the first time to investigate the close genetic relationship between COVID-19 and GBS. CAMP, LTF, DEFA1B, SAMD9, GBP1, DDX60, DEFA4, and OAS3 are identified as the most significant interacting genes between COVID-19 and GBS. In addition, the signaling pathway of NOD-like receptors is believed to be essential in the link between COVID-19 and GBS.
Collapse
Affiliation(s)
| | | | | | | | - Hui Zhu
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
58
|
Goracci L, Petito E, Di Veroli A, Falcinelli E, Bencivenga C, Giglio E, Becattini C, De Robertis E, Vaudo G, Gresele P. A platelet lipidomics signature in patients with COVID-19. Platelets 2023; 34:2200847. [PMID: 37114418 DOI: 10.1080/09537104.2023.2200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Ischemic cardiovascular and venous thromboembolic events are a frequent cause of death in severe COVID-19 patients. Platelet activation plays a key role in these complications, however platelet lipidomics have not been studied yet. The aim of our pilot investigation was to perform a preliminary study of platelet lipidomics in COVID-19 patients compared to healthy subjects. Lipid extraction and identification of ultrapurified platelets from eight hospitalized COVID-19 patients and eight age- and sex-matched healthy controls showed a lipidomic pattern almost completely separating COVID-19 patients from healthy controls. In particular, a significant decrease of ether phospholipids and increased levels of ganglioside GM3 were observed in platelets from COVID-19 patients. In conclusion, our study shows for the first time that platelets from COVID-19 patients display a different lipidomics signature distinguishing them from healthy controls, and suggests that altered platelet lipid metabolism may play a role in viral spreading and in the thrombotic complications of COVID-19.
Collapse
Affiliation(s)
- Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Caterina Bencivenga
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Elisa Giglio
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Cecilia Becattini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Division of Anaesthesia, Analgesia, and Intensive Care, University of Perugia, Perugia, Italy
| | - Gaetano Vaudo
- Unit of Internal Medicine, Terni University Hospital, Terni, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
59
|
Merdler-Rabinowicz R, Gorelik D, Park J, Meydan C, Foox J, Karmon M, Roth H, Cohen-Fultheim R, Shohat-ophir G, Eisenberg E, Ruppin E, Mason C, Levanon E. Elevated A-to-I RNA editing in COVID-19 infected individuals. NAR Genom Bioinform 2023; 5:lqad092. [PMID: 37859800 PMCID: PMC10583280 DOI: 10.1093/nargab/lqad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Given the current status of coronavirus disease 2019 (COVID-19) as a global pandemic, it is of high priority to gain a deeper understanding of the disease's development and how the virus impacts its host. Adenosine (A)-to-Inosine (I) RNA editing is a post-transcriptional modification, catalyzed by the ADAR family of enzymes, that can be considered part of the inherent cellular defense mechanism as it affects the innate immune response in a complex manner. It was previously reported that various viruses could interact with the host's ADAR enzymes, resulting in epigenetic changes both to the virus and the host. Here, we analyze RNA-seq of nasopharyngeal swab specimens as well as whole-blood samples of COVID-19 infected individuals and show a significant elevation in the global RNA editing activity in COVID-19 compared to healthy controls. We also detect specific coding sites that exhibit higher editing activity. We further show that the increment in editing activity during the disease is temporary and returns to baseline shortly after the symptomatic period. These significant epigenetic changes may contribute to the immune system response and affect adverse outcomes seen in post-viral cases.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - David Gorelik
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Karmon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Hillel S Roth
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Roni Cohen-Fultheim
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Galit Shohat-ophir
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Leslie and Susan Gonda Multidisciplinary Brain Research Center and The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| |
Collapse
|
60
|
Liu C, Zheng C, Shen X, Liang L, Li Q. Serum CRP interacts with SPARC and regulate immune response in severe cases of COVID-19 infection. Front Immunol 2023; 14:1259381. [PMID: 38077346 PMCID: PMC10706481 DOI: 10.3389/fimmu.2023.1259381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Serum C-reactive protein (CRP) has been found elevated during COVID-19 infection, and associated with systematic inflammation as well as a poor clinical outcome. However, how did CRP participated in the COVID-19 pathogenesis remains poorly understood. Here, we report that serum C-reactive protein (CRP) levels are correlated with megakaryocyte marker genes and could regulate immune response through interaction with megakaryocytes. Molecular dynamics simulation through ColabFold showed a reliable interaction between monomeric form of CRP (mCRP) and the secreted protein acidic and rich in cysteine (SPARC). The interaction does not affect the physiological activities of SPARC while would be disturbed by pentamerization of CRP. Interplay between SPARC and mCRP results in a more intense immune response which may led to poor prognosis. This study highlights the complex interplay between inflammatory markers, megakaryocytes, and immune regulation in COVID-19 and sheds light on potential therapeutic targets.
Collapse
Affiliation(s)
- Chengyang Liu
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Chenyang Zheng
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xipeng Shen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiuyu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
61
|
Wang K, Khoramjoo M, Srinivasan K, Gordon PMK, Mandal R, Jackson D, Sligl W, Grant MB, Penninger JM, Borchers CH, Wishart DS, Prasad V, Oudit GY. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med 2023; 4:101254. [PMID: 37890487 PMCID: PMC10694626 DOI: 10.1016/j.xcrm.2023.101254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mobin Khoramjoo
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Karthik Srinivasan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Paul M K Gordon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Dana Jackson
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Vinay Prasad
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
62
|
de Souza Xavier Costa N, Ribeiro Júnior G, do Nascimento ECT, de Brito JM, Antonangelo L, Faria CS, Monteiro JS, Setubal JC, Pinho JRR, Pereira RV, Seelaender M, de Castro GS, Lima JDCC, de Almeida Monteiro RA, Duarte-Neto AN, Saldiva PHN, Ferraz da Silva LF, Dolhnikoff M, Mauad T. COVID-19 induces more pronounced extracellular matrix deposition than other causes of ARDS. Respir Res 2023; 24:281. [PMID: 37964271 PMCID: PMC10648646 DOI: 10.1186/s12931-023-02555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Lung fibrosis is a major concern in severe COVID-19 patients undergoing mechanical ventilation (MV). Lung fibrosis frequency in post-COVID syndrome is highly variable and even if the risk is proportionally small, many patients could be affected. However, there is still no data on lung extracellular matrix (ECM) composition in severe COVID-19 and whether it is different from other aetiologies of ARDS. METHODS We have quantified different ECM elements and TGF-β expression in lung tissue of 28 fatal COVID-19 cases and compared to 27 patients that died of other causes of ARDS, divided according to MV duration (up to six days or seven days or more). In COVID-19 cases, ECM elements were correlated with lung transcriptomics and cytokines profile. RESULTS We observed that COVID-19 cases presented significant increased deposition of collagen, fibronectin, versican, and TGF-β, and decreased decorin density when compared to non-COVID-19 cases of similar MV duration. TGF-β was precociously increased in COVID-19 patients with MV duration up to six days. Lung collagen was higher in women with COVID-19, with a transition of upregulated genes related to fibrillogenesis to collagen production and ECM disassembly along the MV course. CONCLUSIONS Fatal COVID-19 is associated with an early TGF-β expression lung environment after the MV onset, followed by a disordered ECM assembly. This uncontrolled process resulted in a prominent collagen deposition when compared to other causes of ARDS. Our data provides pathological substrates to better understand the high prevalence of pulmonary abnormalities in patients surviving COVID-19.
Collapse
Affiliation(s)
| | - Gabriel Ribeiro Júnior
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Jôse Mara de Brito
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leila Antonangelo
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Divisão de Patologia Clínica, Departamento de Patologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Silvério Faria
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química Universidade de São Paulo, São Paulo, Brazil
| | - João Renato Rebello Pinho
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Verciano Pereira
- Laboratório de Investigação Médica (LIM03), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Gabriela Salim de Castro
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Joanna D C C Lima
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | | | - Amaro Nunes Duarte-Neto
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia (LIM 05), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Departamento de Patologia, Laboratório de Patologia Ambiental (LIM- 05), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, Cerqueira Cesar, São Paulo, Brazil.
| |
Collapse
|
63
|
Jiang Y, Rex DAB, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Mayta ML, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics using Mass Spectrometry. ARXIV 2023:arXiv:2311.07791v1. [PMID: 38013887 PMCID: PMC10680866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8093, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston · Funded by NIST
| | - Germán L. Rosano
- Mass Spectrometry Unit, Institute of Molecular and Cellular Biology of Rosario, Rosario, Argentina · Funded by Grant PICT 2019-02971 (Agencia I+D+i)
| | - Norbert Volkmar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | - Susan B. Egbert
- Department of Chemistry, University of Manitoba, Winnipeg, Cananda
| | - Simion Kreimer
- Smidt Heart Institute, Cedars Sinai Medical Center; Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center
| | - Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oliver M. Crook
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute · Funded by Grant BT/PR16456/BID/7/624/2016 (Department of Biotechnology, India); Grant Translational Research Program (TRP) at THSTI funded by DBT
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam-690 525, Kerala, India · Funded by Department of Health Research, Indian Council of Medical Research, Government of India (File No.R.12014/31/2022-HR)
| | - Martín L. Mayta
- School of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martín 3103, Argentina; Molecular Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department of Chemistry, University of Washington · Funded by Summer Research Acceleration Fellowship, Department of Chemistry, University of Washington
| | - Nicholas M. Riley
- Department of Chemistry, University of Washington · Funded by National Institutes of Health Grant R00 GM147304
| | - Robert L. Moritz
- Institute for Systems biology, Seattle, WA, USA, 98109 · Funded by National Institutes of Health Grants R01GM087221, R24GM127667, U19AG023122, S10OD026936; National Science Foundation Award 1920268
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center · Funded by National Institutes of Health Grant R21 AG074234; National Institutes of Health Grant R35 GM142502
| |
Collapse
|
64
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
65
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Balnis J, Jen A, Overmyer KA, Coon JJ, Jaitovich A, Boivin B, Jourd'heuil D. A role for cytoglobin in regulating intracellular hydrogen peroxide and redox signals in the vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535146. [PMID: 37034694 PMCID: PMC10081330 DOI: 10.1101/2023.03.31.535146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms. We found that cytoglobin decreased the hyperoxidation of peroxiredoxins and maintained the activity of peroxiredoxin 2 following challenge with exogenous hydrogen peroxide. Cytoglobin promoted a reduced intracellular environment and facilitated the reduction of the thiol-based hydrogen peroxide sensor Hyper7 after bolus addition of hydrogen peroxide. Cytoglobin also limited the inhibitory effect of hydrogen peroxide on glycolysis and reversed the oxidative inactivation of the glycolytic enzyme GAPDH. Our results indicate that cytoglobin in cells exists primarily as oxyferrous cytoglobin (CygbFe 2+ -O 2 ) with its cysteine residues in the reduced form. We found that the specific substitution of one of two cysteine residues on cytoglobin (C83A) inhibited the reductive activity of cytoglobin on Hyper7 and GAPDH. Carotid arteries from cytoglobin knockout mice were more sensitive to glycolytic inhibition by hydrogen peroxide than arteries from wildtype mice. Together, these results support a role for cytoglobin in regulating intracellular redox signals associated with hydrogen peroxide through oxidation of its cysteine residues, independent of hydrogen peroxide reaction at its heme center.
Collapse
|
66
|
An H, Yan C, Ma J, Gong J, Gao F, Ning C, Wang F, Zhang M, Li B, Su Y, Liu P, Wei H, Jiang X, Yu Q. Immune inhibitory receptor-mediated immune response, metabolic adaptation, and clinical characterization in patients with COVID-19. Sci Rep 2023; 13:19221. [PMID: 37932287 PMCID: PMC10628246 DOI: 10.1038/s41598-023-45883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Immune inhibitory receptors (IRs) play a critical role in the regulation of immune responses to various respiratory viral infections. However, in coronavirus disease 2019 (COVID-19), the roles of these IRs in immune modulation, metabolic reprogramming, and clinical characterization remain to be determined. Through consensus clustering analysis of IR transcription in the peripheral blood of patients with COVID-19, we identified two distinct IR patterns in patients with COVID-19, which were named IR_cluster1 and IR_cluster2. Compared to IR_cluster1 patients, IR_cluster2 patients with lower expressions of immune inhibitory receptors presented with a suppressed immune response, lower nutrient metabolism, and worse clinical manifestations or prognosis. Considering the critical influence of the integrated regulation of multiple IRs on disease severity, we established a scoring system named IRscore, which was based on principal component analysis, to evaluate the combined effect of multiple IRs on the disease status of individual patients with COVID-19. Similar to IR_cluster2 patients, patients with high IRscores had longer hospital-free days at day 45, required ICU admission and mechanical ventilatory support, and presented higher Charlson comorbidity index and SOFA scores. A high IRscore was also linked to acute infection phase and absence of drug intervention. Our investigation comprehensively elucidates the potential role of IR patterns in regulating the immune response, modulating metabolic processes, and shaping clinical manifestations of COVID-19. All of this evidence suggests the essential role of prognostic stratification and biomarker screening based on IR patterns in the clinical management and drug development of future emerging infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Huaying An
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Congrui Yan
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jun Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jiayuan Gong
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fenghua Gao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Changwen Ning
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fei Wang
- Department of Cardiology, Chinese People's Liberation Army Lanzhou General Hospital Anning Branch, Lanzhou, China
| | - Meng Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Baoyi Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yunqi Su
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Pengyu Liu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hanqi Wei
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xingwei Jiang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.
| | - Qun Yu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
67
|
Gygi JP, Maguire C, Patel RK, Shinde P, Konstorum A, Shannon CP, Xu L, Hoch A, Jayavelu ND, Network I, Haddad EK, Reed EF, Kraft M, McComsey GA, Metcalf J, Ozonoff A, Esserman D, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen LB, van Bakel H, Wilson M, Eckalbar W, Maecker H, Langelier CR, Steen H, Altman MC, Montgomery RR, Levy O, Melamed E, Pulendran B, Diray-Arce J, Smolen KK, Fragiadakis GK, Becker PM, Augustine AD, Sekaly RP, Ehrlich LIR, Fourati S, Peters B, Kleinstein SH, Guan L. Integrated longitudinal multi-omics study identifies immune programs associated with COVID-19 severity and mortality in 1152 hospitalized participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565292. [PMID: 37986828 PMCID: PMC10659275 DOI: 10.1101/2023.11.03.565292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.
Collapse
|
68
|
Palermo A, Li S, Ten Hoeve J, Chellappa A, Morris A, Dillon B, Ma F, Wang Y, Cao E, Shabane B, Acín-Perez R, Petcherski A, Lusis AJ, Hazen S, Shirihai OS, Pellegrini M, Arumugaswami V, Graeber TG, Deb A. A ketogenic diet can mitigate SARS-CoV-2 induced systemic reprogramming and inflammation. Commun Biol 2023; 6:1115. [PMID: 37923961 PMCID: PMC10624922 DOI: 10.1038/s42003-023-05478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
The ketogenic diet (KD) has demonstrated benefits in numerous clinical studies and animal models of disease in modulating the immune response and promoting a systemic anti-inflammatory state. Here we investigate the effects of a KD on systemic toxicity in mice following SARS-CoV-2 infection. Our data indicate that under KD, SARS-CoV-2 reduces weight loss with overall improved animal survival. Muted multi-organ transcriptional reprogramming and metabolism rewiring suggest that a KD initiates and mitigates systemic changes induced by the virus. We observed reduced metalloproteases and increased inflammatory homeostatic protein transcription in the heart, with decreased serum pro-inflammatory cytokines (i.e., TNF-α, IL-15, IL-22, G-CSF, M-CSF, MCP-1), metabolic markers of inflammation (i.e., kynurenine/tryptophane ratio), and inflammatory prostaglandins, indicative of reduced systemic inflammation in animals infected under a KD. Taken together, these data suggest that a KD can alter the transcriptional and metabolic response in animals following SARS-CoV-2 infection with improved mice health, reduced inflammation, and restored amino acid, nucleotide, lipid, and energy currency metabolism.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Johanna Ten Hoeve
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
| | - Akshay Chellappa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alexandra Morris
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Barbara Dillon
- Department of Environment, Health and Safety, University of California, Los Angeles, CA, 90095, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yijie Wang
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Edward Cao
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rebeca Acín-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - A Jake Lusis
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Stanley Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Orian S Shirihai
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA.
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA.
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
| | - Arjun Deb
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
69
|
Anderson BJ, Curtis AM, Jen A, Thomson JA, Clegg DO, Jiang P, Coon JJ, Overmyer KA, Toh H. Plasma metabolomics supports non-fasted sampling for metabolic profiling across a spectrum of glucose tolerance in the Nile rat model for type 2 diabetes. Lab Anim (NY) 2023; 52:269-277. [PMID: 37857753 PMCID: PMC10611569 DOI: 10.1038/s41684-023-01268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Type 2 diabetes is a challenge in modern healthcare, and animal models are necessary to identify underlying mechanisms. The Nile rat (Arvicanthis niloticus) develops diet-induced diabetes rapidly on a conventional rodent chow diet without genetic or chemical manipulation. Unlike common laboratory models, the outbred Nile rat model is diurnal and has a wide range of overt diabetes onset and diabetes progression patterns in both sexes, better mimicking the heterogeneous diabetic phenotype in humans. While fasted blood glucose has historically been used to monitor diabetic progression, postprandial blood glucose is more sensitive to the initial stages of diabetes. However, there is a long-held assumption that ad libitum feeding in rodent models leads to increased variance, thus masking diabetes-related metabolic changes in the plasma. Here we compared repeatability within triplicates of non-fasted or fasted plasma samples and assessed metabolic changes relevant to glucose tolerance in fasted and non-fasted plasma of 8-10-week-old male Nile rats. We used liquid chromatography-mass spectrometry lipidomics and polar metabolomics to measure relative metabolite abundances in the plasma samples. We found that, compared to fasted metabolites, non-fasted plasma metabolites are not only more strongly associated with glucose tolerance on the basis of unsupervised clustering and elastic net regression model, but also have a lower replicate variance. Between the two sampling groups, we detected 66 non-fasted metabolites and 32 fasted metabolites that were associated with glucose tolerance using a combined approach with multivariable elastic net and individual metabolite linear models. Further, to test if metabolite replicate variance is affected by age and sex, we measured non-fasted replicate variance in a cohort of mature 30-week-old male and female Nile rats. Our results support using non-fasted plasma metabolomics to study glucose tolerance in Nile rats across the progression of diabetes.
Collapse
Affiliation(s)
- Benton J Anderson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne M Curtis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James A Thomson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Dennis O Clegg
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Peng Jiang
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
70
|
Wang B, Yang W, Tong Y, Sun M, Quan S, Zhu J, Zhang Q, Qin Z, Ni Y, Zhao Y, Wang K, Zhang C, Zhang Y, Wang Z, Song Z, Liu H, Fang H, Kong Z, Ding C, Guo W. Integrative proteomics and metabolomics study reveal enhanced immune responses by COVID-19 vaccine booster shot against Omicron SARS-CoV-2 infection. J Med Virol 2023; 95:e29219. [PMID: 37966997 DOI: 10.1002/jmv.29219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Since its outbreak in late 2021, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely reported to be able to evade neutralizing antibodies, becoming more transmissible while causing milder symptoms than previous SARS-CoV-2 strains. Understanding the underlying molecular changes of Omicron SARS-CoV-2 infection and corresponding host responses are important to the control of Omicron COVID-19 pandemic. In this study, we report an integrative proteomics and metabolomics investigation of serum samples from 80 COVID-19 patients infected with Omicron SARS-CoV-2, as well as 160 control serum samples from 80 healthy individuals and 80 patients who had flu-like symptoms but were negative for SARS-CoV-2 infection. The multiomics results indicated that Omicron SARS-CoV-2 infection caused significant changes to host serum proteome and metabolome comparing to the healthy controls and patients who had flu-like symptoms without COVID-19. Protein and metabolite changes also pointed to liver dysfunctions and potential damage to other host organs by Omicron SARS-CoV-2 infection. The Omicron COVID-19 patients could be roughly divided into two subgroups based on their proteome differences. Interestingly, the subgroup who mostly had received full vaccination with booster shot had fewer coughing symptom, changed sphingomyelin lipid metabolism, and stronger immune responses including higher numbers of lymphocytes, monocytes, neutrophils, and upregulated proteins related to CD4+ T cells, CD8+ effector memory T cells (Tem), and conventional dendritic cells, revealing beneficial effects of full COVID-19 vaccination against Omicron SARS-CoV-2 infection through molecular changes.
Collapse
Affiliation(s)
- Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yexin Tong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mingjun Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sheng Quan
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianwen Zhang
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanxia Ni
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying Zhao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kouqiong Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yichi Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenxin Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenju Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Huafen Liu
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Fang
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziqing Kong
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
71
|
Greco S, Made' A, Mutoli M, Zhang L, Piella SN, Vausort M, Lumley AI, Beltrami AP, Srivastava PK, Milani V, Boveri S, Ranucci M, Renna LV, Firat H, Bruno A, Spinetti G, Emanueli C, Devaux Y, Martelli F. HCG18, LEF1AS1 and lncCEACAM21 as biomarkers of disease severity in the peripheral blood mononuclear cells of COVID-19 patients. J Transl Med 2023; 21:758. [PMID: 37884975 PMCID: PMC10605335 DOI: 10.1186/s12967-023-04497-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/01/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Even after 3 years from SARS-CoV-2 identification, COVID-19 is still a persistent and dangerous global infectious disease. Significant improvements in our understanding of the disease pathophysiology have now been achieved. Nonetheless, reliable and accurate biomarkers for the early stratification of COVID-19 severity are still lacking. Long noncoding RNAs (LncRNAs) are ncRNAs longer than 200 nucleotides, regulating the transcription and translation of protein-coding genes and they can be found in the peripheral blood, thus holding a promising biomarker potential. Specifically, peripheral blood mononuclear cells (PBMCs) have emerged as a source of indirect biomarkers mirroring the conditions of tissues: they include monocytes, B and T lymphocytes, and natural killer T cells (NKT), being highly informative for immune-related events. METHODS We profiled by RNA-Sequencing a panel of 2906 lncRNAs to investigate their modulation in PBMCs of a pilot group of COVID-19 patients, followed by qPCR validation in 111 hospitalized COVID-19 patients. RESULTS The levels of four lncRNAs were found to be decreased in association with COVID-19 mortality and disease severity: HLA Complex Group 18-242 and -244 (HCG18-242 and HCG18-244), Lymphoid Enhancer Binding Factor 1-antisense 1 (LEF1-AS1) and lncCEACAM21 (i.e. ENST00000601116.5, a lncRNA in the CEACAM21 locus). Interestingly, these deregulations were confirmed in an independent patient group of hospitalized patients and by the re-analysis of publicly available single-cell transcriptome datasets. The identified lncRNAs were expressed in all of the PBMC cell types and inversely correlated with the neutrophil/lymphocyte ratio (NLR), an inflammatory marker. In vitro, the expression of LEF1-AS1 and lncCEACAM21 was decreased upon THP-1 monocytes exposure to a relevant stimulus, hypoxia. CONCLUSION The identified COVID-19-lncRNAs are proposed as potential innovative biomarkers of COVID-19 severity and mortality.
Collapse
Affiliation(s)
- Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy.
| | - Alisia Made'
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | - Martina Mutoli
- IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
| | - Lu Zhang
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | - Mélanie Vausort
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Andrew I Lumley
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | | | - Prashant Kumar Srivastava
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, W12 0NN, England, UK
| | - Valentina Milani
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS Policlinico San Donato, 20097, San Donato Milanese, Milan, Italy
| | - Sara Boveri
- Laboratory of Biostatistics and Data Management, Scientific Directorate, IRCCS Policlinico San Donato, 20097, San Donato Milanese, Milan, Italy
| | - Marco Ranucci
- Department of Cardiovascular Anesthesia and ICU, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | - Laura Valentina Renna
- Biobank BioCor, IRCCS-Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy
| | | | - Antonino Bruno
- IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Gaia Spinetti
- IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, W12 0NN, England, UK.
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK.
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445, Strassen, Luxembourg.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Milan, Italy.
| |
Collapse
|
72
|
Zhang L, Nishi H, Kinoshita K. Single-cell RNA-seq public data reveal the gene regulatory network landscape of respiratory epithelial and peripheral immune cells in COVID-19 patients. Front Immunol 2023; 14:1194614. [PMID: 37936693 PMCID: PMC10627007 DOI: 10.3389/fimmu.2023.1194614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Infection with SARS-CoV-2 leads to coronavirus disease 2019 (COVID-19), which can result in acute respiratory distress syndrome and multiple organ failure. However, its comprehensive influence on pathological immune responses in the respiratory epithelium and peripheral immune cells is not yet fully understood. Methods In this study, we analyzed multiple public scRNA-seq datasets of nasopharyngeal swabs and peripheral blood to investigate the gene regulatory networks (GRNs) of healthy individuals and COVID-19 patients with mild/moderate and severe disease, respectively. Cell-cell communication networks among cell types were also inferred. Finally, validations were conducted using bulk RNA-seq and proteome data. Results Similar and dissimilar regulons were identified within or between epithelial and immune cells during COVID-19 severity progression. The relative transcription factors (TFs) and their targets were used to construct GRNs among different infection sites and conditions. Between respiratory epithelial and peripheral immune cells, different TFs tended to be used to regulate the activity of a cell between healthy individuals and COVID-19 patients, although they had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were activated in both the epithelial and immune cells of virus-infected individuals. In contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral immune cells, while CEBPB was exclusively activated in respiratory epithelial cells. Moreover, in patients with severe COVID-19, although some inflammatory genes, such as S100A8/A9, were found to be upregulated in both respiratory epithelial and peripheral immune cells, their relative regulators can differ in terms of cell types. The cell-cell communication analysis suggested that epidermal growth factor receptor signaling among epithelia contributes to mild/moderate disease, and chemokine signaling among immune cells contributes to severe disease. Conclusion This study identified cell type- and condition-specific regulons in a wide range of cell types from the initial infection site to the peripheral blood, and clarified the diverse mechanisms of maladaptive responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lin Zhang
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of In Silico Analyses, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
73
|
Momenzadeh A, Kreimer S, Guo D, Ayres M, Berman D, Chyu KY, Shah PK, Milewicz D, Azizzadeh A, Meyer JG, Parker S. Differentiation between Descending Thoracic Aortic Diseases using Machine Learning and Plasma Proteomic Signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538468. [PMID: 37162892 PMCID: PMC10168345 DOI: 10.1101/2023.04.26.538468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection. Methods This study generated a plasma proteomic dataset from 75 patients with descending type B dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage distances with hyperparameter optimization using 5-fold cross validation. Permutation importance (PI) was used for ranking the most important predictor proteins of ML classification between disease states and the proteins among the top 10 PI protein groups were submitted for pathway analysis. Results Of the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin (HPX), were significantly different at an adjusted p-value <0.01 between Type B and DTAA cases. The highest performing model on the training set (Support Vector Classifier) and its corresponding linkage distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of 0.7 to classify between Type B from DTAA cases. The five proteins with the highest PI scores were immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10 most important correlated groups generated the following significantly enriched pathways in the plasma of Type B versus DTAA patients: complement activation, humoral immune response, and blood coagulation. Conclusions We conclude that ML may be useful in differentiating the plasma proteome of highly similar disease states that would otherwise not be distinguishable using statistics, and, in such cases, ML may enable prioritizing important proteins for model prediction.
Collapse
Affiliation(s)
- Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Matthew Ayres
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Daniel Berman
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Cedars-Sinai Imaging Department, Cedars Sinai Medical Center, Lost Angeles, California, USA
| | - Kuang-Yuh Chyu
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Prediman K Shah
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dianna Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Ali Azizzadeh
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles California, USA
| |
Collapse
|
74
|
Figueirêdo Leite GG, Colo Brunialti MK, Peçanha-Pietrobom PM, Abrão Ferreira PR, Ota-Arakaki JS, Cunha-Neto E, Ferreira BL, Ronsein GE, Tashima AK, Salomão R. Understanding COVID-19 progression with longitudinal peripheral blood mononuclear cell proteomics: Changes in the cellular proteome over time. iScience 2023; 26:107824. [PMID: 37736053 PMCID: PMC10509719 DOI: 10.1016/j.isci.2023.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological processes is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the peripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples were collected at different stages of the disease, including hospital admission, after 7 days of hospitalization, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-related proteins were observed in patients. Patients progressing to critical illness had significantly low-abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting clinical recovery. Important biological processes, such as fatty acid concentration and glucose metabolism disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes revealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persistent protein changes post-hospitalization.
Collapse
Affiliation(s)
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula M. Peçanha-Pietrobom
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo R. Abrão Ferreira
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jaquelina Sonoe Ota-Arakaki
- Division of Respiratory Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bianca Lima Ferreira
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Graziella E. Ronsein
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
75
|
Garrett TJ, Coatsworth H, Mahmud I, Hamerly T, Stephenson CJ, Ayers JB, Yazd HS, Miller MR, Lednicky JA, Dinglasan RR. Niclosamide as a chemical probe for analyzing SARS-CoV-2 modulation of host cell lipid metabolism. Front Microbiol 2023; 14:1251065. [PMID: 37901834 PMCID: PMC10603251 DOI: 10.3389/fmicb.2023.1251065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation. Methods We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection. Results Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism. Discussion We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.
Collapse
Affiliation(s)
- Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Timothy Hamerly
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jasmine B. Ayers
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Hoda S. Yazd
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Megan R. Miller
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
76
|
Zuniga-Hertz JP, Chitteti R, Dispenza J, Cuomo R, Bonds JA, Kopp EL, Simpson S, Okerblom J, Maurya S, Rana BK, Miyonahara A, Niesman IR, Maree J, Belza G, Hamilton HD, Stanton C, Gonzalez DJ, Poirier MA, Moeller-Bertram T, Patel HH. Meditation-induced bloodborne factors as an adjuvant treatment to COVID-19 disease. Brain Behav Immun Health 2023; 32:100675. [PMID: 37600600 PMCID: PMC10432704 DOI: 10.1016/j.bbih.2023.100675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide. Management of the pandemic has relied mainly on SARS-CoV-2 vaccines, while alternative approaches such as meditation, shown to improve immunity, have been largely unexplored. Here, we probe the relationship between meditation and COVID-19 disease and directly test the impact of meditation on the induction of a blood environment that modulates viral infection. We found a significant inverse correlation between length of meditation practice and SARS-CoV-2 infection as well as accelerated resolution of symptomology of those infected. A meditation "dosing" effect was also observed. In cultured human lung cells, blood from experienced meditators induced factors that prevented entry of pseudotyped viruses for SARS-CoV-2 spike protein of both the wild-type Wuhan-1 virus and the Delta variant. We identified and validated SERPINA5, a serine protease inhibitor, as one possible protein factor in the blood of meditators that is necessary and sufficient for limiting pseudovirus entry into cells. In summary, we conclude that meditation can enhance resiliency to viral infection and may serve as a possible adjuvant therapy in the management of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Juan P. Zuniga-Hertz
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramamurthy Chitteti
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Raphael Cuomo
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jacqueline A. Bonds
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elena L. Kopp
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sierra Simpson
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan Okerblom
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Svetlana Maurya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Brinda K. Rana
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Miyonahara
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ingrid R. Niesman
- San Diego State University, Electron Microscope Facility, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Jacqueline Maree
- VitaMed Research, 44630 Monterey Ave., Palm Desert, CA, 92260, USA
| | - Gianna Belza
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
77
|
Balnis J, Lauria EJM, Yucel R, Singer HA, Alisch RS, Jaitovich A. Peripheral Blood Omics and Other Multiplex-based Systems in Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2023; 69:383-390. [PMID: 37379507 PMCID: PMC10557924 DOI: 10.1165/rcmb.2023-0153ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023] Open
Abstract
Over the last years, the use of peripheral blood-derived big datasets in combination with machine learning technology has accelerated the understanding, prediction, and management of pulmonary and critical care conditions. The goal of this article is to provide readers with an introduction to the methods and applications of blood omics and other multiplex-based technologies in the pulmonary and critical care medicine setting to better appreciate the current literature in the field. To accomplish that, we provide essential concepts needed to rationalize this approach and introduce readers to the types of molecules that can be obtained from the circulating blood to generate big datasets; elaborate on the differences between bulk, sorted, and single-cell approaches; and the basic analytical pipelines required for clinical interpretation. Examples of peripheral blood-derived big datasets used in recent literature are presented, and limitations of that technology are highlighted to qualify both the current and future value of these methodologies.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Eitel J. M. Lauria
- School of Computer Science and Mathematics, Marist College, Poughkeepsie, New York
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, Pennsylvania; and
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Reid S. Alisch
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
78
|
Babačić H, Christ W, Araújo JE, Mermelekas G, Sharma N, Tynell J, García M, Varnaite R, Asgeirsson H, Glans H, Lehtiö J, Gredmark-Russ S, Klingström J, Pernemalm M. Comprehensive proteomics and meta-analysis of COVID-19 host response. Nat Commun 2023; 14:5921. [PMID: 37739942 PMCID: PMC10516886 DOI: 10.1038/s41467-023-41159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
COVID-19 is characterised by systemic immunological perturbations in the human body, which can lead to multi-organ damage. Many of these processes are considered to be mediated by the blood. Therefore, to better understand the systemic host response to SARS-CoV-2 infection, we performed systematic analyses of the circulating, soluble proteins in the blood through global proteomics by mass-spectrometry (MS) proteomics. Here, we show that a large part of the soluble blood proteome is altered in COVID-19, among them elevated levels of interferon-induced and proteasomal proteins. Some proteins that have alternating levels in human cells after a SARS-CoV-2 infection in vitro and in different organs of COVID-19 patients are deregulated in the blood, suggesting shared infection-related changes.The availability of different public proteomic resources on soluble blood proteome alterations leaves uncertainty about the change of a given protein during COVID-19. Hence, we performed a systematic review and meta-analysis of MS global proteomics studies of soluble blood proteomes, including up to 1706 individuals (1039 COVID-19 patients), to provide concluding estimates for the alteration of 1517 soluble blood proteins in COVID-19. Finally, based on the meta-analysis we developed CoViMAPP, an open-access resource for effect sizes of alterations and diagnostic potential of soluble blood proteins in COVID-19, which is publicly available for the research, clinical, and academic community.
Collapse
Affiliation(s)
- Haris Babačić
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - José Eduardo Araújo
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nidhi Sharma
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janne Tynell
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marina García
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Renata Varnaite
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hilmir Asgeirsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Glans
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology (MMV), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Maria Pernemalm
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
79
|
Tomalka JA, Owings A, Galeas-Pena M, Ziegler CG, Robinson TO, Wichman TG, Laird H, Williams HB, Dhaliwal NS, Everman S, Zafar Y, Shalek AK, Horwitz BH, Ordovas-Montanes J, Glover SC, Gibert Y. Enhanced production of eicosanoids in plasma and activation of DNA damage pathways in PBMCs are correlated with the severity of ancestral COVID-19 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.14.23295549. [PMID: 37745424 PMCID: PMC10516085 DOI: 10.1101/2023.09.14.23295549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Many questions remain unanswered regarding the implication of lipid metabolites in severe SARS-CoV-2 infections. By re-analyzed sequencing data from the nasopharynx of a previously published cohort, we found that alox genes, involved in eicosanoid synthesis, were up-regulated in high WHO score patients, especially in goblet cells. Herein, we aimed to further understand the roles played by eicosanoids during severe SARS-CoV-2 infection. Methods and findings We performed a total fatty acid panel on plasma and bulk RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites revealed that lipid metabolites were increased in SARS-CoV-2 patients including the lipid mediators Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA). AA, EPA and the fatty acids Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA), were positively correlated to WHO disease severity score. Transcriptomic analysis demonstrated that COVID-19 patients can be segregated based on WHO scores. Ontology, KEGG and Reactome analysis identified pathways enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling and, cell cycling pathways. Conclusions Our study offers an association between nasopharynx mucosa eicosanoid genes expression, specific serum inflammatory lipids and, subsequent DNA damage pathways activation in PBMCs to severity of COVID-19 infection.
Collapse
Affiliation(s)
- Jeffrey A. Tomalka
- Dept. of Pathology and Laboratory Medicine. Emory University School of Medicine. Atlanta, GA, USA
| | - Anna Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine. New Orleans, LA, USA
| | - Carly G.K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanya O. Robinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Thomas G. Wichman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Haley B. Williams
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Neha S. Dhaliwal
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven Everman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yousaf Zafar
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Bruce H. Horwitz
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah C. Glover
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine. New Orleans, LA, USA
- Dept. of Cell and Molecular Biology; Cancer Center and Research Institute. University of Mississippi Medical Center. Jackson, MS, USA
| | - Yann Gibert
- Dept. of Cell and Molecular Biology; Cancer Center and Research Institute. University of Mississippi Medical Center. Jackson, MS, USA
| |
Collapse
|
80
|
Schweizer L, Schaller T, Zwiebel M, Karayel Ö, Müller‐Reif JB, Zeng W, Dintner S, Nordmann TM, Hirschbühl K, Märkl B, Claus R, Mann M. Quantitative multiorgan proteomics of fatal COVID-19 uncovers tissue-specific effects beyond inflammation. EMBO Mol Med 2023; 15:e17459. [PMID: 37519267 PMCID: PMC10493576 DOI: 10.15252/emmm.202317459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
SARS-CoV-2 may directly and indirectly damage lung tissue and other host organs, but there are few system-wide, untargeted studies of these effects on the human body. Here, we developed a parallelized mass spectrometry (MS) proteomics workflow enabling the rapid, quantitative analysis of hundreds of virus-infected FFPE tissues. The first layer of response to SARS-CoV-2 in all tissues was dominated by circulating inflammatory molecules. Beyond systemic inflammation, we differentiated between systemic and true tissue-specific effects to reflect distinct COVID-19-associated damage patterns. Proteomic changes in the lungs resembled those of diffuse alveolar damage (DAD) in non-COVID-19 patients. Extensive organ-specific changes were also evident in the kidneys, liver, and lymphatic and vascular systems. Secondary inflammatory effects in the brain were related to rearrangements in neurotransmitter receptors and myelin degradation. These MS-proteomics-derived results contribute substantially to our understanding of COVID-19 pathomechanisms and suggest strategies for organ-specific therapeutic interventions.
Collapse
Affiliation(s)
- Lisa Schweizer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Tina Schaller
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Department of Physiological ChemistryGenentechSouth San FranciscoUSA
| | | | - Wen‐Feng Zeng
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Thierry M Nordmann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Klaus Hirschbühl
- Hematology and Oncology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Bruno Märkl
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Rainer Claus
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
- Hematology and Oncology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
81
|
Fernandez-Fuente G, Overmyer KA, Lawton AJ, Kasza I, Shapiro SL, Gallego-Muñoz P, Coon JJ, Denu JM, Alexander CM, Puglielli L. The citrate transporters SLC13A5 and SLC25A1 elicit different metabolic responses and phenotypes in the mouse. Commun Biol 2023; 6:926. [PMID: 37689798 PMCID: PMC10492862 DOI: 10.1038/s42003-023-05311-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cytosolic citrate is imported from the mitochondria by SLC25A1, and from the extracellular milieu by SLC13A5. In the cytosol, citrate is used by ACLY to generate acetyl-CoA, which can then be exported to the endoplasmic reticulum (ER) by SLC33A1. Here, we report the generation of mice with systemic overexpression (sTg) of SLC25A1 or SLC13A5. Both animals displayed increased cytosolic levels of citrate and acetyl-CoA; however, SLC13A5 sTg mice developed a progeria-like phenotype with premature death, while SLC25A1 sTg mice did not. Analysis of the metabolic profile revealed widespread differences. Furthermore, SLC13A5 sTg mice displayed increased engagement of the ER acetylation machinery through SLC33A1, while SLC25A1 sTg mice did not. In conclusion, our findings point to different biological responses to SLC13A5- or SLC25A1-mediated import of citrate and suggest that the directionality of the citrate/acetyl-CoA pathway can transduce different signals.
Collapse
Affiliation(s)
- Gonzalo Fernandez-Fuente
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Alexis J Lawton
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha L Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Gallego-Muñoz
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA.
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
82
|
Johansson MW, Balnis J, Muehlbauer LK, Bukhman YV, Stefely MS, Overmyer KA, Vancavage R, Tiwari A, Adhikari AR, Feustel PJ, Schwartz BS, Coon JJ, Stewart R, Jaitovich A, Mosher DF. Decreased plasma cartilage acidic protein 1 in COVID-19. Physiol Rep 2023; 11:e15814. [PMID: 37667413 PMCID: PMC10477339 DOI: 10.14814/phy2.15814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cartilage acidic protein-1 (CRTAC1) is produced by several cell types, including Type 2 alveolar epithelial (T2AE) cells that are targeted by SARS-CoV2. Plasma CRTAC1 is known based on proteomic surveys to be low in patients with severe COVID-19. Using an ELISA, we found that patients treated for COVID-19 in an ICU almost uniformly had plasma concentrations of CRTAC1 below those of healthy controls. Magnitude of decrease in CRTAC1 distinguished COVID-19 from other causes of acute respiratory decompensation and correlated with established metrics of COVID-19 severity. CRTAC1 concentrations below those of controls were found in some patients a year after hospitalization with COVID-19, long COVID after less severe COVID-19, or chronic obstructive pulmonary disease. Decreases in CRTAC1 in severe COVID-19 correlated (r = 0.37, p = 0.0001) with decreases in CFP (properdin), which interacts with CRTAC1. Thus, decreases of CRTAC1 associated with severe COVID-19 may result from loss of production by T2AE cells or co-depletion with CFP. Determination of significance of and reasons behind decreased CRTAC1 concentration in a subset of patients with long COVID will require analysis of roles of preexisting lung disease, impact of prior acute COVID-19, age, and other confounding variables in a larger number of patients.
Collapse
Affiliation(s)
- Mats W Johansson
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Laura K Muehlbauer
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yury V Bukhman
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Rachel Vancavage
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Anish Raj Adhikari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Bradford S Schwartz
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Deane F Mosher
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
83
|
Alaa M, Al-Shehaby N, Anwar AM, Farid N, Shawky MS, Zamzam M, Zaky I, Elghounimy A, El-Naggar S, Magdeldin S. Comparative Shotgun Proteomics Reveals the Characteristic Protein Signature of Osteosarcoma Subtypes. Cells 2023; 12:2179. [PMID: 37681913 PMCID: PMC10487120 DOI: 10.3390/cells12172179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor affecting adolescents and young adults. This study aimed to identify proteomic signatures that distinguish between different osteosarcoma subtypes, providing insights into their molecular heterogeneity and potential implications for personalized treatment approaches. Using advanced proteomic techniques, we analyzed FFPE tumor samples from a cohort of pediatric osteosarcoma patients representing four various subtypes. Differential expression analysis revealed a significant proteomic signature that discriminated between these subtypes, highlighting distinct molecular profiles associated with different tumor characteristics. In contrast, clinical determinants did not correlate with the proteome signature of pediatric osteosarcoma. The identified proteomics signature encompassed a diverse array of proteins involved in focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathways, and proteoglycans in cancer, among the top enriched pathways. These findings underscore the importance of considering the molecular heterogeneity of osteosarcoma during diagnosis or even when developing personalized treatment strategies. By identifying subtype-specific proteomics signatures, clinicians may be able to tailor therapy regimens to individual patients, optimizing treatment efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Maram Alaa
- Immunology and Microbiology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Nesma Farid
- Clinical Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | | | - Manal Zamzam
- Pediatric Oncology Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Iman Zaky
- Radio Diagnosis Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Radio Diagnosis Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ahmed Elghounimy
- Musculoskeletal Tumor Surgery Unit, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
- Regenerative Medicine Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
84
|
Zhao X, Liang Q, Li H, Jing Z, Pei D. Single-cell RNA sequencing and multiple bioinformatics methods to identify the immunity and ferroptosis-related biomarkers of SARS-CoV-2 infections to ischemic stroke. Aging (Albany NY) 2023; 15:8237-8257. [PMID: 37606960 PMCID: PMC10497002 DOI: 10.18632/aging.204966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Since December 2019, Coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. There is an increased risk of ischemic stroke (IS) associated with COVID-19. However, few studies have been reported to explain the potential correlation between COVID-19 and IS. METHODS We investigated the relationship and relevant mechanisms between COVID-19 and IS using single-cell RNA sequencing and multiple bioinformatics approaches. RESULTS By intersecting differentially expressed genes and WGCNA critical module genes, we obtained 73 COVID-19-related IS genes. According to the KEGG pathway analysis, the COVID-19-related IS disease genes were significantly enriched in the hematopoietic cell lineage pathway, ribosome pathway, COVID-19 pathway and primary immunodeficiency pathway. Finally, three genes associated with immunity (B4GALT5, CRISPLD2, F5) and two genes associated with ferroptosis (ACSL1, CREB5) were identified up-regulated in COVID-19-related IS. Significantly, it was found that all five genes were highly expressed in monocytes by single cell RNA sequencing. CONCLUSION We believe these genes (B4GALT5, CRISPLD2, F5, ACSL1, CREB5) may regulate the immune response and ferroptosis of multiple immune cells, mainly including monocytes, which may contribute to the development of COVID-19-related IS. In addition, these genes may be potential targets for the treatment of COVID-19-related IS.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Dongmei Pei
- Department of Family Medicine, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
85
|
Burnap SA, Ortega-Prieto AM, Jimenez-Guardeño JM, Ali H, Takov K, Fish M, Shankar-Hari M, Giacca M, Malim MH, Mayr M. Cross-Linking Mass Spectrometry Uncovers Interactions Between High-Density Lipoproteins and the SARS-CoV-2 Spike Glycoprotein. Mol Cell Proteomics 2023; 22:100600. [PMID: 37343697 PMCID: PMC10279469 DOI: 10.1016/j.mcpro.2023.100600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.
Collapse
Affiliation(s)
- Sean A Burnap
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK; The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK; King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| | - Ana Maria Ortega-Prieto
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Hashim Ali
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK; Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Matthew Fish
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| |
Collapse
|
86
|
Zhu Y, Jen A, Overmyer KA, Gao AW, Shishkova E, Auwerx J, Coon JJ. Mass Spectrometry-Based Multi-omics Integration with a Single Set of C. elegans Samples. Anal Chem 2023; 95:10930-10938. [PMID: 37432911 PMCID: PMC10863427 DOI: 10.1021/acs.analchem.3c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Mass spectrometry-based large-scale multi-omics research has proven to be powerful in answering biological questions; nonetheless, it faces many challenges from sample preparation to downstream data integration. To efficiently extract biomolecules of different physicochemical properties, preparation of various sample type needs specific tailoring, especially of difficult ones, such as Caenorhabditis elegans. In this study, we sought to develop a multi-omics sample preparation method starting with a single set ofC. elegans samples to save time, minimize variability, expand biomolecule coverage, and promote multi-omics integration. We investigated tissue disruption methods to effectively release biomolecules and optimized extraction strategies to achieve broader and more reproducible biomolecule coverage in proteomics, lipidomics, and metabolomics workflows. In our assessment, we also considered speediness and usability of the approaches. The developed method was validated through a study of 16C. elegans samples designed to shine light on mitochondrial unfolded protein response (UPRmt), induced by three unique stressors─knocking down electron transfer chain element cco-1, mitochondrial ribosome protein S5 mrps-5, and antibiotic treatment Doxycycline. Our findings suggested that the method achieved great coverage of proteome, lipidome, and metabolome with high reproducibility and validated that all stressors triggered UPRmt in C. elegans, although generating unique molecular signatures. Innate immune response was activated, and triglycerides were decreased under all three stressor conditions. Additionally, Doxycycline treatment elicited more distinct proteomic, lipidomic, and metabolomic response than the other two treatments. This method has been successfully used to process Saccharomyces cerevisiae (data not shown) and can likely be applied to other organisms for multi-omics research.
Collapse
Affiliation(s)
- Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Katherine A Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| |
Collapse
|
87
|
Luo H, Yan J, Zhang D, Zhou X. Identification of cuproptosis-related molecular subtypes and a novel predictive model of COVID-19 based on machine learning. Front Immunol 2023; 14:1152223. [PMID: 37533853 PMCID: PMC10393044 DOI: 10.3389/fimmu.2023.1152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background To explicate the pathogenic mechanisms of cuproptosis, a newly observed copper induced cell death pattern, in Coronavirus disease 2019 (COVID-19). Methods Cuproptosis-related subtypes were distinguished in COVID-19 patients and associations between subtypes and immune microenvironment were probed. Three machine algorithms, including LASSO, random forest, and support vector machine, were employed to identify differentially expressed genes between subtypes, which were subsequently used for constructing cuproptosis-related risk score model in the GSE157103 cohort to predict the occurrence of COVID-19. The predictive values of the cuproptosis-related risk score were verified in the GSE163151 cohort, GSE152418 cohort and GSE171110 cohort. A nomogram was created to facilitate the clinical use of this risk score, and its validity was validated through a calibration plot. Finally, the model genes were validated using lung proteomics data from COVID-19 cases and single-cell data. Results Patients with COVID-19 had higher significantly cuproptosis level in blood leukocytes compared to patients without COVID-19. Two cuproptosis clusters were identified by unsupervised clustering approach and cuproptosis cluster A characterized by T cell receptor signaling pathway had a better prognosis than cuproptosis cluster B. We constructed a cuproptosis-related risk score, based on PDHA1, PDHB, MTF1 and CDKN2A, and a nomogram was created, which both showed excellent predictive values for COVID-19. And the results of proteomics showed that the expression levels of PDHA1 and PDHB were significantly increased in COVID-19 patient samples. Conclusion Our study constructed and validated an cuproptosis-associated risk model and the risk score can be used as a powerful biomarker for predicting the existence of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Dingyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
88
|
Tian L, He M, Fan H, Zhang H, Dong X, Qiao M, Tang C, Yu Y, Chen T, Zhou N. COVID-19 of differing severity: from bulk to single-cell expression data analysis. Cell Cycle 2023; 22:1777-1797. [PMID: 37486005 PMCID: PMC10446813 DOI: 10.1080/15384101.2023.2239620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is raging worldwide and causes an immense disease burden. Despite this, the biomarkers and targeting drugs of COVID-19 of differing severity remain largely unknown. Based on the GSE164805 dataset, we identified modules most critical for mild COVID-19 (mCOVID-19) and severe COVID-19 (sCOVID-19) through WGCNA, respectively. We subsequently constructed a protein-protein interaction network, and detected 16 hub genes for mCOVID-19 and 10 hub genes for sCOVID-19, followed by the prediction of upstream transcription factors (TFs) and kinases. The enrichment analysis then showed downregulation of TNFA signaling via NFKB for mCOVID-19, as well as downregulation of MYC targets V1 for sCOVID-19. Infiltration degrees of many immune cells, such as macrophages, were also sharply different between mCOVID-19 and sCOVID-19 samples. Predicted protein targeting drugs with the highest scores nearly all belong to naturally derived or synthetic glucocorticoids. For the two single-cell RNA-seq datasets, we explored the expression distribution of hub genes for mCOVID-19/sCOVID-19 in each cell type. The expression levels of PRKCA, MCM5, TYMS, RBBP4, BCL6, FLOT1, KDM6B, and TLR2 were found to be cell-type-specific. Furthermore, the expression levels of 10 hub genes for mCOVID-19 were significantly upregulated in PBMCs between eight healthy controls and eight mCOVID-19 patients at our institution. Collectively, we detected critical modules, pathways, TFs, kinases, immune cells, targeting drugs, hub genes, and their expression distributions in different cell types that may involve the pathogenesis of COVID-19 of differing severity, which may propel earlier diagnosis and more effective treatment of this intractable disease in the future.
Collapse
Affiliation(s)
- Linlin Tian
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Huafeng Fan
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Hongying Zhang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Xiaoxiao Dong
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Mengkai Qiao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Chenyu Tang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Yan Yu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Nan Zhou
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
89
|
Chang Z, An L, Lei M, Song Z, Deng J, Tang R, Cheng ZJ, Wu W, Sun B. The genetic associations of COVID-19 on genitourinary symptoms. Front Immunol 2023; 14:1216211. [PMID: 37415973 PMCID: PMC10319997 DOI: 10.3389/fimmu.2023.1216211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Background Recently emerged reports indicated that patients with coronavirus disease 2019 (COVID-19) might experience novo genitourinary symptoms after discharge. Nevertheless, the causal associations and underlying mechanisms remain largely unclear. Methods Genome-wide association study (GWAS) statistics for COVID-19 and 28 genitourinary symptoms with consistent definitions were collected from the COVID-19 Host Genetic Initiative, FinnGen, and UK Biobanks. Mendelian randomization (MR) analyses were applied to explore the causal effects of COVID-19 on genitourinary symptoms by selecting single-nucleotide polymorphisms as instrumental variables. Meta-analyses were conducted to evaluate the combined causal effect. Molecular pathways connecting COVID-19 and its associated disorders were evaluated by weighted gene co-expression network analysis (WGCNA) and enrichment analyses to extract insights into the potential mechanisms underlying the connection. Results The MR and meta-analyses indicated that COVID-19 was causally associated with increased risk for calculus of the lower urinary tract (LUTC, OR: 1.2984 per doubling in odds of COVID-19, 95% CI: 1.0752-1.5680, p = 0.007) and sexual dysfunction (SD, OR: 1.0931, 95% CI: 1.0292-1.1610, p = 0.004). Intriguingly, COVID-19 might exert a slight causal protective effect on the progression of urinary tract infections (UTIs) and bladder cancer (BLCA). These results were robust to sensitivity analyses. Bioinformatic analyses indicated that the inflammatory-immune response module may mediate the links between COVID-19 and its associated disorders at the molecular level. Conclusions In response to post-COVID-19 symptoms, we recommend that COVID-19 patients should strengthen the prevention of LUTC and the monitoring of sexual function. Meanwhile, the positive effects of COVID-19 on UTIs and BLCA should attach equal importance.
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Laboratory, Guangzhou Laboratory, Guangzhou, China
| | - Lingyue An
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Min Lei
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenfeng Song
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Deng
- Department of General Surgery, Ziyang First People’s Hospital, Ziyang, Sichuan, China
| | - Ruizheng Tang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhangkai J. Cheng
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Laboratory, Guangzhou Laboratory, Guangzhou, China
| | - Wenqi Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baoqing Sun
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Laboratory, Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
90
|
Lipman D, Safo SE, Chekouo T. Integrative multi-omics approach for identifying molecular signatures and pathways and deriving and validating molecular scores for COVID-19 severity and status. BMC Genomics 2023; 24:319. [PMID: 37308820 PMCID: PMC10259816 DOI: 10.1186/s12864-023-09410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND There is still more to learn about the pathobiology of COVID-19. A multi-omic approach offers a holistic view to better understand the mechanisms of COVID-19. We used state-of-the-art statistical learning methods to integrate genomics, metabolomics, proteomics, and lipidomics data obtained from 123 patients experiencing COVID-19 or COVID-19-like symptoms for the purpose of identifying molecular signatures and corresponding pathways associated with the disease. RESULTS We constructed and validated molecular scores and evaluated their utility beyond clinical factors known to impact disease status and severity. We identified inflammation- and immune response-related pathways, and other pathways, providing insights into possible consequences of the disease. CONCLUSIONS The molecular scores we derived were strongly associated with disease status and severity and can be used to identify individuals at a higher risk for developing severe disease. These findings have the potential to provide further, and needed, insights into why certain individuals develop worse outcomes.
Collapse
Affiliation(s)
- Danika Lipman
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
| | - Sandra E Safo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minnesota, USA.
| | - Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada.
- Division of Biostatistics, School of Public Health, University of Minnesota, Minnesota, USA.
| |
Collapse
|
91
|
di Flora DC, Dionizio A, Pereira HABS, Garbieri TF, Grizzo LT, Dionisio TJ, Leite ADL, Silva-Costa LC, Buzalaf NR, Reis FN, Pereira VBR, Rosa DMC, Dos Santos CF, Buzalaf MAR. Analysis of Plasma Proteins Involved in Inflammation, Immune Response/Complement System, and Blood Coagulation upon Admission of COVID-19 Patients to Hospital May Help to Predict the Prognosis of the Disease. Cells 2023; 12:1601. [PMID: 37371071 DOI: 10.3390/cells12121601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The development of new approaches allowing for the early assessment of COVID-19 cases that are likely to become critical and the discovery of new therapeutic targets are urgently required. In this prospective cohort study, we performed proteomic and laboratory profiling of plasma from 163 COVID-19 patients admitted to Bauru State Hospital (Brazil) between 4 May 2020 and 4 July 2020. Plasma samples were collected upon admission for routine laboratory analyses and shotgun quantitative label-free proteomics. Based on the course of the disease, the patients were divided into three groups: (a) mild (n = 76) and (b) severe (n = 56) symptoms, whose patients were discharged without or with admission to an intensive care unit (ICU), respectively, and (c) critical (n = 31), a group consisting of patients who died after admission to an ICU. Based on our data, potential therapies for COVID-19 should target proteins involved in inflammation, the immune response and complement system, and blood coagulation. Other proteins that could potentially be employed in therapies against COVID-19 but that so far have not been associated with the disease are CD5L, VDBP, A1BG, C4BPA, PGLYRP2, SERPINC1, and APOH. Targeting these proteins' pathways might constitute potential new therapies or biomarkers of prognosis of the disease.
Collapse
Affiliation(s)
- Daniele Castro di Flora
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Therapy and Diagnosis Unit, Bauru State Hospital, Bauru 17033-360, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | - Thais Francini Garbieri
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Thiago José Dionisio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Aline de Lima Leite
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Licia C Silva-Costa
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Fernanda Navas Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | | | - Carlos Ferreira Dos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | |
Collapse
|
92
|
Tian Y, Yu B, Zhang Y, Zhang S, Lv B, Gong S, Li J. Exploration of the potential common pathogenic mechanisms in COVID-19 and silicosis by using bioinformatics and system biology. Funct Integr Genomics 2023; 23:199. [PMID: 37278873 PMCID: PMC10241611 DOI: 10.1007/s10142-023-01092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Silicosis is an occupational lung disease that is common worldwide. In recent years, coronavirus disease 2019 (COVID-19) has provided daunting challenges to public healthcare systems globally. Although multiple studies have shown a close link between COVID-19 and other respiratory diseases, the inter-relational mechanisms between COVID-19 and silicosis remain unclear. This study aimed to explore the shared molecular mechanisms and drug targets of COVID-19 and silicosis. Gene expression profiling identified four modules that were most closely associated with both diseases. Furthermore, we performed functional analysis and constructed a protein-protein interaction network. Seven hub genes (budding uninhibited by benzimidazoles 1 [BUB1], protein regulator of cytokinesis 1 [PRC1], kinesin family member C1 [KIFC1], ribonucleotide reductase regulatory subunit M2 [RRM2], cyclin-dependent kinase inhibitor 3 [CDKN3], Cyclin B2 [CCNB2], and minichromosome maintenance complex component 6 [MCM6]) were involved in the interaction between COVID-19 and silicosis. We investigated how diverse microRNAs and transcription factors regulate these seven genes. Subsequently, the correlation between the hub genes and infiltrating immune cells was explored. Further in-depth analyses were performed based on single-cell transcriptomic data from COVID-19, and the expression of hub-shared genes was characterized and located in multiple cell clusters. Finally, molecular docking results reveal small molecular compounds that may improve COVID-19 and silicosis. The current study reveals the common pathogenesis of COVID-19 and silicosis, which may provide a novel reference for further research.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Beibei Yu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Yongfeng Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Sanpeng Zhang
- Operating room, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, 710004, Xi'an, China
| | - Boqiang Lv
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Shouping Gong
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China.
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China.
| |
Collapse
|
93
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
94
|
den Hartog I, Karu N, Zwep LB, Voorn GP, van de Garde EM, Hankemeier T, van Hasselt JC. Differential metabolic host response to pathogens associated with community-acquired pneumonia. Metabol Open 2023; 18:100239. [PMID: 37025095 PMCID: PMC10070890 DOI: 10.1016/j.metop.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background Metabolic changes induced by the host immune response to pathogens found in patients with community-acquired pneumonia (CAP) may provide insight into its pathogenesis. In this study, we characterized differences in the host metabolic response to common CAP-associated pathogens. Method Targeted metabolomic profiling was performed on serum samples obtained from hospitalized CAP patients (n = 119) at admission. We quantified 347 unique metabolites across multiple biochemical classes, including amines, acylcarnitines, and signaling lipids. We evaluated if unique associations between metabolite levels and specific CAP-associated pathogens could be identified. Results Several acylcarnitines were found to be elevated in C. burnetii and herpes simplex virus and lowered in M. pneumoniae as compared to other pathogens. Phenylalanine and kynurenine were found elevated in L. pneumophila as compared to other pathogens. S-methylcysteine was elevated in patients with M. pneumoniae, and these patients also showed lowered cortisol levels in comparison to almost all other pathogens. For the herpes simplex virus, we observed a unique elevation of eicosanoids and several amines. Many lysophosphatidylcholines showed an altered profile in C. burnetii versus S. pneumoniae, L. pneumophila, and respiratory syncytial virus. Finally, phosphatidylcholines were negatively affected by the influenza virus in comparison to S. pneumoniae. Conclusions In this exploratory analysis, metabolites from different biochemical classes were found to be altered in serum samples from patients with different CAP-associated pathogens, which may be used for hypothesis generation in studies on differences in pathogen host response and pathogenesis of CAP.
Collapse
Affiliation(s)
- Ilona den Hartog
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Naama Karu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Laura B. Zwep
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - G. Paul Voorn
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Ewoudt M.W. van de Garde
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - J.G. Coen van Hasselt
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Corresponding author.
| |
Collapse
|
95
|
Liu KJ, Zelazowska MA, McBride KM. The Longitudinal Analysis of Convergent Antibody VDJ Regions in SARS-CoV-2-Positive Patients Using RNA-Seq. Viruses 2023; 15:1253. [PMID: 37376553 DOI: 10.3390/v15061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is an ongoing pandemic that continues to evolve and reinfect individuals. To understand the convergent antibody responses that evolved over the course of the pandemic, we evaluated the immunoglobulin repertoire of individuals infected by different SARS-CoV-2 variants for similarity between patients. We utilized four public RNA-seq data sets collected between March 2020 and March 2022 from the Gene Expression Omnibus (GEO) in our longitudinal analysis. This covered individuals infected with Alpha and Omicron variants. In total, from 269 SARS-CoV-2-positive patients and 26 negative patients, 629,133 immunoglobulin heavy-chain variable region V(D)J sequences were reconstructed from sequencing data. We grouped samples based on the SARS-CoV-2 variant type and/or the time they were collected from patients. Our comparison of patients within each SARS-CoV-2-positive group found 1011 common V(D)Js (same V gene, J gene and CDR3 amino acid sequence) shared by more than one patient and no common V(D)Js in the noninfected group. Taking convergence into account, we clustered based on similar CDR3 sequence and identified 129 convergent clusters from the SARS-CoV-2-positive groups. Within the top 15 clusters, 4 contain known anti-SARS-CoV-2 immunoglobulin sequences with 1 cluster confirmed to cross-neutralize variants from Alpha to Omicron. In our analysis of longitudinal groups that include Alpha and Omicron variants, we find that 2.7% of the common CDR3s found within groups were also present in more than one group. Our analysis reveals common and convergent antibodies, which include anti-SARS-CoV-2 antibodies, in patient groups over various stages of the pandemic.
Collapse
Affiliation(s)
- Kate J Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
96
|
He J, Zhao Y, Zhou Z, Zhang M. Machine learning and integrative analysis identify the common pathogenesis of azoospermia complicated with COVID-19. Front Immunol 2023; 14:1114870. [PMID: 37283758 PMCID: PMC10239851 DOI: 10.3389/fimmu.2023.1114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Background Although more recent evidence has indicated COVID-19 is prone to azoospermia, the common molecular mechanism of its occurrence remains to be elucidated. The aim of the present study is to further investigate the mechanism of this complication. Methods To discover the common differentially expressed genes (DEGs) and pathways of azoospermia and COVID-19, integrated weighted co-expression network (WGCNA), multiple machine learning analyses, and single-cell RNA-sequencing (scRNA-seq) were performed. Results Therefore, we screened two key network modules in the obstructive azoospermia (OA) and non-obstructive azoospermia (NOA) samples. The differentially expressed genes were mainly related to the immune system and infectious virus diseases. We then used multiple machine learning methods to detect biomarkers that differentiated OA from NOA. Enrichment analysis showed that azoospermia patients and COVID-19 patients shared a common IL-17 signaling pathway. In addition, GLO1, GPR135, DYNLL2, and EPB41L3 were identified as significant hub genes in these two diseases. Screening of two different molecular subtypes revealed that azoospermia-related genes were associated with clinicopathological characteristics of age, hospital-free-days, ventilator-free-days, charlson score, and d-dimer of patients with COVID-19 (P < 0.05). Finally, we used the Xsum method to predict potential drugs and single-cell sequencing data to further characterize whether azoospermia-related genes could validate the biological patterns of impaired spermatogenesis in cryptozoospermia patients. Conclusion Our study performs a comprehensive and integrated bioinformatics analysis of azoospermia and COVID-19. These hub genes and common pathways may provide new insights for further mechanism research.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| | - Yuanqiao Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR, China
| |
Collapse
|
97
|
MacCann R, Leon AAG, Gonzalez G, Carr MJ, Feeney ER, Yousif O, Cotter AG, de Barra E, Sadlier C, Doran P, Mallon PW. Dysregulated early transcriptional signatures linked to mast cell and interferon responses are implicated in COVID-19 severity. Front Immunol 2023; 14:1166574. [PMID: 37261339 PMCID: PMC10229044 DOI: 10.3389/fimmu.2023.1166574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Background Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are thought to underlie the progression of coronavirus disease 2019 (COVID-19) to severe disease. We sought to determine whether early host immune-related gene expression could predict clinical progression to severe disease. Methods We analysed the expression of 579 immunological genes in peripheral blood mononuclear cells taken early after symptom onset using the NanoString nCounter and compared SARS-CoV-2 negative controls with SARS-CoV-2 positive subjects with mild (SARS+ Mild) and Moderate/Severe disease to evaluate disease outcomes. Biobanked plasma samples were also assessed for type I (IFN-α2a and IFN-β), type II (IFN-γ) and type III (IFN-λ1) interferons (IFNs) as well as 10 additional cytokines using multiplex immunoassays. Results We identified 19 significantly deregulated genes in 62 SARS-CoV-2 positive subject samples within 5 days of symptom onset and 58 SARS-CoV-2 negative controls and found that type I interferon (IFN) signalling (MX1, IRF7, IFITM1, IFI35, STAT2, IRF4, PML, BST2, STAT1) and genes encoding proinflammatory cytokines (TNF, TNFSF4, PTGS2 and IL1B) were upregulated in both SARS+ groups. Moreover, we found that FCER1, involved in mast cell activation, was upregulated in the SARS+ Mild group but significantly downregulated in the SARS+ Moderate/Severe group. In both SARS+ groups we discovered elevated interferon type I IFN-α2a, type II IFN and type III IFN λ1 plasma levels together with higher IL-10 and IL-6. These results indicate that those with moderate or severe disease are characterised by deficiencies in a mast cell response together with IFN hyper-responsiveness, suggesting that early host antiviral immune responses could be a cause and not a consequence of severe COVID-19. Conclusions This study suggests that early host immune responses linking defects in mast cell activation with host interferon responses correlates with more severe outcomes in COVID-19. Further characterisation of this pathway could help inform better treatment for vulnerable individuals.
Collapse
Affiliation(s)
- Rachel MacCann
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St. Vincent’s University Hospital, Dublin, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | | | - Gabriel Gonzalez
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
- Japan Initiative for World-leading Vaccine Research and Development Centers, Hokkaido University, Institute for Vaccine Research and Development, Hokkaido, Japan
| | - Michael J. Carr
- School of Medicine, University College Dublin, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eoin R. Feeney
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Wexford, Ireland
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Corinna Sadlier
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Peter Doran
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St. Vincent’s University Hospital, Dublin, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| |
Collapse
|
98
|
Zhuo J, Wang K, Shi Z, Yuan C. Immunogenic cell death-led discovery of COVID-19 biomarkers and inflammatory infiltrates. Front Microbiol 2023; 14:1191004. [PMID: 37228369 PMCID: PMC10203236 DOI: 10.3389/fmicb.2023.1191004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Immunogenic cell death (ICD) serves a critical role in regulating cell death adequate to activate an adaptive immune response, and it is associated with various inflammation-related diseases. However, the specific role of ICD-related genes in COVID-19 remains unclear. We acquired COVID-19-related information from the GEO database and a total of 14 ICD-related differentially expressed genes (DEGs) were identified. These ICD-related DEGs were closely associated with inflammation and immune activity. Afterward, CASP1, CD4, and EIF2AK3 among the 14 DEGs were selected as feature genes based on LASSO, Random Forest, and SVM-RFE algorithms, which had reliable diagnostic abilities. Moreover, functional enrichment analysis indicated that these feature genes may have a potential role in COVID-19 by being involved in the regulation of immune response and metabolism. Further CIBERSORT analysis demonstrated that the variations in the immune microenvironment of COVID-19 patients may be correlated with CASP1, CD4, and EIF2AK3. Additionally, 33 drugs targeting 3 feature genes had been identified, and the ceRNA network demonstrated a complicated regulative association based on these feature genes. Our work identified that CASP1, CD4, and EIF2AK3 were diagnostic genes of COVID-19 and correlated with immune activity. This study presents a reliable diagnostic signature and offers an overview to investigate the mechanism of COVID-19.
Collapse
Affiliation(s)
- Jianzhen Zhuo
- Guangdong Medical University, Dongguan, Guangdong, China
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Ke Wang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Zijun Shi
- Reproductive Medical Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Chunlei Yuan
- Guangdong Medical University, Dongguan, Guangdong, China
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| |
Collapse
|
99
|
Balnis J, Madrid A, Hogan KJ, Drake LA, Adhikari A, Vancavage R, Singer HA, Alisch RS, Jaitovich A. Whole-Genome Methylation Sequencing Reveals that COVID-19-induced Epigenetic Dysregulation Remains 1 Year after Hospital Discharge. Am J Respir Cell Mol Biol 2023; 68:594-597. [PMID: 37125894 PMCID: PMC10174161 DOI: 10.1165/rcmb.2022-0433le] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Affiliation(s)
| | - Andy Madrid
- University of Wisconsin School of Medicine and Public HealthMadison, Wisconsin
| | - Kirk J. Hogan
- Department of AnesthesiologyUniversity of WisconsinMadison, Wisconsin
| | | | | | | | | | - Reid S. Alisch
- University of Wisconsin School of Medicine and Public HealthMadison, Wisconsin
| | | |
Collapse
|
100
|
Gauthier S, Tran-Dinh A, Morilla I. Plasma proteome dynamics of COVID-19 severity learnt by a graph convolutional network of multi-scale topology. Life Sci Alliance 2023; 6:e202201624. [PMID: 36806094 PMCID: PMC9941303 DOI: 10.26508/lsa.202201624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Efforts to understand the molecular mechanisms of COVID-19 have led to the identification of ACE2 as the main receptor for the SARS-CoV-2 spike protein on cell surfaces. However, there are still important questions about the role of other proteins in disease progression. To address these questions, we modelled the plasma proteome of 384 COVID-19 patients using protein level measurements taken at three different times and incorporating comprehensive clinical evaluation data collected 28 d after hospitalisation. Our analysis can accurately assess the severity of the illness using a metric based on WHO scores. By using topological vectorisation, we identified proteins that vary most in expression based on disease severity, and then utilised these findings to construct a graph convolutional network. This dynamic model allows us to learn the molecular interactions between these proteins, providing a tool to determine the severity of a COVID-19 infection at an early stage and identify potential pharmacological treatments by studying the dynamic interactions between the most relevant proteins.
Collapse
Affiliation(s)
- Samy Gauthier
- Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, Laboratoire d'excellence Inflamex, Villetaneuse, France
| | - Alexy Tran-Dinh
- Département d'anesthésie-Réanimation, INSERM, Université de Paris, AP-HP, Hôpital Bichat Claude Bernard, Paris, France
- Université de Paris, LVTS, Inserm U1148, Paris, France
| | - Ian Morilla
- Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, Laboratoire d'excellence Inflamex, Villetaneuse, France
- Department of Genetics, University of Malaga, MLiMO, Málaga, Spain
| |
Collapse
|