51
|
The interaction effect of green tea consumption and exercise training on fat oxidation, body composition and blood lipids in humans: a review of the literature. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Antioxidative, Anti-Inflammatory, Anti-Obesogenic, and Antidiabetic Properties of Tea Polyphenols-The Positive Impact of Regular Tea Consumption as an Element of Prophylaxis and Pharmacotherapy Support in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23126703. [PMID: 35743146 PMCID: PMC9224362 DOI: 10.3390/ijms23126703] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial cancer (EC) is second only to cervical carcinoma among the most commonly diagnosed malignant tumours of the female reproductive system. The available literature provides evidence for the involvement of 32 genes in the hereditary incidence of EC. The physiological markers of EC and coexisting diet-dependent maladies include antioxidative system disorders but also progressing inflammation; hence, the main forms of prophylaxis and pharmacotherapy ought to include a diet rich in substances aiding the organism’s response to this type of disorder, with a particular focus on ones suitable for lifelong consumption. Tea polyphenols satisfy those requirements due to their proven antioxidative, anti-inflammatory, anti-obesogenic, and antidiabetic properties. Practitioners ought to consider promoting tea consumption among individuals genetically predisposed for EC, particularly given its low cost, accessibility, confirmed health benefits, and above all, suitability for long-term consumption regardless of the patient’s age. The aim of this paper is to analyse the potential usability of tea as an element of prophylaxis and pharmacotherapy support in EC patients. The analysis is based on information available from worldwide literature published in the last 15 years.
Collapse
|
53
|
Li Q, Liao S, Pang D, Li E, Liu T, Liu F, Zou Y. The transported active mulberry leaf phenolics inhibited adipogenesis through PPAR-γ and Leptin signaling pathway. J Food Biochem 2022; 46:e14270. [PMID: 35702955 DOI: 10.1111/jfbc.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/10/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
The effective components of mulberry leaf polyphenols (MLPs) should be absorbed and transported by the intestinal cells before regulating lipid metabolism. The Caco-2 intestinal epithelial cell and 3 T3-L1 adipocytes were coupled to screen the effective components of MLPs that are being absorbed and transported by intestinal cells. The regulation and molecular mechanism by which the effective components affect adipogenesis were analyzed in this study. Among the 12 main components identified, five main compounds were well absorbed with Papp in the order of benzoic acid > chlorogenic acid > astragaloside > hyperoside > rutin. Chlorogenic acid and benzoic acid were mainly absorbed through passive diffusion, while rutin, astragaloside, and hyperoside were mainly by active transport, of which chlorogenic and rutin absorption were mediated by the efflux protein, P-glycoprotein (P-pg). Based on the transport volume of 2 mg/ml MLPs within 2 h, 25% of the maximum transported MLPs (TMLPs) was a safe concentration for 3 T3-L1 preadipocytes. Except for astragaloside, the other four components showed a significant inhibitory effect on lipid droplets, TG and TC, and chlorogenic acid and benzoic acid had the strongest effect. Additionally, we observed a synergistic effect as TMLPs were the most effective. We hypothesized that TMLPs, chlorogenic acid and benzoic acid suppressed adipogenesis and regulated lipid metabolism by inhibiting PPAR-γ, C/EBP-α, and FAS mRNA while promoting ADIPO and Leptin mRNA expression. PRACTICAL APPLICATIONS: The absorption and adipogenesis inhibition effect of mulberry leaf phenolics were evaluated in this study. The results provided guideline for the development of functional foods in regulating lipid metabolism.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Daorui Pang
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Erna Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Tongxian Liu
- Guangxi Rongshui Furongbei Jiangyuan Agricultural Development Co., Ltd, Liuzhou, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
54
|
Green tea polyphenols in cardiometabolic health: A critical appraisal on phytogenomics towards personalized green tea. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
55
|
Effects of Tea Treatments against High-Fat Diet-Induced Disorder by Regulating Lipid Metabolism and the Gut Microbiota. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9336080. [PMID: 35677179 PMCID: PMC9168190 DOI: 10.1155/2022/9336080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
High-fat diet (HFD) may induce changes of metabolism and gut microbiota changes, and these changes are susceptible to diet adjustments such as tea treatment. However, the treatment effects may vary among different types of tea. In this study, we evaluated the effects of six types of tea on glucose and lipid metabolism and gut microbiota in HFD mice. We established HFD mouse model by 12 weeks feed with 60% fat diet, then treated with teas for six weeks. Here, we showed that treatment with different types of tea can inhibit weight gain and insulin resistance though different ways. Green tea regulated lipid metabolism by regulating the expression of adenosine 5′-monophosphate-activated protein kinase (AMPK) and carnitine palmitoyltransferase-I (CPT-1). The effect of dark tea and white tea in reducing liver weight seemed to be related to activities of acetyl-CoA carboxylase (ACC). Yellow tea exhibited the best anti-inflammatory and antioxidant effects and effects of recovering the disorder of model mouse microbiota. The decrease in blood sugar and the upregulation of gluconeogenesis-related enzymes seemed to be related to the decrement of unclassified Lachnospiraceae. These different effects may result from the unique chemical compositions contained by different types of tea, which can regulate different lipid and glucose metabolism-related proteins. Despite variations in its compositions and metabolic reactions, tea is a potent antiobesity and hypoglycemic agent.
Collapse
|
56
|
Mah E, Chen O, Liska DJ, Blumberg JB. Dietary Supplements for Weight Management: A Narrative Review of Safety and Metabolic Health Benefits. Nutrients 2022; 14:nu14091787. [PMID: 35565754 PMCID: PMC9099655 DOI: 10.3390/nu14091787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Dietary supplements for weight management include myriad ingredients with thermogenic, lipotropic, satiety, and other metabolic effects. Recently, the safety of this product category has been questioned. In this review, we summarize the safety evidence as well as relevant clinical findings on weight management and metabolic effects of six representative dietary supplement ingredients: caffeine, green tea extract (GTE), green coffee bean extract (GCBE), choline, glucomannan, and capsaicinoids and capsinoids. Of these, caffeine, GTE (specifically epigallocatechin gallate [EGCG]), and choline have recommended intake limits, which appear not to be exceeded when used according to manufacturers’ instructions. Serious adverse events from supplements with these ingredients are rare and typically involve unusually high intakes. As with any dietary component, the potential for gastrointestinal intolerance, as well as possible interactions with concomitant medications/supplements exist, and the health status of the consumer should be considered when consuming these components. Most of the ingredients reviewed also improved markers of metabolic health, such as glucose, lipids, and blood pressure, although the data are limited for some. In summary, weight management supplements containing caffeine, GTE, GCBE, choline, glucomannan, and capsaicinoids and capsinoids are generally safe when taken as directed and demonstrate metabolic health benefits for overweight and obese people.
Collapse
Affiliation(s)
- Eunice Mah
- Biofortis Research, Addison, IL 60101, USA
- Correspondence:
| | - Oliver Chen
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (O.C.); (J.B.B.)
| | | | - Jeffrey B. Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (O.C.); (J.B.B.)
| |
Collapse
|
57
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics. Front Microbiol 2022; 13:823902. [PMID: 35401435 PMCID: PMC8991060 DOI: 10.3389/fmicb.2022.823902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
The number of hydroxyl groups and existence of characteristic structural groups in tea polyphenols (TP) make them have antioxidant activity, which gives TP anti-inflammatory effects, toward protecting the intestinal flora and brain neurons. Host-associated microbial metabolites are emerging as dominant modifiers of the central nervous system. As yet, the investigations on host-microbiota crosstalking remain challenging, studies focusing on metabolites such as serotonin, short-chain fatty acids, and others have pinpointed multiple actionable signaling pathways relevant to host health. However, there are still complexities and apparent limitations inherent in transforming complex human diseases to corresponding animal models. Here, we choose to discuss several intestinal metabolites with research value, as crucial areas for assessing TP-mediated chronic brain diseases interactions with microbial.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
58
|
Sebastiani G, Navarro-Tapia E, Almeida-Toledano L, Serra-Delgado M, Paltrinieri AL, García-Algar Ó, Andreu-Fernández V. Effects of Antioxidant Intake on Fetal Development and Maternal/Neonatal Health during Pregnancy. Antioxidants (Basel) 2022; 11:648. [PMID: 35453333 PMCID: PMC9028185 DOI: 10.3390/antiox11040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
During pregnancy, cycles of hypoxia and oxidative stress play a key role in the proper development of the fetus. Hypoxia during the first weeks is crucial for placental development, while the increase in oxygen due to the influx of maternal blood stimulates endothelial growth and angiogenesis. However, an imbalance in the number of oxidative molecules due to endogenous or exogenous factors can overwhelm defense systems and lead to excessive production of reactive oxygen species (ROS). Many pregnancy complications, generated by systemic inflammation and placental vasoconstriction, such as preeclampsia (PE), fetal growth restriction (FGR) and preterm birth (PTB), are related to this increase of ROS. Antioxidants may be a promising tool in this population. However, clinical evidence on their use, especially those of natural origin, is scarce and controversial. Following PRISMA methodology, the current review addresses the use of natural antioxidants, such as epigallocatechin gallate (EGCG), melatonin and resveratrol (RESV), as well as other classical antioxidants (vitamin C and E) during the prenatal period as treatment of the above-mentioned complications. We review the effect of antioxidant supplementation on breast milk in lactating mothers.
Collapse
Affiliation(s)
- Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain; (G.S.); (A.L.P.)
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain
| | - Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (M.S.-D.)
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (M.S.-D.)
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Anna Lucia Paltrinieri
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain; (G.S.); (A.L.P.)
| | - Óscar García-Algar
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain; (G.S.); (A.L.P.)
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain
| |
Collapse
|
59
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
60
|
Anti-obesity effects of heat-transformed green tea extract through the activation of adipose tissue thermogenesis. Nutr Metab (Lond) 2022; 19:14. [PMID: 35241108 PMCID: PMC8896087 DOI: 10.1186/s12986-022-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adipose tissue thermogenesis is a potential therapeutic target to increase energy expenditure and thereby combat obesity. The aim of the present study was to investigate the thermogenic and anti-obesity effects of heat-transformed green tea extract (HTGT) and enzymatically modified isoquercetin (EMIQ). Methods Immortalized brown pre-adipocytes and C3H10T1/2 cells were used for in vitro analyses. A high-fat diet (HFD)-induced obesity mouse model and CIDEA-reporter mice were used for in vivo experiments. The effects of HTGT and EMIQ on mitochondrial metabolism were evaluated by immunoblot, mitochondrial staining, and oxygen consumption rate analyses. In vivo anti-obesity effects of HTGT and EMIQ were measured using indirect calorimetry, body composition analyses, glucose tolerance tests, and histochemical analyses. Results Co-treatment with HTGT and EMIQ (50 μg/mL each) for 48 h increased brown adipocyte marker and mitochondrial protein levels (UCP1 and COXIV) in brown adipocytes by 2.9-fold, while the maximal and basal oxygen consumption rates increased by 1.57- and 1.39-fold, respectively. Consistently, HTGT and EMIQ treatment increased the fluorescence intensity of mitochondrial staining in C3H10T1/2 adipocytes by 1.68-fold. The combination of HTGT and EMIQ (100 mg/kg each) increased the expression levels of brown adipocyte markers and mitochondrial proteins in adipose tissue. Two weeks of HTGT and EMIQ treatment (100 mg/kg each) led to a loss of 3% body weight and 7.09% of body fat. Furthermore, the treatment increased energy expenditure by 8.95% and improved glucose tolerance in HFD-fed mice. Conclusions The current study demonstrated that HTGT and EMIQ have in vivo anti-obesity effects partly by increasing mitochondrial metabolism in adipocytes. Our findings suggest that a combination of HTGT and EMIQ is a promising therapeutic agent for the treatment of obesity and related metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00648-6.
Collapse
|
61
|
Colonetti L, Grande AJ, Toreti IR, Ceretta LB, da Rosa MI, Colonetti T. GREEN TEA PROMOTES WEIGHT LOSS IN WOMEN WITH POLYCYSTIC OVARY SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS. Nutr Res 2022; 104:1-9. [DOI: 10.1016/j.nutres.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
|
62
|
Association between Green Tea Consumption and Abdominal Obesity Risk in Middle-Aged Korean Population: Findings from the Korean Genome and Epidemiology Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052735. [PMID: 35270427 PMCID: PMC8910422 DOI: 10.3390/ijerph19052735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022]
Abstract
The prevalence of general and abdominal obesity is increasing with rapid economic growth and the westernization of dietary habits in Korea, especially in the middle-aged population. Data were obtained from the Korean Genome and Epidemiology Study (KoGES), which recruited 10,030 participants between the ages of 40 and 69 years. Information on green tea consumption was obtained from the food frequency questionnaire and categorized as none, <1 cup, between 1 and <4 cups, and ≥4 cups. Multivariable logistic regression models were used to estimate the ORs and 95% CIs to examine any possible associations between green tea consumption and the risk of abdominal obesity after controlling for potential confounders. High consumption of green tea was associated with a 44% lower odds ratio for abdominal obesity (none vs. ≥4 cups/week: OR, 0.56; 95% CI 0.41-0.78; p for trend = 0.001). When stratified by sex, an inverse association between green tea consumption and abdominal obesity was observed only in women (none vs. ≥4 cups/week: OR, 0.71; 95% CI 0.57−0.88; p for trend = 0.004). No significant association was found among men. Our findings indicate that green tea consumption has beneficial effects in the prevention of abdominal obesity in middle-aged Korean women.
Collapse
|
63
|
Jamal R, LaCombe J, Patel R, Blackwell M, Thomas JR, Sloan K, Wallace JM, Roper RJ. Increased dosage and treatment time of Epigallocatechin-3-gallate (EGCG) negatively affects skeletal parameters in normal mice and Down syndrome mouse models. PLoS One 2022; 17:e0264254. [PMID: 35196359 PMCID: PMC8865638 DOI: 10.1371/journal.pone.0264254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.
Collapse
Affiliation(s)
- Raza Jamal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jonathan LaCombe
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Roshni Patel
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Matthew Blackwell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jared R. Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
64
|
Bhargava A, Bansal A, Goyal V, Bansal P. A review on tea quality and safety using emerging parameters. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
65
|
The Effect of Herbal Medicine and Natural Bioactive Compounds on Plasma Adiponectin: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:37-57. [PMID: 34981470 DOI: 10.1007/978-3-030-73234-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Noncommunicable diseases (NCDs) are one of the major public health concerns globally. Most of the NCDs including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, fatty liver disease, and coronary heart disease are related to obesity and are called obesity-related NCDs (OR-NCDs). However, adipocytes can reduce OR-NCDs by secreting adiponectin. Adiponectin has an inverse relationship with body fat. Obese people have impairment in differentiating pre-adipocytes to adipocytes, the process facilitated by adiponectin. Adiponectin directly increases insulin sensitivity and reduces obesity-related insulin resistance by down-regulating hepatic glucose production and increasing fatty acid (FA) oxidation in skeletal muscle. Considering the various beneficial effects of adiponectin on health, increasing adiponectin might be a promising approach to prevent and treat OR-NCDs. Recent studies have shown that nutraceuticals and medicinal compounds isolated from plants could prevent and treat various diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and non-alcoholic fatty liver disease. However, to our knowledge, the effect of these natural products, including herbal supplements and functional foods on adiponectin, has not yet been fully reviewed. The main aim of this review is to summarize the effects of nutraceuticals and herbal bioactive compounds on plasma adiponectin concentrations based on clinical studies. It can be concluded that medicinal plants, and herbal bioactive compounds, particularly curcumin, anthocyanins, resveratrol, soy, walnut, and dihydromyricetin can be used as adjunct or complementary therapeutic agents to increase plasma adiponectin, which could potentially prevent and treat NCDs.
Collapse
|
66
|
NASCIMENTO RC, SÃO JOSÉ JFBD. Green tea extract: a proposal for fresh vegetable sanitization. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.63421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Lin L, Zeng L, Liu A, Yuan D, Peng Y, Zhang S, Li Y, Chen J, Xiao W, Gong Z. Role of Epigallocatechin Gallate in Glucose, Lipid, and Protein Metabolism and L-Theanine in the Metabolism-Regulatory Effects of Epigallocatechin Gallate. Nutrients 2021; 13:4120. [PMID: 34836374 PMCID: PMC8620046 DOI: 10.3390/nu13114120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Epigallocatechin gallate (EGCG) and L-theanine (LTA) are important bioactive components in tea that have shown promising effects on nutrient metabolism. However, whether EGCG alone or combined with LTA can regulate the glucose, lipid, and protein metabolism of healthy rats remains unclear. Therefore, we treated healthy rats with EGCG or the combination of EGCG and LTA (EGCG+LTA) to investigate the effects of EGCG on nutrient metabolism and the role of LTA in the metabolism-regulatory effects of EGCG. The results showed that compared with the control group, EGCG activated insulin and AMP-activated protein kinase (AMPK) signals, thus regulating glucose, lipid, and protein metabolism. Compared with EGCG, EGCG+LTA enhanced hepatic and muscle glycogen levels and suppressed phosphorylation of AMPK, glycogen synthase 2, mammalian target of rapamycin, and ribosomal protein S6 kinase. In addition, EGCG+LTA inhibited the expression of liver kinase B1, insulin receptor and insulin receptor substrate, and promoted the phosphorylation level of acetyl-CoA carboxylase. Furthermore, both EGCG and EGCG+LTA were harmless for young rats. In conclusion, EGCG activated AMPK and insulin pathways, thereby promoting glycolysis, glycogen, and protein synthesis and inhibiting fatty acid (FA) and cholesterol synthesis. However, LTA cooperated with EGCG to promote glycogen metabolism and suppressed the effect EGCG on FA and protein synthesis via AMPK signals.
Collapse
Affiliation(s)
- Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Li Zeng
- School of Pharmacy, Shaoyang University, Shaoyang 422002, China;
| | - An Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Dongyin Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yingqi Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yinhua Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jinhua Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (L.L.); (A.L.); (D.Y.); (Y.P.); (S.Z.); (Y.L.); (J.C.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
68
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
69
|
Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021; 8:727951. [PMID: 34631766 PMCID: PMC8495072 DOI: 10.3389/fnut.2021.727951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
70
|
Epigallocatechin-3-Gallate Suppresses BMP-6-Mediated SMAD1/5/8 Transactivation of Hepcidin Gene by Inducing SMILE in Hepatocytes. Antioxidants (Basel) 2021; 10:antiox10101590. [PMID: 34679725 PMCID: PMC8533173 DOI: 10.3390/antiox10101590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.
Collapse
|
71
|
Tian J, Geiss C, Zarse K, Madreiter-Sokolowski CT, Ristow M. Green tea catechins EGCG and ECG enhance the fitness and lifespan of Caenorhabditis elegans by complex I inhibition. Aging (Albany NY) 2021; 13:22629-22648. [PMID: 34607977 PMCID: PMC8544342 DOI: 10.18632/aging.203597] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Green tea catechins are associated with a delay in aging. We have designed the current study to investigate the impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Experiments were performed in Caenorhabditis elegans to analyze cellular metabolism, ROS homeostasis, stress resistance, physical exercise capacity, health- and lifespan, and the underlying signaling pathways. Besides, we examined the impact of EGCG and ECG in isolated murine mitochondria. A concentration of 2.5 μM EGCG and ECG enhanced health- and lifespan as well as stress resistance in C. elegans. Catechins hampered mitochondrial respiration in C. elegans after 6–12 h and the activity of complex I in isolated rodent mitochondria. The impaired mitochondrial respiration was accompanied by a transient drop in ATP production and a temporary increase in ROS levels in C. elegans. After 24 h, mitochondrial respiration and ATP levels got restored, and ROS levels even dropped below control conditions. The lifespan increases induced by EGCG and ECG were dependent on AAK-2/AMPK and SIR-2.1/SIRT1, as well as on PMK-1/p38 MAPK, SKN-1/NRF2, and DAF-16/FOXO. Long-term effects included significantly diminished fat content and enhanced SOD and CAT activities, required for the positive impact of catechins on lifespan. In summary, complex I inhibition by EGCG and ECG induced a transient drop in cellular ATP levels and a temporary ROS burst, resulting in SKN-1 and DAF-16 activation. Through adaptative responses, catechins reduced fat content, enhanced ROS defense, and improved healthspan in the long term.
Collapse
Affiliation(s)
- Jing Tian
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany.,MOE Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caroline Geiss
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Kim Zarse
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany.,Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Corina T Madreiter-Sokolowski
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Michael Ristow
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany.,Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| |
Collapse
|
72
|
Katada S, Oishi S, Yanagawa K, Ishii S, Oki M, Matsui Y, Osaki N, Takano K, Hibi M. Concomitant use of tea catechins affects absorption and serum triglyceride-lowering effects of monoglucosyl hesperidin. Food Funct 2021; 12:9339-9346. [PMID: 34606551 DOI: 10.1039/d1fo01917a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated whether combined ingestion of green tea catechins (GTC) and monoglucosyl hesperidin (GHES) influences the pharmacokinetic parameters of polyphenols and serum triglycerides (TG). We conducted 2 randomized, controlled trials. Study 1: 8 healthy male subjects participated in a crossover study in which they ingested a test beverage containing GHES (0, 84, 168, or 336 mg GHES) with GTC, or 336 mg GHES without GTC. After ingestion, the pharmacokinetic changes in plasma hesperetin (HEP) and catechins were measured. Study 2: 36 healthy male and female subjects (mean age, 53 ± 2 years; mean BMI, 25.2 ± 0.5 kg m-2) were recruited for a double-blind, placebo-controlled study in which they ingested a test beverage containing 165 mg GHES with 387 mg GTC or a placebo beverage daily for 4 weeks. Fasting serum TG and other lipids and glucose metabolites were analyzed. Study 1 showed that the pharmacokinetics of HEP did not differ significantly between the 336 mg GHES without GTC treatment and the 168 mg GHES with GTC treatment. Study 2 showed that continuous ingestion of 165 mg GHES and 387 mg GTC for 4 weeks significantly decreased fasting serum TG levels compared with baseline values (change in TG, -30 ± 13 mg dl-1, P = 0.040) in the intention-to-treat analysis. In conclusion, our findings suggest that GTC affects the oral bioavailability of GHES, and combined ingestion of low doses of GHES with GTC effectively improves fasting TG levels.
Collapse
Affiliation(s)
- Shun Katada
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| | - Sachiko Oishi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| | - Kiyotaka Yanagawa
- Analytical Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Shunsuke Ishii
- Health and Wellness Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Mamoru Oki
- Seishukai Medical Corporation Seishukai Clinic, 3-18-5 Matsugaya Taito, Tokyo 111-0036, Japan
| | - Yuji Matsui
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| | - Noriko Osaki
- Health and Wellness Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Kazuhiko Takano
- Clinical Pharmacology Center, Medical Corporation Hokubukai Utsukushigaoka Hospital, 61-1, Shinei, Kiyota, Sapporo, Hokkaido, 004-0839, Japan
| | - Masanobu Hibi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| |
Collapse
|
73
|
Li Q, Van de Wiele T. Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Crit Rev Food Sci Nutr 2021; 63:1500-1526. [PMID: 34515591 DOI: 10.1080/10408398.2021.1965536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tea polyphenols have been extensively studied for their preventive properties against cardiometabolic diseases. Nevertheless, the evidence of these effects from human intervention studies is not always consistent, mainly because of a large interindividual variability. The bioavailability of tea polyphenols is low, and metabolism of tea polyphenols highly depends on individual gut microbiota. The accompanying reciprocal relationship between tea polyphenols and gut microbiota may result in alterations in the cardiometabolic effects, however, the underlying mechanism of which is little explored. This review summarizes tea polyphenols-microbiota interaction and its contribution to interindividual variability in cardiometabolic effects. Currently, only a few bacteria that can biodegrade tea polyphenols have been identified and generated metabolites and their bioactivities in metabolic pathways are not fully elucidated. A deeper understanding of the role of complex interaction necessitates fully individualized data, the ntegration of multiple-omics platforms and development of polyphenol-centered databases. Knowledge of this microbial contribution will enable the functional stratification of individuals in the gut microbiota profile (metabotypes) to clarify interindividual variability in the health effects of tea polyphenols. This could be used to predict individual responses to tea polyphenols consumption, hence bringing us closer to personalized nutrition with optimal dose and additional supplementation of specific microorganisms.
Collapse
Affiliation(s)
- Qiqiong Li
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
74
|
An Epidemiological Study Report on the Antioxidant and Phenolic Content of Selected Mediterranean Functional Foods, Their Consumption Association with the Body Mass Index, and Consumers Purchasing Behavior in a Sample of Healthy Greek Adults. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional food consumption is shown to have a positive effect on anthropometric parameters and human health promotion. In addition, consumers seem to be more interested in food choices, that may have a positive effect on their health. The current study aimed to identify the antioxidant and phenolic content of naturally functional foods from the Mediterranean diet and to investigate consumer behavior towards their consumption in terms of their weight control, as well as their purchasing behavior and knowledge of functional foods. For this purpose, blueberries, cranberries, pomegranate, grapefruit, red peppers, almonds and mountain tea were analyzed for their phenolic content and antioxidant capacity, using the Folin-Ciocalteau and Ferric Reducing Antioxidant Power assays, respectively. Furthermore, nine hundred forty-nine healthy Greek adults participated in an epidemiological study, by completing a validated food frequency questionnaire, for the consumption of the above investigated functional foods. Five hundred and fifty participants also completed an online questionnaire investigating factors that consumers evaluate when purchasing functional foods. Study results showed that the analyzed functional foods were high in antioxidants and phenolic compounds, especially the mountain tea. The increased consumption of cranberries, pomegranate, grapefruit, red peppers and mountain tea was significantly correlated with a decreased Body Mass Index, suggesting a possible positive role, in weight control. Participants seemed to be aware of the beneficial role of these specific investigated Mediterranean functional foods to human health. They evaluated the price, taste and nutritional value, as critical factors to buy these food products. A combination of factors seems to lead them to purchase and consume these functional foods. Future epidemiological and clinical studies should be conducted in order to further evaluate consumer preferences and bioactivity mechanisms related to Mediterranean functional food consumption.
Collapse
|
75
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
76
|
Batsis JA, Apolzan JW, Bagley PJ, Blunt HB, Divan V, Gill S, Golden A, Gundamraj S, Heymsfield S, Kahan S, Kopatsis K, Port A, Parks EP, Reilly CA, Rubino D, Saunders KH, Shean R, Tabaza L, Stanley A, Tchang BG, Gundumraj S, Kidambi S. A Systematic Review of Dietary Supplements and Alternative Therapies for Weight Loss. Obesity (Silver Spring) 2021; 29:1102-1113. [PMID: 34159755 PMCID: PMC8231729 DOI: 10.1002/oby.23110] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Dietary supplements and alternative therapies are commercialized as a panacea for obesity/weight gain as a result of the minimal regulatory requirements in demonstrating efficacy. These products may indirectly undermine the value of guideline-driven obesity treatments. Included in this study is a systematic review of the literature of purported dietary supplements and alternative therapies for weight loss. METHODS A systematic review was conducted to evaluate the efficacy of dietary supplements and alternative therapies for weight loss in participants aged ≥18 years. Searches of Medline (PubMed), Cochrane Library, Web of Science, CINAHL, and Embase (Ovid) were conducted. Risk of bias and results were summarized qualitatively. RESULTS Of the 20,504 citations retrieved in the database search, 1,743 full-text articles were reviewed, 315 of which were randomized controlled trials evaluating the efficacy of 14 purported dietary supplements, therapies, or a combination thereof. Risk of bias and sufficiency of data varied widely. Few studies (n = 52 [16.5%]) were classified as low risk and sufficient to support efficacy. Of these, only 16 (31%) noted significant pre/post intergroup differences in weight (range: 0.3-4.93 kg). CONCLUSIONS Dietary supplements and alternative therapies for weight loss have a limited high-quality evidence base of efficacy. Practitioners and patients should be aware of the scientific evidence of claims before recommending use.
Collapse
Affiliation(s)
- John A. Batsis
- Division of Geriatric Medicine, School of Medicine, and the Department of Nutrition, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John W. Apolzan
- Pennington Biomedical Research Center, Louisiana State University Sysytem, Baton Rouge, Louisiana
| | | | | | | | - Sonia Gill
- University of California, Davis School of Medicine, Sacramento, California
| | | | | | - Steven Heymsfield
- Pennington Biomedical Research Center, Louisiana State University Sysytem, Baton Rouge, Louisiana
| | - Scott Kahan
- Director, National Center for Weight and Wellness, George Washington University Milken Institute School of Public Health, Washington, DC
| | | | - Ava Port
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Elizabeth Prout Parks
- The Children’s Hospital of Philadelphia, Division of Gastroenterology, Hepatology and Nutrition, The Healthy Weight Program, Perelman Medical Center, University of Pennsylvania
| | - Clifford A. Reilly
- The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington VT
| | - Domenica Rubino
- Washington Center for Weight Management and Research, Arlington, VA
| | - Katherine H. Saunders
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, NY
| | - Ryan Shean
- Dartmouth College, Hanover, New Hampshire
| | - Luai Tabaza
- Albert Einstein Medical Center, Philadelphia, PA
| | - Abishek Stanley
- Pennington Biomedical Research Center, Louisiana State University Sysytem, Baton Rouge, Louisiana
| | - Beverly G. Tchang
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, NY
| | - Shivani Gundumraj
- AT Still University School of Osteopathic Medicine in Arizona, Mesa, AZ
| | - Srividya Kidambi
- Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
77
|
|
78
|
Bhardwaj M, Yadav P, Vashishth D, Sharma K, Kumar A, Chahal J, Dalal S, Kataria SK. A Review on Obesity Management through Natural Compounds and a Green Nanomedicine-Based Approach. Molecules 2021; 26:3278. [PMID: 34071722 PMCID: PMC8198321 DOI: 10.3390/molecules26113278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a serious health complication in almost every corner of the world. Excessive weight gain results in the onset of several other health issues such as type II diabetes, cancer, respiratory diseases, musculoskeletal disorders (especially osteoarthritis), and cardiovascular diseases. As allopathic medications and derived pharmaceuticals are partially successful in overcoming this health complication, there is an incessant need to develop new alternative anti-obesity strategies with long term efficacy and less side effects. Plants harbor secondary metabolites such as phenolics, flavonoids, terpenoids and other specific compounds that have been shown to have effective anti-obesity properties. Nanoencapsulation of these secondary metabolites enhances the anti-obesity efficacy of these natural compounds due to their speculated property of target specificity and enhanced efficiency. These nanoencapsulated and naive secondary metabolites show anti-obesity properties mainly by inhibiting the lipid and carbohydrate metabolizing enzymes, suppression of adipogenesis and appetite, and enhancing energy metabolism. This review focuses on the plants and their secondary metabolites, along with their nanoencapsulation, that have anti-obesity effects, with their possible acting mechanisms, for better human health.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| | - Poonam Yadav
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| | - Divya Vashishth
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| | - Kavita Sharma
- Department of Zoology, Gaur Brahman Degree College, Rohtak 124001, India;
| | - Ajay Kumar
- Department of Zoology, Maharaja Neempal Singh Government College, Bhiwani 127021, India;
| | - Jyoti Chahal
- Department of Zoology, Hindu Girls College, Sonipat 131001, India;
| | - Sunita Dalal
- Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India;
| | - Sudhir Kumar Kataria
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (M.B.); (P.Y.); (D.V.)
| |
Collapse
|
79
|
Zhang Z, Zhou H, Guan M, Zhou X, Liang X, Lv Y, Bai L, Zhang J, Gong P, Liu T, Yi H, Wang J, Zhang L. Lactobacillus casei YRL577 combined with plant extracts reduce markers of non-alcoholic fatty liver disease in mice. Br J Nutr 2021; 125:1081-1091. [PMID: 32718364 DOI: 10.1017/s0007114520003013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and plant extracts are considered to prevent the development of non-alcoholic fatty liver disease (NAFLD). The present study explores the effects of using both probiotics and plant extracts on NAFLD. The present study evaluated the effects of plant extracts on lipid droplet accumulation and the growth of probiotics in vitro. A C57BL/6 mouse model was used to examine the effects of probiotics and plant extracts on NAFLD. Body weight and food intake were measured. The levels of serum lipids, oxidative stress and the liver injury index were determined using commercial kits. Haematoxylin and eosin staining, GC and real-time PCR were also used for analysis. The results revealed that administration of Lactobacillus casei YRL577 and L. paracasei X11 with resveratrol (RES) or tea polyphenols (TP) significantly reduced the levels of total cholesterol, TAG and LDL-cholesterol and increased the level of the HDL-cholesterol. The groups of L. casei YRL577 with RES and TP also regulated the liver structure, oxidative stress and injury. Furthermore, L. casei YRL577 with TP exhibited a more positive effect towards improving the NAFLD and increased the concentrations of the butyric acid than other three combined groups. L. casei YRL577 with TP up-regulated the mRNA levels of the farnesoid X receptor and fibroblast growth factor 15 and decreased the mRNA levels of the apical Na-dependent bile acid transporter. These findings showed that L. casei YRL577 + TP-modified genes in the intestinal bile acid pathway improved markers of NAFLD.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Hui Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Meiyu Guan
- Qingdao Central Hospital, Qingdao, 266042, People's Republic of China
| | - Xiaohong Zhou
- Qingdao Central Hospital, Qingdao, 266042, People's Republic of China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Youyou Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Lu Bai
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Junxue Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
80
|
Gogga P, Szałajda M, Janczy A. Green tea and obesity: Effects of catechins on the
energetic metabolism. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity is a metabolic disease which has now reached epidemic proportions, becoming a major
health, social, and economic problem worldwide. Untreated obesity is associated with decreased
quality of life and is a significant risk factor for the development of other serious health problems,
such as diabetes and cardiovascular diseases. For this reason, new approaches to prevent
excess body mass and to support its reduction if necessary are being examined. Catechins extracted
from green tea – especially epigallocatechin gallate (EGCG) – are one of the most widely
investigated biologically active substances. In addition to the antioxidant, anti-inflammatory,
and anticarcinogenic properties of the catechins, they also exhibit a role in maintaining normal
fat mass and body mass. There are numerous research studies showing that regular green tea
consumption is associated with lower body mass, BMI, and waist circumference. In vitro and
animal experiments confirm beneficial effects of catechins on the energetic metabolism. These
compounds lower lipid and carbohydrates absorption in the intestine. Additionally, they affect
the energetic metabolism, lowering the rate of lipogenesis and adipogenesis, while stimulating
lipolysis and fatty acid oxidation, and increasing energy expenditure. Moreover, it has been established that green tea catechins have an effect on the glucose uptake in the insulin-dependent
manner – by GLUT4. The aim of the following paper was to review and summarize the literature
data concerning the role of green tea catechins in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Patrycja Gogga
- Zakład Biochemii Żywienia, Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej, Gdański Uniwersytet Medyczny
| | - Monika Szałajda
- Zakład Biochemii Żywienia, Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej, Gdański Uniwersytet Medyczny
| | - Agata Janczy
- Zakład Biochemii Żywienia, Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej, Gdański Uniwersytet Medyczny
| |
Collapse
|
81
|
Janiszewska J, Ostrowska J, Szostak-Węgierek D. The Influence of Nutrition on Adiponectin-A Narrative Review. Nutrients 2021; 13:1394. [PMID: 33919141 PMCID: PMC8143119 DOI: 10.3390/nu13051394] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
The adipose tissue is an active endocrine organ which synthesizes and secretes a variety of adipokines, including adiponectin with its anti-inflammatory properties. Its expression is influenced by numerous factors such as age, sex, body weight and adipose tissue content. However, dietary factors, i.e., diet structure and the percentage of individual nutrients and products, are very important modulators. Beneficial dietary habits are the Mediterranean diet, DASH diet, diet based on plant products and diet with reduced energy value. Moreover, the share of individual products and nutrients which increase the concentration of adiponectin is worth noting. This group may include monounsaturated fatty acids, polyunsaturated omega-3 fatty acids, dietary fiber, polyphenols, alcohol and milk products. Conversely, dietary ingredients which have a negative effect on the concentration of adiponectin are typical components of the Western diet: saturated fatty acids, trans fatty acids, monosaccharides and disaccharides, and red meat. Furthermore, a diet characterized by a high glycemic index such as a high-carbohydrate low-fat diet also seems to be unfavorable. Due to the fact that available knowledge should be systematized, this study aimed to summarize the most recent research on the influence of dietary factors on the concentration of adiponectin.
Collapse
Affiliation(s)
| | - Joanna Ostrowska
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka Str. 27, 01-445 Warsaw, Poland; (J.J.); (D.S.-W.)
| | | |
Collapse
|
82
|
The Impact of Epigallocatechin Gallate and Coconut Oil Treatment on Cortisol Activity and Depression in Multiple Sclerosis Patients. Life (Basel) 2021; 11:life11040353. [PMID: 33920655 PMCID: PMC8073508 DOI: 10.3390/life11040353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Multiple sclerosis (MS) is pathogenically characterized by high oxidative stress and symptomatically by progressive muscle loss and increased body fat associated with the presence of depression. Epigallocatechin gallate (EGCG) (particularly present in green tea) and ketone bodies (in particular beta-hydroxybutyrate (BHB)), whose main source is coconut oil, have shown emotional benefits and body fat loss. The aim of this study was to assess the impact of EGCG and coconut oil on cortisol activity related to fat loss and depression in MS patients. (2) Methods: The study involved 51 MS patients who were randomly divided into an intervention group or a control group. The intervention group received 800 mg of EGCG and 60 mL of coconut oil, which were included in their daily diet for four months. The control group received placebo and all patients followed an isocaloric diet. A blood sample was collected before and after the four-month period, and levels of cortisol, albumin and BHB were measured in serum. In addition, immediately before and after the intervention, anthropometric variables were measured: waist-to-hip ratio (WHR), body fat mass percentage, fat weight, total weight, and muscle mass percentage. Depression was assessed with the Beck Depression Inventory II (BDI-II). (3) Results: No significant changes were obtained in cortisol levels in any of the groups, and there was a significant increase in albumin in the blood of the intervention group only that could lead to a decrease in serum free cortisol. In addition, it was observed a significant decrease in levels of depression and abdominal fat. (4) Conclusions: EGCG combined with coconut oil increase the concentration of albumin in blood and produce less depression in MS patients.
Collapse
|
83
|
Effect of Acute and Chronic Dietary Supplementation with Green Tea Catechins on Resting Metabolic Rate, Energy Expenditure and Respiratory Quotient: A Systematic Review. Nutrients 2021; 13:nu13020644. [PMID: 33671139 PMCID: PMC7922336 DOI: 10.3390/nu13020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
The consumption of green tea catechins (GTC) is associated with modulations of fat metabolism and consequent weight loss. The aim of this systematic review was to investigate the effect of GTC on resting metabolic rate (RMR), energy expenditure (EE), and respiratory quotient (RQ). Eligible studies considered both the chronic and acute intake of GTC-based supplements, with epigallocatechin gallate (EGCG) doses ranging between 100–800 mg. Findings from 15 studies (n = 499 participants) lasting 8–12 weeks (for chronic consumption) or 1–3 days (for acute intake) are summarized. This review reveals the positive effects of GTC supplementation on RQ values (272 subjects). Regarding the effects of acute and chronic GTC supplementation on RMR (244 subjects) and EE (255 subjects), the results did not allow for a definitive conclusion, even though they were promising, because some reported a positive improvement (two studies revealed an increase in RMR: one demonstrated an RMR increase of 43.82 kcal/day and another demonstrated an increase of 260.8 kcal/day, mainly when subjects were also engaged in resistance training exercise). Considering GTC daily dose supplementation, studies in which modifications of energetic parameters occurred, in particular RQ reduction, considered GTC low doses (100–300 mg). GTC may be useful for improving metabolic profiles. Further investigations are needed to better define adequate doses of supplementation.
Collapse
|
84
|
Noce A, Di Lauro M, Di Daniele F, Pietroboni Zaitseva A, Marrone G, Borboni P, Di Daniele N. Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients 2021; 13:630. [PMID: 33669163 PMCID: PMC7919668 DOI: 10.3390/nu13020630] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) is a clinical manifestation characterized by a plethora of comorbidities, including hyperglycemia, abdominal obesity, arterial hypertension, and dyslipidemia. All MetS comorbidities participate to induce a low-grade inflammation state and oxidative stress, typical of this syndrome. MetS is related to an increased risk of cardiovascular diseases and early death, with an important impact on health-care costs. For its clinic management a poly-pharmaceutical therapy is often required, but this can cause side effects and reduce the patient's compliance. For this reason, finding a valid and alternative therapeutic strategy, natural and free of side effects, could represent a useful tool in the fight the MetS. In this context, the use of functional foods, and the assumption of natural bioactive compounds (NBCs), could exert beneficial effects on body weight, blood pressure and glucose metabolism control, on endothelial damage, on the improvement of lipid profile, on the inflammatory state, and on oxidative stress. This review focuses on the possible beneficial role of NBCs in the prevention and in the clinical management of MetS and its comorbidities.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Patrizia Borboni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| |
Collapse
|
85
|
Shi Z, Zhu JX, Guo YM, Niu M, Zhang L, Tu C, Huang Y, Li PY, Zhao X, Zhang ZT, Bai ZF, Zhang GQ, Lu Y, Xiao XH, Wang JB. Epigallocatechin Gallate During Dietary Restriction - Potential Mechanisms of Enhanced Liver Injury. Front Pharmacol 2021; 11:609378. [PMID: 33584288 PMCID: PMC7878556 DOI: 10.3389/fphar.2020.609378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
Green tea extract (GTE) is popular in weight loss, and epigallocatechin gallate (EGCG) is considered as the main active component. However, GTE is the primary cause of herbal and dietary supplement-induced liver injury in the United States. Whether there is a greater risk of liver injury when EGCG is consumed during dieting for weight loss has not been previously reported. This study found for the first time that EGCG could induce enhanced lipid metabolism pathways, suggesting that EGCG had the so-called “fat burning” effect, although EGCG did not cause liver injury at doses of 400 or 800 mg/kg in normal mice. Intriguingly, we found that EGCG caused dose-dependent hepatotoxicity on mice under dietary restriction, suggesting the potential combination effects of dietary restriction and EGCG. The combination effect between EGCG and dietary restriction led to overactivation of linoleic acid and arachidonic acid oxidation pathways, significantly increasing the accumulation of pro-inflammatory lipid metabolites and thus mediating liver injury. We also found that the disruption of Lands’ cycle and sphingomyelin-ceramides cycle and the high expression of taurine-conjugated bile acids were important metabolomic characteristics in EGCG-induced liver injury under dietary restriction. This original discovery suggests that people should not go on a diet while consuming EGCG for weight loss; otherwise the risk of liver injury will be significantly increased. This discovery provides new evidence for understanding the “drug-host” interaction hypothesis of drug hepatotoxicity and provides experimental reference for clinical safe use of green tea-related dietary supplements.
Collapse
Affiliation(s)
- Zhuo Shi
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing-Xiao Zhu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ming Guo
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Huang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zi-Teng Zhang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang-Qin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-He Xiao
- Integrative Medical Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
86
|
Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complement Ther Clin Pract 2021; 43:101317. [PMID: 33517103 DOI: 10.1016/j.ctcp.2021.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM This randomized study aimed to evaluate the effect of green tea extract (GTE) intake on clinical and neurophysiological parameters in patients with mild-to-moderate diabetic peripheral neuropathy (DPN). PATIENTS AND METHODS The present study included 194 patients with DPN. Patients were randomized into two treatment arms: GTE (n = 96) and placebo (n = 98) arms who received allocated treatment for 16 weeks. Symptoms of DPN were assessed using Toronto Clinical Scoring System (TCSS). Sensorineural pain was assessed using visual analog scale (VAS). Neural dysfunction was evaluated using the vibration perception thresholds (VPT). Assessments were made at baseline and after 4, 8, and 16 weeks of starting treatment. RESULTS At baseline and after 4 weeks of treatment, VAS, TCSS and VPT were comparable in the studied groups. However, after 8 weeks of treatment, patients in GTE group expressed lower VAS scores, significantly lower TCSS scores and significantly lower VPT. As treatment continued, the differences between groups regarding the outcome parameters became more evident at 16 weeks. CONCLUSIONS GTE intake may have a beneficial value in treatment of DPN.
Collapse
|
87
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
88
|
Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021; 26:molecules26020453. [PMID: 33467101 PMCID: PMC7830344 DOI: 10.3390/molecules26020453] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Correspondence: ; Tel.: +81-55-924-0601
| | - Ryuuta Fukutomi
- Quality Management Div. Higuchi Inc., Minato-ku, Tokyo 108-0075, Japan;
| | - Yutaka Shoji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| | - Shingo Goto
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimizu, Shizuoka 424-0292, Japan;
| | - Mamoru Isemura
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| |
Collapse
|
89
|
Xie L, Tang Q, Yao D, Gu Q, Zheng H, Wang X, Yu Z, Shen X. Effect of Decaffeinated Green Tea Polyphenols on Body Fat and Precocious Puberty in Obese Girls: A Randomized Controlled Trial. Front Endocrinol (Lausanne) 2021; 12:736724. [PMID: 34712203 PMCID: PMC8546255 DOI: 10.3389/fendo.2021.736724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity has been reported to be an important contributing factor for precocious puberty, especially in girls. The effect of green tea polyphenols on weight reduction in adult population has been shown, but few related studies have been conducted in children. This study was performed to examine the effectiveness and safety of decaffeinated green tea polyphenols (DGTP) on ameliorating obesity and early sexual development in girls with obesity. DESIGN This is a double-blinded randomized controlled trial. Girls with obesity aged 6-10 years old were randomly assigned to receive 400 mg/day DGTP or isodose placebo orally for 12 weeks. During this period, all participants received the same instruction on diet and exercise from trained dietitians. Anthropometric measurements, secondary sexual characteristics, B-scan ultrasonography of uterus, ovaries and breast tissues, and related biochemical parameters were examined and assessed pre- and post-treatment. RESULTS Between August 2018 and January 2020, 62 girls with obesity (DGTP group n = 31, control group n = 31) completed the intervention and were included in analysis. After the intervention, body mass index, waist circumference, and waist-to-hip ratio significantly decreased in both groups, but the percentage of body fat (PBF), serum uric acid (UA), and the volumes of ovaries decreased significantly only within the DGTP group. After controlling confounders, DGTP showed a significantly decreased effect on the change of PBF (β = 2.932, 95% CI: 0.214 to 5.650), serum UA (β = 52.601, 95% CI: 2.520 to 102.681), and ovarian volumes (right: β = 1.881, 95% CI: 0.062 to 3.699, left: β = 0.971, 95% CI: 0.019 to 1.923) in girls with obesity. No side effect was reported in both groups during the whole period. CONCLUSION DGTP have shown beneficial effects of ameliorated obesity and postponed early sexual development in girls with obesity without any adverse effects. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/ct2/show/NCT03628937], identifier [NCT03628937].
Collapse
Affiliation(s)
- Luyao Xie
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Gu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zheng
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodi Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Yu
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, United States
| | - Xiuhua Shen
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiuhua Shen,
| |
Collapse
|
90
|
Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition 2020; 84:111119. [PMID: 33476999 DOI: 10.1016/j.nut.2020.111119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Obesity is an important cause of morbidity and mortality due to its close association with metabolic disorders including diabetes, cardiovascular diseases, and certain types of cancer. According to the Developmental Origins of Adult Health and Disease hypothesis, obesity is likely caused by epigenetic changes. Recent studies have shown an association between epigenetic dysregulation of certain genes and obesity. Due to their reversible characteristic, epigenetic dysregulations can be restored. Restoration of epigenetic dysregulation in obesity-related genes by epigenetic modifiers may be a new treatment option for obesity. Certain phytochemicals such as tea polyphenols, curcumin, genistein, isothiocyanates, and citrus isoflavonoids were shown to prevent weight gain. These phytochemicals are known for their antioxidant effects but they also modify epigenetic mechanisms. These phytochemicals may have a therapeutic potential in the management of obesity. The aim of this study was to review the epigenetic effects of certain phytochemicals on the expression of obesity-related genes.
Collapse
|
91
|
Abstract
Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Han-Ning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin-Zhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
92
|
Effects of excessive tea consumption on pregnancy weight gain and neonatal birth weight. Obstet Gynecol Sci 2020; 64:34-41. [PMID: 33249804 PMCID: PMC7834757 DOI: 10.5468/ogs.20157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Tea lovers are increasing worldwide. We hope that this report is the first to discuss the possible impacts of high black tea consumption on gestational weight gain (GWG) and birth parameters. METHODS Throughout one year, a total of 7,063 pregnant ladies coming for first antenatal visit were screened in a major tertiary center. Of them, 1,138 were involved and divided according to their preference into 3 groups: excessive tea (ET), usual tea (UT), and mixed beverages group. The study included women who gave birth to healthy neonates. RESULTS The rate of ET consumption was 4.13% with a total of 41 cases. The UT group (controls) comprised 94 women. ET was significantly associated (P<0.05) with maternal age, parity, occupation, smoking, and poor GWG starting from 30 weeks' gestation until delivery, low birth weight, and small for gestational age (SGA). Poor GWG had a higher relative risk (with 95% confidence interval) in the ET group than in the UT group in crude (1.84 [0.85-2.43]) and risk adjusted models (1.25 [0.28-2.26]). Further, similar results were obtained for SGA in the crude and 3 adjusted models, where the first model was adjusted for bio-obstetrical variables, the second for social parameters, and the third for all factors included in the previous models (1.53 [0.62-2.81], 1.52 [0.71-2.50], and 1.46 [0.78-2.39]), respectively. CONCLUSION Consumption of large amounts of daily black tea during pregnancy (≥1,500 mL) is a significant cause of poor GWG and SGA.
Collapse
|
93
|
Das PR, Park MJ, Lee CM, Nam SH, Kim YM, Kim DI, Eun JB. Aqueous green tea infusion extracted by ultra-sonication method, but not by conventional method, facilitates GLUT4 membrane translocation in adipocytes which potently ameliorates high-fat diet-induced obesity. J Food Biochem 2020; 45:e13561. [PMID: 33179282 DOI: 10.1111/jfbc.13561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Green tea contains bioactive compounds, such as polyphenols, responsible for its health-promoting effects, including antiobesity and antidiabetic effects. We previously reported that ultra-sonication extraction (UE) could efficiently increase the extraction yield of green tea compounds. In the present study, we found that the extract obtained using UE contained higher phenolic and flavonoid contents than that obtained using the conventional method. We therefore considered the extract as a bioactive metabolite-rich functional green tea extract (BMF-GTE), and tested its glucose-lowering effect by generating an adipocyte cell line stably expressing 7myc-GLUT4-GFP. We found that BMF-GTE treatment increased GLUT4 translocation to the plasma membrane. Moreover, BMF-GTE administration attenuated weight gain in mice fed a high-fat diet (HFD). Importantly, HFD-induced glucose tolerance was ameliorated in the mice receiving BMF-GTE. Therefore, we conclude that BMF-GTE worked against obesity and diabetes, at least partially, by enhancing GLUT4 translocation in adipocytes. PRACTICAL APPLICATIONS: As green tea is one of the most consumed beverages worldwide, its health effects have been widely tested. In our previous studies, we found that ultra-sonication extraction (UE) has the potential to increase the aqueous extraction yield of green tea compounds compared to conventional extraction techniques. In this study, we examined the biological effect of bioactive metabolite-rich functional green tea extract (BMF-GTE) obtained using UE; we observed that administering BMF-GTE lowered the body weight and increased insulin sensitivity in mice fed a high-fat diet, potentially by facilitating the membrane translocation of GLUT4 in adipocytes. Therefore, this study suggests that the extract obtained with UE had antiobesity and antidiabetic properties, indicative of a potential application of UE in maximizing the beneficial effects of green tea on human health.
Collapse
Affiliation(s)
- Protiva Rani Das
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea.,Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, USA
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Chang-Min Lee
- Department of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| |
Collapse
|
94
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
95
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
96
|
Green tea consumption increases sperm concentration and viability in male rats and is safe for reproductive, liver and kidney health. Sci Rep 2020; 10:15269. [PMID: 32943691 PMCID: PMC7498455 DOI: 10.1038/s41598-020-72319-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Green tea is a popularly consumed beverage worldwide and contains polyphenols, whose antioxidant activities could improve sperm parameters and fertility thereof. We investigated the effect of green tea on the male rat reproductive system as well as its safety. Male Wistar rats were administered 2 and 5% aqueous extract of green tea for 52 days’ ad libitum, while the control group received tap water. Total polyphenol, flavanol, flavonol and soluble solids significantly increased in a concentration-dependent manner in vitro (P < 0.01). Weights of body, testis, epididymis, prostate gland, seminal vesicles, and liver, serum levels of testosterone, ferric reducing antioxidant power, creatinine, and sperm motility, remained unchanged (P > 0.05). Kidney weight, sperm concentration and vitality, spontaneous acrosome reaction increased (P < 0.05), while alanine transaminase and aspartate transaminase levels decreased (P < 0.05). Catalase, superoxide dismutase, glutathione and lipid peroxidation remained unchanged in the testes, liver and kidney (P > 0.05). Histological sections of testis, epididymis, kidney and liver showed no conspicuous alteration. Diameter and epithelial height of seminiferous tubule decreased, while caudal epididymis epithelial height increased (P < 0.01). Consumption of green tea in the conditions used in the present study seems to be safe and improved sperm parameters. However, subtle structural changes observed in the decreased diameter and epithelial height of the seminiferous tubule and increased acrosome reaction needs further investigation.
Collapse
|
97
|
|
98
|
Sarriá B, Sierra-Cinos JL, García-Diz L, Martínez-López S, Mateos R, Bravo-Clemente L. Green/Roasted Coffee May Reduce Cardiovascular Risk in Hypercholesterolemic Subjects by Decreasing Body Weight, Abdominal Adiposity and Blood Pressure. Foods 2020; 9:E1191. [PMID: 32872136 PMCID: PMC7554874 DOI: 10.3390/foods9091191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
In previous studies, after regularly consuming a green/roasted coffee blend, body weight, body fat%, glucose, plasminogen activator inhibitor-1 (PAI-1), resistin, leptin, ghrelin, diastolic (DBP) and systolic blood pressure (SBP) significantly changed in healthy and hypercholesterolemic subjects. However, glucagon, total-cholesterol (T-C), triglycerides (TG), LDL-cholesterol (LDL-C) and Homeostasis Model Assessment index to estimate insulin resistance (HOMA-IR) only changed in the hypercholesterolemics. This work looks into the antiobesity effects of coffee blend and into the relationship of antiobesity with the aforementioned cardiometabolic modifications in hypercholesterolemics. (1) Methods: Tricipital and subscapular skinfolds, hip, thigh, arm and waist circumference (WC) were measured in normocholesterolemic and hypercholesterolemics. To understand the relationship between cardiometabolic and antiobesity results in hypercholesterolemics, factor analysis was carried out using baseline values of the variables that changed. (2) Results: WC, WC/hip and WC/height showed significant coffee×group interaction, and in hypercholesterolemics tended to decrease. After factor analysis, three factors emerged, accounting for 29.46, 13.13 and 11.79% of variance. Only factor 1 (main loadings: WC, DBP and SBP, body weight, WC/hip and WC/height ratios, TG and ghrelin, inversely) decreased after coffee intake. (3) Conclusion: Regularly consuming green/roasted coffee may help to control body weight, and in hypercholesterolemics, may reduce cardiovascular risk by reducing abdominal adiposity and blood pressure.
Collapse
Affiliation(s)
- Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain; (S.M.-L.); (R.M.); (L.B.-C.)
| | - José Luis Sierra-Cinos
- Department of Nutrition and Food Science I, School of Pharmacy, Complutense University of Madrid (UCM), Ciudad Universitaria, s/n 28040 Madrid, Spain; (J.L.S.-C.); (L.G.-D.)
| | - Luis García-Diz
- Department of Nutrition and Food Science I, School of Pharmacy, Complutense University of Madrid (UCM), Ciudad Universitaria, s/n 28040 Madrid, Spain; (J.L.S.-C.); (L.G.-D.)
| | - Sara Martínez-López
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain; (S.M.-L.); (R.M.); (L.B.-C.)
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain; (S.M.-L.); (R.M.); (L.B.-C.)
| | - Laura Bravo-Clemente
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain; (S.M.-L.); (R.M.); (L.B.-C.)
| |
Collapse
|
99
|
de Morais Junior AC, Schincaglia RM, Passarelli M, Pimentel GD, Mota JF. Acute Epigallocatechin-3-Gallate Supplementation Alters Postprandial Lipids after a Fast-Food Meal in Healthy Young Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2020; 12:E2533. [PMID: 32825556 PMCID: PMC7551107 DOI: 10.3390/nu12092533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
A high-fat fast-food meal negatively impacts postprandial metabolism even in healthy young people. In experimental studies, epigallocatechin-3-gallate (EGCG), a bioactive compound present in green tea, has been described as a potent natural inhibitor of fatty acid synthase. Thus, we sought to evaluate the effects of acute EGCG supplementation on postprandial lipid profile, glucose, and insulin levels following a high-fat fast-food meal. Fourteen healthy young women 21 ± 1 years and body mass index 21.4 ± 0.41 kg/m2 were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants ingested capsules containing 800 mg EGCG or placebo immediately before a typical fast-food meal rich in saturated fatty acids. Blood samples were collected at baseline and then at 90 and 120 min after the meal. The EGCG treatment attenuated postprandial triglycerides (p = 0.029) and decreased high-density lipoprotein cholesterol (HDL-c) (p = 0.016) at 120 min. No treatment × time interaction was found for total cholesterol, low-density lipoprotein (LDL-c), and glucose or insulin levels. The incremental area under the curve (iAUC) for glucose was decreased by EGCG treatment (p < 0.05). No difference was observed in the iAUC for triglycerides and HDL-c. In healthy young women, acute EGCG supplementation attenuated postprandial triglycerides and glucose but negatively impacted HDL-c following a fast-food meal.
Collapse
Affiliation(s)
- Alcides C. de Morais Junior
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goiás (UFG), Goiania 74690-900, GO, Brazil; (A.C.d.M.J.); (R.M.S.); (G.D.P.)
| | - Raquel M. Schincaglia
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goiás (UFG), Goiania 74690-900, GO, Brazil; (A.C.d.M.J.); (R.M.S.); (G.D.P.)
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-900, Brazil;
- Programa de Pós-Graduação em Medicina da Universidade Nove de Julho, Sao Paulo 01504-000, Brazil
| | - Gustavo D. Pimentel
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goiás (UFG), Goiania 74690-900, GO, Brazil; (A.C.d.M.J.); (R.M.S.); (G.D.P.)
| | - João F. Mota
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goiás (UFG), Goiania 74690-900, GO, Brazil; (A.C.d.M.J.); (R.M.S.); (G.D.P.)
| |
Collapse
|
100
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|