51
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
52
|
Drosophila Melanogaster as a Model Organism for Obesity and Type-2 Diabetes Mellitus by Applying High-Sugar and High-Fat Diets. Biomolecules 2022; 12:biom12020307. [PMID: 35204807 PMCID: PMC8869196 DOI: 10.3390/biom12020307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Several studies have been published introducing Drosophila melanogaster as a research model to investigate the effects of high-calorie diets on metabolic dysfunctions. However, differences between the use of high-sugar diets (HSD) and high-fat diets (HFD) to affect fly physiology, as well as the influence on sex and age, have been seldom described. Thus, the aim of the present work was to investigate and compare the effects of HSD (30% sucrose) and HFD (15% coconut oil) on symptoms of metabolic dysfunction related to obesity and type-2 diabetes mellitus, including weight gain, survival, climbing ability, glucose and triglycerides accumulation and expression levels of Drosophila insulin-like peptides (dIlps). Female and male flies were subjected to HSD and HFD for 10, 20 and 30 days. The obtained results showed clear differences in the effects of both diets on survival, glucose and triglyceride accumulation and dIlps expression, being gender and age determinant. The present study also suggested that weight gain does not seem to be an appropriate parameter to define fly obesity, since other characteristics appear to be more meaningful in the development of obesity phenotypes. Taken together, the results demonstrate a key role for both diets, HSD and HFD, to induce an obese fly phenotype with associated diseases. However, further studies are needed to elucidate the underlying molecular mechanisms how both diets differently affect fly metabolism.
Collapse
|
53
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
54
|
Pandey M, Bansal S, Chawla G. Evaluation of lifespan promoting effects of biofortified wheat in Drosophila melanogaster. Exp Gerontol 2022; 160:111697. [PMID: 35016996 PMCID: PMC7613042 DOI: 10.1016/j.exger.2022.111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/04/2022]
Abstract
Evaluation of nutritionally enhanced biofortified dietary interventions that increase lifespan may uncover cost-effective and sustainable approaches for treatment of age-related morbidities and increasing healthy life expectancy. In this study, we report that anthocyanin rich, high yielding crossbred blue wheat prolongs lifespan of Drosophila melanogaster in different dietary contexts. In addition to functioning as an antioxidant rich intervention, the biofortified blue wheat also works through modulating expression of DR pathway genes including AMPK alpha, SREBP, PEPCK and Cry. Supplementation with blue- or purple-colored wheat provided better protection against paraquat-induced oxidative stress than control diet and increased survivability of flies in which superoxide dismutase 2 was knocked down conditionally in adults. Lastly, our findings indicate that supplementing biofortified blue wheat formulated diet prevented the decrease in lifespan and cardiac structural pathologies associated with intake of high fat diet. Overall, our findings indicate that plant-based diets formulated with biofortified cereal crops promote healthy ageing and delay progression of diseases that are exacerbated by accumulation of oxidative damage.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.
| |
Collapse
|
55
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
56
|
Sexual Dimorphism in Metabolic Responses to Western Diet in Drosophila melanogaster. Biomolecules 2021; 12:biom12010033. [PMID: 35053181 PMCID: PMC8774106 DOI: 10.3390/biom12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a chronic disease affecting millions of people worldwide. The fruit fly (Drosophila melanogaster) is an interesting research model to study metabolic and transcriptomic responses to obesogenic diets. However, the sex-specific differences in these responses are still understudied and perhaps underestimated. In this study, we exposed adult male and female Dahomey fruit flies to a standard diet supplemented with sugar, fat, or a combination of both. The exposure to a diet supplemented with 10% sugar and 10% fat efficiently induced an increase in the lipid content in flies, a hallmark for obesity. This increase in lipid content was more prominent in males, while females displayed significant changes in glycogen content. A strong effect of the diets on the ovarian size and number of ma-ture oocytes was also present in females exposed to diets supplemented with fat and a combina-tion of fat and sugar. In both males and females, fat body morphology changed and was associ-ated with an increase in lipid content of fat cells in response to the diets. The expression of me-tabolism-related genes also displayed a strong sexually dimorphic response under normal condi-tions and in response to sugar and/or fat-supplemented diets. Here, we show that the exposure of adult fruit flies to an obesogenic diet containing both sugar and fat allowed studying sexual dimorphism in metabolism and the expression of genes regulating metabolism.
Collapse
|
57
|
Touaibia M, St-Coeur PD, Duff P, Faye DC, Pichaud N. 5-Benzylidene, 5-benzyl, and 3-benzylthiazolidine-2,4-diones as potential inhibitors of the mitochondrial pyruvate carrier: Effects on mitochondrial functions and survival in Drosophila melanogaster. Eur J Pharmacol 2021; 913:174627. [PMID: 34774497 DOI: 10.1016/j.ejphar.2021.174627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
A series of thiazolidinediones (TZDs) were synthesized and screened for their effect on the mitochondrial respiration as well as on several mitochondrial respiratory system components of Drosophila melanogaster. Substituted and non-substituted 5-benzylidene and 5-benzylthiazolidine-2,4-diones were investigated. The effect of a substitution in position 3, at the nitrogen atom, of the thiozolidine heterocycle was also investigated. The designed TZDs were compared to UK5099, the most potent mitochondrial pyruvate carrier (MPC) inhibitor, in in vitro and in vivo tests. Compared to 5-benzylthiazolidine-2,4-diones 6-7 and 3-benzylthiazolidine-2,4-dione 8, 5-benzylidenethiazolidine-2,4-diones 2-5 showed more inhibitory capacity on mitochondrial respiration. 5-(4-Hydroxybenzylidene)thiazolidine-2,4-dione (3) and 5-(3-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (5) were among the best compounds that compared well with UK5099. Additionally, TZDs 3 and 5, showed no effects on the non-coupled respiration and weak effects on pathways using substrates such as proline, succinate, and G3P. 5-Benzylidenethiazolidine-2,4-dione 3 showed a positive effect on survival and lifespan when added to Drosophila standard and high fat diet. Interestingly, analog 3 completely reversed the effects of high fat diet on Drosophila longevity and induced metabolic changes which suggests an in vivo inhibition of MPC at the mitochondrial level.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| | | | - Patrick Duff
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Diene Codou Faye
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
58
|
Doğan C, Güney G, Güzel KK, Can A, Hegedus DD, Toprak U. What You Eat Matters: Nutrient Inputs Alter the Metabolism and Neuropeptide Expression in Egyptian Cotton Leaf Worm, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Physiol 2021; 12:773688. [PMID: 34803746 PMCID: PMC8600137 DOI: 10.3389/fphys.2021.773688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Lipids and carbohydrates are the two primary energy sources for both animals and insects. Energy homeostasis is under strict control by the neuroendocrine system, and disruption of energy homeostasis leads to the development of various disorders, such as obesity, diabetes, fatty liver syndrome, and cardiac dysfunction. One critical factor in this respect is feeding habits and diet composition. Insects are good models to study the physiological and biochemical background of the effect of diet on energy homeostasis and related disorders; however, most studies are based on a single model species, Drosophila melanogaster. In the current study, we examined the effects of four different diets, high fat (HFD), high sugar (HSD), calcium-rich (CRD), and a plant-based (PBD) on energy homeostasis in younger (third instar) and older (fifth instar) larvae of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) in comparison to a regular artificial bean diet. Both HSD and HFD led to weight gain, while CRD had the opposite effect and PBD had no effect in fifth instar larvae and pupae. The pattern was the same for HSD and CRD in third instar larvae while a reduction in weight was detected with HFD and PBD. Larval development was shortest with the HSD, while HFD, CRD, and PBD led to retardation compared to the control. Triglyceride (TG) levels were higher with HFD, HSD, and PBD, with larger lipid droplet sizes, while CRD led to a reduction of TG levels and lipid droplet size. Trehalose levels were highest with HSD, while CRD led to a reduction at third instar larvae, and HFD and PBD had no effect. Fifth instar larvae had similar levels of trehalose with all diets. There was no difference in the expression of the genes encoding neuropeptides SpoliAKH and SpoliILP1-2 with different diets in third instar larvae, while all three genes were expressed primarily with HSD, and SpolisNPF was primarily expressed with HFD in fifth instar larvae. In summary, different diet treatments alter the development of insects, and energy and metabolic pathways through the regulation of peptide hormones.
Collapse
Affiliation(s)
- Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Kardelen K Güzel
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Alp Can
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
59
|
Moraes KCM, Montagne J. Drosophila melanogaster: A Powerful Tiny Animal Model for the Study of Metabolic Hepatic Diseases. Front Physiol 2021; 12:728407. [PMID: 34603083 PMCID: PMC8481879 DOI: 10.3389/fphys.2021.728407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Animal experimentation is limited by unethical procedures, time-consuming protocols, and high cost. Thus, the development of innovative approaches for disease treatment based on alternative models in a fast, safe, and economic manner is an important, yet challenging goal. In this paradigm, the fruit-fly Drosophila melanogaster has become a powerful model for biomedical research, considering its short life cycle and low-cost maintenance. In addition, biological processes are conserved and homologs of ∼75% of human disease-related genes are found in the fruit-fly. Therefore, this model has been used in innovative approaches to evaluate and validate the functional activities of candidate molecules identified via in vitro large-scale analyses, as putative agents to treat or reverse pathological conditions. In this context, Drosophila offers a powerful alternative to investigate the molecular aspects of liver diseases, since no effective therapies are available for those pathologies. Non-alcoholic fatty liver disease is the most common form of chronic hepatic dysfunctions, which may progress to the development of chronic hepatitis and ultimately to cirrhosis, thereby increasing the risk for hepatocellular carcinoma (HCC). This deleterious situation reinforces the use of the Drosophila model to accelerate functional research aimed at deciphering the mechanisms that sustain the disease. In this short review, we illustrate the relevance of using the fruit-fly to address aspects of liver pathologies to contribute to the biomedical area.
Collapse
Affiliation(s)
- Karen C M Moraes
- Laboratório de Sinalização Celular e Expressão Gênica, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, Brazil
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
60
|
Sarangi M, Dus M. Crème de la Créature: Dietary Influences on Behavior in Animal Models. Front Behav Neurosci 2021; 15:746299. [PMID: 34658807 PMCID: PMC8511460 DOI: 10.3389/fnbeh.2021.746299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In humans, alterations in cognitive, motivated, and affective behaviors have been described with consumption of processed diets high in refined sugars and saturated fats and with high body mass index, but the causes, mechanisms, and consequences of these changes remain poorly understood. Animal models have provided an opportunity to answer these questions and illuminate the ways in which diet composition, especially high-levels of added sugar and saturated fats, contribute to brain physiology, plasticity, and behavior. Here we review findings from invertebrate (flies) and vertebrate models (rodents, zebrafish) that implicate these diets with changes in multiple behaviors, including eating, learning and memory, and motivation, and discuss limitations, open questions, and future opportunities.
Collapse
Affiliation(s)
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
61
|
Tuthill II BF, Quaglia CJ, O'Hara E, Musselman LP. Loss of Stearoyl-CoA desaturase 1 leads to cardiac dysfunction and lipotoxicity. J Exp Biol 2021; 224:jeb240432. [PMID: 34423827 PMCID: PMC8502255 DOI: 10.1242/jeb.240432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
Diets high in carbohydrates are associated with type 2 diabetes and its co-morbidities, including hyperglycemia, hyperlipidemia, obesity, hepatic steatosis and cardiovascular disease. We used a high-sugar diet to study the pathophysiology of diet-induced metabolic disease in Drosophila melanogaster. High-sugar diets produce hyperglycemia, obesity, insulin resistance and cardiomyopathy in flies, along with ectopic accumulation of toxic lipids, or lipotoxicity. Stearoyl-CoA desaturase 1 is an enzyme that contributes to long-chain fatty acid metabolism by introducing a double bond into the acyl chain. Knockdown of stearoyl-CoA desaturase 1 in the fat body reduced lipogenesis and exacerbated pathophysiology in flies reared on high-sucrose diets. These flies exhibited dyslipidemia and growth deficiency in addition to defects in cardiac and gut function. We assessed the lipidome of these flies using tandem mass spectrometry to provide insight into the relationship between potentially lipotoxic species and type 2 diabetes-like pathophysiology. Oleic acid supplementation is able to rescue a variety of phenotypes produced by stearoyl-CoA desaturase 1 RNAi, including fly mass, triglyceride storage, gut development and cardiac failure. Taken together, these data suggest a protective role for monounsaturated fatty acids in diet-induced metabolic disease phenotypes.
Collapse
|
62
|
Wen DT, Zheng L, Lu K, Hou WQ. Activation of cardiac Nmnat/NAD+/SIR2 pathways mediates endurance exercise resistance to lipotoxic cardiomyopathy in aging Drosophila. J Exp Biol 2021; 224:272180. [PMID: 34495320 DOI: 10.1242/jeb.242425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Endurance exercise is an important way to resist and treat high-fat diet (HFD)-induced lipotoxic cardiomyopathy, but the underlying molecular mechanisms are poorly understood. Here, we used Drosophila to identify whether cardiac Nmnat/NAD+/SIR2 pathway activation mediates endurance exercise-induced resistance to lipotoxic cardiomyopathy. The results showed that endurance exercise activated the cardiac Nmnat/NAD+/SIR2/FOXO pathway and the Nmnat/NAD+/SIR2/PGC-1α pathway, including up-regulating cardiac Nmnat, SIR2, FOXO and PGC-1α expression, superoxide dismutase (SOD) activity and NAD+ levels, and it prevented HFD-induced or cardiac Nmnat knockdown-induced cardiac lipid accumulation, malondialdehyde (MDA) content and fibrillation increase, and fractional shortening decrease. Cardiac Nmnat overexpression also activated heart Nmnat/NAD+/SIR2 pathways and resisted HFD-induced cardiac malfunction, but it could not protect against HFD-induced lifespan reduction and locomotor impairment. Exercise improved lifespan and mobility in cardiac Nmnat knockdown flies. Therefore, the current results confirm that cardiac Nmnat/NAD+/SIR2 pathways are important antagonists of HFD-induced lipotoxic cardiomyopathy. Cardiac Nmnat/NAD+/SIR2 pathway activation is an important underlying molecular mechanism by which endurance exercise and cardiac Nmnat overexpression give protection against lipotoxic cardiomyopathy in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Ludong University, City Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, City Yantai 264025, Shandong Province, China
| |
Collapse
|
63
|
Wen DT, Zheng L, Lu K, Hou WQ. Physical exercise prevents age-related heart dysfunction induced by high-salt intake and heart salt-specific overexpression in Drosophila. Aging (Albany NY) 2021; 13:19542-19560. [PMID: 34383711 PMCID: PMC8386524 DOI: 10.18632/aging.203364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
A long-term high-salt intake (HSI) seems to accelerate cardiac aging and age-related diseases, but the molecular mechanism is still not entirely clear. Exercise is an effective way to delay cardiac aging. However, it remains unclear whether long-term exercise (LTE) can protect heart from aging induced by high-salt stress. In this study, heart CG2196(salt) specific overexpression (HSSO) and RNAi (HSSR) was constructed by using the UAS/hand-Gal4 system in Drosophila. Flies were given exercise and a high-salt diet intervention from 1 to 5 weeks of age. Results showed that HSSR and LTE remarkably prevented heart from accelerated age-related defects caused by HSI and HSSO, and these defects included a marked increase in heart period, arrhythmia index, malondialdehyde (MDA) level, salt expression, and dTOR expression, and a marked decrease in fractional shortening, SOD activity level, dFOXO expression, PGC-1α expression, and the number of mitochondria and myofibrils. The combination of HSSR and LTE could better protect the aging heart from the damage of HSI. Therefore, current evidences suggested that LTE resisted HSI-induced heart presenility via blocking CG2196(salt)/TOR/oxidative stress and activating dFOXO/PGC-1α. LTE also reversed heart presenility induced by cardiac-salt overexpression via activating dFOXO/PGC-1α and blocking TOR/oxidative stress.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shandong Province, China
| |
Collapse
|
64
|
Saliu JA, Olajuyin AM, Akinnubi A. Modulatory effect of Artocarpus camansi on ILP-2, InR, and Imp-L2 genes of sucrose -induced diabetes mellitus in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109041. [PMID: 33866007 DOI: 10.1016/j.cbpc.2021.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Diabetes mellitus continues to be a menace, being one of the five major causes of death in the world. In this study, the common fruit fly, Drosophila melanogaster, a well-studied genetic model organism for understanding molecular mechanisms of human diseases, and Artocarpus camansi (breadnut), an underutilized fruit, was used. This study was aimed at investigating the antihyperglycemic potentials of Artocarpus camansi fruit in sucrose-induced diabetic Drosophila melanogaster. Phytochemical screening was carried out after the fruit has been pulverized and freeze-dried. Total phenol content and total flavonoid content were carried out in vitro on the aqueous extract of Artocarpus camansi, and the result obtained showed that its phenol content is low, and its flavonoid content increases at increasing concentrations. Alpha-amylase inhibitory activity was carried out in vivo on sucrose-induced diabetic Drosophila melanogaster tissue. Gene expression profiling of Insulin-like peptide-2 (ILP-2), Insulin-like receptor (InR) and Ecdysone inducible gene L2 (Imp-L2) was carried out on trizol homogenate of Drosophila melanogaster tissue. In this study, Drosophila melanogaster was divided into nine groups. Group1 served as the basal control as they were fed with normal basal diet, group II served as the negative control which were fed with basal diet and 0.5 mL sucrose/100 mL distilled water, group III served as the positive control which were fed with basal diet 0.5 mL sucrose/100 mL distilled water and metformin, groups IV and V which were fed with basal diet and 0.1 and 1% Artocarpus camansi respectively, groups VI and VII were fed with basal diet, sucrose and 0.1 and 1% Artocarpus camansi respectively, groups VIII and IX served the purpose of the synergistic effect which were fed with basal diet, sucrose, metformin and 0.1 and 1% Artocarpus camansi respectively. All the groups were left for seven days. The experiment was conducted for 3 months and the fruit fly meals were changed every 5 days. Gene expression profiling results showed that the dietary inclusion of fruit downregulated the expression of ILP-2 and InR and upregulated the expression of Imp-L2 when the diabetic group were compared with the normal control. The results suggest that Artocarpus camansi fruit could possess antihyperglycemic properties and its use as a nutraceutical in the alleviation of diabetes should be encouraged.
Collapse
Affiliation(s)
- Jamiyu Ayodeji Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria.
| | - Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People Hospital of Zhengzhou University Henan, 450003, China; Department of Natural and Environmental Science, School of Arts and Sciences, American University of Nigeria Lamido Zubairu Way, Yola Township By-pass, P.M.B 2250, Adamawa State, Nigeria
| | - Aderopo Akinnubi
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| |
Collapse
|
65
|
Muller K, Herrera K, Talyn B, Melchiorre E. Toxicological Effects of Roundup ® on Drosophila melanogaster Reproduction. TOXICS 2021; 9:161. [PMID: 34357904 PMCID: PMC8309847 DOI: 10.3390/toxics9070161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Herbicide use has increased dramatically since 2001, particularly Roundup®. Effective in agricultural practice, Roundup® adversely affects non-target organisms, including reproductive and endocrine systems. We exposed fruit flies, Drosophila melanogaster, to either Roundup® Ready to Use, containing pelargonic acid and glyphosate, or Roundup® Super Concentrate, that includes glyphosate and POEA, at sublethal concentrations. Both Roundup® formulations reduced ovary volume with fewer mature oocytes, most adversely at the highest concentration tested. Flies exposed within 2 h of eclosion were affected more than at 4 h, suggesting a critical period of increased ovarian sensitivity. These results support multi-species evidence that glyphosate-based herbicides interfere with normal development of the reproductive systems of non-target organisms.
Collapse
Affiliation(s)
- Kelly Muller
- Department of Chemistry and Biochemistry, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA; (K.M.); (K.H.)
| | - Karina Herrera
- Department of Chemistry and Biochemistry, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA; (K.M.); (K.H.)
| | - Becky Talyn
- Department of Biology and College of Natural Sciences, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Department of Geology, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA;
| |
Collapse
|
66
|
Ding M, Zheng L, Li QF, Wang WL, Peng WD, Zhou M. Exercise-Training Regulates Apolipoprotein B in Drosophila to Improve HFD-Mediated Cardiac Function Damage and Low Exercise Capacity. Front Physiol 2021; 12:650959. [PMID: 34305631 PMCID: PMC8294119 DOI: 10.3389/fphys.2021.650959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Apolipoprotein B plays an essential role in systemic lipid metabolism, and it is closely related to cardiovascular diseases. Exercise-training can regulate systemic lipid metabolism, improve heart function, and improve exercise capacity, but the molecular mechanisms involved are poorly understood. We used a Drosophila model to demonstrate that exercise-training regulates the expression of apoLpp (a homolog of apolipoprotein B) in cardiomyocytes, thereby resisting heart insufficiency and low exercise capacity caused by obesity. The apoLpp is an essential lipid carrier produced in the heart and fat body of Drosophila. In a Drosophila genetic screen, low expression of apoLpp reduced obesity and cardiac dysfunction induced by a high-fat diet (HFD). Cardiac-specific inhibition indicated that reducing apoLpp in the heart during HFD reduced the triglyceride content of the whole-body and reduced heart function damage caused by HFD. In exercise-trained flies, the result was similar to the knockdown effect of apoLpp. Therefore, the inhibition of apoLpp plays an important role in HFD-induced cardiac function impairment and low exercise capacity. Although the apoLpp knockdown of cardiomyocytes alleviated damage to heart function, it did not reduce the arrhythmia and low exercise capacity caused by HFD. Exercise-training can improve this condition more effectively, and the possible reason for this difference is that exercise-training regulates climbing ability in ways to promote metabolism. Exercise-training during HFD feeding can down-regulate the expression of apoLpp, reduce the whole-body TG levels, improve cardiac recovery, and improve exercise capacity. Exercise-training can downregulate the expression of apoLpp in cardiomyocytes to resist cardiac function damage and low exercise capacity caused by HFD. The results revealed the relationship between exercise-training and apoLpp and their essential roles in regulating heart function and climbing ability.
Collapse
Affiliation(s)
- Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiu Fang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Wan Li Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Wan Da Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Meng Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
67
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
68
|
Toprak U, Musselman LP. From cellular biochemistry to systems physiology: New insights into insect lipid metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103585. [PMID: 33915290 DOI: 10.1016/j.ibmb.2021.103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Umut Toprak
- Ankara University, Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara, Turkey.
| | | |
Collapse
|
69
|
Liao S, Amcoff M, Nässel DR. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103495. [PMID: 33171202 DOI: 10.1016/j.ibmb.2020.103495] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
70
|
Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The deposition of storage fat in the form of triacylglycerol (TAG) is an evolutionarily conserved strategy to cope with fluctuations in energy availability and metabolic stress. Organismal TAG storage in specialized adipose tissues provides animals a metabolic reserve that sustains survival during development and starvation. On the other hand, excessive accumulation of adipose TAG, defined as obesity, is associated with an increasing prevalence of human metabolic diseases. During the past decade, the fruit fly Drosophila melanogaster, traditionally used in genetics and developmental biology, has been established as a versatile model system to study TAG metabolism and the etiology of lipid-associated metabolic diseases. Similar to humans, Drosophila TAG homeostasis relies on the interplay of organ systems specialized in lipid uptake, synthesis, and processing, which are integrated by an endocrine network of hormones and messenger molecules. Enzymatic formation of TAG from sugar or dietary lipid, its storage in lipid droplets, and its mobilization by lipolysis occur via mechanisms largely conserved between Drosophila and humans. Notably, dysfunctional Drosophila TAG homeostasis occurs in the context of aging, overnutrition, or defective gene function, and entails tissue-specific and organismal pathologies that resemble human disease. In this review, we summarize the physiology and biochemistry of TAG in Drosophila and outline the potential of this organism as a model system to understand the genetic and dietary basis of TAG storage and TAG-related metabolic disorders.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Svitlana Klishch
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Olha Stilbytska
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
71
|
Chatterjee N, Perrimon N. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. SCIENCE ADVANCES 2021; 7:7/24/eabg4336. [PMID: 34108216 PMCID: PMC8189582 DOI: 10.1126/sciadv.abg4336] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 05/16/2023]
Abstract
The organs and metabolic pathways involved in energy metabolism, and the process of ATP production from nutrients, are comparable between humans and Drosophila melanogaster This level of conservation, together with the power of Drosophila genetics, makes the fly a very useful model system to study energy homeostasis. Here, we discuss the major organs involved in energy metabolism in Drosophila and how they metabolize different dietary nutrients to generate adenosine triphosphate. Energy metabolism in these organs is controlled by cell-intrinsic, paracrine, and endocrine signals that are similar between Drosophila and mammals. We describe how these signaling pathways are regulated by several physiological and environmental cues to accommodate tissue-, age-, and environment-specific differences in energy demand. Last, we discuss several genetic and diet-induced fly models of obesity and diabetes that can be leveraged to better understand the molecular basis of these metabolic diseases and thereby promote the development of novel therapies.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
72
|
Cormier RJ, Strang R, Menail H, Touaibia M, Pichaud N. Systemic and mitochondrial effects of metabolic inflexibility induced by high fat diet in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103556. [PMID: 33626368 DOI: 10.1016/j.ibmb.2021.103556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Metabolic inflexibility is a condition that occurs following a nutritional stress which causes blunted fuel switching at the mitochondrial level in response to hormonal and cellular signalling. Linked to obesity and obesity related disorders, chronic exposure to a high-fat diet (HFD) in animal models has been extensively used to induce metabolic inflexibility and investigate the development of various metabolic diseases. However, many questions concerning the systemic and mitochondrial responses to metabolic inflexibility remain. In this study, we investigated the global and mitochondrial variations following a 10-day exposure to a HFD in adult Drosophila melanogaster. Our results show that following 10-day exposure to the HFD, mitochondrial respiration rates measured in isolated mitochondria at the level of complex I were decreased. This was associated with increased contributions of non-classical providers of electrons to the electron transport system (ETS) such as the proline dehydrogenase (ProDH) and the mitochondrial glycerol-3-phosphate dehydrogenase (mtG3PDH) alleviating complex I dysfunctions, as well as with increased ROS production per molecule of oxygen consumed. Our results also show an accumulation of metabolites from multiple different metabolic pathways in whole adult Drosophila and a drastic shift in the lipid profile which translated into decreased proportion of saturated and monounsaturated fatty acids combined with an increased proportion of polyunsaturated fatty acids. Thus, our results demonstrate the various responses to the HFD treatment in adult Drosophila melanogaster that are hallmarks of the development of metabolic inflexibility and reinforce this organism as a suitable model for the study of metabolic disorders.
Collapse
Affiliation(s)
- Robert J Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Rebekah Strang
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Hichem Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.
| |
Collapse
|
73
|
Sanhueza S, Tobar N, Cifuentes M, Quenti D, Varì R, Scazzocchio B, Masella R, Herrera K, Paredes A, Morales G, Ormazabal P. Lampaya Medicinalis Phil. decreases lipid-induced triglyceride accumulation and proinflammatory markers in human hepatocytes and fat body of Drosophila melanogaster. Int J Obes (Lond) 2021; 45:1464-1475. [PMID: 33895783 DOI: 10.1038/s41366-021-00811-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Excess hepatic triglyceride (TG) accumulation (steatosis) commonly observed in obesity, may lead to non-alcoholic fatty liver disease (NAFLD). Altered regulation of intracellular lipid droplets (LD) and TG metabolism, as well as activation of JNK-mediated proinflammatory pathways may trigger liver steatosis-related disorders. Drosophila melanogaster is an animal model used for studying obesity and its associated disorders. In Drosophila, lipids and glycogen are stored in the fat body (FB), which resembles mammalian adipose tissue and liver. Dietary oversupply leads to obesity-related disorders, which are characterized by FB dysfunction. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in folk medicine of Chile to counteract inflammatory diseases. Hydroethanolic extract of lampaya (HEL) contains considerable amounts of flavonoids that may explain its anti-inflammatory effect. METHODS We studied whether HEL affects palmitic acid (PA, C16:0) and oleic acid (OA; C18:1)-induced TG accumulation and proinflammatory marker content in HepG2 hepatocytes as well as impaired lipid storage and proinflammatory molecule expression in Drosophila melanogaster fed a high-fat diet (HFD). RESULTS In HepG2 hepatocytes, exposure to OA/PA elevated TG content, FABP4, ATGL and DGAT2 expression, and the JNK proinflammatory pathway, as well as TNF-α and IL-6 production, while diminished FAS expression. These effects were prevented by HEL co-treatment. In Drosophila larvae fed a HFD, HEL prevented TG accumulation and downregulated proinflammatory JNK pathway activation. CONCLUSION HEL effect counteracting OA/PA- and HFD-induced lipid accumulation and proinflammatory marker expression in HepG2 hepatocytes and Drosophila larvae may represent a preventive approach against hepatic steatosis and inflammation, associated to obesity and NAFLD.
Collapse
Affiliation(s)
- Sofía Sanhueza
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile.,Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Nicolás Tobar
- Cellular and Molecular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Daniela Quenti
- Cellular and Molecular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Rosaria Varì
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberta Masella
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Karin Herrera
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile.,Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000, Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000, Antofagasta, Chile
| | - Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000, Rancagua, Chile. .,Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490, Macul, Santiago, Chile.
| |
Collapse
|
74
|
Clerbaux LA, Schultz H, Roman-Holba S, Ruan DF, Yu R, Lamb AM, Bommer GT, Kennell JA. The microRNA miR-33 is a pleiotropic regulator of metabolic and developmental processes in Drosophila melanogaster. Dev Dyn 2021; 250:1634-1650. [PMID: 33840153 DOI: 10.1002/dvdy.344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND miR-33 family members are well characterized regulators of cellular lipid levels in mammals. Previous studies have shown that overexpression of miR-33 in Drosophila melanogaster leads to elevated triacylglycerol (TAG) levels in certain contexts. Although loss of miR-33 in flies causes subtle defects in larval and adult ovaries, the effects of miR-33 deficiency on lipid metabolism and other phenotypes impacted by metabolic state have not yet been characterized. RESULTS We found that loss of miR-33 predisposes flies to elevated TAG levels, and we identified genes involved in TAG synthesis as direct targets of miR-33, including atpcl, midway, and Akt1. miR-33 mutants survived longer upon starvation but showed greater sensitivity to an oxidative stressor. We also found evidence that miR-33 is a negative regulator of cuticle pigmentation and that miR-33 mutants show a reduction in interfollicular stalk cells during oogenesis. CONCLUSION Our data suggest that miR-33 is a conserved regulator of lipid homeostasis, and its targets are involved in both degradation and synthesis of fatty acids and TAG. The constellation of phenotypes involving tissues that are highly sensitive to metabolic state suggests that miR-33 serves to prevent extreme fluctuations in metabolically sensitive tissues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,Department of Biology and Program in Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Hayley Schultz
- Department of Biology and Program in Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Samara Roman-Holba
- Department of Biology and Program in Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Dan Fu Ruan
- Department of Biology and Program in Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Ronald Yu
- Department of Biology and Program in Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Abigail M Lamb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Guido T Bommer
- Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jennifer A Kennell
- Department of Biology and Program in Biochemistry, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
75
|
J Gray L, B Sokolowski M, J Simpson S. Drosophila as a useful model for understanding the evolutionary physiology of obesity resistance and metabolic thrift. Fly (Austin) 2021; 15:47-59. [PMID: 33704003 DOI: 10.1080/19336934.2021.1896960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Evolved metabolic thriftiness in humans is a proposed contributor to the obesity epidemic. Insect models have been shown to evolve both 'metabolic thrift' in response to rearing on high-protein diets that promote leanness, and 'obesity resistance' when reared on fattening high-carbohydrate, low-protein foods. Despite the hypothesis that human obesity is caused by evolved metabolic thrift, genetic contributions to this physiological trait remain elusive. Here we conducted a pilot study to determine whether thrift and obesity resistance can arise under laboratory based 'quasi-natural selection' in the genetic model organism Drosophila melanogaster. We found that both these traits can evolve within 16 generations. Contrary to predictions from the 'thrifty genotype/phenotype' hypothesis, we found that when animals from a metabolic thrift inducing high-protein environment are mismatched to fattening high-carbohydrate foods, they did not become 'obese'. Rather, they accumulate less triglyceride than control animals, not more. We speculate that this may arise through as yet un-quantified parental effects - potentially epigenetic. This study establishes that D. melanogaster could be a useful model for elucidating the role of the trans- and inter-generational effects of diet on the genetics of metabolic traits in higher animals.
Collapse
Affiliation(s)
- Lindsey J Gray
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Marla B Sokolowski
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| |
Collapse
|
76
|
Yan M, Sun S, Xu K, Huang X, Dou L, Pang J, Tang W, Shen T, Li J. Cardiac Aging: From Basic Research to Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9570325. [PMID: 33777324 PMCID: PMC7969106 DOI: 10.1155/2021/9570325] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
With research progress on longevity, we have gradually recognized that cardiac aging causes changes in heart structure and function, including progressive myocardial remodeling, left ventricular hypertrophy, and decreases in systolic and diastolic function. Elucidating the regulatory mechanisms of cardiac aging is a great challenge for biologists and physicians worldwide. In this review, we discuss several key molecular mechanisms of cardiac aging and possible prevention and treatment methods developed in recent years. Insights into the process and mechanism of cardiac aging are necessary to protect against age-related diseases, extend lifespan, and reduce the increasing burden of cardiovascular disease in elderly individuals. We believe that research on cardiac aging is entering a new era of unique significance for the progress of clinical medicine and social welfare.
Collapse
Affiliation(s)
- Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| |
Collapse
|
77
|
Role of FoxO transcription factors in aging-associated cardiovascular diseases. VITAMINS AND HORMONES 2021; 115:449-475. [PMID: 33706958 DOI: 10.1016/bs.vh.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging constitutes a major risk factor toward the development of cardiovascular diseases (CVDs). The aging heart undergoes several changes at the molecular, cellular and physiological levels, which diminishes its contractile function and weakens stress tolerance. Further, old age increases the exposure to risk factors such as hypertension, diabetes and hypercholesterolemia. Notably, research in the past decades have identified FoxO subfamily of the forkhead transcription factors as key players in regulating diverse cellular processes linked to cardiac aging and diseases. In the present chapter, we discuss the important role of FoxO in the development of various aging-associated cardiovascular complications such as cardiac hypertrophy, cardiac fibrosis, heart failure, vascular dysfunction, atherosclerosis, hypertension and myocardial ischemia. Besides, we will also discuss the role of FoxO in cardiometabolic alterations, autophagy and proteasomal degradation, which are implicated in aging-associated cardiac dysfunction.
Collapse
|
78
|
The Drosophila melanogaster Neprilysin Nepl15 is involved in lipid and carbohydrate storage. Sci Rep 2021; 11:2099. [PMID: 33483521 PMCID: PMC7822871 DOI: 10.1038/s41598-021-81165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
The prototypical M13 peptidase, human Neprilysin, functions as a transmembrane "ectoenzyme" that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.
Collapse
|
79
|
Wang X, Zhong Z, Chen X, Hong Z, Lin W, Mu X, Hu X, Zheng H. High-Fat Diets with Differential Fatty Acids Induce Obesity and Perturb Gut Microbiota in Honey Bee. Int J Mol Sci 2021; 22:ijms22020834. [PMID: 33467664 PMCID: PMC7830725 DOI: 10.3390/ijms22020834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
HFD (high-fat diet) induces obesity and metabolic disorders, which is associated with the alteration in gut microbiota profiles. However, the underlying molecular mechanisms of the processes are poorly understood. In this study, we used the simple model organism honey bee to explore how different amounts and types of dietary fats affect the host metabolism and the gut microbiota. Excess dietary fat, especially palm oil, elicited higher weight gain, lower survival rates, hyperglycemic, and fat accumulation in honey bees. However, microbiota-free honey bees reared on high-fat diets did not significantly change their phenotypes. Different fatty acid compositions in palm and soybean oil altered the lipid profiles of the honey bee body. Remarkably, dietary fats regulated lipid metabolism and immune-related gene expression at the transcriptional level. Gene set enrichment analysis showed that biological processes, including transcription factors, insulin secretion, and Toll and Imd signaling pathways, were significantly different in the gut of bees on different dietary fats. Moreover, a high-fat diet increased the relative abundance of Gilliamella, while the level of Bartonella was significantly decreased in palm oil groups. This study establishes a novel honey bee model of studying the crosstalk between dietary fat, gut microbiota, and host metabolism.
Collapse
|
80
|
Murashov AK, Pak ES, Lin C, Boykov IN, Buddo KA, Mar J, Bhat KM, Neufer PD. Preference and detrimental effects of high fat, sugar, and salt diet in wild-caught Drosophila simulans are reversed by flight exercise. FASEB Bioadv 2021; 3:49-64. [PMID: 33490883 PMCID: PMC7805546 DOI: 10.1096/fba.2020-00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
High saturated fat, sugar, and salt contents are a staple of a Western diet (WD), contributing to obesity, metabolic syndrome, and a plethora of other health risks. However, the combinatorial effects of these ingredients have not been fully evaluated. Here, using the wild-caught Drosophila simulans, we show that a diet enriched with saturated fat, sugar, and salt is more detrimental than each ingredient separately, resulting in a significantly decreased lifespan, locomotor activity, sleep, reproductive function, and mitochondrial function. These detrimental effects were more pronounced in female than in male flies. Adding regular flight exercise to flies on the WD markedly negated the adverse effects of a WD. At the molecular level, the WD significantly increased levels of triglycerides and caused mitochondrial dysfunction, while exercise counterbalanced these effects. Interestingly, fruit flies developed a preference for the WD after pre-exposure, which was averted by flight exercise. The results demonstrate that regular aerobic exercise can mitigate adverse dietary effects on fly mitochondrial function, physiology, and feeding behavior. Our data establish Drosophila simulans as a novel model of diet-exercise interaction that bears a strong similarity to the pathophysiology of obesity and eating disorders in humans.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Chien‐Te Lin
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Ilya N. Boykov
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Katherine A. Buddo
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Jordan Mar
- Department of Molecular MedicineUniversity of South FloridaTampaFLUSA
| | - Krishna M. Bhat
- Department of Molecular MedicineUniversity of South FloridaTampaFLUSA
| | - Peter Darrell Neufer
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| |
Collapse
|
81
|
de Aquino Silva D, Silva MRP, Guerra GP, do Sacramento M, Alves D, Prigol M. 7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108892. [PMID: 32931926 DOI: 10.1016/j.cbpc.2020.108892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 01/03/2023]
Abstract
The goals of this work were to evaluate the effects produced by a hyperglycidic diet (HD) on Drosophila melanogaster and to verify the protective effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) on this model. Adult flies were divided into eight groups of 50 flies each: (1) RD, (regular diet) (2) RD + 4-PSQ (25 μM), (3) HD 5%, (4) HD 10%, (5) HD 30% (6) HD 5% + 4-PSQ (25 μM), (7) HD 10% + 4-PSQ (25 μM) and (8) HD 30% + 4-PSQ (25 μM). Flies were exposed to a diet containing sucrose and or 4-PSQ for ten days, according to each group. At the end of treatment survival rate, longevity, hatch rate, food intake, glucose and triglyceride levels, as well as, some markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities, protein thiol (PSH) and non-protein levels (NPSH) and cell viability assays (Resazurin and MTT) were evaluated. It was observed that HD's consumption was associated with lower survival of the flies, lower longevity, and increased levels of glucose, triglycerides, TBARS and increased SOD activities and CAT activities. Treatment with 25 μM 4-PSQ increased the satiety of flies, increased survival, reduced glucose, triglyceride and TBARS levels, increased hatching, and normalized SOD and CAT activities. These results suggest that 25 μM 4-PSQ had a potential antioxidant effect and provided greater satiety by attenuating the effects of high HD consumption on this model.
Collapse
Affiliation(s)
- Daiane de Aquino Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Márcia Rósula Poetini Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil.
| |
Collapse
|
82
|
Bombin A, Cunneely O, Eickman K, Bombin S, Ruesy A, Su M, Myers A, Cowan R, Reed L. Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster. Microorganisms 2020; 8:E1972. [PMID: 33322411 PMCID: PMC7763083 DOI: 10.3390/microorganisms8121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.
Collapse
Affiliation(s)
- Andrei Bombin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| | | | | | | | | | | | | | | | - Laura Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| |
Collapse
|
83
|
Streptozotocin induces brain glucose metabolic changes and alters glucose transporter expression in the Lobster cockroach; Nauphoeta cinerea (Blattodea: Blaberidae). Mol Cell Biochem 2020; 476:1109-1121. [PMID: 33219441 DOI: 10.1007/s11010-020-03976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
The development of new models to study diabetes in invertebrates is important to ensure adherence to the 3R's principle and to expedite knowledge of the complex molecular events underlying glucose toxicity. Streptozotocin (STZ)-an alkylating and highly toxic agent that has tropism to mammalian beta cells-is used as a model of type 1 diabetes in rodents, but little is known about STZ effects in insects. Here, the cockroach; Nauphoeta cinerea was used to determine the acute toxicity of 74 and 740 nmol of STZ injection per cockroach. STZ increased the glucose content, mRNA expression of glucose transporter 1 (GLUT1) and markers of oxidative stress in the head. Fat body glycogen, insect survival, acetylcholinesterase activity, triglyceride content and viable cells in head homogenate were reduced, which may indicate a disruption in glucose utilization by the head and fat body of insects after injection of 74 and 740 nmol STZ per nymph. The glutathione S-transferase (GST) activity and reduced glutathione levels (GSH) were increased, possibly via activation of nuclear factor erythroid 2 related factor as a compensatory response against the increase in reactive oxygen species. Our data present the potential for metabolic disruption in N. cinerea by glucose analogues and opens paths for the study of brain energy metabolism in insects. We further phylogenetically demonstrated conservation between N. cinerea glucose transporter 1 and the GLUT of other insects in the Neoptera infra-class.
Collapse
|
84
|
Lam SM, Zhou T, Li J, Zhang S, Chua GH, Li B, Shui G. A robust, integrated platform for comprehensive analyses of acyl-coenzyme As and acyl-carnitines revealed chain length-dependent disparity in fatty acyl metabolic fates across Drosophila development. Sci Bull (Beijing) 2020; 65:1840-1848. [PMID: 36659124 DOI: 10.1016/j.scib.2020.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
Acyl-coenzyme A thioesters (acyl-CoAs) denote a key class of intermediary metabolites that lies at the hub of major metabolic pathways. The great diversity in polarity between short- and long-chain acyl-CoAs makes it technically challenging to cover an inclusive range of acyl-CoAs within a single method. Levels of acyl-carnitines, which function to convey fatty acyls into mitochondria matrix for β-oxidation, indicate the efficiency of mitochondrial import and utilization of corresponding acyl-CoAs. Herein, we report a robust, integrated platform to allow simultaneous quantitation of endogenous acyl-CoAs and acyl-carnitines. Using this method, we monitored changes in intermediary lipid profiles across Drosophila development under control (ND) and high-fat diet (HFD). We observed specific accumulations of medium-chain (C8-C12) and long-chain (≥C16) acyl-carnitines distinct to L3 larval and pupal stages, respectively. These observations suggested development-specific, chain length-dependent disparity in metabolic fates of acyl-CoAs across Drosophila development, which was validated by deploying the same platform to monitor isotope incorporation introduced from labelled 12:0 and 16:0 fatty acids into extra- and intra-mitochondrial acyl-CoA pools. We found that pupal mitochondria preferentially import and oxidise C12:0-CoAs (accumulated as C12:0-carnitines in L3 stage) over C16:0-CoAs. Preferential oxidation of medium-chain acyl-CoAs limits mitochondrial utilization of long-chain acyl-CoAs (C16-C18), leading to pupal-specific accumulation of long-chain acyl-carnitines mediated by enhanced CPT1-6A activity. HFD skewed C16:0-CoAs towards catabolism over anabolism in pupa, thereby adversely affecting overall development. Our developed platform emphasizes the importance of integrating biological knowledge in the design of pathway-oriented platforms to derive maximal physiological insights from analysis of complex biological systems.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxing Zhou
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
85
|
Zheng X, Ren B, Li X, Yan H, Xie Q, Liu H, Zhou J, Tian J, Huang K. Selenoprotein F knockout leads to glucose and lipid metabolism disorders in mice. J Biol Inorg Chem 2020; 25:1009-1022. [DOI: 10.1007/s00775-020-01821-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
|
86
|
Amput P, Palee S, Arunsak B, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. PCSK9 inhibitor effectively attenuates cardiometabolic impairment in obese-insulin resistant rats. Eur J Pharmacol 2020; 883:173347. [PMID: 32650007 DOI: 10.1016/j.ejphar.2020.173347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
Long-term high-fat diet consumption causes obese-insulin resistance and cardiac mitochondrial dysfunction, leading to impaired left ventricular (LV) function. Atorvastatin effectively improved lipid profiles in obese patients. However, inadequate reduction in low density lipoprotein cholesterol (LDL-C) level was found. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor effectively reduced LDL-C levels. We hypothesized that this PCSK9 inhibitor has a greater efficacy in attenuating cardiometabolic impairments than atorvastatin in obese-insulin resistant rats. Female rats were fed with either a high fat or normal diet for 12 weeks. High fat diet fed rats (HFD) were then divided into 3 groups and were given vehicle, atorvastatin (40 mg/kg/day; s.c.), or PCSK9 inhibitor (4 mg/kg/day; s.c.) for additional 3 weeks. The metabolic parameters, cardiac and mitochondrial function and [Ca2+]i transients were determined. HFD rats developed obese-insulin resistance as indicated by increased plasma insulin and HOMA index. Although high-fat diet fed rats treated with vehicle (HFV) rats had markedly impaired LV function as indicated by reduced %LVFS, impaired cardiac mitochondrial function, and [Ca2+]i transient regulation, these impairments were attenuated in high-fat diet fed rats treated with atorvastatin (HFA) and high-fat diet fed rats treated with PCSK9 inhibitor (HFP) rats. However, these improvements were greater in HFP rats than HFA rats. Our findings indicated that the PCSK9 inhibitor exerted greater cardioprotection than atorvastatin through improved mitochondrial function in obese-insulin resistant rats.
Collapse
Affiliation(s)
- Patchareeya Amput
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Physical Therapy, Faculty of Allied Health Science, University of Phayao, Phayao, 56000, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
87
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
88
|
Lin KH, Marthandam Asokan S, Kuo WW, Hsieh YL, Lii CK, Viswanadha V, Lin YL, Wang S, Yang C, Huang CY. Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:707-713. [PMID: 32023008 DOI: 10.1002/tox.22906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Excessive intake of high fat diet (HFD) and associated obese conditions are critical contributors of cardiac diseases. In this study, an active metabolite andrographolide from Andrographis paniculata was found to ameliorate HFD-induced cardiac apoptosis. C57/BL6 mouse were grouped as control (n = 9), obese (n = 8), low dose (25 mg/kg/d) andrographolide treatment (n = 9), and high dose (50 mg/kg/d) andrographolide treatment (n = 9). The control group was provided with standard laboratory chow and the other groups were fed with HFD. Andrographolide was administered through oral gavage for 1 week. Histopathological analysis showed increase in apoptotic nuclei and considerable cardiac-damages in the obese group signifying cardiac remodeling effects. Further, Western blot results showed increase in pro-apoptotic proteins and decrease in the proteins of IGF-1R-survival signaling. However, feeding of andrographolide significantly reduced the cardiac effects of HFD. The results strongly suggest that andrographolide supplementation can be used for prevention and treatment of cardiovascular disease in obese patients.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shibu Marthandam Asokan
- Cardiovascular and Mitochondria Related Diseases Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Yi-Lin Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Shulin Wang
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Caixian Yang
- Department of Endocrinology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
89
|
Wen DT, Wang WQ, Hou WQ, Cai SX, Zhai SS. Endurance exercise protects aging Drosophila from high-salt diet (HSD)-induced climbing capacity decline and lifespan decrease by enhancing antioxidant capacity. Biol Open 2020; 9:bio045260. [PMID: 32414766 PMCID: PMC7272356 DOI: 10.1242/bio.045260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/20/2020] [Indexed: 01/19/2023] Open
Abstract
A high-salt diet (HSD) is a major cause of many chronic and age-related defects such as myocardial hypertrophy, locomotor impairment and mortality. Exercise training can efficiently prevent and treat many chronic and age-related diseases. However, it remains unclear whether endurance exercise can resist HSD-induced impairment of climbing capacity and longevity in aging individuals. In our study, flies were given exercise training and fed a HSD from 1-week old to 5-weeks old. Overexpression or knockdown of salt and dFOXO were built by UAS/Gal4 system. The results showed that a HSD, salt gene overexpression and dFOXO knockdown significantly reduced climbing endurance, climbing index, survival, dFOXO expression and SOD activity level, and increased malondialdehyde level in aging flies. Inversely, in a HSD aging flies, endurance exercise and dFOXO overexpression significantly increased their climbing ability, lifespan and antioxidant capacity, but they did not significantly change the salt gene expression. Overall, current results indicated that a HSD accelerated the age-related decline of climbing capacity and mortality via upregulating salt expression and inhibiting the dFOXO/SOD pathway. Increased dFOXO/SOD pathway activity played a key role in mediating endurance exercise resistance to the low salt tolerance-induced impairment of climbing capacity and longevity in aging DrosophilaThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Wei-Qing Wang
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Wen-Qi Hou
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Shu-Xian Cai
- Co-Innovation Center for Utilization of Botanical Functional Ingredients, Department of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shuai-Shuai Zhai
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| |
Collapse
|
90
|
Gillette CM, Hazegh KE, Nemkov T, Stefanoni D, D'Alessandro A, Taliaferro JM, Reis T. Gene-Diet Interactions: Dietary Rescue of Metabolic Effects in spen-Depleted Drosophila melanogaster. Genetics 2020; 214:961-975. [PMID: 32107279 PMCID: PMC7153938 DOI: 10.1534/genetics.119.303015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity and its comorbidities are a growing health epidemic. Interactions between genetic background, the environment, and behavior (i.e., diet) greatly influence organismal energy balance. Previously, we described obesogenic mutations in the gene Split ends (Spen) in Drosophila melanogaster, and roles for Spen in fat storage and metabolic state. Lipid catabolism is impaired in Spen-deficient fat storage cells, accompanied by a compensatory increase in glycolytic flux and protein catabolism. Here, we investigate gene-diet interactions to determine if diets supplemented with specific macronutrients can rescue metabolic dysfunction in Spen-depleted animals. We show that a high-yeast diet partially rescues adiposity and developmental defects. High sugar partially improves developmental timing as well as longevity of mated females. Gene-diet interactions were heavily influenced by developmental-stage-specific organismal needs: extra yeast provides benefits early in development (larval stages) but becomes detrimental in adulthood. High sugar confers benefits to Spen-depleted animals at both larval and adult stages, with the caveat of increased adiposity. A high-fat diet is detrimental according to all tested criteria, regardless of genotype. Whereas Spen depletion influenced phenotypic responses to supplemented diets, diet was the dominant factor in directing the whole-organism steady-state metabolome. Obesity is a complex disease of genetic, environmental, and behavioral inputs. Our results show that diet customization can ameliorate metabolic dysfunction underpinned by a genetic factor.
Collapse
Affiliation(s)
- Claire M Gillette
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kelsey E Hazegh
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Tânia Reis
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
91
|
Brown EB, Shah KD, Faville R, Kottler B, Keene AC. Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. PLoS Genet 2020; 16:e1008270. [PMID: 32160200 PMCID: PMC7089559 DOI: 10.1371/journal.pgen.1008270] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/23/2020] [Accepted: 12/06/2019] [Indexed: 01/30/2023] Open
Abstract
Sleep is a nearly universal behavior that is regulated by diverse environmental stimuli and physiological states. A defining feature of sleep is a homeostatic rebound following deprivation, where animals compensate for lost sleep by increasing sleep duration and/or sleep depth. The fruit fly, Drosophila melanogaster, exhibits robust recovery sleep following deprivation and represents a powerful model to study neural circuits regulating sleep homeostasis. Numerous neuronal populations have been identified in modulating sleep homeostasis as well as depth, raising the possibility that the duration and quality of recovery sleep is dependent on the environmental or physiological processes that induce sleep deprivation. Here, we find that unlike most pharmacological and environmental manipulations commonly used to restrict sleep, starvation potently induces sleep loss without a subsequent rebound in sleep duration or depth. Both starvation and a sucrose-only diet result in increased sleep depth, suggesting that dietary protein is essential for normal sleep depth and homeostasis. Finally, we find that Drosophila insulin like peptide 2 (Dilp2) is acutely required for starvation-induced changes in sleep depth without regulating the duration of sleep. Flies lacking Dilp2 exhibit a compensatory sleep rebound following starvation-induced sleep deprivation, suggesting Dilp2 promotes resiliency to sleep loss. Together, these findings reveal innate resilience to starvation-induced sleep loss and identify distinct mechanisms that underlie starvation-induced changes in sleep duration and depth. Sleep is nearly universal throughout the animal kingdom and homeostatic regulation represents a defining feature of sleep, where animals compensate for lost sleep by increasing sleep over subsequent time periods. Despite the robustness of this feature, the neural mechanisms regulating recovery from different types of sleep deprivation are not fully understood. Fruit flies provide a powerful model for investigating the genetic regulation of sleep, and like mammals, display robust recovery sleep following deprivation. Here, we find that unlike most stimuli that suppress sleep, sleep deprivation by starvation does not require a homeostatic rebound. These findings are likely due to flies engaging in deeper sleep during the period of partial sleep deprivation, suggesting a natural resilience to starvation-induced sleep loss. This unique resilience to starvation-induced sleep loss is dependent on Drosophila insulin-like peptide 2, revealing a critical role for insulin signaling in regulating interactions between diet and sleep homeostasis.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Kreesha D. Shah
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | | | | | - Alex C. Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
92
|
Tuthill BF, Searcy LA, Yost RA, Musselman LP. Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI. J Lipid Res 2020; 61:275-290. [PMID: 31900315 PMCID: PMC7053833 DOI: 10.1194/jlr.ra119000198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Diets high in calories can be used to model metabolic diseases, including obesity and its associated comorbidities, in animals. Drosophila melanogaster fed high-sugar diets (HSDs) exhibit complications of human obesity including hyperglycemia, hyperlipidemia, insulin resistance, cardiomyopathy, increased susceptibility to infection, and reduced longevity. We hypothesize that lipid storage in the high-sugar-fed fly's fat body (FB) reaches a maximum capacity, resulting in the accumulation of toxic lipids in other tissues or lipotoxicity. We took two approaches to characterize tissue-specific lipotoxicity. Ultra-HPLC-MS/MS and MALDI-MS imaging enabled spatial and temporal localization of lipid species in the FB, heart, and hemolymph. Substituent chain length was diet dependent, with fewer odd chain esterified FAs on HSDs in all sample types. By contrast, dietary effects on double bond content differed among organs, consistent with a model where some substituent pools are shared and others are spatially restricted. Both di- and triglycerides increased on HSDs in all sample types, similar to observations in obese humans. Interestingly, there were dramatic effects of sugar feeding on lipid ethers, which have not been previously associated with lipotoxicity. Taken together, we have identified candidate endocrine mechanisms and molecular targets that may be involved in metabolic disease and lipotoxicity.
Collapse
Affiliation(s)
- Bryon F. Tuthill
- Department of Biological Sciences,Binghamton University, Binghamton, NY
| | - Louis A. Searcy
- Department of Chemistry,University of Florida, Gainesville, FL
| | - Richard A. Yost
- Department of Chemistry,University of Florida, Gainesville, FL
| | | |
Collapse
|
93
|
Stress Resistance Screen in a Human Primary Cell Line Identifies Small Molecules That Affect Aging Pathways and Extend Caenorhabditis elegans' Lifespan. G3-GENES GENOMES GENETICS 2020; 10:849-862. [PMID: 31879284 PMCID: PMC7003076 DOI: 10.1534/g3.119.400618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased resistance to environmental stress at the cellular level is correlated with the longevity of long-lived mutants and wild-animal species. Moreover, in experimental organisms, screens for increased stress resistance have yielded mutants that are long-lived. To find entry points for small molecules that might extend healthy longevity in humans, we screened ∼100,000 small molecules in a human primary-fibroblast cell line and identified a set that increased oxidative-stress resistance. Some of the hits fell into structurally related chemical groups, suggesting that they may act on common targets. Two small molecules increased C. elegans’ stress resistance, and at least 9 extended their lifespan by ∼10–50%. We further evaluated a chalcone that produced relatively large effects on lifespan and were able to implicate the activity of two, stress-response regulators, NRF2/skn-1 and SESN/sesn-1, in its mechanism of action. Our findings suggest that screening for increased stress resistance in human cells can enrich for compounds with promising pro-longevity effects. Further characterization of these compounds may reveal new ways to extend healthy human lifespan.
Collapse
|
94
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
95
|
Chang K, Kang P, Liu Y, Huang K, Miao T, Sagona AP, Nezis IP, Bodmer R, Ocorr K, Bai H. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 2019; 16:1807-1822. [PMID: 31884871 PMCID: PMC8386626 DOI: 10.1080/15548627.2019.1704117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Age-related impairment of macroautophagy/autophagy and loss of cardiac tissue homeostasis contribute significantly to cardiovascular diseases later in life. MTOR (mechanistic target of rapamycin kinase) signaling is the most well-known regulator of autophagy, cellular homeostasis, and longevity. The MTOR signaling consists of two structurally and functionally distinct multiprotein complexes, MTORC1 and MTORC2. While MTORC1 is well characterized but the role of MTORC2 in aging and autophagy remains poorly understood. Here we identified TGFB-INHB/activin signaling as a novel upstream regulator of MTORC2 to control autophagy and cardiac health during aging. Using Drosophila heart as a model system, we show that cardiac-specific knockdown of TGFB-INHB/activin-like protein daw induces autophagy and alleviates age-related heart dysfunction, including cardiac arrhythmias and bradycardia. Interestingly, the downregulation of daw activates TORC2 signaling to regulate cardiac autophagy. Activation of TORC2 alone through overexpressing its subunit protein rictor promotes autophagic flux and preserves cardiac function with aging. In contrast, activation of TORC1 does not block autophagy induction in daw knockdown flies. Lastly, either daw knockdown or rictor overexpression in fly hearts prolongs lifespan, suggesting that manipulation of these pathways in the heart has systemic effects on longevity control. Thus, our studies discover the TGFB-INHB/activin-mediated inhibition of TORC2 as a novel mechanism for age-dependent decreases in autophagic activity and cardiac health. Abbreviations: AI: arrhythmia index; BafA1: bafilomycin A1; BMP: bone morphogenetic protein; CQ: chloroquine; CVD: cardiovascular diseases; DI: diastolic interval; ER: endoplasmic reticulum; HP: heart period; HR: heart rate; MTOR: mechanistic target of rapamycin kinase; NGS: normal goat serum; PBST: PBS with 0.1% Triton X-100; PDPK1: 3-phosphoinositide dependent protein kinase 1; RICTOR: RPTOR independent companion of MTOR complex 2; ROI: region of interest; ROUT: robust regression and outlier removal; ROS: reactive oxygen species; R-SMAD: receptor-activated SMAD; SI: systolic interval; SOHA: semi-automatic optical heartbeat analysis; TGFB: transformation growth factor beta; TSC1: TSC complex subunit 1.
Collapse
Affiliation(s)
- Kai Chang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ying Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | | | - Ioannis P Nezis
- School of Life Sciences, University of Warwick , Coventry, UK
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Karen Ocorr
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| |
Collapse
|
96
|
Auxerre-Plantié E, Nakamori M, Renaud Y, Huguet A, Choquet C, Dondi C, Miquerol L, Takahashi MP, Gourdon G, Junion G, Jagla T, Zmojdzian M, Jagla K. Straightjacket/α2δ3 deregulation is associated with cardiac conduction defects in myotonic dystrophy type 1. eLife 2019; 8:51114. [PMID: 31829940 PMCID: PMC6908436 DOI: 10.7554/elife.51114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac conduction defects decrease life expectancy in myotonic dystrophy type 1 (DM1), a CTG repeat disorder involving misbalance between two RNA binding factors, MBNL1 and CELF1. However, how DM1 condition translates into conduction disorders remains poorly understood. Here we simulated MBNL1 and CELF1 misbalance in the Drosophila heart and performed TU-tagging-based RNAseq of cardiac cells. We detected deregulations of several genes controlling cellular calcium levels, including increased expression of straightjacket/α2δ3, which encodes a regulatory subunit of a voltage-gated calcium channel. Straightjacket overexpression in the fly heart leads to asynchronous heartbeat, a hallmark of abnormal conduction, whereas cardiac straightjacket knockdown improves these symptoms in DM1 fly models. We also show that ventricular α2δ3 expression is low in healthy mice and humans, but significantly elevated in ventricular muscles from DM1 patients with conduction defects. These findings suggest that reducing ventricular straightjacket/α2δ3 levels could offer a strategy to prevent conduction defects in DM1.
Collapse
Affiliation(s)
- Emilie Auxerre-Plantié
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoan Renaud
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Aline Huguet
- Imagine Institute, Inserm UMR1163, Paris, France.,Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universités, Institut de Myologie, Paris, France
| | | | - Cristiana Dondi
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | | | - Masanori P Takahashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Geneviève Gourdon
- Imagine Institute, Inserm UMR1163, Paris, France.,Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universités, Institut de Myologie, Paris, France
| | - Guillaume Junion
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Teresa Jagla
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Monika Zmojdzian
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
97
|
Wen DT, Zheng L, Li JX, Cheng D, Liu Y, Lu K, Hou WQ. Endurance exercise resistance to lipotoxic cardiomyopathy is associated with cardiac NAD +/dSIR2/ PGC-1α pathway activation in old Drosophila. Biol Open 2019; 8:bio044719. [PMID: 31624074 PMCID: PMC6826281 DOI: 10.1242/bio.044719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Lipotoxic cardiomyopathy is caused by excessive lipid accumulation in myocardial cells and it is a form of cardiac dysfunction. Cardiac PGC-1α overexpression prevents lipotoxic cardiomyopathy induced by a high-fat diet (HFD). The level of NAD+ and Sir2 expression upregulate the transcriptional activity of PGC-1α. Exercise improves cardiac NAD+ level and PGC-1α activity. However, the relationship between exercise, NAD+/dSIR2/PGC-1α pathway and lipotoxic cardiomyopathy remains unknown. In this study, flies were fed a HFD and exercised. The heart dSir2 gene was specifically expressed or knocked down by UAS/hand-Gal4 system. The results showed that either a HFD or dSir2 knockdown remarkably increased cardiac TG level and d FAS expression, reduced heart fractional shortening and diastolic diameter, increased arrhythmia index, and decreased heart NAD+ level, dSIR2 protein, dSir2 and PGC-1α expression levels. Contrarily, either exercise or dSir2 overexpression remarkably reduced heart TG level, dFAS expression and arrhythmia index, and notably increased heart fractional shortening, diastolic diameter, NAD+ level, dSIR2 level, and heart dSir2 and PGC-1α expression. Therefore, we declared that exercise training could improve lipotoxic cardiomyopathy induced by a HFD or cardiac dSir2 knockdown in old Drosophila The NAD+/dSIR2/PGC-1α pathway activation was an important molecular mechanism of exercise resistance against lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
- Department of Sports Science, Ludong University, Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Jin-Xiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Dan Cheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| |
Collapse
|
98
|
Kezos JN, Phillips MA, Thomas MD, Ewunkem AJ, Rutledge GA, Barter TT, Santos MA, Wong BD, Arnold KR, Humphrey LA, Yan A, Nouzille C, Sanchez I, Cabral LG, Bradley TJ, Mueller LD, Graves JL, Rose MR. Genomics of Early Cardiac Dysfunction and Mortality in Obese Drosophila melanogaster. Physiol Biochem Zool 2019; 92:591-611. [PMID: 31603376 DOI: 10.1086/706099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In experimental evolution, we impose functional demands on laboratory populations of model organisms using selection. After enough generations of such selection, the resulting populations constitute excellent material for physiological research. An intense selection regime for increased starvation resistance was imposed on 10 large outbred Drosophila populations. We observed the selection responses of starvation and desiccation resistance, metabolic reserves, and heart robustness via electrical pacing. Furthermore, we sequenced the pooled genomes of these populations. As expected, significant increases in starvation resistance and lipid content were found in our 10 intensely selected SCO populations. The selection regime also improved desiccation resistance, water content, and glycogen content among these populations. Additionally, the average rate of cardiac arrests in our 10 obese SCO populations was double the rate of the 10 ancestral CO populations. Age-specific mortality rates were increased at early adult ages by selection. Genomic analysis revealed a large number of single nucleotide polymorphisms across the genome that changed in frequency as a result of selection. These genomic results were similar to those obtained in our laboratory from less direct selection procedures. The combination of extensive genomic and phenotypic differentiation between these 10 populations and their ancestors makes them a powerful system for the analysis of the physiological underpinnings of starvation resistance.
Collapse
|
99
|
Wen DT, Zheng L, Li JX, Lu K, Hou WQ. The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY) 2019; 11:7274-7293. [PMID: 31503544 PMCID: PMC6756900 DOI: 10.18632/aging.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/02/2019] [Indexed: 01/30/2023]
Abstract
Cardiac aging is majorly characterized by increased diastolic dysfunction, lipid accumulation, oxidative stress, and contractility debility. The Sir2/Sirt1 gene overexpression delays cell aging and reduces obesity and oxidative stress. Exercise improves heart function and delays heart aging. However, it remains unclear whether exercise delaying heart aging is related to cardiac Sir2/Sirt1-related pathways. In this study, cardiac dSir2 overexpression or knockdown was regulated using the UAS/hand-Gal4 system in Drosophila. Flies underwent exercise interventions from 4 weeks to 5 weeks old. Results showed that either cardiac dSir2 overexpression or exercise remarkably increased the cardiac period, systolic interval, diastolic interval, fractional shortening, SOD activity, dSIR2 protein, Foxo, dSir2, Nmnat, and bmm expression levels in the aging flies; they also notably reduced the cardiac triacylglycerol level, malonaldehyde level, and the diastolic dysfunction index. Either cardiac dSir2 knockdown or aging had almost opposite effects on the heart as those of cardiac dSir2 overexpression. Therefore, we claim that cardiac dSir2 overexpression or knockdown delayed or promoted heart aging by reducing or increasing age-related oxidative stress, lipid accumulation, diastolic dysfunction, and contractility debility. The activation of cardiac dSir2/Foxo/SOD and dSir2/Foxo/bmm pathways may be two important molecular mechanisms through which exercise works against heart aging in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shan Dong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Jin-Xiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shan Dong Province, China
| |
Collapse
|
100
|
Talyn B, Lemon R, Badoella M, Melchiorre D, Villalobos M, Elias R, Muller K, Santos M, Melchiorre E. Roundup ®, but Not Roundup-Ready ® Corn, Increases Mortality of Drosophila melanogaster. TOXICS 2019; 7:E38. [PMID: 31370250 PMCID: PMC6789507 DOI: 10.3390/toxics7030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Genetically modified foods have become pervasive in diets of people living in the US. By far the most common genetically modified foods either tolerate herbicide application (HT) or produce endogenous insecticide (Bt). To determine whether these toxicological effects result from genetic modification per se, or from the increase in herbicide or insecticide residues present on the food, we exposed fruit flies, Drosophila melanogaster, to food containing HT corn that had been sprayed with the glyphosate-based herbicide Roundup®, HT corn that had not been sprayed with Roundup®, or Roundup® in a variety of known glyphosate concentrations and formulations. While neither lifespan nor reproductive behaviors were affected by HT corn, addition of Roundup® increased mortality with an LC50 of 7.1 g/L for males and 11.4 g/L for females after 2 days of exposure. Given the many genetic tools available, Drosophila are an excellent model system for future studies about genetic and biochemical mechanisms of glyphosate toxicity.
Collapse
Affiliation(s)
- Becky Talyn
- College of Natural Science, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | - Rachael Lemon
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maryam Badoella
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | | | - Maryori Villalobos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Raquel Elias
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Kelly Muller
- Chemistry and Biochemistry Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maggie Santos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Geology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| |
Collapse
|