51
|
Cossiga V, Sanduzzi-Zamparelli M, Sapena V, Guarino M, Dallio M, Torrisi E, Pignata L, Federico A, Salomone F, Morisco F. Beneficial Effects of Silybin Treatment After Viral Eradication in Patients With HCV-Related Advanced Chronic Liver Disease: A Pilot Study. Front Pharmacol 2022; 13:824879. [PMID: 35185575 PMCID: PMC8847679 DOI: 10.3389/fphar.2022.824879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction and Aims: HCV eradication by direct-acting antivirals (DAAs) improves liver outcomes and reduces overall liver mortality. However, patients with advanced chronic liver disease (ACLD) may experience a progression of liver disease despite viral clearance. Silybin has shown hepatoprotective effects in experimental models, but clinical data are limited. The aim of this study is to evaluate the effect of a highly bioavailable form of silybin on liver fibrosis in patients with HCV-related ACLD after viral eradication with DAAs, in comparison with the standard of care. Methods: In this multicenter and prospective study, HCV patients with ACLD achieving SVR12 were treated with the combination of silybinphospholipid complex with vitamin D and vitamin E (Realsil 100D®, Ibi Lorenzini S.p.A., Aprilia, Italy) for 12 months (R group) compared to controls (C group). Patients were submitted to transient elastography (TE) and to the enhanced liver fibrosis (ELF) test at baseline, week 24, and week 48. Results: One hundred sixteen patients were enrolled, 56 in the R group and 60 in the C group. The median age was 68 years, and 53% were male, with no differences between groups. In both groups, liver stiffness improved at 6 and 12 months compared to baseline. However, patients in the R group compared to those in the C group showed a higher reduction of liver stiffness after 6 months (−2.05, 95% CI −3.89 to −0.22, p < 0.05) and 12 months of treatment (−2.79, 95% CI −4.5 to −1.09, p < 0.01) in comparison with baseline. No significant difference in the reduction of ELF was observed between the two groups. During the follow-up, four patients developed HCC, all in the C group. Conclusions: In HCV-related ACLD, the hepatoprotective effects of silybin may represent a tool to counteract liver disease progression.
Collapse
Affiliation(s)
- Valentina Cossiga
- Department of Clinical Medicine and Surgery, Gastroenterology and Hepatology Unit, University of Naples "Federico II", Naples, Italy
| | - Marco Sanduzzi-Zamparelli
- Department of Clinical Medicine and Surgery, Gastroenterology and Hepatology Unit, University of Naples "Federico II", Naples, Italy
| | - Victor Sapena
- Medical Statistics Core Facility, Institut D'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Hospital Clinic Barcelona, Barcelona, Spain
| | - Maria Guarino
- Department of Clinical Medicine and Surgery, Gastroenterology and Hepatology Unit, University of Naples "Federico II", Naples, Italy
| | - Marcello Dallio
- Department of Precision Medicine, Hepato-Gastroenterology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Torrisi
- Division of Gastroenterology, Acireale Hospital, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Luca Pignata
- Department of Clinical Medicine and Surgery, Gastroenterology and Hepatology Unit, University of Naples "Federico II", Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, Hepato-Gastroenterology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federico Salomone
- Division of Gastroenterology, Acireale Hospital, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Gastroenterology and Hepatology Unit, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
52
|
Doostkam A, Fathalipour M, Anbardar MH, Purkhosrow A, Mirkhani H. Therapeutic Effects of Milk Thistle ( Silybum marianum L.) and Artichoke ( Cynara scolymus L.) on Nonalcoholic Fatty Liver Disease in Type 2 Diabetic Rats. Can J Gastroenterol Hepatol 2022; 2022:2868904. [PMID: 35186807 PMCID: PMC8856812 DOI: 10.1155/2022/2868904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND At present, nonalcoholic fatty liver disease (NAFLD) does not have an approved pharmacologic therapy. The present study investigated the protective effects and possible mechanisms of milk thistle (Silybum marianum L.) and artichoke (Cynara scolymus L.) in treating NAFLD in type 2 diabetic rats. METHODS The NAFLD was established in rats after four weeks of type 2 diabetes induction. The animals were treated with pharmaceutical preparations of milk thistle (Livergol®) and artichoke (Atheromod-B®) extracts for eight weeks. After the end of the intervention, oral glucose tolerance, the serum parameters of oxidative stress, liver functional tests, and lipid profiles were evaluated. Histopathological changes were assessed by hematoxylin and eosin staining. RESULTS Treatment with preparations of milk thistle and artichoke nonsignificantly improved glucose tolerance in diabetic rats. Both preparations significantly improved serum superoxide dismutase activity and the level of malondialdehyde. Although treatment with milk thistle reduced serum activity of aspartate aminotransferase and serum levels of triglyceride (TG), total cholesterol, and low-density lipoprotein-cholesterol, artichoke extracts only attenuated the serum level of TG. Milk thistle also effectively protected the liver from histological changes. CONCLUSIONS Milk thistle could be a promising pharmacological option for the treatment of NAFLD. Nonetheless, long-term randomized clinical trials are necessary to confirm the observed results.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mirkhani
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
53
|
MacDonald-Ramos K, Michán L, Martínez-Ibarra A, Cerbón M. Silymarin is an ally against insulin resistance: A review. Ann Hepatol 2022; 23:100255. [PMID: 32950646 DOI: 10.1016/j.aohep.2020.08.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Silymarin is obtained from the Milk thistle plant Silybum marianum and has been used over the centuries to treat principally liver disease, although it has also been studied for its beneficial effects in cardioprotection, neuroprotection, immune modulation, and cancer among others. Importantly, silymarin's active component silybin is a flavonolignan that exhibits different activities such as; scavenger, anti-oxidant, anti-inflammatory, and recently revealed, insulin-sensitizing properties which have been explored in clinical trials in patients with insulin resistance. In this review, we summarize the most relevant research of silymarin's effect on lipid and carbohydrate metabolism, focusing the attention on insulin resistance, which is well known to play a crucial role in metabolic disease progression.
Collapse
Affiliation(s)
- Karla MacDonald-Ramos
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 11000, Mexico
| | - Layla Michán
- Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 11000, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 11000, Mexico.
| |
Collapse
|
54
|
Dallio M, Masarone M, Romeo M, Tuccillo C, Morisco F, Persico M, Loguercio C, Federico A. PNPLA3, TM6SF2, and MBOAT7 Influence on Nutraceutical Therapy Response for Non-alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Front Med (Lausanne) 2021; 8:734847. [PMID: 34692725 PMCID: PMC8531439 DOI: 10.3389/fmed.2021.734847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: PNPLA3, TM6SF2, and MBOAT7 genes play a crucial role in non-alcoholic fatty liver disease (NAFLD) development and worsening. However, few data are available on their treatment response influence. The aim of this trial is to explore the effect derived from silybin-phospholipids complex (303 mg of silybin-phospholipids complex, 10 μg of vitamin D, and 15 mg of vitamin E twice a day for 6 months) oral administration in NAFLD patients carrying PNPLA3-rs738409, TM6SF2-rs58542926, or MBOAT7-rs641738 genetic variants. Materials and Methods: In all, 92 biopsy-proven NAFLD patients were grouped in 30 NAFLD wild type controls, 30 wild type treated patients, and 32 mutated treated ones. We assessed glycemia (FPG), insulinemia, HOMA-IR, aspartate and alanine aminotransferases (AST, ALT), C-reactive protein (CRP), thiobarbituric acid reactive substance (TBARS), stiffness, controlled attenuation parameter (CAP), dietary daily intake, and physical activity at baseline and end of treatment. Results: The wild-type treated group showed a significant improvement of FPG, insulinemia, HOMA-IR, ALT, CRP, and TBARS (p < 0.05), whereas no improvements were recorded in the other two study groups. NAFLD wild type treated patients showed higher possibilities of useful therapeutic outcome (p < 0.01), obtained from the prescribed therapeutic regimen, independently from age, sex, comorbidities, medications, CAP, and stiffness in comparison to the mutated group. Discussion: The assessed mutations are independently associated with no response to a silybin-based therapeutic regimen and could be considered as useful predictive markers in this context. Clinical Trial Registry Number: www.ClinicalTrials.gov, identifier: NCT04640324.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Mario Romeo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
55
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
56
|
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, Sun Y. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Chin Med 2021; 16:68. [PMID: 34344394 PMCID: PMC8330116 DOI: 10.1186/s13020-021-00469-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the world's largest chronic liver disease, while there is still no specific drug to treat NAFLD. Traditional Chinese Medicine (TCM) have been widely used in hepatic diseases for centuries in Asia, and TCM's holistic concept and differentiation treatment of NAFLD show their advantages in the treatment of this complex metabolic disease. However, the multi-compounds and multi-targets are big obstacle for the study of TCM. Here, we summarize the pharmacological actions of active ingredients from frequently used single herbs in TCM compounds. The combined mechanism of herbs in TCM compounds are further discussed to explore their comprehensive effects on NAFLD. This article aims to summarize multiple functions and find the common ground for TCM treatment on NAFLD, thus providing enrichment to the scientific connotation of TCM theories and promotes the exploration of TCM therapies on NAFLD.
Collapse
Affiliation(s)
- Xianmin Dai
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Yi Chen
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Si Huang
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| | - Yang Sun
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
57
|
Komolafe O, Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJ, Fritche D, Freeman SC, Cooper NJ, Sutton AJ, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Nutritional supplementation for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 7:CD013157. [PMID: 34280304 PMCID: PMC8406904 DOI: 10.1002/14651858.cd013157.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of non-alcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases risks of liver cirrhosis, hepatocellular carcinoma, and the requirement for liver transplantation. Uncertainty surrounds relative benefits and harms of various nutritional supplements in NAFLD. Currently no nutritional supplement is recommended for people with NAFLD. OBJECTIVES • To assess the benefits and harms of different nutritional supplements for treatment of NAFLD through a network meta-analysis • To generate rankings of different nutritional supplements according to their safety and efficacy SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, the World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) for people with NAFLD, irrespective of method of diagnosis, age and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We performed a network meta-analysis with OpenBUGS using Bayesian methods whenever possible and calculated differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios with 95% credible intervals (CrIs) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. MAIN RESULTS We included in the review a total of 202 randomised clinical trials (14,200 participants). Nineteen trials were at low risk of bias. A total of 32 different interventions were compared in these trials. A total of 115 trials (7732 participants) were included in one or more comparisons. The remaining trials did not report any of the outcomes of interest for this review. Follow-up ranged from 1 month to 28 months. The follow-up period in trials that reported clinical outcomes was 2 months to 28 months. During this follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. We did not calculate effect estimates for mortality because of sparse data (zero events for at least one of the groups in the trial). None of the trials reported that they measured overall health-related quality of life using a validated scale. The evidence is very uncertain about effects of interventions on serious adverse events (number of people or number of events). We are very uncertain about effects on adverse events of most of the supplements that we investigated, as the evidence is of very low certainty. However, people taking PUFA (polyunsaturated fatty acid) may be more likely to experience an adverse event than those not receiving an active intervention (network meta-analysis results: OR 4.44, 95% CrI 2.40 to 8.48; low-certainty evidence; 4 trials, 203 participants; direct evidence: OR 4.43, 95% CrI 2.43 to 8.42). People who take other supplements (a category that includes nutritional supplements other than vitamins, fatty acids, phospholipids, and antioxidants) had higher numbers of adverse events than those not receiving an active intervention (network meta-analysis: rate ratio 1.73, 95% CrI 1.26 to 2.41; 6 trials, 291 participants; direct evidence: rate ratio 1.72, 95% CrI 1.25 to 2.40; low-certainty evidence). Data were sparse (zero events in all groups in the trial) for liver transplantation, liver decompensation, and hepatocellular carcinoma. So, we did not perform formal analysis for these outcomes. The evidence is very uncertain about effects of other antioxidants (antioxidants other than vitamins) compared to no active intervention on liver cirrhosis (HR 1.68, 95% CrI 0.23 to 15.10; 1 trial, 99 participants; very low-certainty evidence). The evidence is very uncertain about effects of interventions in any of the remaining comparisons, or data were sparse (with zero events in at least one of the groups), precluding formal calculations of effect estimates. Data were probably because of the very short follow-up period (2 months to 28 months). It takes follow-up of 8 to 28 years to detect differences in mortality between people with NAFLD and the general population. Therefore, it is unlikely that differences in clinical outcomes are noted in trials providing less than 5 to 10 years of follow-up. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about effects of nutritional supplementation compared to no additional intervention on all clinical outcomes for people with non-alcohol-related fatty liver disease. Accordingly, high-quality randomised comparative clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (study design in which multiple interventions are trialed within large longitudinal cohorts of patients to gain efficiencies and align trials more closely to standard clinical practice) comparing interventions such as vitamin E, prebiotics/probiotics/synbiotics, PUFAs, and no nutritional supplementation. The reason for the choice of interventions is the impact of these interventions on indirect outcomes, which may translate to clinical benefit. Outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource utilisation measures including costs of intervention and decreased healthcare utilisation after minimum follow-up of 8 years (to find meaningful differences in clinically important outcomes).
Collapse
Affiliation(s)
| | - Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas Jg Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | | | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
58
|
Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem 2021; 224:113690. [PMID: 34256124 DOI: 10.1016/j.ejmech.2021.113690] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, dietary carcinogens, and so forth. The current treatment modalities, including surgical resection and liver transplantation, have been found far from effective. Hence, there is an obvious critical need to develop alternative strategies for the treatment of it. In this review, we discuss the formation process and therapeutic targets of liver cancer. Currently, targeted therapy is limited to sorafenib, lenvatinib, regorafenib, ramucirumab and cabozantinib which leads to a survival benefit in patients, but on the other hand is hampered by the occurrence of drug resistance. Pleasingly and importantly, there are multiple natural products undergoing clinical evaluation in liver cancer, such as polyphenols like icaritin, resveratrol, and silybin, saponins including ginsenoside Rg3 and glycyrrhizinate, alkaloid containing irinotecan and berberine and inorganic compound arsenic trioxide at present. Preclinical and clinical studies have shown that these compounds inhibit liver cancer formation owing to the influence on the anti-viral, anti-inflammation, anti-oxidant, anti-angiogenesis and anti-metastasis activity. Furthermore, a series of small molecule derivatives inspired by the aforementioned compounds are designed and synthesized according to structure-activity relationship studies. Drug combination and novel type of drug-targeted delivery system thereof have been well developed. This article is ended by a perspective remark of futuristic development of natural product-based therapeutic regimen for liver cancer treatment. We expect that this review is an account for current status of natural products as promising anti-liver cancer treatments and should contribute to its understanding.
Collapse
|
59
|
Cui S, Pan XJ, Ge CL, Guo YT, Zhang PF, Yan TT, Zhou JY, He QX, Cheng LH, Wang GJ, Hao HP, Wang H. Silybin alleviates hepatic lipid accumulation in methionine-choline deficient diet-induced nonalcoholic fatty liver disease in mice via peroxisome proliferator-activated receptor α. Chin J Nat Med 2021; 19:401-411. [PMID: 34092291 DOI: 10.1016/s1875-5364(21)60039-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is regarded as the most common liver disease with no approved therapeutic drug currently. Silymarin, an extract from the seeds of Silybum marianum, has been used for centuries for the treatment of various liver diseases. Although the hepatoprotective effect of silybin against NAFLD is widely accepted, the underlying mechanism and therapeutic target remain unclear. In this study, NAFLD mice caused by methionine-choline deficient (MCD) diet were orally administrated with silybin to explore the possible mechanism and target. To clarify the contribution of peroxisome proliferator-activated receptor α (PPARα), PPARα antagonist GW6471 was co-administrated with silybin to NAFLD mice. Since silybin was proven as a PPARα partial agonist, the combined effect of silybin with PPARα agonist, fenofibrate, was then evaluated in NAFLD mice. Serum and liver samples were collected to analyze the pharmacological efficacy and expression of PPARα and its targets. As expected, silybin significantly protected mice from MCD-induced NAFLD. Furthermore, silybin reduced lipid accumulation via activating PPARα, inducing the expression of liver cytosolic fatty acid-binding protein, carnitine palmitoyltransferase (Cpt)-1a, Cpt-2, medium chain acyl-CoA dehydrogenase and stearoyl-CoA desaturase-1, and suppressing fatty acid synthase and acetyl-CoA carboxylase α. GW6471 abolished the effect of silybin on PPARα signal and hepatoprotective effect against NAFLD. Moreover, as a partial agonist for PPARα, silybin impaired the powerful lipid-lowering effect of fenofibrate when used together. Taken together, silybin protected mice against NAFLD via activating PPARα to diminish lipid accumulation and it is not suggested to simultaneously take silybin and classical PPARα agonists for NAFLD therapy.
Collapse
Affiliation(s)
- Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jie Pan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chao-Liang Ge
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yi-Tong Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Peng-Fei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ting-Ting Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji-Yu Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Xian He
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Long-Hao Cheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Ping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
60
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:5375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | | | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| |
Collapse
|
61
|
Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, Dastmalchi N, Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021; 96:107765. [PMID: 34015596 DOI: 10.1016/j.intimp.2021.107765] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Since adipose tissue (AT) can upregulate pro-inflammatory interleukins (ILs) via storing extra lipids in obesity, obesity is considered the leading cause of chronic low-grade inflammation. These ILs can pave the way for the infiltration of immune cells into the AT, ultimately resulting in low-grade inflammation and dysregulation of adipocytes. IL-1, which is divided into two subclasses, i.e., IL-1α and IL-1β, is a critical pro-inflammatory factor. In obesity, IL-1α and IL-1β can promote insulin resistance via impairing the function of adipocytes and promoting inflammation. The current study aims to review the detailed molecular mechanisms and the roles of IL-1α and IL-1β and their antagonist, interleukin-1 receptor antagonist(IL-1Ra), in developing obesity-related inflammatory complications, i.e., type II diabetes (T2D), non-alcoholic steatohepatitis (NASH), atherosclerosis, and cognitive disorders. Besides, the current study discusses the recent advances in natural drugs, synthetic agents, and gene therapy approaches to treat obesity-related inflammatory complications via suppressing IL-1.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
62
|
Ramya S, Thiruvenkataswamy S, Kavithaa K, Preethi S, Winster H, Balachander V, Paulpandi M, Narayanasamy A. pH Dependent Drug Release of Silibinin, a Polyphenol Conjugated with Magnetic Nanoparticle Against the Human Colon Cancer Cell. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01789-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
63
|
Singh AK, Singh A. Preparation, Characterization and In Vitro Antioxidant Potential of Boldine-phospholipid Complex. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999201021165556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Boldine, is an aporphine alkaloid that possesses potent antioxidant activity.
Despite having enormous potential, the clinical application of boldine was restricted because of its
poor bioavailability attributed to its poor aqueous solubility and rapid clearance from the body. The
drug phospholipid complexation techniques were frequently employed to overcome the limitation of
low bioavailability of phytoconstituents/herbal extract.
Objective:
The boldine phospholipid complex (BOL-PC) formulation was developed for enhancing
antioxidant potential of boldine by preparing its phospholipid complex.
Methods:
Boldine loaded phospholipid (BOL-PC) complex was prepared by refluxing followed by
solvent evaporation method and subjected to various physicochemical and spectral analysis. Further,
the in-vitro antioxidant activity was evaluated by DPPH free radical scavenging method.
Results:
The formation of the complex was confirmed by 1H NMR and thermal analysis. SEM and PXRD revealed partial
amorphization of drug in complex formed. The BOL-PC dissolution rate and solubility was significantly improved
compared to the parent compound. The maximum % yield and % EE was found to be 95.92± 0.01732 and 95.89±0.3502
respectively in the optimized formulation (F3) which exhibited concentration-dependent antioxidant property.
Conclusion:
It was concluded from the study that the phospholipid complexation of boldine has better
antioxidant potential and improved the solubility, dissolution profile which may facilitate its oral absorption
and enhances its chances for clinical application.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Research Scholar, Department of Pharmaceutical Sciences Bhimtal Campus, Kumaun University, Nainital Uttarakhand,India
| | - Anita Singh
- Department of Pharmaceutical Sciences Bhimtal Campus, Kumaun University, Nainital Uttarakhand,India
| |
Collapse
|
64
|
Palmieri B, Corazzari V, Panariello Brasile DG, Sangiovanni V, VadalÀ M. Hepatic steatosis integrated approach: nutritional guidelines and joined nutraceutical administration. MINERVA GASTROENTERO 2021; 66:307-320. [PMID: 33443240 DOI: 10.23736/s1121-421x.20.02738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The nonalcoholic fat liver disease (NAFLD) progresses in 30% of the patients to not alcoholic steatohepatitis (NASH) and subsequently in liver fibrosis and even primary cancer and death. Due to the complex physiopathology of the liver steatosis, NASH is an area orphan of specific drugs, but many authors suggest an integrated treatment based upon diet, lifestyle change, and pharmacology. METHODS Our clinical study selected from a wider patient cohort, 13 subjects, appealing to the Second Opinion Medical Consulting Network, for liver and nutritional problems. The diet was integrated with regular prescription of an herbal derivative based on Chrysanthellum americanum and Pistacia lentiscus L. extracts. Clinical data of the recruited patients including body weight, Body Mass Index, were recorded before and after treatment. Each patient underwent pre-post accurate clinical examination and lab exams. The liver stiffness and liver steatosis were evaluated by a trained hepatologist with FibroScan®. RESULTS A significant reduction of anthropometric parameters was detected in all the patients at the end of the study; liver fibrosis and steatosis were instrumentally decreased in 8 subjects, but not significant changes in lab exams and no adverse effects were reported. CONCLUSIONS Chrysanthellum americanum and Pistacia lentiscus L. extracts were absolutely safe and effective and gave a substantial contribution to the life quality benefit, metabolic balance and gut function in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Second Opinion Medical Network, Modena, Italy.,Medico Cura Te Stesso Onlus, Modena, Italy
| | - Veronica Corazzari
- Second Opinion Medical Network, Modena, Italy - .,Medico Cura Te Stesso Onlus, Modena, Italy
| | | | | | | |
Collapse
|
65
|
Lv DD, Wang YJ, Wang ML, Chen EQ, Tao YC, Zhang DM, Tang H. Effect of silibinin capsules combined with lifestyle modification on hepatic steatosis in patients with chronic hepatitis B. Sci Rep 2021; 11:655. [PMID: 33436935 PMCID: PMC7804199 DOI: 10.1038/s41598-020-80709-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
The coexistence of HBV infection and hepatic steatosis is a novel characteristic of liver disease. Silibinin capsules (SC) is a silybin-phospholipid complex containing silybin as the bioactive component, which exerts a remarkable biological effect on various liver diseases, including nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to investigate (1) the prevalence of hepatic steatosis in the general population and patients with chronic hepatitis B (CHB) and (2) to evaluate the effect of SC combined with therapeutic lifestyle changes (TLC) compared with TLC alone on hepatic steatosis in patients with CHB. A total of 16,451 individuals underwent transient elastography (TE) with the control attenuation parameter (CAP) measurement, among which the prevalence of hepatic steatosis was 31.1% in patients with CHB and 42.2% in the general population. The prevalence of hepatic steatosis differed between patients with CHB and the general population at an age of 40 years or older but was similar in individuals aged 39 years or younger (p < 0.05). Furthermore, in patients with CHB presenting hepatic steatosis, the post-6-month relative reduction in CAP in the SC combined with TLC group (p = 0.001) was significantly greater than in the TLC alone group (p = 0.183). The CAP distribution of different steatosis grades (S1, S2, and S3) in the SC combined with TLC group was decreased and S0 (CAP < 248 dB/m) increased significantly, but not significant in the TLC group. Thus, SC combined with TLC may effectively improve hepatic steatosis in patients with CHB.
Collapse
Affiliation(s)
- Duo-Duo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - You-Juan Wang
- Health Management Center, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dong-Mei Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
66
|
Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQH, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021; 2310:201-246. [PMID: 34096005 PMCID: PMC8580566 DOI: 10.1007/978-1-0716-1433-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent metabolic chronic liver diseases in developed countries and puts the populations at risk of progression to liver necro-inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Mitochondrial dysfunction is involved in the onset of NAFLD and contributes to the progression from NAFLD to nonalcoholic steatohepatitis (NASH). Thus, liver mitochondria could become the target for treatments for improving liver function in NAFLD patients. This chapter describes the most important steps used for potential therapeutic interventions in NAFLD patients, discusses current options gathered from both experimental and clinical evidence, and presents some novel options for potentially improving mitochondrial function in NAFLD.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Division of Gastroenterology and Liver Diseases, Department of Medicine and Genetics, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
67
|
Curcio A, Romano A, Cuozzo S, Di Nicola A, Grassi O, Schiaroli D, Nocera GF, Pironti M. Silymarin in Combination with Vitamin C, Vitamin E, Coenzyme Q10 and Selenomethionine to Improve Liver Enzymes and Blood Lipid Profile in NAFLD Patients. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E544. [PMID: 33080906 PMCID: PMC7603183 DOI: 10.3390/medicina56100544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Non-Alcoholic Fatty Liver Disease (NAFLD) is an emerging cause of hepatopathy that is showing an increasing trend and where the recommendations of lifestyle modification are often not sufficient. The aim of this study is to evaluate the efficacy and tolerability profile of the association of silymarin, vitamin C, vitamin E, coenzyme Q10 and selenomethionine (Medronys epato®) by analyzing liver enzymes, along with the lipidic profile, as markers of liver function, and ultrasound results in NAFLD patients. Materials and Methods: This study enrolled 81 patients with mild to severe NAFLD, divided into two groups: Group A (N = 41) received two capsules a day of silymarin, vitamin C, vitamin E, coenzyme Q10 and selenomethionine (Medronys epato®), and Group B (N = 40) received only recommendations for lifestyle modification including hypocaloric diet, physical exercise and encouragement for weight loss. Patients have been evaluated at three timepoints: baseline (T0), after 45 days of treatment (T1) and after 90 days of treatment (T2), by collecting blood parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and the lipid blood profile. Ultrasonographic results have been analyzed at T0 and T2, along with the tolerability profile and side effects, registered at time T2. Results: The administration of the association of silymarin, vitamin C, vitamin E, coenzyme Q10 and selenomethionine (Medronys epato®) was effective since it showed a significant reduction of the evaluated parameters of ALT, AST, ALP and GGT, a significant improvement of lipid parameters, evaluated as markers of liver function, and improvements of ultrasonographic results. The use of this formulation at the dosage of two capsules a day has been well tolerated and no adverse events have been reported during study period of three months. Conclusions: The administration of the association of silymarin, vitamin C, vitamin E, coenzyme Q10 and selenomethionine (Medronys epato®) was effective and well tolerated in the improvement of hepatic function of NAFLD patients.
Collapse
Affiliation(s)
| | - Adriana Romano
- Medical Department, Merqurio Pharma S.r.l., 80138 Naples, Italy; (A.R.); (S.C.)
| | - Simona Cuozzo
- Medical Department, Merqurio Pharma S.r.l., 80138 Naples, Italy; (A.R.); (S.C.)
| | - Antonio Di Nicola
- Infectious Disease Department, Cardarelli Public Hospital, 86100 Campobasso, Italy; (A.D.N.); (O.G.)
| | - Orazio Grassi
- Infectious Disease Department, Cardarelli Public Hospital, 86100 Campobasso, Italy; (A.D.N.); (O.G.)
| | | | | | | |
Collapse
|
68
|
Sonocomplexation as an effective tool to enhance the antitumorigenic effect of metformin: Preparation, in vitro characterization, molecular dynamic simulation & MiaPaCa-2 cell line hypoxia evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
69
|
Tauchen J, Huml L, Rimpelova S, Jurášek M. Flavonoids and Related Members of the Aromatic Polyketide Group in Human Health and Disease: Do They Really Work? Molecules 2020; 25:E3846. [PMID: 32847100 PMCID: PMC7504053 DOI: 10.3390/molecules25173846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Some aromatic polyketides such as dietary flavonoids have gained reputation as miraculous molecules with preeminent beneficial effects on human health, for example, as antioxidants. However, there is little conclusive evidence that dietary flavonoids provide significant leads for developing more effective drugs, as the majority appears to be of negligible medicinal importance. Some aromatic polyketides of limited distribution have shown more interesting medicinal properties and additional research should be focused on them. Combretastatins, analogues of phenoxodiol, hepatoactive kavalactones, and silymarin are showing a considerable promise in the advanced phases of clinical trials for the treatment of various pathologies. If their limitations such as adverse side effects, poor water solubility, and oral inactivity are successfully eliminated, they might be prime candidates for the development of more effective and in some case safer drugs. This review highlights some of the newer compounds, where they are in the new drug pipeline and how researchers are searching for additional likely candidates.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, 165 00 Praha, Czech Republic
| | - Lukáš Huml
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic;
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| |
Collapse
|
70
|
Ceccherini E, Cecchettini A, Morales MA, Rocchiccioli S. The Potentiality of Herbal Remedies in Primary Sclerosing Cholangitis: From In Vitro to Clinical Studies. Front Pharmacol 2020; 11:813. [PMID: 32587513 PMCID: PMC7298067 DOI: 10.3389/fphar.2020.00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis is a complex pathological condition, characterized by chronic inflammation and fibrosis of the biliary epithelium. Without proper clinical management, progressive bile ducts and liver damage lead to cirrhosis and, ultimately, to liver failure. The known limited role of current drugs for treating this cholangiopathy has driven researchers to assess alternative therapeutic options. Some herbal remedies and their phytochemicals have shown anti-fibrotic properties in different experimental models of hepatic diseases and, occasionally, in clinical trials in primary sclerosing cholangitis patients; however their mechanism of action is not completely understood. This review briefly examines relevant studies focusing on the potential anti-fibrotic properties of Silybum marianum, Curcuma longa, Salvia miltiorrhiza, and quercetin. Each natural product is individually reviewed and the possible mechanisms of action discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
71
|
Federico A, Dallio M, Gravina AG, Diano N, Errico S, Masarone M, Romeo M, Tuccillo C, Stiuso P, Morisco F, Persico M, Loguercio C. The Bisphenol A Induced Oxidative Stress in Non-Alcoholic Fatty Liver Disease Male Patients: A Clinical Strategy to Antagonize the Progression of the Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:3369. [PMID: 32408667 PMCID: PMC7277712 DOI: 10.3390/ijerph17103369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/13/2022]
Abstract
UNLABELLED :Introduction: Bisphenol A (BPA) exposure has been correlated to non-alcoholic fatty liver disease (NAFLD) development and progression. We investigated, in a clinical model, the effects of the administration of 303 mg of silybin phospholipids complex, 10 g of vitamin D, and 15 mg of vitamin E (RealSIL, 100D, IBI-Lorenzini, Aprilia, Italy) in male NAFLD patients exposed to BPA on metabolic, hormonal, and oxidative stress-related parameters. METHODS We enrolled 32 male patients with histologic diagnosis of NAFLD and treated them with Realsil 100D twice a day for six months. We performed at baseline clinical, biochemical, and food consumption assessments as well as the evaluation of physical exercise, thiobarbituric acid reactive substances (TBARS), plasmatic and urinary BPA and estrogen levels. The results obtained were compared with those of healthy control subjects and, in the NAFLD group, between baseline and the end of treatment. RESULTS A direct proportionality between TBARS levels and BPA exposure was shown (p < 0.0001). The therapy determined a reduction of TBARS levels (p = 0.011), an improvement of alanine aminotransferase, aspartate aminotransferase, insulinemia, homeostatic model assessment insulin resistance, C reactive protein, tumor necrosis factor alpha (p < 0.05), an increase of conjugated BPA urine amount, and a reduction of its free form (p < 0.0001; p = 0.0002). Moreover, the therapy caused an increase of plasmatic levels of the native form of estrogens (p = 0.03). CONCLUSIONS We highlighted the potential role of BPA in estrogen oxidation and oxidative stress in NAFLD patients. The use of Realsil 100D could contribute to fast BPA detoxification and to improve cellular antioxidant power, defending the integrity of biological estrogen-dependent pathways.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy; (N.D.); (S.E.)
| | - Sonia Errico
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy; (N.D.); (S.E.)
| | - Mario Masarone
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Via Allende, Baronissi, 84081 Salerno, Italy; (M.M.); (M.P.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Marcello Persico
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Via Allende, Baronissi, 84081 Salerno, Italy; (M.M.); (M.P.)
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, via Pansini 5, 80131 Naples, Italy; (A.F.); (A.G.G.); (M.R.); (C.T.); (P.S.); (C.L.)
| |
Collapse
|
72
|
Xu Y, Guo W, Zhang C, Chen F, Tan HY, Li S, Wang N, Feng Y. Herbal Medicine in the Treatment of Non-Alcoholic Fatty Liver Diseases-Efficacy, Action Mechanism, and Clinical Application. Front Pharmacol 2020; 11:601. [PMID: 32477116 PMCID: PMC7235193 DOI: 10.3389/fphar.2020.00601] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with high prevalence in the developed countries. NAFLD has been considered as one of the leading causes of cryptogenic cirrhosis and chronic liver disease. The individuals with obesity, insulin resistance and diabetes mellitus, hyperlipidaemia, and hypertension cardiovascular disease have a high risk to develop NAFLD. The related critical pathological events are associated with the development of NAFLD including insulin resistance, lipid metabolism dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. The development of NAFLD range from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis is characterized by fat accumulation, which represents the early stage of NAFLD. Then, inflammation triggered by steatosis drives early NAFLD progression into NASH. Therefore, the amelioration of steatosis and inflammation is essential for NAFLD therapy. The herbal medicine have taken great effects on the improvement of steatosis and inflammation for treating NAFLD. It has been found out that these effects involved the multiple mechanisms underlying lipid metabolism and inflammation. In this review, we pay particular attention on herbal medicine treatment and make summary about the research of herbal medicine, including herb formula, herb extract and naturals compound on NAFLD. We make details about their protective effects, the mechanism of action involved in the amelioration steatosis and inflammation for NAFLD therapy as well as the clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
73
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 715] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
74
|
Lam S, Doran S, Yuksel HH, Altay O, Turkez H, Nielsen J, Boren J, Uhlen M, Mardinoglu A. Addressing the heterogeneity in liver diseases using biological networks. Brief Bioinform 2020; 22:1751-1766. [PMID: 32201876 PMCID: PMC7986590 DOI: 10.1093/bib/bbaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.
Collapse
Affiliation(s)
- Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hatice Hilal Yuksel
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Ozlem Altay
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hasan Turkez
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Jens Nielsen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Jan Boren
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Mathias Uhlen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| |
Collapse
|
75
|
Liraglutide Attenuates Nonalcoholic Fatty Liver Disease by Modulating Gut Microbiota in Rats Administered a High-Fat Diet. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2947549. [PMID: 32149099 PMCID: PMC7049398 DOI: 10.1155/2020/2947549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/15/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Abstract
This study aimed to determine whether modulation of the gut microbiota structure by liraglutide helps improve nonalcoholic fatty liver disease (NAFLD) in rats on a high-fat diet (HFD). Rats were administered an HFD for 12 weeks to induce NAFLD and then administered liraglutide for 4 additional weeks. Next-generation sequencing and multivariate analysis were performed to assess structural changes in the gut microbiota. Liraglutide attenuated excessive hepatic ectopic fat deposition, maintained intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD rats. Liraglutide significantly altered the overall structure of the HFD-disrupted gut microbiota and gut microbial composition in HFD rats in comparison to those on a normal diet. An abundance of 100 operational taxonomic units (OTUs) were altered upon liraglutide administration, with 78 OTUs associated with weight gain or inflammation. Twenty-three OTUs positively correlated with hepatic steatosis-related parameters were decreased upon liraglutide intervention, while 5 OTUs negatively correlated with hepatic steatosis-related parameters were increased. These results suggest that liraglutide-mediated attenuation of NAFLD partly results from structural changes in gut microbiota associated with hepatic steatosis.
Collapse
|
76
|
Zhang W, An R, Li Q, Sun L, Lai X, Chen R, Li D, Sun S. Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2673-2683. [PMID: 32050765 DOI: 10.1021/acs.jafc.0c00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the leading cause of chronic liver diseases throughout the world. The deficit of pharmacotherapy for NAFLD calls for an urgent need for a new drug discovery and lifestyle management. Black tea is the most popular and functional drink consumed worldwide. Its main bioactive constituent theaflavin helps to prevent obesity-a major risk factor for NAFLD. To find new targets for the development of effective and safe therapeutic drugs from natural plants for NAFLD, we found a theaflavin monomer theaflavin-3,3'-digallate (TF3), which significantly reduced lipid droplet accumulation in hepatocytes, and directly bound and inhibited the activation of plasma kallikrein (PK), which was further proved to stimulate adenosine monophosphate activated protein kinase (AMPK) and its downstream targets. Taken together, we proposed that the TF3-PK-AMPK regulatory axis is a novel mechanism of lipid deposition mitigation, and PK could be a new target for NAFLD treatment.
Collapse
Affiliation(s)
- Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, P. R. China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
77
|
Baldini F, Portincasa P, Grasselli E, Damonte G, Salis A, Bonomo M, Florio M, Serale N, Voci A, Gena P, Vergani L, Calamita G. Aquaporin-9 is involved in the lipid-lowering activity of the nutraceutical silybin on hepatocytes through modulation of autophagy and lipid droplets composition. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158586. [PMID: 31816412 DOI: 10.1016/j.bbalip.2019.158586] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Hepatic steatosis is the hallmark of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome and insulin resistance with potential evolution towards non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Key roles of autophagy and oxidative stress in hepatic lipid accumulation and NAFLD progression are recognized. Here, we employed a rat hepatoma cell model of NAFLD progression made of FaO cells exposed to oleate/palmitate followed or not by TNFα treatment to investigate the molecular mechanisms through which silybin, a lipid-lowering nutraceutical, may improve hepatic lipid dyshomeostasis. The beneficial effect of silybin was found to involve amelioration of the fatty acids profile of lipid droplets, stimulation of the mitochondrial oxidation and upregulation of a microRNA of pivotal relevance in hepatic fat metabolism, miR-122. Silybin was also found to restore the levels of Aquaporin-9 (AQP9) and glycerol permeability while reducing the activation of the oxidative stress-dependent transcription factor NF-κB, and autophagy turnover. In conclusion, silybin was shown to have molecular effects on signaling pathways that were previously unknown and potentially protect the hepatocyte. These actions intersect TG metabolism, fat-induced autophagy and AQP9-mediated glycerol transport in hepatocytes.
Collapse
Affiliation(s)
| | - Piero Portincasa
- Clinica Medica "A. Murri", Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Italy
| | - Elena Grasselli
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | | | - Annalisa Salis
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | - Michela Bonomo
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy
| | - Marilina Florio
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy
| | - Nadia Serale
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | - Adriana Voci
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | - Patrizia Gena
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy
| | - Laura Vergani
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy.
| | - Giuseppe Calamita
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
78
|
Derakhshandeh-Rishehri SM, Heidari-Beni M, Eftekhari MH. THE EFFECTS OF REALSIL (SILYBIN-PHOSPHOLIPID-VITAMIN E COMPLEX) ON LIVER ENZYMES IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) OR NON-ALCOHOLIC STEATO-HEPATITIS (NASH): A SYSTEMATIC REVIEW AND META-ANALYSIS OF RCTS. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:223-231. [PMID: 33029240 DOI: 10.4183/aeb.2020.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The aim of the present study was to systematically review the effects of Realsil (silybin-phospholipid-vitamin E complex) on liver enzymes in patients with NAFLD or NASH. Methods We searched Web of Science, MEDLINE, Google Scholar, Cochrane Library, Science Direct, ProQuest, Scopus, and 1868 articles were found up to December 2018. Four studies that examined the effect of Realsil intake on liver enzymes among NAFLD or NASH patients were included. Exclusion criteria include: animal studies, studies with the design other than clinical trials, studies on non-adult individuals, studies that assess the effect of vitamin E, silybin, or phospholipid solely, studies that examined the effect of Realsil on other outcomes, or studies with insufficient data. Results The analysis demonstrated that Realsil intake led to a significant decrease in Gamma-Glutamyl Transpeptidase (GGT) levels (standardized mean difference (SMD) =-0.37; 95% confidence interval (CI]): -0.68 to -0.06). Realsil intake non-significantly decrease alanine transaminase (ALT) levels (SMD=-1.02 U/L; 95% CI: -2.23 to 0.20) and non-significantly increase aspartate aminotransferase (AST) levels (SMD = 0.17 U/L; 95% CI: -0.26-0.61). Conclusion Realsil intake was associated with a significantly decreased circulating GGT level without any significant effect on AST and ALT levels.
Collapse
Affiliation(s)
| | - M Heidari-Beni
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M H Eftekhari
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
79
|
Bakhshi F, Molavi O, Rashidi MR, Shayanfar A, Amini H. Developing a high-performance liquid chromatography fast and accurate method for quantification of silibinin. BMC Res Notes 2019; 12:743. [PMID: 31727143 PMCID: PMC6854794 DOI: 10.1186/s13104-019-4774-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Objective Silibinin is an antioxidant agent and is shown to have anticancer effects in different cancers including lung, breast, colorectal, liver, prostate, and kidney. There are challenges in the clinical use of silibinin. The main limitation is low solubility, poor oral absorption, and extensive hepatic metabolism. We aim to develop a High-Performance Liquid Chromatography (HPLC) sensitive method for quantification of silibinin in aqueous samples to quantify its concentration in new formulations. A reverse-phase high-performance liquid chromatography (RP-HPLC) composed of C18 column as stationary phase and the mixture of methanol (90%) and water (10%) as mobile phase. The developed method was validated based on the established guidelines. Results The retention time for silibinin was seen in 2.97 min after injection. The calibration curve was drawn and the established method demonstrated a linear ranged from 10 to 100 µg/ml, with a correlation coefficient of 0.996. The sensitivity of the developed method was 10 µg/ml. The accuracy calculated in the range of 88–105.9% and the precision (as relative standard deviation) was between 2.7 and 10.9%. These results demonstrate that the developed method can be a fast and accurate method for quantification of silibinin in aqueous samples.
Collapse
Affiliation(s)
- Faezeh Bakhshi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
80
|
Lai F, Schlich M, Pireddu R, Fadda AM, Sinico C. Nanocrystals as Effective Delivery Systems of Poorly Water-soluble Natural Molecules. Curr Med Chem 2019; 26:4657-4680. [PMID: 30543163 DOI: 10.2174/0929867326666181213095809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Natural products are an important source of therapeutically effective compounds throughout the world. Since ancient times, a huge amount of both plant extracts and isolated compounds have been largely employed in treatment and prevention of human disorders and, currently, more than 60% of the world's population trusts on plant medicaments as demonstrated by the increasing quantity of herbal therapeutics in the market. Unfortunately, several promising natural molecules for the treatment of the most diverse ailments are characterized by extremely unfavourable features, such as low water solubility and poor/irregular bioavailability, which hinder their clinical use. To overcome these limitations and to make herbal therapy more effective, different formulative approaches have been employed. Among the different strategies for increasing drug solubility, nanocrystals can be considered one of the most interesting and successful approaches. Drug nanocrystals are nanosized drug particles usually formulated as nanosuspensions, namely submicron dispersions in liquid media where surfactants, polymers, or a mixture of both act as stabilisers. In this review, we described the most significant results and progresses concerning drug nanocrystal formulations for the delivery of natural compounds with a significant pharmacological activity. The text is organized in nine sections, each focusing on a specific poorly water- soluble natural compound (apigenin, quercetin, rutin, curcumin, baicalin and baicalein, hesperetin and hesperidin, resveratrol, lutein, silybin). To foster the clinical translation of these natural nanomedicines, our opinion is that future research should pair the essential pharmacokinetic studies with carefully designed pre-clinical experiments, able to prove the formulation efficacy in relevant animal models in vivo.
Collapse
Affiliation(s)
- Francesco Lai
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Michele Schlich
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Rosa Pireddu
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Chiara Sinico
- Dept. Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
81
|
Federico A, Dallio M, Masarone M, Gravina AG, Di Sarno R, Tuccillo C, Cossiga V, Lama S, Stiuso P, Morisco F, Persico M, Loguercio C. Evaluation of the Effect Derived from Silybin with Vitamin D and Vitamin E Administration on Clinical, Metabolic, Endothelial Dysfunction, Oxidative Stress Parameters, and Serological Worsening Markers in Nonalcoholic Fatty Liver Disease Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8742075. [PMID: 31737175 PMCID: PMC6815609 DOI: 10.1155/2019/8742075] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Nowadays, the nonalcoholic fatty liver disease represents the main chronic liver disease in the Western countries, and the correct medical therapy remains a big question for the scientific community. The aim of our study was to evaluate the effect derived from the administration for six months of silybin with vitamin D and vitamin E (RealSIL 100D®) on metabolic markers, oxidative stress, endothelial dysfunction, and worsening of disease markers in nonalcoholic fatty liver disease patients. We enrolled 90 consecutive patients with histological diagnosis of nonalcoholic fatty liver disease and 60 patients with diagnosis of reflux disease (not in therapy) as healthy controls. The nonalcoholic fatty liver disease patients were randomized into two groups: treated (60 patients) and not treated (30 patients). We performed a nutritional assessment and evaluated clinical parameters, routine home tests, the homeostatic model assessment of insulin resistance, NAFLD fibrosis score and fibrosis-4, transient elastography and controlled attenuation parameter, thiobarbituric acid reactive substances, tumor necrosis factor α, transforming growth factor β, interleukin-18 and interleukin-22, matrix metalloproteinase 2, epidermal growth factor receptor, insulin growth factor-II, cluster of differentiation-44, high mobility group box-1, and Endocan. Compared to the healthy controls, the nonalcoholic fatty liver disease patients had statistically significant differences for almost all parameters evaluated at baseline (p < 0.05). Six months after the baseline, the proportion of nonalcoholic fatty liver disease patients treated that underwent a statistically significant improvement in metabolic markers, oxidative stress, endothelial dysfunction, and worsening of disease was greater than not treated nonalcoholic fatty liver disease patients (p < 0.05). Even more relevant results were obtained for the same parameters by analyzing patients with a concomitant diagnosis of metabolic syndrome (p < 0.001). The benefit that derives from the use of RealSIL 100D could derive from the action on more systems able to advance the pathology above all in that subset of patients suffering from concomitant metabolic syndrome.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, “Scuola Medica Salernitana” Internal Medicine and Hepatology Unit, Via Allende, 84081 Baronissi, Salerno, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Rosa Di Sarno
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Valentina Cossiga
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Stefania Lama
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, “Scuola Medica Salernitana” Internal Medicine and Hepatology Unit, Via Allende, 84081 Baronissi, Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
82
|
Liu Y, Xu W, Zhai T, You J, Chen Y. Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm Sin B 2019; 9:745-757. [PMID: 31384535 PMCID: PMC6664044 DOI: 10.1016/j.apsb.2019.02.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic metabolic syndrome and the CFLAR-JNK pathway can reverse the process of NASH. Although silibinin is used for the treatment of NASH in clinical, its effect on CFLAR-JNK pathway in NASH remains unclear. This study aimed to investigate the effect of silibinin on CFLAR-JNK pathway in NASH models both in vivo and in vitro. The in vivo study was performed using male C57BL/6 mice fed with methionine- choline-deficient diet and simultaneously treated with silibinin for 6 weeks. The in vitro study was performed by using mouse NCTC-1469 cells which were respectively pretreated with oleic acid plus palmitic acid, and adenovirus-down Cflar for 24 h, then treated with silibinin for 24 h. After the drug treatment, the key indicators involved in CFLAR-JNK pathway including hepatic injury, lipid metabolism and oxidative stress were determined. Silibinin significantly activated CFLAR and inhibited the phosphorylation of JNK, up-regulated the mRNA expression of Pparα, Fabp5, Cpt1α, Acox, Scd-1, Gpat and Mttp, reduced the activities of serum ALT and AST and the contents of hepatic TG, TC and MDA, increased the expression of NRF2 and the activities of CAT, GSH-Px and HO-1, and decreased the activities and expression of CYP2E1 and CYP4A in vivo. These effects were confirmed by the in vitro experiments. Silibinin prevented NASH by regulating CFLAR-JNK pathway, and thereby on one hand promoting the β-oxidation and efflux of fatty acids in liver to relieve lipid accumulation, and on the other hand inducing antioxidase activity (CAT, GSH-Px and HO-1) and inhibiting pro-oxidase activity (CYP2E1 and CYP4A) to relieve oxidative stress.
Collapse
Key Words
- 2-NBDG, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Acox, acyl-coenzyme A oxidase X
- Akt, serine–threonine protein kinase
- CAT, catalase
- CFLAR
- CFLAR, caspase 8 and Fas-associated protein with death domain-like apoptosis regulator
- CYP2E1, cytochrome P450 2E1
- CYP4A, cytochrome P450 4A
- Cpt1α, carnitine palmitoyl transferase 1α
- Fabp5, fatty acid-binding proteins 5
- GSH-Px, glutathione peroxidase
- Gpat, glycerol-3-phosphate acyltransferase
- HE, hematoxylin–eosin
- HO-1, heme oxygenase 1
- IR, insulin resistance
- IRS1, insulin receptor substrate 1
- JNK, c-Jun N-terminal kinase
- Lipid accumulation
- MAPK, mitogen-activated protein kinase
- MCD, methionine- and choline-deficient
- MCS, methionine- and choline-sufficient
- MDA, malondialdehyde
- MT, Masson–Trichrome
- Mttp, microsomal triglyceride transfer protein
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor κB
- NRF2, nuclear factor erythroid 2-related factor 2
- OA, oleic acid
- ORO, oil red O
- Oxidation stress
- PA, palmitic acid
- PI3K, phosphatidylinositol 3-hydroxy kinase
- Pnpla3, phospholipase domain containing 3
- Pparα, peroxisome proliferator activated receptor α
- SD, Sprague–Dawley
- Scd-1, stearoyl-coenzyme A desaturase-1
- Silibinin
- Srebp-1c, sterol regulatory element binding protein-1C
- TC, total cholesterol
- TG, triglyceride
- pIRS1, phosphorylation of insulin receptor substrate 1
- pJNK, phosphorylation of c-Jun N-terminal kinase
Collapse
Affiliation(s)
| | | | | | | | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
83
|
Soleimani V, Delghandi PS, Moallem SA, Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother Res 2019; 33:1627-1638. [PMID: 31069872 DOI: 10.1002/ptr.6361] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/05/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023]
Abstract
Milk thistle (Silybum marianum) is a medicinal plant from the Asteraceae family. Silymarin is the major constituent of milk thistle extract and is a mixture of some flavonolignans such as silybin, which is the most active component of silymarin. It is most commonly known for its hepatoprotective effect. Also, studies have shown other therapeutic effects such as anticancer, anti-Alzheimer, anti-Parkinson, and anti-diabetic, so its safety is very important. It has no major toxicity in animals. Silymarin was mutagen in Salmonella typhimurium strains in the presence of metabolic enzymes. Silybin, silydianin, and silychristin were not cytotoxic and genotoxic at concentration of 100 μM. Silymarin is safe in humans at therapeutic doses and is well tolerated even at a high dose of 700 mg three times a day for 24 weeks. Some gastrointestinal discomforts occurred like nausea and diarrhea. One clinical trial showed silymarin is safe in pregnancy, and there were no anomalies. Consequently, caution should be exercised during pregnancy, and more studies are needed especially in humans. Silymarin has low-drug interactions, and it does not have major effects on cytochromes P-450. Some studies demonstrated that the use of silymarin must be with caution when co-administered with narrow therapeutic window drugs.
Collapse
Affiliation(s)
- Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Sadat Delghandi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University ofMedical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alzahraa University, Karbala, Iraq
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
84
|
Zappavigna S, Vanacore D, Lama S, Potenza N, Russo A, Ferranti P, Dallio M, Federico A, Loguercio C, Sperlongano P, Caraglia M, Stiuso P. Silybin-Induced Apoptosis Occurs in Parallel to the Increase of Ceramides Synthesis and miRNAs Secretion in Human Hepatocarcinoma Cells. Int J Mol Sci 2019; 20:ijms20092190. [PMID: 31058823 PMCID: PMC6539179 DOI: 10.3390/ijms20092190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023] Open
Abstract
Silybin is a flavonolignan extracted from Silybum marianum (milk thistle) with hepatoprotective, antioxidant, and anti-inflammatory activity. Several studies have shown that silybin is highly effective to prevent and treat different types of cancer and that its antitumor mechanisms involve the arrest of the cell cycle and/or apoptosis. An MTT assay was performed to study cell viability, lipid peroxidation, extracellular NO production, and scavenger enzyme activity were studied by Thiobarbituric Acid-Reactive Species (TBARS) assay, NO assay, and MnSOD assay, respectively. Cell cycle and apoptosis analysis were performed by FACS. miRNA profiling were evaluated by real time PCR. In this study, we demonstrated that Silybin induced growth inhibition blocking the Hepg2 cells in G1 phase of cell cycle and activating the process of programmed cell death. Moreover, the antiproliferative effects of silybin were paralleled by a strong increase of the number of ceramides involved in the modulation of miRNA secretion. In particular, after treatment with silybin, miR223-3p and miR16-5p were upregulated, while miR-92-3p was downregulated (p < 0.05). In conclusion, our results suggest that silybin-Induced apoptosis occurs in parallel to the increase of ceramides synthesis and miRNAs secretion in HepG2 cells.
Collapse
Affiliation(s)
- Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Daniela Vanacore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Lama
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", viale Lincoln, 81100 Caserta, Italy.
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", viale Lincoln, 81100 Caserta, Italy.
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy.
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Pasquale Sperlongano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
85
|
Silybin Modulates Collagen Turnover in an In Vitro Model of NASH. Molecules 2019; 24:molecules24071280. [PMID: 30986937 PMCID: PMC6479571 DOI: 10.3390/molecules24071280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Silybin has been proposed as a treatment for nonalcoholic steatohepatitis (NASH). In this study, we assessed the effect of Silybin in a well-established in vitro coculture model of early-stage NASH. LX2 and Huh7 cells were exposed to free fatty acid (FFA) and Silybin as mono- or coculture (SCC). Cell viability, LX2 activation, collagen deposition, metalloproteinase 2 and 9 (MMP2-9) activity, and ROS generation were determined at 24, 96, and 144 h. Exposure to FFA induced the activation of LX2 as shown by the increase in cell viability and upregulation of collagen biosynthesis. Interestingly, while cotreatment with Silybin did not affect collagen production in LX2, a significant reduction was observed in SCC. MMP2-9 activity was reduced in FFA-treated Huh7 and SCC and cotreatment with Silybin induced a dose-dependent increase, while no effect was observed in LX2. Silybin also showed antioxidant properties by reducing the FFA-induced production of ROS in all the cell systems. Based on these data, Silybin exerts its beneficial effects by reducing LX2 proliferation and ROS generation. Moreover, MMP2-9 modulation in hepatocytes represents the driving mechanism for the net reduction of collagen in this NASH in vitro model, highlighting the importance of hepatic cells interplay in NASH development and resolution.
Collapse
|
86
|
Rates of and Factors Associated With Placebo Response in Trials of Pharmacotherapies for Nonalcoholic Steatohepatitis: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2019; 17:616-629.e26. [PMID: 29913275 DOI: 10.1016/j.cgh.2018.06.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS It is important to know the extent of the placebo effect in designing randomized controlled trials for patients with nonalcoholic steatohepatitis (NASH), to accurately calculate sample size and define treatment endpoints. METHODS We performed a systematic review and meta-analysis of the placebo groups from randomized controlled trials of adults with NASH that provided histologic and/or magnetic resonance image-based assessments. We identified trials through a comprehensive search of MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Scopus, from each database's inception through January 2, 2018. RESULTS We identified 39 randomized controlled trials, comprising 1463 patients who received placebo. Histologic assessment data (the nonalcoholic fatty liver disease activity scores, NAS) were available from 956 patients; magnetic resonance spectroscopy data were available from 295 patients and magnetic resonance proton density fat fraction measurements from 61 patients. Overall, 25% of patients given placebo had an improvement in NAS by 2 or more points (95% CI, 21%-29%) with a small amount of heterogeneity (I2 = 27%). There were improvements by at least 1 point in steatosis scores of 33% ± 3% of patients, in hepatocyte ballooning scores of 30% ± 3% of patients, in lobular inflammation scores of 32% ± 3% of patients, and in fibrosis scores of 21% ± 3% of patients, with a moderate amount of heterogeneity among trials (I2 range, 51%-63%). Patients given placebo had a statistically significant improvement in NAS (by 0.72 ± 0.19), with a large amount of heterogeneity (I2 = 96%). Univariate and multivariate meta-regression showed that trials with a higher baseline NAS, those conducted in South America, and those in which patients had a decrease in body mass index, were associated with greater improvements in NAS among patients given placebo. Patients given placebo had significant reductions in intrahepatic triglyceride, measured by magnetic resonance spectroscopy (by 1.45% ± 0.54%) with moderate heterogeneity (I2 = 40%), and in magnetic resonance proton density fat fraction (by 2.43 ± 0.89), without heterogeneity (I2 = 0). Mean serum levels of alanine and aspartate aminotransferases decreased significantly (by 11.7 ± 3.8 U/L and 5.9 ± 2.1 U/L, respectively; P < .01 for both). CONCLUSIONS In a meta-analysis of randomized controlled trials of NASH, patients given placebo have significant histologic, radiologic, and biochemical responses. The placebo response should be considered in designing trials of agents for treatment of NASH.
Collapse
|
87
|
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, Carbone F, Wieckowski MR, Wang DQH, Portincasa P. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol 2019; 160:34-45. [PMID: 30508523 DOI: 10.1016/j.bcp.2018.11.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by the excessive accumulation of triglycerides in hepatocytes. NAFLD is the most frequent chronic liver disease in developed countries, and is often associated with metabolic disorders such as obesity and type 2 diabetes. NAFLD definition encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL), to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD, therefore, represents a global public health issue. Mitochondrial dysfunction occurs in NAFLD, and contributes to the progression to the necro-inflammatory and fibrotic form (NASH). Disrupted mitochondrial function is associated with a decrease in the energy levels and impaired redox balance, and negatively affects cell survival by altering overall metabolism and subcellular trafficking. Such events reduce the tolerance of hepatocytes towards damaging hits, and favour the injurious effects of extra-cellular factors. Here, we discuss the role of mitochondria in NAFLD and focus on potential therapeutic approaches aimed at preserving mitochondrial function.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Liliana P Montezinho
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 Viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | | | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
88
|
Bernal-Reyes R, Castro-Narro G, Malé-Velázquez R, Carmona-Sánchez R, González-Huezo MS, García-Juárez I, Chávez-Tapia N, Aguilar-Salinas C, Aiza-Haddad I, Ballesteros-Amozurrutia MA, Bosques-Padilla F, Castillo-Barradas M, Chávez-Barrera JA, Cisneros-Garza L, Flores-Calderón J, García-Compeán D, Gutiérrez-Grobe Y, Higuera de la Tijera MF, Kershenobich-Stalnikowitz D, Ladrón de Guevara-Cetina L, Lizardi-Cervera J, López-Cossio JA, Martínez-Vázquez S, Márquez-Guillén E, Méndez-Sánchez N, Moreno-Alcantar R, Poo-Ramírez JL, Ramos-Martínez P, Rodríguez-Hernández H, Sánchez-Ávila JF, Stoopen-Rometti M, Torre-Delgadillo A, Torres-Villalobos G, Trejo-Estrada R, Uribe-Esquivel M, Velarde-Ruiz Velasco JA. The Mexican consensus on nonalcoholic fatty liver disease. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2019; 84:69-99. [PMID: 30711302 DOI: 10.1016/j.rgmx.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects nearly one third of the population worldwide. Mexico is one of the countries whose population has several risk factors for the disease and its prevalence could surpass 50%. If immediate action is not taken to counteract what is now considered a national health problem, the medium-term panorama will be very bleak. This serious situation prompted the Asociación Mexicana de Gastroenterología and the Asociación Mexicana de Hepatología to produce the Mexican Consensus on Fatty Liver Disease. It is an up-to-date and detailed review of the epidemiology, pathophysiology, clinical forms, diagnosis, and treatment of the disease, whose aim is to provide the Mexican physician with a useful tool for the prevention and management of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- R Bernal-Reyes
- Sociedad Española de Beneficencia, Pachuca, Hidalgo, México.
| | - G Castro-Narro
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - R Malé-Velázquez
- Instituto de Salud Digestiva y Hepática SA de CV, Guadalajara, Jalisco, México
| | | | - M S González-Huezo
- Servicio de Gastroenterología y Endoscopia GI, ISSSEMYM, Metepec, Estado de México, México
| | - I García-Juárez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - N Chávez-Tapia
- Servicio de Gastroenterología, Fundación Clínica Médica Sur, Ciudad de México, México
| | - C Aguilar-Salinas
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - I Aiza-Haddad
- Clínica de enfermedades hepáticas, Hospital Ángeles Lómas, Ciudad de México, México
| | | | | | - M Castillo-Barradas
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico La Raza IMSS, Ciudad de México, México
| | - J A Chávez-Barrera
- Servicio de Gastroenterología Pediátrica, Hospital General, Centro Médico La Raza, IMSS, Ciudad de México, México
| | - L Cisneros-Garza
- Servicio de Gastroenterología, Hospital Universitario de la UANL, Monterrey, Nuevo León, México
| | - J Flores-Calderón
- Servicio de Gastroenterología, Hospital de Pediatría, Centro Médico Siglo XXI, IMSS, Ciudad de México, México
| | - D García-Compeán
- Servicio de Gastroenterología, Hospital Universitario de la UANL, Monterrey, Nuevo León, México
| | - Y Gutiérrez-Grobe
- Servicio de Gastroenterología, Fundación Clínica Médica Sur, Ciudad de México, México
| | | | | | | | - J Lizardi-Cervera
- Servicio de Gastroenterología, Fundación Clínica Médica Sur, Ciudad de México, México
| | - J A López-Cossio
- Servicio de Gastroenterología y Endoscopia GI, ISSSEMYM, Metepec, Estado de México, México
| | - S Martínez-Vázquez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - E Márquez-Guillén
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - N Méndez-Sánchez
- Servicio de Gastroenterología, Fundación Clínica Médica Sur, Ciudad de México, México
| | - R Moreno-Alcantar
- Servicio de Gastroenterología, Hospital de Especialidades Centro Médico Siglo XXI, IMSS, Ciudad de México, México
| | - J L Poo-Ramírez
- Centro de Innovación y Educación Ejecutiva, Tec de Monterrey, Ciudad de México, México
| | | | - H Rodríguez-Hernández
- Unidad de Investigación Biomédica AMCCI, Hospital de Especialidades, Durango, México
| | - J F Sánchez-Ávila
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - M Stoopen-Rometti
- Centro de Diagnóstico CT-Scanner Lomas Altas, Ciudad de México, México
| | - A Torre-Delgadillo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - G Torres-Villalobos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | - M Uribe-Esquivel
- Servicio de Gastroenterología, Fundación Clínica Médica Sur, Ciudad de México, México
| | | |
Collapse
|
89
|
Bernal-Reyes R, Castro-Narro G, Malé-Velázquez R, Carmona-Sánchez R, González-Huezo M, García-Juárez I, Chávez-Tapia N, Aguilar-Salinas C, Aiza-Haddad I, Ballesteros-Amozurrutia M, Bosques-Padilla F, Castillo-Barradas M, Chávez-Barrera J, Cisneros-Garza L, Flores-Calderón J, García-Compeán D, Gutiérrez-Grobe Y, Higuera de la Tijera M, Kershenobich-Stalnikowitz D, Ladrón de Guevara-Cetina L, Lizardi-Cervera J, López-Cossio J, Martínez-Vázquez S, Márquez-Guillén E, Méndez-Sánchez N, Moreno-Alcantar R, Poo-Ramírez J, Ramos-Martínez P, Rodríguez-Hernández H, Sánchez-Ávila J, Stoopen-Rometti M, Torre-Delgadillo A, Torres-Villalobos G, Trejo-Estrada R, Uribe-Esquivel M, Velarde-Ruiz Velasco J. The Mexican consensus on nonalcoholic fatty liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2019. [DOI: 10.1016/j.rgmxen.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
90
|
Sciacqua A, Perticone M, Tripepi G, Addesi D, Cassano V, Maio R, Sesti G, Perticone F. Metabolic and vascular effects of silybin in hypertensive patients with high 1-h post-load plasma glucose. Intern Emerg Med 2019; 14:77-84. [PMID: 30232738 DOI: 10.1007/s11739-018-1951-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022]
Abstract
Hypertensive patients with normal glucose tolerance (NGT) but 1-h post-load plasma glucose ≥ 155 mg/dl (1-h high), during an oral glucose tolerance test (OGTT), show higher insulin resistance and multiple target organ damages. Experimental and clinical studies demonstrate that silybin presents anti-inflammatory and metabolic effects, improving insulin resistance and endothelial dysfunction. This study aims to evaluate the effects of the complex silybin-vitamin E and phospholipids on inflammatory, metabolic and vascular parameters in NGT 1-h high hypertensive patients. This is a pilot, single arm, interventional, longitudinal study enrolling 50 Caucasian NGT 1-h high hypertensive outpatients, 27 men and 23 women, age range 42-60 years (mean + SD = 52 ± 7). After 6 months of silybin intake, there is a significant improvement in metabolic profile. The glucose response during OGTT significantly improves (AUCglucose0-120 309.6 ± 63.4 at baseline vs 254.6 ± 35.5 at the follow-up, ∆ = - 55, 95% CI from - 67 to - 43, p < 0.0001), so as insulin response (AUCinsulin0-120 238.2 ± 99.1 vs 159.3 ± 44.9, ∆ = - 78.9, 95% CI from - 100.0 to - 57.8, p < 0.0001), in accordance with the increase of insulin sensitivity index Matsuda. Silybin intake is associated with a significant reduction of both clinical and central systolic blood pressure, with betterment in clinical and central pulse pressure and reduction of arterial stiffness parameters. In conclusion, this study demonstrates that silybin may improve the metabolic aspect and vascular damage in NGT 1-h high hypertensive patients who are at higher metabolic and cardiovascular risk. Thus, in these patients, silybin might strengthen the effect of antihypertensive drugs giving further cardiovascular protection.
Collapse
Affiliation(s)
- Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy.
| | - Maria Perticone
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giovanni Tripepi
- CNR-IFC, Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Desire Addesi
- Internal Medicine Unit, Pugliese-Ciaccio Hospital, Catanzaro, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| | - Raffaele Maio
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| |
Collapse
|
91
|
Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res 2018; 32:2202-2213. [PMID: 30080294 DOI: 10.1002/ptr.6171] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Milk thistle (MT; Silybum marianum), a member of the Asteraceae family, is a therapeutic herb with a 2,000-year history of use. MT fruits contain a mixture of flavonolignans collectively known as silymarin, being silybin (also named silibinin) the main component. This article reviews the chemistry of MT, the pharmacokinetics and bioavailability, the pharmacologically relevant actions for liver diseases (e.g., anti-inflammatory, immunomodulating, antifibrotic, antioxidant, and liver-regenerating properties) as well as the clinical potential in patients with alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, drug-induced liver injury, and mushroom poisoning. Overall, literature data suggest that, despite encouraging preclinical data, further well-designed randomized clinical trials are needed to fully substantiate the real value of MT preparations in liver diseases.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Natasa Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
92
|
Qiu Q, Lu M, Li C, Luo X, Liu X, Hu L, Liu M, Zheng H, Zhang H, Liu M, Lai C, Song Y, Deng Y. Novel Self-Assembled Ibrutinib-Phospholipid Complex for Potently Peroral Delivery of Poorly Soluble Drugs with pH-Dependent Solubility. AAPS PharmSciTech 2018; 19:3571-3583. [PMID: 30209789 DOI: 10.1208/s12249-018-1147-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/08/2018] [Indexed: 11/30/2022] Open
Abstract
As an irreversible small-molecule kinase inhibitor, ibrutinib (IBR) exhibits excellent tumor suppression in various tumor cells. However, IBR is insoluble at neutral pH and can dissolve only at low pH: thus, commercial IBR products present poor bioavailability and weakened in vivo antitumor activity. Therefore, we aimed to develop a stable IBR-phospholipid complex (IBR-PC) using egg phosphatidylglycerol (EPG) as excipients to improve the bioavailability of IBR and further enhance its antitumor effects. IBR-PC was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XPRD), and molecular docking and simulation test, which all explained the interactions of two components. Solubility tests demonstrate that the novel formulation can maintain excellent solubility (above 5 mg/mL) at various pH levels. Storage stability tests show that no change in particle size or content of IBR-PC was observed during the experimental period. In vivo pharmacokinetic results demonstrated that the relative bioavailability of IBR-PC was a 9.14-fold improvement relative to that of IBR suspension (IBR-susp). Furthermore, IBR-PC was associated with enhanced cytotoxic activity in vitro and superior tumor growth suppression in vivo compared to that resulting from the free IBR. Thus, the proposed IBR-PC system is a promising drug delivery system that enhances the oral bioavailability of IBR, resulting in its improved in vivo antitumor effect.
Collapse
|
93
|
Peng Z, Li X, Xing D, Du X, Wang Z, Liu G, Li X. Nobiletin alleviates palmitic acid‑induced NLRP3 inflammasome activation in a sirtuin 1‑dependent manner in AML‑12 cells. Mol Med Rep 2018; 18:5815-5822. [DOI: 10.3892/mmr.2018.9615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhicheng Peng
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Dongmei Xing
- Department of Basic Veterinary Medicine, Animal Medicine College, Hunan�Agriculture University, Changsha, Hunan 410128, P.R. China
| | - Xiliang Du
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Zhe Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Guowen Liu
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xinwei Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
94
|
Sridharan K, Sivaramakrishnan G, Sequeira RP, Elamin A. Pharmacological interventions for non-alcoholic fatty liver disease: a systematic review and network meta-analysis. Postgrad Med J 2018; 94:556-565. [PMID: 30341231 DOI: 10.1136/postgradmedj-2018-135967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022]
Abstract
AIM Several drugs have been used for treating non-alcoholic fatty liver disease (NAFLD). The present study is a network meta-analysis of such drugs. DESIGN, SETTING AND PATIENTS Randomised clinical trials comparing drug interventions in patients with NAFLD were analysed. OR and weighted mean difference (95 % CI) were the effect estimates for categorical and numerical outcomes, respectively. Random-effects model was used to generate pooled estimates. Surface under the cumulative ranking curve was used to rank the treatments. MAIN OUTCOME MEASURES Proportion of responders was the primary outcome measure and non-alcoholic steatohepatitis scores, liver enzymes, lipid profile, body mass index, homeostatic model assessment of insulin resistance, intrahepatic fat and adverse events were the key secondary outcomes. RESULTS 116 studies were included in the systematic review and 106 in the meta-analysis. Elafibranor, gemfibrozil, metadoxine, obeticholic acid, pentoxifylline, pioglitazone, probiotics, telmisartan, vildagliptin and vitamin E significantly increased the response rate than standard of care. Various other drugs were observed to modify the secondary outcomes favourably. Probiotics was found with a better response in children; and elafibranor, obeticholic acid, pentoxifylline and pioglitazone in patients with type 2 diabetes mellitus. The quality of evidence observed was either low or very low. CONCLUSION In patients with NAFLD, several drugs have been shown to have variable therapeutic benefit. However, the estimates and the inferences should be considered with extreme caution as it might change with the advent of future head-to-head clinical trials.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Gowri Sivaramakrishnan
- School of Oral Health, College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
| | - Reginald Paul Sequeira
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Abdelaziz Elamin
- Department of Pediatrics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
95
|
Santos HO, Bueno AA, Mota JF. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol Res 2018; 137:170-178. [PMID: 30308247 DOI: 10.1016/j.phrs.2018.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is a highly prevalent issue worldwide, and one of its main manifestations, dyslipidaemia, needs more attention. Cooked artichoke (Cynara scolymus) hearts or artichoke leaf extract (ALE) are believed to be helpful in the treatment of dyslipidaemia. In this narrative review, we provide a brief overview of the potential impact of artichoke consumption on lipid profile. We appraised the Cochrane, MEDLINE and Web of Science databases, and included articles published between 2000 and June 2018 on intervention in humans only. The main potential of ALE administration observed on lipid profile relates to decreased serum LDL, total cholesterol and triglyceride concentrations, although no strong evidence for increasing HDL appears to exist. Evidence suggests that decreases of 8-49 mg/dL for LDL concentration, 12-55 mg/dL for total cholesterol, and 11-51 mg/dL for triglycerides, can be attributed to 2 to 3 g/d of ALE, in which its components luteolin and chlorogenic acid may play a key role. On the other hand, the effects of cooked artichoke hearts can be attributed mainly to its soluble fibres, particularly inulin. Despite the convincing evidence on its health benefits, additional long-term clinical trials are pivotal to fully elucidate the potential effects of ALE administration on positive cardiovascular outcomes.
Collapse
Affiliation(s)
- Heitor Oliveira Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Allain Amador Bueno
- Department of Biological Sciences, University of Worcester, Henwick Grove, Worcester WR2 6AJ, United Kingdom.
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, Goiania, GO, Brazil.
| |
Collapse
|
96
|
Potential Therapeutic Benefits of Herbs and Supplements in Patients with NAFLD. Diseases 2018; 6:diseases6030080. [PMID: 30201879 PMCID: PMC6165515 DOI: 10.3390/diseases6030080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
Our aim is to review the efficacy of various herbs and supplements as a possible therapeutic option in the treatment and/or prevention of nonalcoholic fatty liver disease (NAFLD). We performed a systematic review of medical literature using the PubMed Database by searching the chemical names of many common herbs and supplements with “AND (NAFLD or NASH)”. Studies and medical literature that discussed the roles and usage of herbs and supplements in NAFLD and nonalcoholic steatohepatitis (NASH) from inception until 20 June 2018 were reviewed. Many studies have claimed that the use of various herbs and supplements may improve disease endpoints and outcomes related to NAFLD and/or NASH. Improvement in liver function tests were noted. Amelioration or reduction of lobular inflammation, hepatic steatosis, and fibrosis were also noted. However, well-designed studies demonstrating improved clinical outcomes are lacking. Furthermore, experts remain concerned about the lack of regulation of herbs/supplements and the need for further research on potential adverse effects and herb–drug interactions. In conclusion, preliminary data on several herbs have demonstrated promising antioxidant, anti-inflammatory, anti-apoptotic, and anti-adipogenic properties that may help curtail the progression of NAFLD/NASH. Clinical trials testing the safety and efficacy must be completed before widespread use can be recommended.
Collapse
|
97
|
Chen SR, Li F, Ding MY, Wang D, Zhao Q, Wang Y, Zhou GC, Wang Y. Andrographolide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorg Med Chem 2018; 26:5053-5061. [PMID: 30228000 DOI: 10.1016/j.bmc.2018.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
Sustained activation of the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway contributed to the progression of cancer and liver diseases. STAT3 signaling inhibitor has been extensively investigated for pharmacological use. We synthesized a series of andrographolide derivatives, and characterized their activity against STAT3 signaling pathway both in vitro and in the CCl4-induced acute liver damage mice model. Among these derivatives, compound 24 effectively inhibited phosphorylation and dimerization of STAT3 but not its DNA binding activity. Compound 24 significantly ameliorated carbon tetrachloride-induced acute liver damage in vivo without changing mice body weight. Treatment with 24 attenuated hepatic pathologic damage and promoted hepatic proliferation and activation of STAT3. Compound 24 inhibited elevated expression of α-smooth muscle actin and serum pro-inflammatory cytokines downstream of STAT3 but not those factors that are regulated by NF-κB or SMADs. In summary, our results suggest that compound 24 may serve as a potential therapeutic agent for the treatment of hepatic damage or a liver protection agent via regulating STAT3 activation.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mo-Yu Ding
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| |
Collapse
|
98
|
Assimakopoulos K, Karaivazoglou K, Tsermpini EE, Diamantopoulou G, Triantos C. Quality of life in patients with nonalcoholic fatty liver disease: A systematic review. J Psychosom Res 2018; 112:73-80. [PMID: 30097139 DOI: 10.1016/j.jpsychores.2018.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent medical condition, which may lead to severe complications including cirrhosis and hepatocellular carcinoma. Its chronic course and its association with obesity and diabetes mellitus augment the long-term impact of NAFLD on patients' health and quality of life (QoL) and put great strain on healthcare systems worldwide. Research is growingly focusing on NAFLD patients' QoL in an attempt to describe the full spectrum of disease burden and tackle its future consequences. Relevant studies are characterized by sample heterogeneity and provide conflicting findings which should be interpreted with the use of a systematic and integrative approach. In this context, our aim was to conduct a systematic literature review on the topic of NAFLD patients' QoL. METHODS We performed a systematic search of PubMed, ScienceDirect and GoogleScholar databases according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol. RESULTS Our search yielded 14 suitable articles reporting data from almost 5000 patients. All authors agree that NAFLD patients' QoL is impaired especially in the physical sub-domain. In addition, several demographic, clinical and histopathological parameters have emerged as major determinants of patients' QoL. However, future studies are needed to further clarify these issues. CONCLUSIONS NAFLD patients report poor physical QoL. QoL impairment is associated with a variety of disease-related parameters, mostly the presence of fatigue and cirrhosis.
Collapse
Affiliation(s)
| | | | - Evangelia-Eirini Tsermpini
- Department of Pharmacy, Laboratory of Molecular Biology and Immunology, School of Health Science, University of Patras, Rion Patras, Greece
| | - Georgia Diamantopoulou
- Department of Gastroenterology, School of Medicine, University of Patras, Rion Patras, Greece
| | - Christos Triantos
- Department of Gastroenterology, School of Medicine, University of Patras, Rion Patras, Greece.
| |
Collapse
|
99
|
Nutraceutical Approach to Non-Alcoholic Fatty Liver Disease (NAFLD): The Available Clinical Evidence. Nutrients 2018; 10:nu10091153. [PMID: 30142943 PMCID: PMC6163782 DOI: 10.3390/nu10091153] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical condition characterized by lipid infiltration of the liver, highly prevalent in the general population affecting 25% of adults, with a doubled prevalence in diabetic and obese patients. Almost 1/3 of NAFLD evolves in Non-Alcoholic SteatoHepatitis (NASH), and this can lead to fibrosis and cirrhosis of the liver. However, the main causes of mortality of patients with NAFLD are cardiovascular diseases. At present, there are no specific drugs approved on the market for the treatment of NAFLD, and the treatment is essentially based on optimization of lifestyle. However, some nutraceuticals could contribute to the improvement of lipid infiltration of the liver and of the related anthropometric, haemodynamic, and/or biochemical parameters. The aim of this paper is to review the available clinical data on the effect of nutraceuticals on NAFLD and NAFLD-related parameters. Relatively few nutraceutical molecules have been adequately studied for their effects on NAFLD. Among these, we have analysed in detail the effects of silymarin, vitamin E, vitamin D, polyunsaturated fatty acids of the omega-3 series, astaxanthin, coenzyme Q10, berberine, curcumin, resveratrol, extracts of Salvia milthiorriza, and probiotics. In conclusion, Silymarin, vitamin E and vitamin D, polyunsaturated fatty acids of the omega-3 series, coenzyme Q10, berberine and curcumin, if well dosed and administered for medium–long periods, and associated to lifestyle changes, could exert positive effects on NAFLD and NAFLD-related parameters.
Collapse
|
100
|
Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:2034. [PMID: 30011790 PMCID: PMC6073816 DOI: 10.3390/ijms19072034] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
NASH is becoming increasingly common worldwide because of the growing global prevalence of obesity and consequently NAFLD. Unfortunately, the mechanism of progression of NAFLD to NASH and then cirrhosis is not completely understood. Several factors, including insulin resistance, inflammation, oxidative stress, lipotoxicity, and bile acid (BA) toxicity, have been reported to be associated with NASH progression. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, which is caused by the ectopic accumulation of triglyceride-derived toxic metabolites and the subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. Adipose tissue (AT), especially visceral AT, comprises multiple cell populations that produce adipokines and insulin-like growth factor, plus macrophages and other immune cells that stimulate the development of lipotoxic liver disease. These biomolecules have been recently linked with many digestive diseases and gastrointestinal malignancies such as hepatocellular carcinoma. This made us question what role lipotoxicity has in the natural history of liver fibrosis. Therefore, this review focuses on the close relationship between AT and NASH. A good comprehension of the pathways that are related to dysregulated AT, metabolic dysfunction, and hepatic lipotoxicity will result in the development of prevention strategies and promising therapeutics for patients with NASH.
Collapse
Affiliation(s)
| | | | | | - Jessica P Hwang
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center "20 Noviembre", 03229 Mexico City, Mexico.
| | | |
Collapse
|