51
|
Pudlarz AM, Ranoszek-Soliwoda K, Karbownik MS, Czechowska E, Tomaszewska E, Celichowski G, Grobelny J, Chabielska E, Gromotowicz-Popławska A, Szemraj J. Antioxidant enzymes immobilized on gold and silver nanoparticles enhance DNA repairing systems of rat skin after exposure to ultraviolet radiation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102558. [PMID: 35390524 DOI: 10.1016/j.nano.2022.102558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The aim of the study was to investigate in vivo whether the application of immobilized superoxide dismutase (SOD) and catalase (CAT) could enhance DNA repairing systems and reduce level of CPD (cyclobutane pyrimidine dimers) and 6-4PP ((6-4) pyrimidine-pyrimidone photoproducts), and whether the immobilization on gold (AuNPs) and silver (AgNPs) nanoparticles affects the outcome. The study presents secondary analysis of our previous research. Three-day application of SOD and CAT in all forms of solution decreased the levels of CPD and 6-4PP boosted by UV irradiation. The mRNA expression level of the nucleotide excision repair (NER) system genes (XPA, XPC, ERCC1, ERCC2, ERCC3, LIG1) increased after application of immobilized and free enzymes. Increased by UV irradiation, p53 mRNA expression level normalized with the enzyme application. In conclusion, application of free and immobilized antioxidant enzymes accelerates removal of harmful effects of UV radiation in the rat skin by increasing expression level of NER genes.
Collapse
Affiliation(s)
- Agnieszka M Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland.
| | | | - Michał S Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | - Ewa Czechowska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, Poland
| | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland; Department of Medicine, Lazarski University, Warsaw, Poland.
| |
Collapse
|
52
|
Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. JOURNAL OF ONCOLOGY 2022; 2022:7211485. [PMID: 35794980 PMCID: PMC9252714 DOI: 10.1155/2022/7211485] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) can be developed into an important arsenal against cancer; it is a minimally invasive therapy, which is used in the treatment or/and palliation of a variety of cancers and benign diseases. The removal of cancerous tissue is achieved with the use of photosensitizer and a light source, which excites the photosensitizer. This excitation causes the photosensitizer to generate singlet oxygen and other reactive oxygen species. PDT has been used in several types of cancers including nonmelanoma skin cancer, bladder cancer, esophageal cancer, head and neck cancer, and non-small cell lung cancer (NSCLC). Although it is routinely used in nonmelanoma skin cancer, it has not been widely adopted in other solid cancers due to a lack of clinical data showing the superiority of PDT over other forms of treatment. Singlet oxygen used in PDT can alter the activity of the catalase, which induces immunomodulation through HOCl signaling. The singlet oxygen can induce apoptosis through both the extrinsic and intrinsic pathways. The extrinsic pathway of apoptosis starts with the activation of the Fas receptor by singlet oxygen that leads to activation of the caspase-7 and caspase-3. In the case of the intrinsic pathway, disruption caused by singlet oxygen in the mitochondria membrane leads to the release of cytochrome c, which binds with APAF-1 and procaspase-9, forming a complex, which activates caspase-3. Mechanisms of PDT action can vary according to organelles affected. In the plasma membrane, membrane disruption is caused by the oxidative stress leading to the intake of calcium ions, which causes swelling and rupture of cells due to excess intake of water, whereas disruption of lysosome causes the release of the cathepsins B and D, which cleave Bid into tBid, which changes the mitochondrial outer membrane permeability (MOMP). Oxidative stress causes misfolding of protein in the endoplasmic reticulum. When misfolding exceeds the threshold, it triggers unfolding protein response (UPR), which leads to activation of caspase-9 and caspase-3. Finally, the activation of p38 MAPK works as an alternative pathway for the induction of MOMP.
Collapse
|
53
|
Evaluation of DNA Damage, Biomarkers of Oxidative Stress, and Status of Antioxidant Enzymes in Freshwater Fish ( Labeo rohita) Exposed to Pyriproxyfen. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5859266. [PMID: 35720182 PMCID: PMC9205694 DOI: 10.1155/2022/5859266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
Pyriproxyfen (PPF) mimics a natural hormone in insects and disrupts their growth. It is a well-known synthetic insecticide and aromatic juvenile hormone analog frequently used in agriculture and vegetable crops to control various insect species. At present, scanty information is available about the possible potential threats of PPF in aquatic organisms. Therefore, in this study, different toxico-pathologic endpoints of PPF like DNA damage, biomarkers of oxidative stress, and status of antioxidant enzymes were determined in Labeo rohita (freshwater fish). In our study, 60 active, free from any external obvious ailments, same size, age, and body mass were randomly allocated to four glass aquaria (T0-T3) separately containing 100 L water. The fish present in groups T1, T2, and T3 were administered PPF dissolved in water 300, 600, and 900 μg/L for 30 days. Different tissues including the blood and visceral organs were obtained from each fish on days 10, 20, and 30 of the experiment. Results on various morphological and nuclear changes in red blood cells of PPF-exposed Labeo rohita fish including pear-shaped erythrocytes, spherocytes, red blood cells with a blebbed nucleus, micronucleus, and nuclear remnants were significantly increased. Our results on genotoxicity (comet assay) recorded significantly (P ≤ 0.05) increased DNA damage in various tissues of insecticide-exposed fish. The results on oxidative stress profile (reactive oxygen species and thiobarbituric acid reactive substances) and antioxidant enzymes (reduced glutathione superoxide dismutase, peroxidase, and catalase) in multiple tissues of Labeo rohita fish concluded significantly (P ≤ 0.05) higher quantity of biomarkers of oxidative stress and lower concentrations of different antioxidant enzymes in treated fish. Hence, the findings of our experimental research determine that PPF could induce adverse toxic impacts on multiple tissues of Labeo rohita fish.
Collapse
|
54
|
HDA-2-Containing Complex Is Required for Activation of Catalase-3 Expression in Neurospora crassa. mBio 2022; 13:e0135122. [PMID: 35699373 PMCID: PMC9426557 DOI: 10.1128/mbio.01351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is essential for aerobic organisms to maintain the homeostasis of intracellular reactive oxygen species (ROS) for survival and adaptation to the environment. In line with other eukaryotes, the catalase of Neurospora crassa is an important enzyme for clearing ROS, and its expression is tightly regulated by the growth phase and various oxidative stresses. Our study reveals that, in N. crassa, histone deacetylase 2 (HDA-2) and its catalytic activity positively regulate the expression of the catalase-3 (cat-3) gene. HDA-2, SIF-2, and SNT-1 may form a subcomplex with such a regulation role. As expected, deletion of HDA-2 or SIF-2 subunit increased acetylation levels of histone H4, indicating that loss of HDA-2 complex fails to deacetylate H4 at the cat-3 locus. Furthermore, loss of HDA-2 or its catalytic activity led to dramatic decreases of TFIIB and RNA polymerase II (RNAP II) recruitment at the cat-3 locus and also resulted in high deposition of H2A.Z at the promoter and transcription start site (TSS) regions of the cat-3 gene. Collectively, this study strongly demonstrates that the HDA-2-containing complex activates the transcription of the cat-3 gene by facilitating preinitiation complex (PIC) assembly and antagonizing the inhibition of H2A.Z at the cat-3 locus through H4 acetylation. IMPORTANCE Clearance of reactive oxygen species (ROS) is critical to the survival of aerobic organisms. In the model filamentous fungus Neurospora crassa, catalase-3 (cat-3) expression is activated in response to H2O2-induced ROS stress. We found that histone deacetylase 2 (HDA-2) positively regulates cat-3 transcription in N. crassa; this is widely divergent from the classical repressive role of most histone deacetylases. Like HDA-2, the SIF-2 or SNT-1 subunit of HDA-2-containing complex plays a positive role in cat-3 transcription. Furthermore, we also found that HDA-2-containing complex provides an appropriate chromatin environment to facilitate PIC assembly and to antagonize the inhibition role of H2A.Z at the cat-3 locus through H4 acetylation. Taken together, our results establish a mechanism for how the HDA-2-containing complex regulates transcription of the cat-3 gene in N. crassa.
Collapse
|
55
|
Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet 2022; 18:e1010254. [PMID: 35666721 PMCID: PMC9203020 DOI: 10.1371/journal.pgen.1010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint factors Bub3 and BuGZ play critical roles in mitotic process, but little is known about their roles in other cellular processes in eukaryotes. In aerobic organisms, transcriptional regulation of catalase genes in response to developmental or environmental stimuli is necessary for redox homeostasis. Here, we demonstrate that Bub3 and BuGZ negatively regulate cat-3 transcription in the model filamentous fungus Neurospora crassa. The absence of Bub3 caused a significant decrease in BuGZ protein levels. Our data indicate that BuGZ and Bub3 interact directly via the GLEBS domain of BuGZ. Despite loss of the interaction, the amount of BuGZ mutant protein negatively correlated with the cat-3 expression level, indicating that BuGZ amount rather than Bub3-BuGZ interaction determines cat-3 transcription level. Further experiments demonstrated that BuGZ binds directly to the cat-3 gene and responses to cat-3 overexpression induced by oxidative stresses. However, the zinc finger domains of BuGZ have no effects on DNA binding, although mutations of these highly conserved domains lead to loss of cat-3 repression. The deposition of BuGZ along cat-3 chromatin hindered the recruitment of transcription activators GCN4/CPC1 and NC2 complex, thereby preventing the assembly of the transcriptional machinery. Taken together, our results establish a mechanism for how mitotic proteins Bub3 and BuGZ functions in transcriptional regulation in a eukaryotic organism.
Collapse
Affiliation(s)
- Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangjie Shen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Du
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| |
Collapse
|
56
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
57
|
The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox “Tai Chi” theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
|
58
|
Tao Y, Liu S, Lu J, Fu S, Li L, Zhang J, Wang Z, Hong M. FOXO3a-ROS pathway is involved in androgen-induced proliferation of prostate cancer cell. BMC Urol 2022; 22:70. [PMID: 35488328 PMCID: PMC9052560 DOI: 10.1186/s12894-022-01020-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although FOXO3a can inhibit the cell proliferation of prostate cancer, its relationship with reactive oxygen species (ROS) in prostate cancer (PCa) has not been reported. Methods We analyzed the correlation between the expression of FOXO3a and the antioxidant enzyme catalase in prostate cancer with the TCGA and GEPIA databases. We also constructed a PPI network of FOXO3a via the STRING database. The mRNA and protein expression of FOXO3a and catalase were detected by qRT-PCR or western blotting in LNCaP and 22RV1 cells treated with DHT, R1881, or Enzalutamide. The effects of FOXO3a on catalase expression were tested by over-expressing or knocking down FOXO3a in LNCaP cells. Furthermore, the catalase activity and ROS level were detected in LNCaP cells treated with DHT. Cell proliferation and ROS were also analyzed in LNCaP which was treated with antioxidant. Results Results showed that the catalase expression was down-regulated in prostate cancer. A positive correlation between FOXO3a and catalase existed. DHT treatment could significantly reduce FOXO3a and catalase expression at mRNA and protein level in LNCaP cells. Catalase expression partly depended on FOXO3a as over-expression and knockdown of FOXO3a could result in the expresssion change of catalase. DHT treatment was found to inhibit catalase activity and increase ROS level in prostate cancer cell. Our study also demonstrated that antioxidant treatment reduced DHT-induced proliferation and ROS production in prostate cancer cell. Conclusions We discovered a novel mechanism by which DHT promotes prostate cancer cell proliferation via suppressing catalase activity and activating ROS signaling via a FOXO3a dependent manner. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01020-9.
Collapse
Affiliation(s)
- Yan Tao
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shanhui Liu
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jianzhong Lu
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shengjun Fu
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lanlan Li
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jing Zhang
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhiping Wang
- Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China. .,Institute of Gansu Nephron-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, Guangdong, China. .,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China. .,Drug Discovery Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China.
| |
Collapse
|
59
|
Kong Y, Chen H, Chen M, Li Y, Li J, Liu Q, Xiong H, Guo T, Xie Y, Yuan Y, Zhang XL. Abnormal ECA-Binding Membrane Glycans and Galactosylated CAT and P4HB in Lesion Tissues as Potential Biomarkers for Hepatocellular Carcinoma Diagnosis. Front Oncol 2022; 12:855952. [PMID: 35392238 PMCID: PMC8980540 DOI: 10.3389/fonc.2022.855952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer. Despite decades of research efforts, the search for novel biomarkers is still urgently needed for the diagnosis of HCC and the improvement of clinical outcomes. Previous studies of HCC clinical biomarkers have usually focused on serum and urine samples (e.g., serum Alpha-fetoprotein (AFP). However, cellular membrane proteins in lesion tissues are less used in HCC diagnosis. The abnormal expression of membrane glycoproteins in tumor lesions are considered as potential targets for tumor diagnosis and tumor therapies. Here, a lectin array has been employed to screen and identify abnormal glycopatterns and cellular membrane glycans in HCC lesion tissues compared with adjacent non-tumor tissues. We found that there was significantly less expression of Erythrina cristagalli (ECA) lectin binding (Galβ1-3/β1-4) glycans on the cellular membrane of HCC lesion tissues compared with those of adjacent non-tumor tissues. Immunohistochemistry analysis further showed that ECA-binding ability on the membrane proteins of HCC tissues progressively decreased in different tumor-node-metastasis (TNM) stages (stage I to stage III) as the malignancy of liver cancer increased. Receiver operating curve (ROC) analysis showed ECA-binding ability yielding a sensitivity of 85% and specificity of 75%, and a combination of ECA and AFP has better clinical diagnostic efficiency, yielding a sensitivity of 90% and specificity of 85%, than ECA or AFP assay alone. ECA pull-down followed by mass spectrometry further showed that there was significantly less expression of ECA binding membrane catalase (CAT) and prolyl 4-hydroxylase beta polypeptide (P4HB) in HCC tissues compared with the adjacent non-tumor tissues. The abnormally increased expression of total CAT and P4HB and decreased expression of galactosylated membrane CAT and P4HB in HCC cell lines were correlated with an HCC metastasis status. Our findings suggest that abnormal declined ECA-binding galatosylated membrane glycans and two galactosylated-CAT and P4HB glycoproteins in lesion tissues are potential biomarkers in the diagnosis and/or metastasis prediction for HCC.
Collapse
Affiliation(s)
- Ying Kong
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyu Chen
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yongshuai Li
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jiarong Li
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Qi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Tangxi Guo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yufeng Yuan
- Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Allergy Department of Zhongnan Hospital, State Key Laboratory of Virology, Medical Research Institute Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
60
|
Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. Int J Mol Sci 2022; 23:ijms23062906. [PMID: 35328327 PMCID: PMC8955255 DOI: 10.3390/ijms23062906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•−) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•− formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•− formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•− formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•− formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.
Collapse
|
61
|
Label-free plasma proteomics for the identification of the putative biomarkers of oral squamous cell carcinoma. J Proteomics 2022; 259:104541. [DOI: 10.1016/j.jprot.2022.104541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
|
62
|
Ungur RA, Borda IM, Codea RA, Ciortea VM, Năsui BA, Muste S, Sarpataky O, Filip M, Irsay L, Crăciun EC, Căinap S, Jivănescu DB, Pop AL, Singurean VE, Crișan M, Groza OB, Martiș (Petruț) GS. A Flavonoid-Rich Extract of Sambucus nigra L. Reduced Lipid Peroxidation in a Rat Experimental Model of Gentamicin Nephrotoxicity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:772. [PMID: 35160718 PMCID: PMC8837157 DOI: 10.3390/ma15030772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The use of gentamicin (GM) is limited due to its nephrotoxicity mediated by oxidative stress. This study aimed to evaluate the capacity of a flavonoid-rich extract of Sambucus nigra L. elderflower (SN) to inhibit lipoperoxidation in GM-induced nephrotoxicity. The HPLC analysis of the SN extract recorded high contents of rutin (463.2 ± 0.0 mg mL-1), epicatechin (9.0 ± 1.1 µg mL-1), and ferulic (1.5 ± 0.3 µg mL-1) and caffeic acid (3.6 ± 0.1 µg mL-1). Thirty-two Wistar male rats were randomized into four groups: a control group (C) (no treatment), GM group (100 mg kg-1 bw day-1 GM), GM+SN group (100 mg kg-1 bw day-1 GM and 1 mL SN extract day-1), and SN group (1 mL SN extract day-1). Lipid peroxidation, evaluated by malondialdehyde (MDA), and antioxidant enzymes activity-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)-were recorded in renal tissue after ten days of experimental treatment. The MDA level was significantly higher in the GM group compared to the control group (p < 0.0001), and was significantly reduced by SN in the GM+SN group compared to the GM group (p = 0.021). SN extract failed to improve SOD, CAT, and GPX activity in the GM+SN group compared to the GM group (p > 0.05), and its action was most probably due to the ability of flavonoids (rutin, epicatechin) and ferulic and caffeic acids to inhibit synthesis and neutralize reactive species, to reduce the redox-active iron pool, and to inhibit lipid peroxidation. In this study, we propose an innovative method for counteracting GM nephrotoxicity with a high efficiency and low cost, but with the disadvantage of the multifactorial environmental variability of the content of SN extracts.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| | - Orsolya Sarpataky
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania;
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Elena Cristina Crăciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Delia Bunea Jivănescu
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, Nutrition, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Victoria Emilia Singurean
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Maria Crișan
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Oana Bianca Groza
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Georgiana Smaranda Martiș (Petruț)
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| |
Collapse
|
63
|
Wang Y, Li H, Liu Y, Zhou M, Ding M, Yuan Y. Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis. Synth Syst Biotechnol 2022; 7:481-489. [PMID: 34977392 PMCID: PMC8671096 DOI: 10.1016/j.synbio.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the establishment of synthetic microbial consortia with rational strategies has gained extensive attention, becoming one of the important frontiers of synthetic biology. Systems biology can offer insights into the design and construction of synthetic microbial consortia. Taking the high-efficiency production of 2-keto-l-gulonic acid (2-KLG) as an example, we constructed a synthetic microbial consortium “Saccharomyces cerevisiae-Ketogulonigenium vulgare” based on systems biology analysis. In the consortium, K. vulgare was the 2-KLG producing strain, and S. cerevisiae acted as the helper strain. Comparative transcriptomic analysis was performed on an engineered S. cerevisiae (VTC2) and a wild-type S. cerevisiae BY4741. The results showed that the up-regulated genes in VTC2, compared with BY4741, were mainly involved in glycolysis, TCA cycle, purine metabolism, and biosynthesis of amino acids, B vitamins, and antioxidant proteases, all of which play important roles in promoting the growth of K. vulgare. Furthermore, Vitamin C produced by VTC2 could further relieve the oxidative stress in the environment to increase the production of 2-KLG. Therefore, VTC2 would be of great advantage in working with K. vulgare. Thus, the synthetic microbial consortium "VTC2-K. vulgare" was constructed based on transcriptomics analyses, and the accumulation of 2-KLG was increased by 1.49-fold compared with that of mono-cultured K. vulgare, reaching 13.2 ± 0.52 g/L. In addition, the increased production of 2-KLG was accompanied by the up-regulated activities of superoxide dismutase and catalase in the medium and the up-regulated oxidative stress-related genes (sod, cat and gpd) in K. vulgare. The results indicated that the oxidative stress in the synthetic microbial consortium was efficiently reduced. Thus, systems analysis confirmed a favorable symbiotic relationship between microorganisms, providing guidance for further engineering synthetic consortia.
Collapse
Affiliation(s)
- Yan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Hengchang Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yu Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mengyu Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
64
|
Yang X, Rai U, Chung JY, Esumi N. Fine Tuning of an Oxidative Stress Model with Sodium Iodate Revealed Protective Effect of NF-κB Inhibition and Sex-Specific Difference in Susceptibility of the Retinal Pigment Epithelium. Antioxidants (Basel) 2021; 11:antiox11010103. [PMID: 35052607 PMCID: PMC8773095 DOI: 10.3390/antiox11010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress of the retinal pigment epithelium (RPE) is a major risk factor for age-related macular degeneration (AMD). As a dry AMD model via oxidative stress, sodium iodate (NaIO3), which is primarily toxic to the RPE, has often been used at a high dose to cause RPE death for studying photoreceptor degeneration. Thus, characterization of RPE damage by a low dose of NaIO3 is still limited. To quantify RPE damage caused by NaIO3 in mice, we recently developed a morphometric method using RPE flat-mounts. Here, we report that NaIO3 has a narrow range of dose–effect correlation at 11–18 mg/kg body weight in male C57BL/6J mice. We evaluated the usefulness of our quantification method in two experimental settings. First, we tested the effect of NF-κB inhibition on NaIO3-induced RPE damage in male C57BL/6J mice. IKKβ inhibitor BAY 651942 suppressed upregulation of NF-κB targets and protected the RPE from oxidative stress. Second, we tested sex-specific differences in NaIO3-induced RPE damage in C57BL/6J mice using a low dose near the threshold. NaIO3 caused more severe RPE damage in female mice than in male mice. These results demonstrate the usefulness of the quantification method and the importance of fine-tuning of the NaIO3 dose. The results also show the therapeutic potential of IKKβ inhibition for oxidative stress-related RPE diseases, and reveal previously-unrecognized sex-specific differences in RPE susceptibility to oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Noriko Esumi
- Correspondence: ; Tel.: +1-410-614-6110; Fax: +1-410-502-5382
| |
Collapse
|
65
|
Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021; 26:molecules26247658. [PMID: 34946740 PMCID: PMC8706440 DOI: 10.3390/molecules26247658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, 00185 Rome, Italy;
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| |
Collapse
|
66
|
Topical Administration of 15-Deoxy- Δ 12,14-Prostaglandin J 2 Using a Nonionic Cream: Effect on UVB-Induced Skin Oxidative, Inflammatory, and Histopathological Modifications in Mice. Mediators Inflamm 2021; 2021:9330596. [PMID: 34764817 PMCID: PMC8577928 DOI: 10.1155/2021/9330596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022] Open
Abstract
UVB radiation is certainly one of the most important environmental threats to which we are subjected to. This fact highlights the crucial protective role of the skin. However, the skin itself may not be capable of protecting against UVB depending on irradiation intensity and time of exposition. Sun blockers are used to protect our skin, but they fail to fully protect it against oxidative and inflammatory injuries initiated by UVB. To solve this issue, topical administration of active molecules is an option. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an arachidonic acid-derived lipid with proresolution and anti-inflammatory actions. However, as far as we are aware, there is no evidence of its therapeutic use in a topical formulation to treat the deleterious events initiated by UVB, which was the aim of the present study. We used a nonionic cream to vehiculate 15d-PGJ2 (30, 90, and 300 ng/mouse) (TFcPGJ2) in the skin of hairless mice. UVB increased skin edema, myeloperoxidase activity, metalloproteinase-9 activity, lipid peroxidation, superoxide anion production, gp91phox and COX-2 mRNA expression, cytokine production, sunburn and mast cells, thickening of the epidermis, and collagen degradation. UVB also diminished skin ability to reduce iron and scavenge free radicals, reduced glutathione (GSH), sulfhydryl proteins, and catalase activity. TFcPGJ2 inhibited all these pathological alterations in the skin caused by UVB. No activity was observed with the unloaded topical formulation. The protective outcome of TFcPGJ2 indicates it is a promising therapeutic approach against cutaneous inflammatory and oxidative pathological alterations.
Collapse
|
67
|
Cavalcante LCDC, Rodrigues GM, Ribeiro Júnior RFG, Monteiro AM, Damasceno AVBS, Couteiro RP, Yasojima EY, Brito MVH, Percário S. Ischemic perconditioning on mesenteric ischemia/reperfusion injury in rats. Acta Cir Bras 2021; 36:e360903. [PMID: 34755763 PMCID: PMC8580514 DOI: 10.1590/acb360903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate if the perconditioning affects the antioxidant capacity in
mesenteric ischemia and reperfusion injury. Methods: Twenty-one Wistar rats were assigned into three groups, as follows: Sham, IR
and rPER. The animals were subjected to mesenteric ischemia for 30 min. rPER
consisted of three cycles of 5-min hindlimb ischemia followed by 5 min
hindlimb perfusion at the same time to mesenteric ischemic period. After 5
minutes, blood and 5 cm of terminal ileum were harvested for thiobarbituric
acid reactive substances (TBARS) and Trolox equivalent antioxidant capacity
(TEAC) measurement. Results: rPER technique was able to reduce intestinal tissue TBARS levels
(p<0.0001), but no statistic difference was observed in blood levels
between groups, although it was verified similar results in rPER and Sham
group. rPER technique also enhanced TEAC levels in both blood (p = 0.0314)
and intestinal tissue (p = 0.0139), compared to IR group. Conclusions: rPER appears as the most promising technique to avoid IR injury. This
technique reduced TBARS levels in blood and intestinal tissue and promoted
the maintenance of antioxidant defense in mesenteric acute injury.
Collapse
|
68
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
69
|
Kim EH, Jeong JA, Choi EK, Jeong TY. Antioxidant enzyme activity in Daphnia magna under microscopic observation and shed carapace length as an alternative growth endpoint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148771. [PMID: 34225144 DOI: 10.1016/j.scitotenv.2021.148771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Daphnia magna is an important organism for exposure studies in ecotoxicology. Body length measurement of a daphnid is a useful endpoint that represents the adverse effects of exposed chemicals or conditions on growth. This study questioned whether stress on body length measurement conditions while maintaining Daphnia magna on a slide glass results in any impact to antioxidant enzyme activity or growth. At the same time, the shed carapace length was tested to see if it could predict body length and be used as an alternative endpoint. The measured catalase (CAT) activity decreased as the exposure time to the on-slide conditions increased from 30 s to 120 s, although glutathione-S-transferase (GST) activity was not affected. On the other hand, regression between body length and two parameters of shed carapace length showed R2 values, 0.869 and 0.924. Growth measured for each molting for three weeks was not affected by the exposure to the on-slide conditions. Finally, this study confirmed potential oxidative stress based on the exposure time dependent CAT activity in Daphnia magna under microscopic observation. More importantly, the shed carapace length was validated to reflect body length and it implies applicability of the new parameters to sublethal effect measurement using Daphnia magna. This study suggests potential interference is possible with the traditional growth measurement method on antioxidant enzyme activity in Daphnia magna and proposes better experimental practices to avoid the interference.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies, 81, Oedae-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Ju An Jeong
- Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies, 81, Oedae-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Eun Kyong Choi
- Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies, 81, Oedae-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies, 81, Oedae-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Republic of Korea.
| |
Collapse
|
70
|
Hwang JS, Kim E, Lee HG, Lee WJ, Won JP, Hur J, Fujii J, Seo HG. Peroxisome proliferator-activated receptor δ rescues xCT-deficient cells from ferroptosis by targeting peroxisomes. Biomed Pharmacother 2021; 143:112223. [PMID: 34649350 DOI: 10.1016/j.biopha.2021.112223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is a recently recognized process of cell death characterized by accumulation of iron-dependent lipid peroxides. Herein, we demonstrate that peroxisome proliferator-activated receptor δ (PPARδ) inhibits ferroptosis of mouse embryonic fibroblasts (MEFs) derived from cysteine/glutamate transporter (xCT)-knockout mice. Activation of PPARδ by the specific ligand GW501516 led to a dose-dependent decrease in ferroptotic cell death triggered by xCT deficiency, along with decreased levels of intracellular iron accumulation and lipid peroxidation. These effects of GW501516 were abolished by PPARδ-targeting small interfering RNA (siRNA) and the PPARδ inhibitor GSK0660, indicating that PPARδ inhibits xCT deficiency-induced ferroptosis. In addition, GW501516-activated PPARδ time- and dose-dependently upregulated catalase expression at both the mRNA and protein levels. This PPARδ-mediated upregulation of catalase was markedly attenuated in cells treated with PPARδ-targeting siRNA and GSK0660, indicating that expression of catalase is dependent on PPARδ. Consistently, the effects of GW501516 on ferroptosis of xCT-deficient MEFs were counteracted in the presence of 3-amino-1,2,4-triazole, a specific inhibitor of catalase, suggesting that catalase is essential for the effect of PPARδ on ferroptosis triggered by xCT deficiency. GW501516-activated PPARδ stabilized peroxisomes through catalase upregulation by targeting peroxisomal hydrogen peroxide-mediated lysosomal rupture, which led to ferroptosis of xCT-deficient MEFs. Collectively, these results demonstrate that PPARδ modulates ferroptotic signals in xCT-deficient MEFs by regulating catalase expression.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
71
|
Siqueira LA, Almeida LF, Fernandes JPA, Araújo MCU, Lima RAC. Ultrasonic-assisted extraction and automated determination of catalase and lipase activities in bovine and poultry livers using a digital movie-based flow-batch analyzer. ULTRASONICS SONOCHEMISTRY 2021; 79:105774. [PMID: 34628308 PMCID: PMC8501505 DOI: 10.1016/j.ultsonch.2021.105774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 05/26/2023]
Abstract
An ultrasonic reactor (UR) was developed and coupled to a digital movie-based flow-batch analyzer (DM-FBA) for the ultrasonic-assisted extraction (UAE) and fast determination of catalase and lipase activities in bovine and poultry livers. The lab-made UR mainly consisted of a borosilicate glass container and a piezoelectric disc. The DM-FBA mainly consisted of a webcam, an ultrasonic actuator controller, a peristaltic pump, six solenoid valves, a valve driver, a mixing chamber, a magnetic stirrer, an Arduino Mega 2560, and a personal computer. This setup, named UR-DM-FBA, was controlled by custom software. Ultrasound (US) frequency, US power, sonication time, and concentration of extraction agent were optimized using the Taguchi method. Experiments at silent conditions (mechanical stirring at 1500 rpm) were carried out to evaluate extraction efficiency. Optimized parameters for the UAE of catalase were US frequency of 30 kHz, 2.0 mL of Triton X-100, sonication time of 270 s, and US power of 10.8 W. For the UAE of lipase, the optimized parameters were US frequency of 20 kHz, 0.30 mL of triethanolamine, sonication time of 270 s, and US power of 18 W. Catalase and lipase activities obtained with the UR were, on average, 1.9 × 103% and 2.0 × 103% higher than those obtained at silent conditions, respectively, which indicates that that the lab-made UR was capable of extracting these enzymes more efficiently. Determinations using the UR-DM-FBA were highly accurate (relative error ranging from -1.98% to 1.96% for bovine catalase, -0.65% to 0.76% for bovine lipase, -2.03 to 2.08% for poultry catalase, and -0.55% to 0.64% for poultry lipase) and precise (overall coefficient of variation <0.02% for bovine and poultry catalase and <0.2% for bovine and poultry lipase). Results obtained with the proposed system and reference methods were in good agreement according to the paired t-test (95% confidence level). High sampling rates (>69 h-1) and low sample/reagent consumption (<1.6 mL) were also obtained. Due to the highly efficient UAE, the proposed system can be applied for fast and accurate quantification of lipase and catalase in biological samples with low waste generation.
Collapse
Affiliation(s)
- Lucas A Siqueira
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil
| | - Luciano F Almeida
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil
| | | | - Mario Cesar U Araújo
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil
| | - Ricardo Alexandre C Lima
- Departamento de Química, Universidade Federal da Paraíba, 58.051-970, João Pessoa City, Paraíba State, Brazil.
| |
Collapse
|
72
|
Lu S, Wang XZ, He C, Wang L, Liang SP, Wang CC, Li C, Luo TF, Feng CS, Wang ZC, Chi GF, Ge PF. ATF3 contributes to brucine-triggered glioma cell ferroptosis via promotion of hydrogen peroxide and iron. Acta Pharmacol Sin 2021; 42:1690-1702. [PMID: 34112960 PMCID: PMC8463534 DOI: 10.1038/s41401-021-00700-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptotic cell death is characterized by iron-dependent lipid peroxidation that is initiated by ferrous iron and H2O2 via Fenton reaction, in which the role of activating transcription factor 3 (ATF3) remains elusive. Brucine is a weak alkaline indole alkaloid extracted from the seeds of Strychnos nux-vomica, which has shown potent antitumor activity against various tumors, including glioma. In this study, we showed that brucine inhibited glioma cell growth in vitro and in vivo, which was paralleled by nuclear translocation of ATF3, lipid peroxidation, and increases of iron and H2O2. Furthermore, brucine-induced lipid peroxidation was inhibited or exacerbated when intracellular iron was chelated by deferoxamine (500 μM) or improved by ferric ammonium citrate (500 μM). Suppression of lipid peroxidation with lipophilic antioxidants ferrostatin-1 (50 μM) or liproxstatin-1 (30 μM) rescued brucine-induced glioma cell death. Moreover, knockdown of ATF3 prevented brucine-induced accumulation of iron and H2O2 and glioma cell death. We revealed that brucine induced ATF3 upregulation and translocation into nuclei via activation of ER stress. ATF3 promoted brucine-induced H2O2 accumulation via upregulating NOX4 and SOD1 to generate H2O2 on one hand, and downregulating catalase and xCT to prevent H2O2 degradation on the other hand. H2O2 then contributed to brucine-triggered iron increase and transferrin receptor upregulation, as well as lipid peroxidation. This was further verified by treating glioma cells with exogenous H2O2 alone. Moreover, H2O2 reversely exacerbated brucine-induced ER stress. Taken together, ATF3 contributes to brucine-induced glioma cell ferroptosis via increasing H2O2 and iron.
Collapse
Affiliation(s)
- Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chong-Cheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Tian-Fei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Sheng Feng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
73
|
Monteiro AM, Couteiro RP, Silva DFD, Trindade Júnior SC, Silva RC, Sousa LFFD, Santos DRD, Freitas JJDS, Brito MVH. Remote ischemic conditioning improves rat brain antioxidant defense in a time-dependent mechanism. Acta Cir Bras 2021; 36:e360707. [PMID: 34495142 PMCID: PMC8428670 DOI: 10.1590/acb360707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 08/30/2023] Open
Abstract
Purpose To clarify the best protocol for performing remote ischemic conditioning and
to minimize the consequences of ischemia and reperfusion syndrome in brain,
the present study aimed to evaluate different time protocols and the
relation of the organs and the antioxidant effects of this technique. Methods The rat’s left femoral artery was clamped with a microvascular clamp in times
that ranged from 1 to 5 minutes, according to the corresponding group. After
the cycles of remote ischemic conditioning and a reperfusion of 20 minutes,
the brain and the left gastrocnemius were collected. The samples were used
to measure glutathione peroxidase, glutathione reductase and catalase
levels. Results In the gastrocnemius, the 4-minute protocol increased the catalase
concentration compared to the 1-minute protocol, but the latter increased
both glutathione peroxidase and glutathione reductase compared to the
former. On the other hand, the brain demonstrated higher catalase and
glutathione peroxidase in 5-minute group, and the 3-minute group reached
higher values of glutathione reductase. Conclusions Remote ischemic conditioning increases brain antioxidant capacity in a
time-dependent way, while muscle presents higher protection on 1-minute
cycles and tends to decrease its defence with longer cycles of intermittent
occlusions of the femoral artery.
Collapse
|
74
|
Singh P, Youden B, Yang Y, Chen Y, Carrier A, Cui S, Oakes K, Servos M, Jiang R, Zhang X. Synergistic Multimodal Cancer Therapy Using Glucose Oxidase@CuS Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41464-41472. [PMID: 34448397 DOI: 10.1021/acsami.1c12235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multimodal nanotherapeutic cancer treatments are widely studied but are often limited by their costly and complex syntheses that are not easily scaled up. Herein, a simple formulation of glucose-oxidase-coated CuS nanoparticles was demonstrated to be highly effective for melanoma treatment, acting through a synergistic combination of glucose starvation, photothermal therapy, and synergistic advanced chemodynamic therapy enabled by near-infrared irradiation coupled with Fenton-like reactions that were enhanced by endogenous chloride.
Collapse
Affiliation(s)
- Parbeen Singh
- Postdoctoral Innovation Practice Base, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Brian Youden
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Yikun Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yongli Chen
- Postdoctoral Innovation Practice Base, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Shufen Cui
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Grand River Regional Cancer Centre, 835 King St W, Kitchener, Ontario N2G 1G3, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
75
|
Pahlke G, Ahlberg K, Oertel A, Janson‐Schaffer T, Grabher S, Mock H, Matros A, Marko D. Antioxidant Effects of Elderberry Anthocyanins in Human Colon Carcinoma Cells: A Study on Structure-Activity Relationships. Mol Nutr Food Res 2021; 65:e2100229. [PMID: 34212508 PMCID: PMC8459241 DOI: 10.1002/mnfr.202100229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/09/2021] [Indexed: 12/14/2022]
Abstract
SCOPE Glycosylation is a way to increase structure-stability of anthocyanins, yet compromises their bioactivity. The study investigates the antioxidant activity of purified cyanidin (Cy)-based anthocyanins and respective degradation products in Caco-2 clone C2BBe1 aiming to identify structure-activity relationships. RESULTS AND METHODS Cyanidin 3-O-glucoside (Cy-3-glc) and cyanidin 3-O-sambubioside (Cy-3-sam) proved to be most potent regarding antioxidant properties and protection against hydrogen peroxide (H2 O2 )-induced reactive oxygen species (ROS)-levels measured with the dichloro-fluorescein (DCF) assay. Cyanidin 3-O-sambubioside-5-O-glucoside (Cy-3-sam-5-glc) and cyanidin 3-O-rutinoside (Cy-3-rut) were less efficient and not protective, reflecting potential differences in uptake and/or degradation. Following ranking in antioxidant efficiency is suggested: (concentrations ≤10 × 10-6 M) Cy-3-glc ≥ Cy-3-sam > Cy-3-sam-5-glc ≈ Cy-3-rut ≈ Cy; (concentrations ≥50 × 10-6 M) Cy-3-glc ≈ Cy-3-sam ≥ Cy > Cy-3-sam-5-glc ≈ Cy-3-rut. Cy and protocatechuic acid (PCA) reduced ROS-levels as potent as the mono- and di-glycoside, whereas phloroglucinol aldehyde (PGA) displayed pro-oxidant properties. None of the degradation products protected from oxidative stress. Gene transcription analysis of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPx), heme-oxygenase-1 (HO-1), and glutamate-cysteine-ligase (γGCL) suggest no activation of nuclear factor erythroid 2-related factor 2 (Nrf2). CONCLUSION More complex residues and numbers of sugar moieties appear to be counterproductive for antioxidant activity. Other mechanisms than Nrf2-activation should be considered for protective effects.
Collapse
Affiliation(s)
- Gudrun Pahlke
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Katarina Ahlberg
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Anne Oertel
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK‐Gatersleben)Corrensstr. 3GaterslebenD‐06466Germany
- Present address:
University of Art and DesignNeuwerk 7Halle (Saale)D‐06108Germany
| | - Theresa Janson‐Schaffer
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Stephanie Grabher
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| | - Hans‐Peter Mock
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK‐Gatersleben)Corrensstr. 3GaterslebenD‐06466Germany
| | - Andrea Matros
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK‐Gatersleben)Corrensstr. 3GaterslebenD‐06466Germany
- Present address:
School of AgricultureFood and WineUniversity of AdelaideWaite CampusUrrbraeSA5064Australia
| | - Doris Marko
- Department of Food Chemistry and ToxicologyUniversity of ViennaWaehringerstr. 38ViennaA‐1090Austria
| |
Collapse
|
76
|
Buigues A, Diaz-Gimeno P, Sebastian-Leon P, Pellegrini L, Pellicer N, Pellicer A, Herraiz S. Pathways and factors regulated by bone marrow-derived stem cells in human ovarian tissue. Fertil Steril 2021; 116:896-908. [PMID: 33975729 DOI: 10.1016/j.fertnstert.2021.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To describe molecular and paracrine signaling changes produced by human bone marrow-derived stem cells (BMDSC) in human ovarian cortex. DESIGN Experimental study. SETTING University hospital research laboratories. PATIENT(S) Ovarian cortex from poor responder women (n = 7). ANIMALS Immunodeficient NOD/SCID female mice (n = 18). INTERVENTION(S) Human ovarian cortex strips were xenografted into ovariectomized NOD/SCID female mice. A week later, mice were infused with phosphate-buffered saline, 1 × 106 BMDSC, or 3 × 105 CD133+ cells via tail vein. Gene expression changes and enriched pathways were assessed by RT2 Profiler Arrays. Several upregulated genes were validated in individual samples by real-time quantitative PCR, and transcriptomic results were reinforced by a proteomic assessment. MAIN OUTCOME MEASURE(S) Gene expression changes, enriched Kyoto Encyclopedia of Genes and Genomes pathways, and paracrine factors. RESULT(S) Seventy-four Kyoto Encyclopedia of Genes and Genomes pathways were upregulated, with the PI3K-Akt signaling pathway the most enriched after BMDSC and CD133 treatments. The greatest transcriptomic changes were seen on day 14 in the BMDSC group, affecting the regulation of paracrine factors such as KITLG, THBS1, SERPINF1, and TIMP2. Proteomics data verified changes in FoxO signaling, actin cytoskeleton remodeling, and apoptosis by BMDSC. CONCLUSION(S) We identified paracrine factors and pathways regulated by BMDSC that may be future targets of treatment for the increasing number of poor responder women. Our findings suggest that BMDSC upregulated soluble factors such as KITLG, THBS1, SERPINF1, and TIMP2 as well as PI3K-Akt signaling and regulation of actin cytoskeleton pathways. The identification of these putative underlying mechanisms informs future experiments aiming to optimizing clinical application of BMDSC.
Collapse
Affiliation(s)
- Anna Buigues
- Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain; Grupo de Investigación en Medicina Reproductiva, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Patricia Diaz-Gimeno
- Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain; Grupo de Investigación en Medicina Reproductiva, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Patricia Sebastian-Leon
- Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain; Grupo de Investigación en Medicina Reproductiva, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Livia Pellegrini
- Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain
| | - Nuria Pellicer
- Women's Health Area, La Fe University Hospital, Valencia, Spain
| | - Antonio Pellicer
- Grupo de Investigación en Medicina Reproductiva, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; IVI-RMA Rome, Rome, Italy
| | - Sonia Herraiz
- Fundación Instituto Valenciano de Infertilidad (IVI), Valencia, Spain; Grupo de Investigación en Medicina Reproductiva, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; IVI-RMA Valencia, Valencia, Spain.
| |
Collapse
|
77
|
Hur J, Kang ES, Hwang JS, Lee WJ, Won JP, Lee HG, Kim E, Seo HG. Peroxisome proliferator-activated receptor-δ-mediated upregulation of catalase helps to reduce ultraviolet B-induced cellular injury in dermal fibroblasts. J Dermatol Sci 2021; 103:167-175. [PMID: 34420848 DOI: 10.1016/j.jdermsci.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies suggested that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-δ plays an essential role in cellular responses against oxidative stress. OBJECTIVE To investigate how PPAR-δ elicits cellular responses against oxidative stress in primary human dermal fibroblasts (HDFs) exposed to ultraviolet B (UVB). METHODS The present study was undertaken in HDFs by performing real-time polymerase chain reaction, gene silencing, cytotoxicity and reporter gene assay, analyses for catalase and reactive oxygen species, and immunoblot analyses. RESULTS The PPAR-δ activator GW501516 upregulated expression of catalase and this upregulation was attenuated by PPAR-δ-targeting siRNA. GW501516-activated PPAR-δ induced catalase promoter activity through a direct repeat 1 response element. Mutation of this response element completely abrogated transcriptional activation, indicating that this site is a novel type of PPAR-δ response element. In addition, GW501516-activated PPAR-δ counteracted the reductions in activity and expression of catalase induced by UVB irradiation. These recovery effects were significantly attenuated in the presence of PPAR-δ-targeting siRNA or the specific PPAR-δ antagonist GSK0660. GW501516-activated PPAR-δ also protected HDFs from cellular damage triggered by UVB irradiation, and this PPAR-δ-mediated reduction of cellular damage was reversed by the catalase inhibitor or catalase-targeting siRNA. These effects of catalase blockade were positively correlated with accumulation of reactive oxygen species in HDFs exposed to UVB. Furthermore, GW501516-activated PPAR-δ targeted peroxisomal hydrogen peroxide through catalase in UVB-irradiated HDFs. CONCLUSION The gene encoding catalase is a target of PPAR-δ, and this novel catalase-mediated pathway plays a critical role in the cellular response elicited by PPAR-δ against oxidative stress.
Collapse
Affiliation(s)
- Jinwoo Hur
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Eun Sil Kang
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Won Jin Lee
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
78
|
Ying KE, Feng W, Ying WZ, Sanders PW. Cellular antioxidant mechanisms control immunoglobulin light chain-mediated proximal tubule injury. Free Radic Biol Med 2021; 171:80-90. [PMID: 33989758 PMCID: PMC8217262 DOI: 10.1016/j.freeradbiomed.2021.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
A major cause of morbidity and mortality in multiple myeloma is kidney injury from overproduction of monoclonal immunoglobulin light chains (FLC). FLC can induce damage through the production of hydrogen peroxide, which activates pro-inflammatory and pro-apoptotic pathways. The present study focused on catalase, a highly conserved antioxidant enzyme that degrades hydrogen peroxide. Initial findings were that FLC increased hydrogen peroxide levels but also decreased catalase levels and activity in proximal tubule epithelium. In order to clarify, we showed that the phosphatidylinositol 3-kinase inhibitor, LY294002, inhibited FLC-induced Akt-mediated deactivation of Forkhead box O class 3a (FoxO3a) and increased catalase activity in proximal tubule cells. Augmented catalase activity decreased FLC-mediated production of hydrogen peroxide as well as the associated increase in High Mobility Group Box 1 (HMGB1) protein release and caspase-3 activity. Coincubation of cells with FLC and an allosteric activator of Sirtuin 1 (SIRT1) was also sufficient to increase catalase activity and promote similar cytoprotective effects. Our studies confirmed that the mechanism of downregulation of catalase by FLC involved deactivation of FoxO3a and inhibition of SIRT1. Mechanistic understanding of catalase regulation allows for future treatments that target pathways that increase catalase in the setting of proximal tubule injury from FLC.
Collapse
Affiliation(s)
- Kai Er Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Department of Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
79
|
Improvement in Redox Homeostasis after Cytoreductive Surgery in Colorectal Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8864905. [PMID: 34381561 PMCID: PMC8352694 DOI: 10.1155/2021/8864905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) as one the most common cancer type is associated with oxidative stress. Surgery is the only curative modality for early-stage CRC. The aim of this study was to evaluate the oxidative damage biomarkers as well as enzymatic and nonenzymatic antioxidants in patients with CRC before and after tumor resection and in healthy controls. 60 patients with stage I/II colorectal adenocarcinoma and 43 healthy controls were recruited in this study. We measured plasma levels of oxidative damage biomarkers, including advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), malondialdehyde (MDA), and oxidized low-density lipoprotein (ox-LDL) at baseline and after tumor removal. We also evaluated the plasma activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) as enzymatic antioxidants and the ferric reducing antioxidant power (FRAP) assay for nonenzymatic antioxidant capacity. Patients with CRC had significantly higher AGE, AOPP, MDA, and ox-LDL and also FRAP levels and higher SOD and GPx and lower CAT activity levels compared to healthy controls (p < 0.05). We did not observe any statistically significant correlation between redox biomarkers and the size and stage of the tumor. AGEs (72.49 ± 4.7 vs. 67.93 ± 8.8, p < 0.001), AOPP (137.64 ± 21.9 vs. 119.08 ± 33.1, p < 0.001), MDA (3.56 ± 0.30 vs. 3.05 ± 0.33, p < 0.001), and ox-LDL (19.78 ± 0.97 vs. 16.94 ± 1.02, p < 0.001) concentrations reduced significantly after tumor removal. The largest effect sizes were found in ox-LDL (d = -2.853, 95% CI 2.50-3.19) and MDA (d = -1.617, 95% CI 0.43-0.57). Serum FRAP levels (1097.5 ± 156.7 vs. 1239.3 ± 290, p < 0.001) and CAT (2.34 ± 0.34 vs. 2.63 ± 0.38, p < 0.001), GPx (102.37 ± 6.58 vs. 108.03 ± 6.95, p < 0.001), and SOD (5.13 ± 0.39 vs. 5.53 ± 0.31, p < 0.001) activity levels increased significantly after surgery. The largest effect sizes among antioxidants were seen in SOD (d = 1.135, 95% CI 0.46-0.34) and GPx (d = 0.836, 95% CI 0.35-0.23). This study indicated that patients with colorectal cancer had higher levels of oxidative stress and antioxidant activity compared to healthy controls. After surgical resection of tumor, we observed a substantial improvement in redox homeostasis.
Collapse
|
80
|
Hwang JS, Hur J, Lee WJ, Won JP, Lee HG, Lim DS, Kim E, Seo HG. Catalase Mediates the Inhibitory Actions of PPARδ against Angiotensin II-Triggered Hypertrophy in H9c2 Cardiomyocytes. Antioxidants (Basel) 2021; 10:antiox10081223. [PMID: 34439471 PMCID: PMC8388952 DOI: 10.3390/antiox10081223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Hypertrophy of myocytes has been implicated in cardiac dysfunctions affecting wall stress and patterns of gene expression. However, molecular targets potentially preventing cardiac hypertrophy have not been fully elucidated. In the present study, we demonstrate that upregulation of catalase by peroxisome proliferator-activated receptor δ (PPARδ) is involved in the anti-hypertrophic activity of PPARδ in angiotensin II (Ang II)-treated H9c2 cardiomyocytes. Activation of PPARδ by a specific ligand GW501516 significantly inhibited Ang II-induced hypertrophy and the generation of reactive oxygen species (ROS) in H9c2 cardiomyocytes. These effects of GW501516 were almost completely abolished in cells stably expressing small hairpin (sh)RNA targeting PPARδ, indicating that PPARδ mediates these effects. Significant concentration and time-dependent increases in catalase at both mRNA and protein levels were observed in GW501516-treated H9c2 cardiomyocytes. In addition, GW501516-activated PPARδ significantly enhanced catalase promoter activity and protein expression, even in the presence of Ang II. GW501516-activated PPARδ also inhibited the expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which are both marker proteins for hypertrophy. The effects of GW501516 on the expression of ANP and BNP were reversed by 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor. Inhibition or downregulation of catalase by 3-AT or small interfering (si)RNA, respectively, abrogated the effects of PPARδ on Ang II-induced hypertrophy and ROS generation, indicating that these effects of PPARδ are mediated through catalase induction. Furthermore, GW501516-activated PPARδ exerted catalase-dependent inhibitory effects on Ang II-induced hypertrophy by blocking p38 mitogen-activated protein kinase. Taken together, these results indicate that the anti-hypertrophic activity of PPARδ may be achieved, at least in part, by sequestering ROS through fine-tuning the expression of catalase in cardiomyocytes.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam 13488, Korea;
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
- Correspondence: ; Tel.: +82-2-450-0428; Fax: +82-2-455-1044
| |
Collapse
|
81
|
Li X, Wu Y, Zhang R, Bai W, Ye T, Wang S. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions. Front Mol Biosci 2021; 8:683519. [PMID: 34277702 PMCID: PMC8281198 DOI: 10.3389/fmolb.2021.683519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.
Collapse
Affiliation(s)
- Xianqiang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Bai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
82
|
He L, Qian W, Cen L, Shen S, Wang S, Chen S, Liu S, Liu A, Yang Y, Liu Y. Catalase-conjugated collagen surfaces and their application for the quantification determination of H2O2 in milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Transforming Growth Factor- β and Oxidative Stress in Cancer: A Crosstalk in Driving Tumor Transformation. Cancers (Basel) 2021; 13:cancers13123093. [PMID: 34205678 PMCID: PMC8235010 DOI: 10.3390/cancers13123093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Metabolic changes in tumor microenvironment play a critical role in cancer, related to the accumulated alterations in signaling pathways that control cellular metabolism. Cancer metabolic deregulation is related to specific events such as the control of oxidative stress, and in particular the redox imbalance with aberrant oxidant production and/or a deregulation of the efficacy of the antioxidant systems. In cancer cells, different cytokines are involved in the development and/or progression of cancer; among these cytokines, the transforming growth factor β (TGF-β) is central to tumorigenesis and cancer progression. In tumor cells, it has been demonstrated that there is a close correlation between oxidative stress and TGF-β; this crosstalk strongly contributes to tumorigenesis, both in tumor development and in mediating its invasiveness. This review is addressed to better understanding this crosstalk between TGF-β and oxidative stress in cancer cell metabolism, in an attempt to improve the pharmacological and therapeutic approach against cancer. Abstract Cancer metabolism involves different changes at a cellular level, and altered metabolic pathways have been demonstrated to be heavily involved in tumorigenesis and invasiveness. A crucial role for oxidative stress in cancer initiation and progression has been demonstrated; redox imbalance, due to aberrant reactive oxygen species (ROS) production or deregulated efficacy of antioxidant systems (superoxide dismutase, catalase, GSH), contributes to tumor initiation and progression of several types of cancer. ROS may modulate cancer cell metabolism by acting as secondary messengers in the signaling pathways (NF-kB, HIF-1α) involved in cellular proliferation and metastasis. It is known that ROS mediate many of the effects of transforming growth factor β (TGF-β), a key cytokine central in tumorigenesis and cancer progression, which in turn can modulate ROS production and the related antioxidant system activity. Thus, ROS synergize with TGF-β in cancer cell metabolism by increasing the redox imbalance in cancer cells and by inducing the epithelial mesenchymal transition (EMT), a crucial event associated with tumor invasiveness and metastases. Taken as a whole, this review is addressed to better understanding this crosstalk between TGF-β and oxidative stress in cancer cell metabolism, in the attempt to improve the pharmacological and therapeutic approach against cancer.
Collapse
|
84
|
McNamee JP, Grybas VS, Qutob SS, Bellier PV. Effects of 1800 MHz radiofrequency fields on signal transduction and antioxidant proteins in human A172 glioblastoma cells. Int J Radiat Biol 2021; 97:1316-1323. [PMID: 34047676 DOI: 10.1080/09553002.2021.1934751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To assess the effects of 1800 MHz radiofrequency electromagnetic field (RF-EMF) exposure on the expression of signal transduction and antioxidant proteins in a human-derived A172 glioblastoma cell line. MATERIALS AND METHODS Adherent human-derived A172 glioblastoma cells (1.0 × 105 cells per 35 mm culture dish, containing 2 mL DMEM media) were exposed to 1800 MHz continuous-wave (CW) or GSM-modulated RF fields, in the presence or absence of serum for 5, 30 or 240 min at a specific absorption rate (SAR) of 0 (sham) or 2.0 W/kg. Concurrent negative (vehicle) and positive controls (1 µg/mL anisomycin) were included in each experiment. Cell lysates were collected immediately after exposure, stabilized by protease and phosphatase inhibitors in lysis buffer, then frozen and maintained at -80 °C until analysis. The relative expression levels of phosphorylated- and total-signal transduction proteins (CREB, JNK, NF-κB, ERK1/2, Akt, p70S6K, STAT3 and STAT5) and antioxidant proteins (SOD1, SOD2, CAT, TRX1, PRX2) were assessed using Milliplex magnetic bead array panels and a MagPix Multiplex imaging system. RESULTS In cells exposed to 1800 MHz continuous-wave RF-EMF with the presence of serum in the culture medium, CAT expression was statistically significantly decreased after a 30 min exposure, total JNK was decreased at both 30 and 240 min of exposure, STAT3 was decreased after 240 min of exposure and phosphorylated-CREB expression was decreased after 30 min of exposure. In cells exposed to 1800 MHz GSM-modulated RF-EMF in serum-free cultures, the expression level of total STAT5 was decreased after 30 and 240 min of exposure. These observed changes were detected sporadically across time-points, culture conditions and RF-EMF exposure conditions indicating the likelihood of false positive events. When cells were treated with anisomycin for 15 min as a positive control, dramatic increases in the expression of phosphorylated signaling proteins were observed in both serum-starved and serum-fed A172 cells, with larger fold change increases in the serum-free cultures. No statistically significant differences in the expression levels of SOD1, SOD2 or TRX1 were observed under any tested conditions after exposure to RF-EMF. CONCLUSIONS The current study found no consistent evidence of changes in the expression of antioxidant proteins (SOD1, SOD2, CAT or TRX2) or a variety of signal transductions proteins (CREB, JNK, NF-κB, ERK1/2, Akt, p70S6K, STAT3, STAT5) in a human-derived glioblastoma A172 cell line in response to exposure to 1800 MHz continuous-wave or GSM-modulated RF-EMF for 5, 30 or 240 min in either serum-free or serum-containing cultures.
Collapse
Affiliation(s)
- James P McNamee
- Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Veronica S Grybas
- Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Sami S Qutob
- Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Pascale V Bellier
- Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
85
|
Guo L, Qi J, Du D, Liu Y, Jiang X. Current advances of Dendrobium officinale polysaccharides in dermatology: a literature review. PHARMACEUTICAL BIOLOGY 2021; 58:664-673. [PMID: 32657196 PMCID: PMC7470034 DOI: 10.1080/13880209.2020.1787470] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Context Dendrobium officinale Kimura et Migo (Orchidaceae) is a naturally occurring precious traditional Chinese medicine (TCM) originally used in treating yin-deficiency diseases. The main active substances of Dendrobium officinale are polysaccharides (DOP). Recent findings highlighted the potential of DOP as a promising natural material for medical use with a diversity of pharmaceutical effects. Objective In this review, we provide a systematic discussion of the current development and potential pharmacological effects of Dendrobium officinale polysaccharides in dermatology. Methods English and Chinese literature from 1987 to 2019 indexed in databases including PubMed, PubMed Central, Web of Science, ISI, Scopus and CNKI (Chinese) was used. Dendrobium officinale, Dendrobium officinale polysaccharides, phytochemistry, chemical constituents, biological activities, and pharmacological activities were used as the key words. Results Dendrobium officinale polysaccharides have been found to possess hair growth promoting, skin moisturising and antioxidant effects, which are highly valued by doctors and cosmetic engineers. We highlighted advances in moisturising and antioxidant properties from in vivo and in vitro studies. Dendrobium officinale polysaccharides exhibited strong antioxidant effects by decreasing free radicals, enhancing antioxidant system, inhibiting nuclear factor-kappa B and down-regulating inflammatory response. Conclusions Our review is a foundation to inspire further research to facilitate the application of Dendrobium officinale polysaccharides in dermatology and promote active research of the use of TCM in dermatology.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine, Animal Research Institute, Sichuan University, Chengdu, Sichuan, China.,Department of Dermatology, The First People's Hospital of Zigong, Zigong, Sichuan, China.,Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Anesthesiology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
86
|
Alves ADF, Moura ACD, Andreolla HF, Veiga ABGD, Fiegenbaum M, Giovenardi M, Almeida S. Gene expression evaluation of antioxidant enzymes in patients with hepatocellular carcinoma: RT-qPCR and bioinformatic analyses. Genet Mol Biol 2021; 44:e20190373. [PMID: 33821873 PMCID: PMC8022359 DOI: 10.1590/1678-4685-gmb-2019-0373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Any condition leading to chronic liver disease is a potential oncogenic agent for hepatocellular carcinoma (HCC). Alterations in the expression of antioxidant enzymes could alter the redox balance. Our aim was to evaluate the expression of the genes GPX1, GPX4, SEP15, SELENOP, SOD1, SOD2, GSR, CAT, and NFE2L2 in patients with HCC. Differential gene expression analysis was performed using RNA-Seq data from the TCGA and GTEx databases, and RT-qPCR data from HCC patient samples. Bioinformatic analysis revealed significant differential expression in most genes. GPX4 expression was significantly increased (p=0.02), while SOD2 expression was significantly decreased (p=0.04) in experimental data. In TCGA samples, alpha-fetoprotein levels (mg/dL) were negatively correlated with the expression of SEP15 (p<0.001), SELENOP (p<0.001), SOD1 (p<0.001), SOD2 (p<0.001), CAT (p<0.001), and NFE2L2 (p=0.004). Alpha-fetoprotein levels were positively correlated with the expression of GPX4 (p=0.02) and SELENOP (p=0.01) in the experimental data. Low expression of GPX1 (p=0.006), GPX4 (p=0.01), SELENOP (p=0.006), SOD1 (p=0.007), CAT (p<0.001), and NFE2L2 (p<0.001), and higher levels of GSR, were associated with low overall survival at 12 months. These results suggest a significant role for these antioxidant enzymes in HCC pathogenesis and severity.
Collapse
Affiliation(s)
- Andressa de Freitas Alves
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Biociências, Porto Alegre, RS, Brazil
| | - Ana Carolina de Moura
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Biociências, Porto Alegre, RS, Brazil
| | | | - Ana Beatriz Gorini da Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Biociências, Porto Alegre, RS, Brazil
| | - Marilu Fiegenbaum
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Biociências, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Biociências, Porto Alegre, RS, Brazil
| | - Silvana Almeida
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-graduação em Biociências, Porto Alegre, RS, Brazil
| |
Collapse
|
87
|
Supernatants of Bifidobacterium longum and Lactobacillus plantarum Strains Exhibited Antioxidative Effects on A7R5 Cells. Microorganisms 2021; 9:microorganisms9020452. [PMID: 33671556 PMCID: PMC7927071 DOI: 10.3390/microorganisms9020452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular reactive oxygen species (ROS) play an essential role in cardiovascular diseases and the antioxidative effects of probiotics have been widely reported. To screen the probiotic strains that may prevent cardiovascular diseases, we tested the antioxidative effects of supernatants of different Bifidobacterium and Lactobacillus strains on A7R5 cells. Preincubation with supernatants of B. longum CCFM752, L. plantarum CCFM1149, or L. plantarum CCFM10 significantly suppressed the angiotensin II-induced increases in ROS levels and increased catalase (CAT) activity in A7R5, whereas CCFM752 inhibited NADPH oxidase activation and CCFM1149 enhanced the intracellular superoxide dismutase (SOD) activity simultaneously. Treatment with CCFM752, CCFM1149, or CCFM10 supernatants had no significant impact on transcriptional levels of Cat, Sod1, Sod2, Nox1, p22phox, or p47phox, but altered the overall transcriptomic profile and the expression of genes relevant to protein biosynthesis, and up-regulated the 60S ribosomal protein L7a (Rpl7a). A positive correlation between Rpl7a expression and intracellular CAT activity implied that Rpl7a may participate in CAT synthesis in A7R5. Supernatant of CCFM752 could also down-regulate the expression of NADPH oxidase activator 1 (Noxa1) and angiotensinogen in A7R5. Collectively, the probiotic strains CCFM752, CCFM1149, and CCFM10 exhibited antioxidative attributes on A7R5 cells and might help to reduce the risk of cardiovascular diseases.
Collapse
|
88
|
Codenotti S, Marampon F, Triggiani L, Bonù ML, Magrini SM, Ceccaroli P, Guescini M, Gastaldello S, Tombolini V, Poliani PL, Asperti M, Poli M, Monti E, Fanzani A. Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett 2021; 505:1-12. [PMID: 33610729 DOI: 10.1016/j.canlet.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marco Lorenzo Bonù
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003 China
| | - Vincenzo Tombolini
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
89
|
Baral B, Dutta J, Subudhi U. Biophysical interaction between self-assembled branched DNA nanostructures with bovine serum albumin and bovine liver catalase. Int J Biol Macromol 2021; 177:119-128. [PMID: 33609575 DOI: 10.1016/j.ijbiomac.2021.02.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
Branched DNA (bDNA) nanostructures have emerged as self-assembled biomaterials and are being considered for biomedical applications. Herein, we report the biophysical interaction between self-assembled bDNA nanostructure with circulating protein bovine serum albumin (BSA) and cellular enzyme bovine liver catalase (BLC). The binding between bDNA and BSA or BLC was confirmed through the decrease in fluorescence spectra. The Stern-Volmer data supports for non-covalent bonding with ~1 binding site in case of BSA and BLC thus advocating a static binding. Furthermore, FTIR and ITC study confirmed the binding of bDNAs with proteins through hydrogen bonding and van der Waals interaction. The negative free energy observed in ITC represent spontaneous reaction for BLC-bDNA interaction. The biophysical interaction between bDNA nanostructures and proteins was also supported by DLS and zeta potential measurement. With an increase in bDNA concentrations up to 100 nM, no significant change in absorbance and CD spectra was observed for both BLC and BSA which suggests structural stability and unaffected secondary conformation of proteins in presence of bDNA. Furthermore, the catalytic activity of BLC was unaltered in presence of bDNAscr even with increasing the incubation period from 1 h to 24 h. Interestingly, the time-dependent decrease in activity of BLC was protected by bDNAmix. The thermal melting study suggests a higher Tm value for proteins in presence of bDNAmix which demonstrates that interaction with bDNAmix increases the thermal stability of proteins. Collectively these data suggest that self-assembled DNA nanostructure may bind to BSA for facilitating circulation in plasma or binding to intracellular proteins like BLC for stabilization, however the secondary conformation of protein or catalytic activity of enzyme is unaltered in presence of bDNA nanostructure. Thus, the newly established genomic sequence-driven self-assembled DNA nanostructure can be explored for in vitro or in vivo experimental work in recent future.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
90
|
Micheli L, Collodel G, Moretti E, Noto D, Menchiari A, Cerretani D, Crispino S, Signorini C. Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage. Redox Rep 2021; 26:18-28. [PMID: 33563132 PMCID: PMC7889094 DOI: 10.1080/13510002.2021.1884802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objectives In cancer survivors, chemotherapy-associated adverse neurological effects are described as side effects in non-targeted tissue. We investigated the role of redox-imbalance in neuronal damage by a relative low dose of Docetaxel (DTX). Methods The neuroblastoma cells (SH-SY5Y cells) were exposed to DTX at a dose of 1.25 nM for 6 h. Antioxidant defenses (i.e. ascorbic acid, glutathione, and catalase) and lipid oxidation products (i.e. F2-isoprostanes) were evaluated. To investigate cell ultrastructure and tubulin localisation, transmission electron microscopy (TEM) and immunofluorescence techniques were applied. Results In the SH-SY5Y cells, DTX induced a significant reduction of total glutathione (P < 0.001) and ascorbic acid (P < 0.05), and an increase in both total F2-Isoprostanes (P < 0.05) and catalase activity (P < 0.05), as compared to untreated cells. Additionally, TEM showed a significant increase in cells with apoptotic characteristics. Immunolocalisation of tubulin showed a compromised cytoskeletal organisation. Discussion The investigated sublethal dose of DTX, to which non-targeted cells may be exposed throughout the duration of chemotherapy treatment, induces a redox imbalance resulting in a specific modulation of the antioxidant response. This study provides new insights into DTX-induced cellular mechanisms useful for evaluating whether the concomitant use of antioxidants associated with chemotherapy mitigates chemotherapy side effects in cancer survivors.
Collapse
Affiliation(s)
- Lucia Micheli
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrea Menchiari
- Department of Business and Law, University of Siena, Siena, Italy
| | - Daniela Cerretani
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | | | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
91
|
Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021; 10:248. [PMID: 33562035 PMCID: PMC7915370 DOI: 10.3390/antiox10020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17β-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.
Collapse
Affiliation(s)
- Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Dulski
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Anna Roszmann
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Slawek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|
92
|
Clifford T, Acton JP, Cocksedge SP, Davies KAB, Bailey SJ. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: a systematic review of human intervention trials. Mol Biol Rep 2021; 48:1745-1761. [PMID: 33515348 PMCID: PMC7925463 DOI: 10.1007/s11033-020-06041-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
We conducted a systematic review of human trials examining the effects of dietary phytochemicals on Nrf2 activation. In accordance with the PRISMA guidelines, Medline, Embase and CAB abstracts were searched for articles from inception until March 2020. Studies in adult humans that measured Nrf2 activation (gene or protein expression changes) following ingestion of a phytochemical, either alone or in combination were included. The study was pre-registered on the Prospero database (Registration Number: CRD42020176121). Twenty-nine full-texts were retrieved and reviewed for analysis; of these, eighteen were included in the systematic review. Most of the included participants were healthy, obese or type 2 diabetics. Study quality was assessed using the Cochrane Collaboration Risk of Bias Assessment tool. Twelve different compounds were examined in the included studies: curcumin, resveratrol and sulforaphane were the most common (n = 3 each). Approximately half of the studies reported increases in Nrf2 activation (n = 10); however, many were of poor quality and had an unclear or high risk of bias. There is currently limited evidence that phytochemicals activate Nrf2 in humans. Well controlled human intervention trials are needed to corroborate the findings from in vitro and animal studies.
Collapse
Affiliation(s)
- Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Jarred P Acton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stuart P Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Kelly A Bowden Davies
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
93
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
94
|
Sendra M, Pereiro P, Yeste MP, Mercado L, Figueras A, Novoa B. Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115769. [PMID: 33070068 DOI: 10.1016/j.envpol.2020.115769] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 05/22/2023]
Abstract
The contamination of the aquatic environment by plastic nanoparticles is becoming a major concern due to their potential adverse effects in aquatic biota. Therefore, in-depth knowledge of their uptake, trafficking and effects at cellular and systemic levels is essential to understand their potential impacts for aquatic species. In this work, zebrafish (Danio rerio) was used as a model and our aims were: i) to determine the distribution, uptake, trafficking, degradation and genotoxicity of polystyrene (PS) NPs of different sizes in a zebrafish cell line; ii) to study PS NPs accumulation, migration of immune cells and genotoxicity in larvae exposed to PS NPs; and iii) to assess how PS NPs condition the survival of zebrafish larvae exposed to a pathogen and/or how they impact the resistance of an immunodeficient zebrafish. Our results revealed that the cellular distribution differed depending on the particle size: the 50 nm PS NPs were more homogeneously distributed in the cytoplasm and the 1 μM PS NPs more agglomerated. The main endocytic mechanisms for the uptake of NPs were dynamin-dependent internalization for the 50 nm NPs and phagocytosis for the 1 μm nanoparticles. In both cases, degradation in lysosomes was the main fate of the PS NPs, which generated alkalinisation and modified cathepsin genes expression. These effects at cellular level agree with the results in vivo, since lysosomal alkalization increases oxidative stress and vice versa. Nanoparticles mainly accumulated in the gut, where they triggered reactive oxygen species, decreased expression of the antioxidant gene catalase and induced migration of immune cells. Finally, although PS NPs did not induce mortality in wild-type larvae, immunodeficient and infected larvae had decreased survival upon exposure to PS NPs. This fact could be explained by the mechanical disruption and/or the oxidative damage caused by these NPs that increase their susceptibility to pathogens.
Collapse
Affiliation(s)
- M Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - P Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - M P Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - L Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - A Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - B Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
95
|
Catalase immunoexpression in colorectal lesions. GASTROENTEROLOGY REVIEW 2020; 15:330-337. [PMID: 33777273 PMCID: PMC7988832 DOI: 10.5114/pg.2020.101562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Introduction It is generally accepted that the gastrointestinal tract, and especially the colon, is constantly exposed to reactive oxygen species (ROS) that may be responsible for the appearance of genetic mutations. To keep a steady-state control over ROS production-detoxification, organisms have evolved a defensive system. Nevertheless, many reports have described decreased level of antioxidant enzymes, especially catalase (CAT), in cancer tissues. Aim In this work we try to assess the immunohistochemical expression of CAT protein in colorectal adenoma and adenocarcinoma samples. Material and methods This study was performed on resected specimens obtained from 122 patients who had undergone surgical resection for colorectal cancer, and from 120 patients who had undergone colonoscopy. Paraffin- embedded, 4 µm-thick tissue sections were stained for rabbit polyclonal anti CAT antibody obtained from GeneTex (cat. no. GTX110704). Results In adenoma strong immunoexpression was detected mainly in infiltrating mononuclear cells within lamina propria. High expression of CAT was significantly associated with grade of dysplasia (high grade vs. low grade, p = 0.037). In adenocarcinoma samples, the high level of CAT immunoexpression was significantly correlated with histological grade of tumour (G1 vs. G2 vs. G3, p = 0.001) and depth of invasion (T1 vs. T2 vs. T3 vs. T4, p = 0.003). Conclusions Development of colorectal cancer is associated with increased expression of CAT in the stage of adenoma and decreased expression in the stage of adenocarcinoma.
Collapse
|
96
|
Belló C, Prestes AP, Schemberger JA, Hacke ACM, Pereira RP, Manente FA, Carlos IZ, de Andrade CR, Fernandes D, da Cruz IBM, Unfer TC, Vellosa JCR. Aqueous extract of Paullinia cupana attenuates renal and hematological effects associated with ketoprofen. J Food Biochem 2020; 45:e13560. [PMID: 33270240 DOI: 10.1111/jfbc.13560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/04/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of aqueous extract of Paullinia cupana (AEG) against ketoprofen side effects, through biochemical, hematological, and histological parameters. AEG showed antioxidant activity in the DPPH• scavenging (IC50 = 17.00 ± 1.00 µg/ml) and HPLC analysis revealed that this extract is constituted by antioxidants (caffeine, catechins, theobromine, and polyphenols). In vivo experiments in female Wistar rats demonstrated that alterations in urea, creatinine, and uric acid levels promoted (p < .05) by ketoprofen were reversed when AEG was co-administered. Ketoprofen significantly decreased the catalase levels of animal tissues (p < .05), which were restored when AEG was co-administered with the mentioned drug. Histological analysis showed that AEG protected tissues from damages caused by ketoprofen. Moreover, AEG reestablished the number of white blood cells, which had decreased when ketoprofen was administered. In conclusion, this study suggested that the association between ketoprofen and AEG may be an alternative to reduce health damages caused by this drug. PRACTICAL APPLICATIONS: Paullinia cupana, popularly known as guaraná, is commonly consumed as a beverage in Brazil and exhibits pharmacological and beneficial effects to humans. Ketoprofen is an efficacious drug employed in the treatment of inflammatory processes. However, this drug can cause several side effects in humans. Thus, the usage of natural products and plant extracts that can reduce such undesirable effects consists in a valuable strategy to be applied in therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Belló
- Departamento de Análises Clínicas e Toxicológicas, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Ana Paula Prestes
- Departamento de Análises Clínicas e Toxicológicas, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | | | | | - Francine Alessandra Manente
- Departamento de Análises Clínicas, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Iracilda Zeppone Carlos
- Departamento de Análises Clínicas, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Cleverton Roberto de Andrade
- Departamento de Fisiologia e Patologia, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Daniel Fernandes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | | | - Taís Cristina Unfer
- Departamento de Farmácia, Universidade Federal de Sergipe, Sao Cristovao, Brazil
| | | |
Collapse
|
97
|
Mahmoud IF, Kanthimathi M, Abdul Aziz A. ROS/RNS-mediated apoptosis in HT-29 colorectal cancer cells by methanolic extract of Tamarindus indica seeds. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
98
|
Al-Harbi SA, Al-Saidi HM, Debbabi KF, Allehyani ES, Alqorashi AA, Emara AA. Design and anti-tumor evaluation of new platinum(II) and copper(II) complexes of nitrogen compounds containing selenium moieties. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Grilo LF, Martins JD, Cavallaro CH, Nathanielsz PW, Oliveira PJ, Pereira SP. Development of a 96-well based assay for kinetic determination of catalase enzymatic-activity in biological samples. Toxicol In Vitro 2020; 69:104996. [DOI: 10.1016/j.tiv.2020.104996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
100
|
Zannah S, W M Arrigan D. Electrochemistry of catalase at a liquid|liquid micro-interface array. Bioelectrochemistry 2020; 138:107694. [PMID: 33333457 DOI: 10.1016/j.bioelechem.2020.107694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 01/18/2023]
Abstract
The electrochemistry of catalase (CAT) was investigated at the interface between two immiscible electrolyte solutions (ITIES) as a step towards its detection. Electrochemistry at the ITIES offers advantages such as the non-redox detection of biomolecules. The electrochemical behaviour of CAT at the ITIES, in a micro-interface array format, displayed a distinct cyclic voltammogram when the aqueous phase pH was lower than the isoelectric point (pI) of CAT. No voltammetric response was observed when the aqueous phase pH > pI of CAT, indicating that neutral or negatively charged CAT has no capability to facilitate anion transfer from the organic phase. Adsorptive stripping voltammetry (AdSV) was assessed for detection of low concentrations at the µITIES array. Application of a positive preconcentration potential for a fixed time enabled interfacial accumulation of CAT as a complex; subsequently, a voltammetric scan to lower potentials desorbed the complex, providing the electroanalytical signal. Assessment of sample matrix effects by examining the electrochemistry of CAT in artificial serum indicated that detection in pH-adjusted samples is feasible. Together, these results demonstrate that CAT is electroactive at the liquid-liquid interface and this may be useful as a strategy to detect and characterize the enzyme in a label-free manner.
Collapse
Affiliation(s)
- Shaheda Zannah
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Damien W M Arrigan
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|