51
|
Münzel T, Khraishah H, Schneider A, Lelieveld J, Daiber A, Rajagopalan S. Challenges posed by climate hazards to cardiovascular health and cardiac intensive care: implications for mitigation and adaptation. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:731-744. [PMID: 39468673 PMCID: PMC11518858 DOI: 10.1093/ehjacc/zuae113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Global warming, driven by increased greenhouse gas emissions, has led to unprecedented extreme weather events, contributing to higher morbidity and mortality rates from a variety of health conditions, including cardiovascular disease (CVD). The disruption of multiple planetary boundaries has increased the probability of connected, cascading, and catastrophic disasters with magnified health impacts on vulnerable populations. While the impact of climate change can be manifold, non-optimal air temperatures (NOTs) pose significant health risks from cardiovascular events. Vulnerable populations, especially those with pre-existing CVD, face increased risks of acute cardiovascular events during NOT. Factors such as age, socio-economic status, minority populations, and environmental conditions (especially air pollution) amplify these risks. With rising global surface temperatures, the frequency and intensity of heatwaves and cold spells are expected to increase, emphasizing the need to address their health impacts. The World Health Organization recommends implementing heat-health action plans, which include early warning systems, public education on recognizing heat-related symptoms, and guidelines for adjusting medications during heatwaves. Additionally, intensive care units must be prepared to handle increased patient loads and the specific challenges posed by extreme heat. Comprehensive and proactive adaptation and mitigation strategies with health as a primary consideration and measures to enhance resilience are essential to protect vulnerable populations and reduce the health burden associated with NOTs. The current educational review will explore the impact on cardiovascular events, future health projections, pathophysiology, drug interactions, and intensive care challenges and recommend actions for effective patient care.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Haitham Khraishah
- Harrington Heart and Vascular Institute, University Hospitals at Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sanjay Rajagopalan
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and University Hospitals Harrington Heart and Vascular Institute, 11100 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
52
|
Zhao K, He F, Zhang B, Liu C, Hu Y, Dong Y, Zhang P, Liu C, Wei J, Lu Z, Guo X, Huang Q, Jia X, Mi J. Short-term ozone exposure on stroke mortality and mitigation by greenness in rural and urban areas of Shandong Province, China. BMC Public Health 2024; 24:2955. [PMID: 39449115 PMCID: PMC11515287 DOI: 10.1186/s12889-024-20454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Short-term exposure to ozone (O3) has been associated with higher stroke mortality, but it is unclear whether this association differs between urban and rural areas. The study aimed to compare the association between short-term exposure to O3 and ischaemic and haemorrhagic stroke mortality across rural and urban areas and further investigate the potential impacts of modifiers, such as greenness, on this association. METHODS A multi-county time-series analysis was carried out in 19 counties of Shandong Province from 2013 to 2019. First, we employed generalized additive models (GAMs) to assess the effects of O3 on stroke mortality in each county. We performed random-effects meta-analyses to pool estimates to counties and compare differences in rural and urban areas. Furthermore, a meta-regression model was utilized to assess the moderating effects of county-level features. RESULTS Short-term O3 exposure was found to be associated with increased mortality for both stroke subtypes. For each 10-µg/m3 (lag0-3) rise in O3, ischaemic stroke mortality rose by 1.472% in rural areas and 1.279% in urban areas. For each 0.1-unit increase in the Enhanced Vegetation Index (EVI) per county, the ischaemic stroke mortality caused by a 10-µg/m3 rise in O3 decreased by 0.60% overall and 1.50% in urban areas. CONCLUSIONS Our findings add to the evidence that short-term O3 exposure increases ischaemic and haemorrhagic stroke mortality and has adverse effects in urban and rural areas. However, improving greenness levels may contribute to mitigating the detrimental effects of O3 on ischaemic stroke mortality.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Fenfen He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xian, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yang Hu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yilin Dong
- Liaocheng Centre for Disease Control and Prevention, Liaocheng, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20740, USA
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qing Huang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
| |
Collapse
|
53
|
Cao Q, Song Y, Huan C, Jia Z, Gao Q, Ma X, Zhou G, Chen S, Wei J, Wang Y, Wang C, Mao Z, Hou J, Huo W. Biological aging mediates the association between volatile organic compounds and cardiovascular disease. BMC Public Health 2024; 24:2928. [PMID: 39438892 PMCID: PMC11520164 DOI: 10.1186/s12889-024-20349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Evidence for the relationship between individual and combined volatile organic compounds (VOCs) and cardiovascular disease (CVD) is limited. Besides, the mediating role of biological aging (BA) has not been studied. Therefore, this study aimed to examine the association between VOCs and CVD risk and to explore the mediating effects of BA. METHODS Logistic regression models were used to investigate the relationships of metabolites of volatile organic compounds (mVOCs) and BA with CVD. In addition, weighted quantile sum (WQS) regression, adaptive elastic networks, and Environmental Risk Score (AENET-ERS) were utilized to assess overall associations of mixed VOCs co-exposure with CVD. Mediation analyses were used to identify potential mediating effects of BA. RESULTS In the single-pollutant model, CYMA was shown to be associated with an increased risk of CVD. Additionally, we identified significantly positive associations between the WQS index and CVD (odds ratio (OR) = 1.292, 95% confidence interval (CI): 1.006, 1.660), and DHBMA had the greatest contribution for CVD (0.246). Furthermore, the AENET-ERS results showed that 8 mVOCs were significantly associated with CVD, and ERS was related to an elevated risk of CVD (OR = 1.538, 95%CI: 1.255, 1.884). Three BA indicators mediated the association of the mVOCs mixture with CVD, with mediating effect proportions of 11.32%, 34.34%, and 7.92%, respectively. CONCLUSION The risk of CVD was found to increase with both individual and combined exposure to VOCs. BA mediates the positive effects of VOCs on CVD, suggesting that this pathway may be one of the mechanisms of CVD.
Collapse
Affiliation(s)
- Qingqing Cao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Changsheng Huan
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Zexin Jia
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qian Gao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoqing Ma
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Guihong Zhou
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Siyu Chen
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Jin Wei
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yuchuan Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
54
|
Cui F, Zheng L, Zhang J, Tang L, Ma Y, Li D, Wang J, Xing M, Xie J, Yang J, Tian Y. Long-term exposure to fine particulate matter constituents, genetic susceptibility, and incident heart failure among 411 807 adults. Eur J Heart Fail 2024. [PMID: 39439267 DOI: 10.1002/ejhf.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
AIMS Long-term fine particulate matter (PM2.5) exposure has been linked to incident heart failure (HF), but the impacts of its constituents remain unknown. We aimed to investigate the associations of PM2.5 constituents with incident HF, and further evaluate the modification effects of genetic susceptibility. METHODS AND RESULTS PM2.5 and its constituents, including elemental carbon (EC), organic matter (OM), ammonium (NH4 +), nitrate (NO3 -), and sulfate (SO4 2-), were estimated using the European Monitoring and Evaluation Programme model applied to the UK (EMEP4UK) driven by Weather and Research Forecast model meteorology. A polygenic risk score (PRS) was calculated to represent genetic susceptibility to HF. We employed Cox models to evaluate the associations of PM2.5 constituents with incident HF. Quantile-based g-computation model was used to identify the main contributor of PM2.5 constituents. Among 411 807 individuals in the UK Biobank, 7554 participants developed HF during a median follow-up of 12.05 years. The adjusted hazard ratios of HF for each interquartile range increase in PM2.5, EC, OM, NH4 +, NO3 -, and SO4 2- were 1.50 (1.46-1.54), 1.31 (1.27-1.34), 1.12 (1.09-1.15), 1.42 (1.41-1.44), 1.26 (1.23-1.29), and 1.25 (1.24-1.26), respectively. EC (43%) played the most important role, followed by NH4 + and SO4 2-. Moreover, synergistic additive interactions accounted for 9-16% of the HF events in individuals exposed to both PM2.5, NH4 +, NO3 -, and SO4 2- and PRS. CONCLUSION Long-term exposure to PM2.5 constituents may elevate HF risk, and EC was the major contributor. Additive effects of PM2.5 constituents and PRS on HF risk were revealed.
Collapse
Affiliation(s)
- Feipeng Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Linxi Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yudiyang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Xing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
55
|
Al-Kindi S, Nasir K, Rajagopalan S. Elemental Risk: Role of Metals in Cardiovascular Disease Risk. J Am Coll Cardiol 2024; 84:1558-1560. [PMID: 39297846 DOI: 10.1016/j.jacc.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Sadeer Al-Kindi
- Division of Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Institute, Houston Methodist, Houston, Texas, USA; Center for Health and Nature, Houston, Texas, USA.
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Institute, Houston Methodist, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Division of Cardiology, Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio, USA
| |
Collapse
|
56
|
Li L, Wang W, Chang HH, Alonso A, Liu Y. Wildland Fire-Related Smoke PM 2.5 and Cardiovascular Disease ED Visits in the Western United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314367. [PMID: 39484248 PMCID: PMC11527094 DOI: 10.1101/2024.10.08.24314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The impact of short-term exposure to fine particulate matter (PM 2.5 ) due to wildland fire smoke on the risk of cardiovascular disease (CVD) remains unclear. We investigated the association between short-term exposure to wildfire smoke PM 2.5 and Emergency Department (ED) visits for acute CVD in the Western United States from 2007 to 2018. Methods ED visits for primary or secondary diagnoses of atrial fibrillation (AF), acute myocardial infarction (AMI), heart failure (HF), stroke, and total CVD were obtained from hospital associations or state health departments in California, Arizona, Nevada, Oregon, and Utah. ED visits included those that were subsequently hospitalized. Daily smoke, non-smoke, and total PM 2.5 were estimated using a satellite-driven multi-stage model with a high resolution of 1 km. The data were aggregated to the zip code level and a case-crossover study design was employed. Temperature, relative humidity, and day of the year were included as covariates. Results We analyzed 49,759,958 ED visits for primary or secondary CVD diagnoses, which included 6,808,839 (13.7%) AFs, 1,222,053 (2.5%) AMIs, 7,194,474 (14.5%) HFs, and 808,396 (1.6%) strokes. Over the study period from 2007-01-01 to 2018-12-31, the mean smoke PM 2.5 was 1.27 (Q1: 0, Q3: 1.29) µg/m 3 . A 10 µg/m 3 increase in smoke PM 2.5 was associated with a minuscule decreased risk for AF (OR 0.994, 95% CI 0.991-0.997), HF (OR 0.995, 95% CI 0.992-0.998), and CVD (OR 0.9997, 95% CI 0.996-0.998), but not for AMI and stroke. Adjusting for non-smoke PM 2.5 did not alter these associations. A 10 µg/m 3 increase in total PM 2.5 was linked to a small increased risk for all outcomes except stroke (OR for CVD 1.006, 95% CI 1.006-1.007). Associations were similar across sex and age groups. Conclusion We identified an unexpected slight lower risk of CVD ED visits associated with short-term wildfire smoke PM 2.5 exposure. Whether these findings are due to methodological issues, behavioral changes, or other factors requires further investigation.
Collapse
|
57
|
Li J, Liu Q, Tian Z, Wang J, Zhang Y, Cheng X, Wang Y, Wang H, Guo X, Li H, Sun L, Hu B, Zhang D, Liang C, Sheng J, Tao F, Chen G, Yang L. The interaction between physical activity and ambient particulate matters on cognitive function among Chinese community-dwelling older adults. J Affect Disord 2024; 363:391-400. [PMID: 39029694 DOI: 10.1016/j.jad.2024.07.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The interaction between physical activity (PA) and ambient particulate matters (PMs) on cognition is rarely investigated. Our study aimed to assess the interactions of PA and PMs on cognitive function in older adults. METHODS Our study comprised 3937 Chinese community-dwelling older adults. Cognition was evaluated using the Mini-Mental State Examination. PA information was gathered using the International Physical Activity Questionnaire. The data of PMs were obtained from China High Air Pollutants (CHAP). Linear regressions model and interaction plots were applied to assess and visualize the interaction of PA and PMs on cognition, respectively. Bayesian kernel machine regression (BKMR) method was employed to visualize discernible thresholds for the interaction. RESULTS PMs were negatively associated with MMSE scores (PM1: β = -0.40, 95 % CI: -0.58, -0.28; PM2.5: β = -0.46, 95 % CI: -0.64, -0.29; PM10: β = -0.44, 95 % CI: -0.61, -0.26), and PA was positively affiliated with MMSE scores (β = 0.18, 95 % CI: -0.01, 0.38). Interaction plots and BKMR demonstrated that adverse connotations of PMs with MMSE increased with the elevated PA levels, and the positive associations of PA with MMSE scores were attenuated by increased PMs (all Pinteraction < 0.20). Discernible thresholds for the interaction between PMs and PA on MMSE were found. CONCLUSIONS Our findings suggest that PA should not be taken at higher PMs concentrations, and that low level of PA could be performed in PMs polluted environment to improve cognitive function. Further experimental and cohort researches are required to reproduce our discovery.
Collapse
Affiliation(s)
- Junzhe Li
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qiang Liu
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ziwei Tian
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jun Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Zhang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xuqiu Cheng
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yuan Wang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hongli Wang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huaibiao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang 236069, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang 236069, Anhui, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang 236069, Anhui, China
| | - Dongmei Zhang
- School of Health Services Management, Anhui Medical University, Hefei 230032, Anhui, China
| | - Chunmei Liang
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, Anhui, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei 230032, Anhui, China
| | - Linsheng Yang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
58
|
Mao Q, Zhu X, Zhang X, Kong Y. Effect of air pollution on the global burden of cardiovascular diseases and forecasting future trends of the related metrics: a systematic analysis from the Global Burden of Disease Study 2021. Front Med (Lausanne) 2024; 11:1472996. [PMID: 39464269 PMCID: PMC11502364 DOI: 10.3389/fmed.2024.1472996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background This study assesses the worldwide cardiovascular disease (CVD) burden attributed to air pollution, utilizing data from the Global Burden of Disease Study 2021. Methods We explored the impact of air pollution on CVDs globally, regionally, and nationally, while considering correlations with age, gender, and socio-demographic index (SDI). A decomposition analysis was conducted to discern the contributions of aging, population growth, and epidemiological shifts to the changes in disability-adjusted life years (DALYs) from 1990 to 2021. Additionally, an ARIMA model was used to forecast the future CVD burden through 2050. Results In 2021, air pollution was responsible for approximately 2.46 million deaths and 58.3 million disability-adjusted life years (DALYs) attributable to CVDs, with a discernible decrease over the period studied. The greatest impacts were observed in individuals aged 75-79 and over 80, particularly among males. The decomposition analysis indicated that shifts in epidemiology were the primary factors driving these changes. Future projections suggest potential increases in mortality and DALY rates in regions with low and high-middle SDI, alongside rising age-standardized death and mortality rates in high SDI areas. Conclusion These findings underscore the urgency of implementing targeted CVD prevention and air pollution control strategies to mitigate the impact on public health.
Collapse
Affiliation(s)
- Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Zhu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyi Zhang
- College of Education, Wenzhou University, Wenzhou, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
59
|
Zou B, Wu P, Luo J, Li L, Zhou M. Analysis of the global burden of cardiovascular diseases linked to exposure to ambient particulate matter pollution from 1990 to 2019. Front Public Health 2024; 12:1391836. [PMID: 39416944 PMCID: PMC11479877 DOI: 10.3389/fpubh.2024.1391836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background This research endeavors to scrutinize the temporal trends and global burden of cardiovascular diseases (CVDs) associated with ambient particulate matter (PM) pollution spanning from 1990 to 2019. Methods Age-standardized death rates (ASDRs) and age-standardized disability-adjusted life years (DALYs) for CVDs, as well as their estimated annual percentage changes (EAPCs), were calculated using data from the Global Burden of Disease Study 2019 (GBD 2019). Results The global ASDR and age-standardized DALYs due to CVDs associated with PM pollution increased from 1990 to 2019, with a higher increase in males. The burden was higher among middle-aged and older adults. The ASDR and DALYs increased in low-Socio-demographic Index (SDI), low-middle-SDI, and middle-SDI countries, while they decreased in high-SDI countries. The highest burden was observed in Central Asia, North Africa, the Middle East, East Asia, and South Asia. The highest burdens were reported in Iraq, Egypt, and Uzbekistan at the national level. Conclusion The burden of CVDs linked to PM pollution has grown significantly from 1990 to 2019, with variations across regions and countries, highlighting the need for targeted prevention and pollution management strategies.
Collapse
Affiliation(s)
- Binbin Zou
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ping Wu
- Department of Pharmacy, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Juan Luo
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Le Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Zhou
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
60
|
Khajavi A, Hashemi-Madani N, Hassanvand MS, Naddafi K, Khamseh ME. Ambient Air Pollution and Incident Cardiovascular Disease in People With Type 2 Diabetes Mellitus: A Cohort Study. J Occup Environ Med 2024; 66:e500-e505. [PMID: 39016278 DOI: 10.1097/jom.0000000000003193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
OBJECTIVES We aimed to assess the effect of air pollution on incident cardiovascular disease (CVD) in people with type 2 diabetes mellitus (T2DM). METHODS We tracked 486 T2DM patients from 2012 to 2021. Cox regression models were applied to assess the hazard of exposure to particulate matter, carbon monoxide (CO), ozone, nitrogen dioxide, and sulfur dioxide (SO 2 ) on incident CVD, revealing hazard ratios (HRs). RESULTS CVD incidents occurred in 73 individuals. Among men, each 1-ppm increase in CO levels raised the risk of CVD (HR: 2.66, 95% CI: 1.30-5.44). For women, a 5-ppb rise in SO 2 increased CVD risk (HR: 1.60, 95% CI: 1.11-2.30). No notable impact of particulate pollutants was found. CONCLUSIONS Persistent exposure to gaseous air pollutants, specifically CO and SO 2 , is linked to the development of CVD in men and women with T2DM.
Collapse
Affiliation(s)
- Alireza Khajavi
- From the School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran (A.K.); Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran, (N.H.-M., M.E.K.); Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran (M.S.H., K.N.); and Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran (M.S.H., K.N.)
| | | | | | | | | |
Collapse
|
61
|
Al-Mallah MH. Addressing air pollution to mitigate cardiovascular risk. Atherosclerosis 2024; 397:118561. [PMID: 39242282 DOI: 10.1016/j.atherosclerosis.2024.118561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA.
| |
Collapse
|
62
|
Cao F, Wang R, Wang L, Li YZ, Wei YF, Zheng G, Nan YX, Sun MH, Liu FH, Xu HL, Zou BJ, Li XY, Qin X, Huang DH, Chen RJ, Gao S, Meng X, Gong TT, Wu QJ. Plant-based diet indices and their interaction with ambient air pollution on the ovarian cancer survival: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116894. [PMID: 39154500 DOI: 10.1016/j.ecoenv.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95 % CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95 % CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Xin Nan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing-Jie Zou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
63
|
Chiou A, Hermel M, Chai Z, Eiseman A, Jeschke S, Mehta S, Khan U, Hoodbhoy Z, Safdar N, Khoja A, Junaid V, Vaughan E, Merchant AT, Iqbal J, Almas A, Virani SS, Sheikh S. Going from Primary to Primordial Prevention: Is the Juice Worth the Squeeze? Curr Cardiol Rep 2024; 26:1135-1143. [PMID: 39073507 DOI: 10.1007/s11886-024-02109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE OF REVIEW While primary prevention strategies target individuals who are at high risk of cardiovascular disease, there is rising interest towards primordial prevention that focuses on preventing the development of risk factors upstream of disease detection. Therefore, we review the advantages of primordial prevention interventions on minimizing future cardiovascular events. RECENT FINDINGS Primordial prevention of atherosclerotic cardiovascular disease involves behavioral, genetic, and environmental strategies, starting from fetal/infant health and continuing throughout childhood and young adulthood. Early interventions focusing on modifiable risk factors such as physical inactivity, non-ideal body weight, smoking, and environmental pollutants are important towards preventing the initial occurrence of risk factors such as hypertension, dyslipidemia, and diabetes to ultimately reduce cardiovascular disease. Implementing primordial prevention strategies early on in life can minimize cardiovascular events and lead to healthy aging in the population. Future studies can further evaluate the effectiveness of various primordial prevention strategies.
Collapse
Affiliation(s)
- Andrew Chiou
- Department of Cardiology, Scripps Clinic, La Jolla, San Diego, CA, USA
| | - Melody Hermel
- Department of Cardiology, United Medical Doctors, La Jolla, San Diego, CA, USA
| | - Zohar Chai
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Ariana Eiseman
- Northeastern University Bouvé College of Health Science, Boston, MA, USA
| | - Sheila Jeschke
- Department of Cardiology, Scripps Clinic, La Jolla, San Diego, CA, USA
| | - Sandeep Mehta
- Department of Cardiology, Loyola University Medical Center, Chicago, IL, USA
| | - Unab Khan
- Department of Family Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Nilofer Safdar
- School of Public Health, Dow University of Health Sciences, Karachi, Pakistan
| | - Adeel Khoja
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Medicine, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | | | - Anwar T Merchant
- Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Junaid Iqbal
- Department of Medicine, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Aysha Almas
- Department of Medicine, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | - Sana Sheikh
- Department of Medicine, The Aga Khan University, Stadium Road, Karachi, Pakistan.
| |
Collapse
|
64
|
Vanoli J, Quint JK, Rajagopalan S, Stafoggia M, Al-Kindi S, Mistry MN, Masselot P, de la Cruz Libardi A, Fook Sheng Ng C, Madaniyazi L, Gasparrini A. Association between long-term exposure to low ambient PM 2.5 and cardiovascular hospital admissions: A UK Biobank study. ENVIRONMENT INTERNATIONAL 2024; 192:109011. [PMID: 39305789 PMCID: PMC11496929 DOI: 10.1016/j.envint.2024.109011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION A causal link between air pollution exposure and cardiovascular events has been suggested. However fewer studies have investigated the shape of the associations at low levels of air pollution and identified the most important temporal window of exposure. Here we assessed long-term associations between particulate matter < 2.5 µm (PM2.5) at low concentrations and multiple cardiovascular endpoints using the UK Biobank cohort. METHODS Using data on adults (aged > 40) from the UK Biobank cohort, we investigated the associations between 1-year, 3-year and 5-year time-varying averages of PM2.5 and incidence of major adverse cardiovascular events (MACE), myocardial infarction (MI), heart failure, atrial fibrillation and flutter and cardiac arrest. We also investigated outcome subtypes for MI and stroke. Events were defined as hospital inpatient admissions. We fitted Cox proportional hazard regression models applying extensive control for confounding at both individual and area level. Finally, we assessed the shape of the exposure-response functions to assess effects at low levels of exposure. RESULTS We analysed data from 377,736 study participants after exclusion of prevalent subjects. The average follow-up (2006-2021) was 12.9 years. We detected 19,353 cases of MACE, 6,562 of acute MI, 6,278 of heart failure, 1,258 for atrial fibrillation and flutter, and 16,327 for cardiac arrest. Using a 5-year exposure window, we detected positive associations (for 5 μg/m3 increase in PM2.5) for 5-point MACE of [1.12 (95 %CI: 1.00-1.26)], heart failure [1.22 (1.00-1.50)] and cardiac arrest [1.16 (1.03-1.31)]. We did not find any association with acute MI, while non-ST-elevation MI was associated with the 1-year exposure window [1.52 (1.12-2.07)]. The assessment of the shape of the exposure-response relationships suggested that risk is approximately linear for most of the outcomes. CONCLUSIONS We found positive associations between long-term exposure to PM2.5 and multiple cardiovascular outcomes for different exposure windows. The cardiovascular risk tends to rise even at exposure concentrations below 12-15 μg/m3, indicating high risk below UK national and international thresholds.
Collapse
Affiliation(s)
- Jacopo Vanoli
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan; Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| | | | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, United States.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service ASL ROMA 1, Rome, Italy.
| | - Sadeer Al-Kindi
- Center for Health and Nature, Houston Methodist, Houston, TX, United States.
| | - Malcolm N Mistry
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Department of Economics, Ca' Foscari University of Venice, Venice, Italy.
| | - Pierre Masselot
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| | - Arturo de la Cruz Libardi
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
65
|
Ma Y, Li D, Cui F, Wang J, Tang L, Yang Y, Liu R, Xie J, Tian Y. Exposure to Air Pollutants and Myocardial Infarction Incidence: A UK Biobank Study Exploring Gene-Environment Interaction. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107002. [PMID: 39388260 PMCID: PMC11466320 DOI: 10.1289/ehp14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Unraveling gene-environment interaction can provide a novel insight into early disease prevention. Nevertheless, current understanding of the interplay between genetic predisposition and air pollution in relation to myocardial infarction (MI) risk remains limited. Furthermore, the potential long-term influence of air pollutants on MI incidence risk warrants more conclusive evidence in a community population. OBJECTIVE We investigated interactions between genetic predisposition and exposure to air pollutants on MI incidence. METHODS This study incorporated a sample of 456,354 UK Biobank participants and annual mean air pollution (PM 2.5 , PM 10 , NO 2 , and NO x ) from the UK Department for Environment, Food and Rural Affairs (2006-2021). The Cox proportional hazards model was employed to explore MI incidence after chronic air pollutants exposure. By quantifying genetic risk through the calculation of polygenic risk score (PRS), this study further examined the interactions between genetic risk and exposure to air pollutants in the development of MI on both additive and multiplicative scales. RESULTS Among 456,354 participants, 9,114 incident MI events were observed during a median follow-up of 12.08 y. Chronic exposure to air pollutants was linked with an increased risk of MI occurrence. Specifically, the hazard ratios (per interquartile range) were 1.12 (95% CI: 1.10, 1.13) for PM 2.5 , 1.20 (95% CI: 1.19, 1.22) for PM 10 , 1.13 (95% CI: 1.12, 1.15) for NO 2 , and 1.12 (95% CI: 1.11, 1.13) for NO x . In terms of the joint effects, participants with high PRS and high level of air pollution exposure exhibited the greatest risk of MI among all study participants (∼ 255 % to 324%). Remarkably, both multiplicative and additive interactions were detected in the ambient air pollutants exposure and genetic risk on the incidence of MI. DISCUSSION There were interactions between exposure to ambient air pollutants and genetic susceptibility on the risk of MI onset. Moreover, the joint effects of these two exposures were greater than the effect of each factor alone. https://doi.org/10.1289/EHP14291.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Xie
- Centre for Statistics in Medicine and National Institute for Health and Care Research Biomedical Research Centre Oxford, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
66
|
Urbanowicz T, Skotak K, Olasińska-Wiśniewska A, Filipiak KJ, Płachta-Krasińska A, Piecek J, Krasińska B, Krasiński Z, Tykarski A, Jemielity M. The Possible Role of PM 2.5 Chronic Exposure on 5-Year Survival in Patients with Left Ventricular Dysfunction Following Coronary Artery Bypass Grafting. TOXICS 2024; 12:697. [PMID: 39453117 PMCID: PMC11511179 DOI: 10.3390/toxics12100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The survival benefit of surgical revascularization in multivessel coronary artery disease is well understood, though it can be modified by left ventricular dysfunction. Chronic exposure to air pollutants has gained more attention recently as a possible non-traditional morbidity and mortality cardiovascular risk factor. This study identified possible 5-year mortality risk factors related to postoperative left ventricular performance, including air pollutants. PATIENTS There were 283 patients (244 (86%) males) with a median age of 65 (60-70) years enrolled in the retrospective analysis. All patients were referred for off-pump coronary artery revascularization due to chronic coronary syndrome that presented as a multivessel coronary artery disease. They were divided into three groups depending on the postoperative course of left ventricular fraction (LVEF 50% or more (169 patients), LVEF between 41 and 49% (61 patients), and LVEF 40% or less (53 patients)). RESULTS The overall survival rate was 84% (237 patients) in a median follow-up time of 5.3 (4.8-6.1) years. The median (Q1-Q3) chronic air pollution exposures for the analyzed group were 19.3 (16.9-22.4) μg/m3 for fine particles such as PM2.5, 25.8 (22.5-29.4) μg/m3 for coarse particles such as PM10, and 12.2 (9.7-14.9) μg/m3 for nitric dioxide (NO2). The mortality in the first group (LVEF at least 50%) was 23 (13.6%), in the second group (LVEF 41-49%) was 9 (15%), and in the third group (LVEF 40% or less) was 14 (26%). The multivariable regression analysis for the five-year mortality risk in the first group revealed the predictive value of dyslipidemia (HR: 3.254, 95% CI: 1.008-10.511, p = 0.049). The multivariable regression analysis for five-year mortality risk in the second group revealed the predictive value of dyslipidemia (HR: 3.391, 95% CI: 1.001-11.874, p = 0.050) and PM2.5 (HR: 1.327, 95% CI: 1.085-1.625, p = 0.006). In the third group (severely decreased LVEF), chronic PM2.5 exposure was found to be significant (HR: 1.518, 95% CI: 1.50-2.195, p = 0.026) for 5-year mortality prediction. CONCLUSIONS Traditional risk factors, such as dyslipidemia, are pivotal in the 5-year mortality risk following surgical revascularization. Chronic exposure to ambient air pollutants such as PM2.5 may be an additional risk factor in patients with left ventricular dysfunction.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Krzysztof Skotak
- Institute of Environmental Protection–National Research Institute, 02-170 Warsaw, Poland
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Krzysztof J Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Jakub Piecek
- Student Research Group, Medical Faculty, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Beata Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, 61-701 Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
67
|
Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) - a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:459-478. [PMID: 36932657 DOI: 10.1515/reveh-2022-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The health risks associated with individual air pollutant exposures have been studied and documented, but in real-life, the population is exposed to a multitude of different substances, designated as mixtures. A body of literature on air pollutants indicated that the next step in air pollution research is investigating pollutant mixtures and their potential impacts on health, as a risk assessment of individual air pollutants may actually underestimate the overall risks. This review aims to synthesize the health effects related to air pollutant mixtures containing selected pollutants such as: volatile organic compounds, particulate matter, sulfur and nitrogen oxides. For this review, the PubMed database was used to search for articles published within the last decade, and we included studies assessing the associations between air pollutant mixtures and health effects. The literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A number of 110 studies were included in the review from which data on pollutant mixtures, health effects, methods used, and primary results were extracted. Our review emphasized that there are a relatively small number of studies addressing the health effects of air pollutants as mixtures and there is a gap in knowledge regarding the health effects associated with these mixtures. Studying the health effects of air pollutant mixtures is challenging due to the complexity of components that mixtures may contain, and the possible interactions these different components may have.
Collapse
Affiliation(s)
- Emese Fazakas
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iulia A Neamtiu
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eugen S Gurzau
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Research Center for functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
68
|
Liang Q, Zhang X, Miao Y, Liu S. Multi-Scale Meteorological Impact on PM 2.5 Pollution in Tangshan, Northern China. TOXICS 2024; 12:685. [PMID: 39330613 PMCID: PMC11435594 DOI: 10.3390/toxics12090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Tangshan, a major industrial and agricultural center in northern China, frequently experiences significant PM2.5 pollution events during winter, impacting its large population. These pollution episodes are influenced by multi-scale meteorological processes, though the complex mechanisms remain not fully understood. This study integrates surface PM2.5 concentration data, ground-based and upper-air meteorological observations, and ERA5 reanalysis data from 2015 to 2019 to explore the interactions between local planetary boundary layer (PBL) structures and large-scale atmospheric processes driving PM2.5 pollution in Tangshan. The results indicate that seasonal variations in PM2.5 pollution levels are closely linked to changes in PBL thermal stability. During winter, day-to-day increases in PM2.5 concentrations are often tied to atmospheric warming above 1500 m, as enhanced thermal inversions and reduced PBL heights lead to pollutant accumulation. Regionally, this aloft warming is driven by a high-pressure system at 850 hPa over the southern North China Plain, accompanied by prevailing southwesterly winds. Additionally, southwesterly winds within the PBL can transport pollutants from the adjacent Beijing-Tianjin-Hebei region to Tangshan, worsening pollution. Simulations from the chemical transport model indicate that regional pollutant transport can contribute to approximately half of the near-surface PM2.5 concentration under the unfavorable synoptic conditions. These findings underscore the importance of multi-scale meteorology in predicting and mitigating severe wintertime PM2.5 pollution in Tangshan and surrounding regions.
Collapse
Affiliation(s)
- Qian Liang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xinxuan Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
- Changzhi Meteorological Bureau, Changzhi 046000, China
| | - Yucong Miao
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Shuhua Liu
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
69
|
Parasin N, Amnuaylojaroen T. Effect of PM2.5 on burden of mortality from non-communicable diseases in northern Thailand. PeerJ 2024; 12:e18055. [PMID: 39308827 PMCID: PMC11416095 DOI: 10.7717/peerj.18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background Particulate pollution, especially PM2.5from biomass burning, affects public and human health in northern Thailand during the dry season. Therefore, PM2.5exposure increases non-communicable disease incidence and mortality. This study examined the relationship between PM2.5and NCD mortality, including heart disease, hypertension, chronic lung disease, stroke, and diabetes, in northern Thailand during 2017-2021. Methods The analysis utilized accurate PM2.5data from the MERRA2 reanalysis, along with ground-based PM2.5measurements from the Pollution Control Department and mortality data from the Division of Non-Communicable Disease, Thailand. The cross-correlation and spearman coefficient were utilized for the time-lag, and direction of the relationship between PM2.5and mortality from NCDs, respectively. The Hazard Quotient (HQ) was used to quantify the health risk of PM2.5to people in northern Thailand. Results High PM2.5 risk was observed in March, with peak PM2.5concentration reaching 100 µg/m3, with maximum HQ values of 1.78 ± 0.13 to 4.25 ± 0.35 and 1.45 ± 0.11 to 3.46 ± 0.29 for males and females, respectively. Hypertension significantly correlated with PM2.5levels, followed by chronic lung disease and diabetes. The cross-correlation analysis showed a strong relationship between hypertansion mortality and PM2.5at a two-year time lag in Chiang Mai (0.73) (CI [-0.43-0.98], p-value of 0.0270) and a modest relationship with chronic lung disease at Lampang (0.33) (a four-year time lag). The results from spearman correlation analysis showed that PM2.5concentrations were associated with diabetes mortality in Chiang Mai, with a coefficient of 0.9 (CI [0.09-0.99], p-value of 0.03704). Lampang and Phayao had significant associations between PM2.5 and heart disease, with coefficients of 0.97 (CI [0.66-0.99], p-value of 0.0048) and 0.90 (CI [0.09-0.99], p-value of 0.0374), respectively, whereas Phrae had a high coefficient of 0.99 on stroke.
Collapse
Affiliation(s)
- Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao, Thailand
| | - Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao, Thailand
- Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, Thailand
| |
Collapse
|
70
|
Chu Z, Zhang Y, Guo B, Zhang X, Cao Y, Ji H, Sun B, Schikowski T, Zhao Q, Wang J, Chen Y. Long-term PM 2.5 exposure associated with severity of angina pectoris and related health status in patients admitted with acute coronary syndrome: Modification effect of genetic susceptibility and disease history. ENVIRONMENTAL RESEARCH 2024; 257:119232. [PMID: 38810823 DOI: 10.1016/j.envres.2024.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Long-term particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) exposure has been associated with the occurrence of acute coronary syndrome (ACS). However, the impact of PM2.5 exposure and its components on the severity of angina pectoris and disease-related health status in patients hospitalized for ACS is understudied. To assess the association between long-term exposure to PM2.5 components and the angina pectoris severity in ACS patients, as well as the modification effects of genetic factors and disease history in north China. During 2017-2019, 6729 ACS patients were collected in Shandong Province and Beijing, with their angina pectoris severity evaluated using Seattle Angina Questionnaire (SAQ). The 0-3 years' average concentrations of PM2.5 and its five major components were assigned to each patient's residential address. Linear mixed-effects model, weighted quantile regression, and quantile g-computation were used to estimate the effects of both single and joint associations between PM2.5 components and SAQ scores. The interactive effect was estimated by polygenic risk scores and disease history. For each interquartile range increase in PM2.5, the overall SAQ score changed by -3.71% (95%CI: -4.54% to -2.88%), with score of angina stability more affected than angina frequency and other dimensions of angina pectoris severity. Sulfate and ammonium were major contributors to the effect of PM2.5 exposure. Significant modification effect was only observed for disease history, especially for the dimension of physical limitation. Among a series of pre-existing diseases, patients with a family history of coronary artery disease, previous percutaneous coronary intervention or coronary artery bypass grafting, and stroke were more susceptible to PM2.5 exposure than others. Greater exposure to PM2.5 is associated with more serious angina pectoris and worse disease-related health status in ACS patients. Public health and clinical priority should be given to cutting down key effective components and protecting highly vulnerable individuals.
Collapse
Affiliation(s)
- Zunyan Chu
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bangjie Guo
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yingying Cao
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongmei Ji
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Sun
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Qi Zhao
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
71
|
Chen G, Qian Z(M, Zhang J, Wang X, Zhang Z, Cai M, Arnold LD, Abresch C, Wang C, Liu Y, Fan Q, Lin H. Associations between Changes in Exposure to Air Pollutants due to Relocation and the Incidence of 14 Major Disease Categories and All-Cause Mortality: A Natural Experiment Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97012. [PMID: 39348288 PMCID: PMC11441638 DOI: 10.1289/ehp14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Though observational studies have widely linked air pollution exposure to various chronic diseases, evidence comparing different exposures in the same people is limited. This study examined associations between changes in air pollution exposure due to relocation and the incidence and mortality of 14 major diseases. METHODS We included 50,522 participants enrolled in the UK Biobank from 2006 to 2010. Exposures to particulate matter with a diameter ≤ 2.5 μ m (PM 2.5 ), particulate matter with a diameter ≤ 10 μ m (PM 10 ), nitrogen oxides (NO x ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) were estimated for each participant based on their residential address and relocation experience during the follow-up. Nine exposure groups were classified based on changes in long-term exposures due to residential mobility. Incidence and mortality of 14 major diseases were identified through linkages to hospital inpatient records and death registries. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incidence and mortality of the 14 diseases of interest. RESULTS During a median follow-up of 12.6 years, 29,869 participants were diagnosed with any disease of interest, and 3,144 died. Significantly increased risk of disease and all-cause mortality was observed among individuals who moved from a lower to higher air polluted area. Compared with constantly low exposure, moving from low to moderate PM 2.5 exposure was associated with increased risk of all 14 diseases but not for all-cause mortality, with adjusted HRs (95% CIs) ranging from 1.18 (1.05, 1.33) to 1.48 (1.30, 1.69); moving from low to high PM 2.5 areas increased risk of all 14 diseases: infections [1.37 (1.19, 1.58)], blood diseases [1.57 (1.34, 1.84)], endocrine diseases [1.77 (1.50, 2.09)], mental and behavioral disorders [1.93 (1.68, 2.21)], nervous system diseases [1.51 (1.32, 1.74)], ocular diseases [1.76 (1.56, 1.98)], ear disorders [1.58 (1.35, 1.86)], circulatory diseases [1.59 (1.42, 1.78)], respiratory diseases [1.51 (1.33, 1.72)], digestive diseases [1.74 (1.58, 1.92)], skin diseases [1.39 (1.22, 1.58)], musculoskeletal diseases [1.62 (1.45, 1.81)], genitourinary diseases [1.54 (1.36, 1.74)] and cancer [1.42 (1.24, 1.63)]. We observed similar associations for PM 10 and SO 2 with 14 diseases (but not with all-cause mortality); increases in NO 2 and NO x were positively associated with 14 diseases and all-cause mortality. CONCLUSIONS This study supports potential associations between ambient air pollution exposure and morbidity as well as mortality. Findings also emphasize the importance of maintaining consistently low levels of air pollution to protect the public's health. https://doi.org/10.1289/EHP14367.
Collapse
Affiliation(s)
- Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lauren D. Arnold
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Chad Abresch
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chuangshi Wang
- Medical Research and Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiming Liu
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| | - Qi Fan
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
72
|
Ibrahim R, Pham HN, Ganatra S, Javed Z, Nasir K, Al-Kindi S. Social Phenotyping for Cardiovascular Risk Stratification in Electronic Health Registries. Curr Atheroscler Rep 2024; 26:485-497. [PMID: 38976220 DOI: 10.1007/s11883-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW Evaluation of social influences on cardiovascular care requires a comprehensive analysis encompassing economic, societal, and environmental factors. The increased utilization of electronic health registries provides a foundation for social phenotyping, yet standardization in methodology remains lacking. This review aimed to elucidate the primary approaches to social phenotyping for cardiovascular risk stratification through electronic health registries. RECENT FINDINGS Social phenotyping in the context of cardiovascular risk stratification within electronic health registries can be separated into four principal approaches: place-based metrics, questionnaires, ICD Z-coding, and natural language processing. These methodologies vary in their complexity, advantages and limitations, and intended outcomes. Place-based metrics often rely on geospatial data to infer socioeconomic influences, while questionnaires may directly gather individual-level behavioral and social factors. Z-coding, a relatively new approach, can capture data directly related to social determinant of health domains in the clinical context. Natural language processing has been increasingly utilized to extract social influences from unstructured clinical narratives-offering nuanced insights for risk prediction models. Each method plays an important role in our understanding and approach to using social determinants data for improving population cardiovascular health. These four principal approaches to social phenotyping contribute to a more structured approach to social determinant of health research via electronic health registries, with a focus on cardiovascular risk stratification. Social phenotyping related research should prioritize refining predictive models for cardiovascular diseases and advancing health equity by integrating applied implementation science into public health strategies.
Collapse
Affiliation(s)
- Ramzi Ibrahim
- Department of Medicine, University of Arizona Tucson, Tucson, AZ, USA
| | - Hoang Nhat Pham
- Department of Medicine, University of Arizona Tucson, Tucson, AZ, USA
| | - Sarju Ganatra
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Zulqarnain Javed
- DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| | - Khurram Nasir
- DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| | - Sadeer Al-Kindi
- DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA.
| |
Collapse
|
73
|
Stevenin G, Canonge J, Gervais M, Fiore A, Lareyre F, Touma J, Desgranges P, Raffort J, Sénémaud J. e-Health and environmental sustainability in vascular surgery. Semin Vasc Surg 2024; 37:333-341. [PMID: 39277350 DOI: 10.1053/j.semvascsurg.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
e-Health technology holds great promise for improving the management of patients with vascular diseases and offers a unique opportunity to mitigate the environmental impact of vascular care, which remains an under-investigated field. The innovative potential of e-Health operates in a complex environment with finite resources. As the expansion of digital health will increase demand for devices, contributing to the environmental burden of electronics and energy use, the sustainability of e-Health technology is of crucial importance, especially in the context of increasing prevalence of cardiovascular diseases. This review discusses the environmental impact of care related to vascular surgery and e-Health innovation, the potential of e-Health technology to mitigate greenhouse gas emissions generated by the health care sector, and to provide leads to research promoting e-Heath technology sustainability. A multifaceted approach, including ethical design, validated eco-audits methodology and reporting standards, technological refinement, electronic and medical devices reuse and recycling, and effective policies is required to provide a sustainable and optimal level of care to vascular patients.
Collapse
Affiliation(s)
- Gabrielle Stevenin
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Jennifer Canonge
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Marianne Gervais
- Université Paris-Est, Créteil, France; Institut Mondor de Recherche Biomédicale, U955 INSERM, Créteil, France
| | - Antonio Fiore
- Université Paris-Est, Créteil, France; Department of Cardiac Surgery, Henri Mondor University Hospital, Créteil, France
| | - Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France,; Université Côte d'Azur, Le Centre National de la Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France
| | - Joseph Touma
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Pascal Desgranges
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Juliette Raffort
- Université Côte d'Azur, Le Centre National de la Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; Institute 3IA Côte d'Azur, Université Côte d'Azur, France
| | - Jean Sénémaud
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France; Laboratory for Vascular Translational Science, U1148 INSERM, Paris, France.
| |
Collapse
|
74
|
Havenga H, Gharbi D, Sewry N, Language B, Neumann FH, Finch JM, Hill T, Boulter J, Jordaan E, Piketh SJ, Schwellnus M, Burger RP. Healthy environments for athleTes (HEAT): environmental conditions along a 90 km ultra-marathon event, South Africa. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1757-1771. [PMID: 38869702 PMCID: PMC11461593 DOI: 10.1007/s00484-024-02703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
This paper provides an overview of the HEAT (Healthy Environments for AthleTes) project, which aims to understand the impact of environmental conditions on athlete health and performance during major sporting events such as long-distance running, cycling, and triathlons. In collaboration with the SAFER (Strategies to reduce Adverse medical events For the ExerciseR) initiative, the HEAT project carried out a field campaign at the 2022 Comrades Marathon in the KwaZulu-Natal province of South Africa. The measurement campaign deployed seven weather stations, seven PM2.5 monitors and one spore trap along the 90 km route to capture spatially representative measurements of complex micro-climates, allergenic aerospora, and particulate matter exposure. The results indicate that runners were exposed to moderate risk heat stress conditions. Novel findings from this initial campaign shows elevated and potentially harmful PM2.5 levels at spectator areas, possibly coinciding with small fire events around the race day festivities. Our findings show values PM2.5 levels over the WHO 24-h guidelines at all stations, while 2000 µg/m3 at two stations. However, the lack of an acute exposure standard means direct health impacts cannot be quantified in the context of a sport event. The HEAT project highlights important aspects of race day monitoring; regional scale climatology has an impact on the race day conditions, the microclimatic conditions (pollution and meteorology) are not necessarily captured by proximity instruments and direct environmental measurements are required to accurately capture conditions along the route.
Collapse
Affiliation(s)
- H Havenga
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - D Gharbi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - N Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- International Olympic Committee Research Centre, Pretoria, South Africa
| | - B Language
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - F H Neumann
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - J M Finch
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - T Hill
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - J Boulter
- Comrades Marathon Association (CMA), Medical Director, Pietermaritzburg, South Africa
| | - E Jordaan
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Statistics and Population Studies Department, University of the Western Cape, Cape Town, Western Cape, South Africa
| | - S J Piketh
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - M Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- International Olympic Committee Research Centre, Pretoria, South Africa
| | - R P Burger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
75
|
Khaltaev N, Axelrod S. Cardiovascular disease mortality and air pollution in countries with different socioeconomic status. Chronic Dis Transl Med 2024; 10:247-255. [PMID: 39027192 PMCID: PMC11252428 DOI: 10.1002/cdt3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cardiovascular diseases (CVDs) account for 17.9 million deaths annually. Behavioral risk factors increase the risk of dying from CVD. Air pollution is not included in this risk calculation since the appreciation of air pollution as a modifiable risk factor is still limited. The purpose of this study was to analyze CVD mortality attributed to air pollution in all World Health Organization WHO member states and demonstrate the association of CVD mortality with air pollution depending on countries' income level. Methods The CVD death rate was calculated by dividing the number of deaths by the total population. The proportion of the population with primary reliance on clean fuels and technologies for cooking was calculated as an indicator of household air pollution. The annual mean concentration of fine particulate matter ≤2.5 µg/m3 and ≤10.0 µg/m3 to which the population is exposed was used as an indicator of ambient air pollution. Results There is a gradual increase in CVD mortality attributed to air pollution from high-income countries (HICs) to low-income countries (LICs). Household air pollution is the major cause of CVD mortality in LICs. Ischemic heart disease mortality attributed to ambient air pollution in all countries is higher than stroke mortality attributed to ambient air pollution. In LIC, mortality from stroke is attributed to household air pollution of 39.27 ± 14.47, which is more than twice the stroke mortality attributed to ambient air pollution at 18.60 ± 5.64, t = 7.17, p < 0.01. Conclusion Air pollution control should be an essential component of the CVD preventive strategy, along with lifestyle modifications and effective disease management.
Collapse
Affiliation(s)
- Nikolai Khaltaev
- Global Non‐Communicable Diseases PlatformGlobal Alliance against Chronic Respiratory DiseasesGenevaSwitzerland
| | - Svetlana Axelrod
- Institute for Leadership and Health ManagementI. M. Sechenov First Moscow State University (Sechenov University)MoscowRussia
| |
Collapse
|
76
|
Li Y, Lu B, Wei J, Wang Q, Ma W, Wang R, Xu R, Zhong Z, Luo L, Chen X, Lv Z, Huang S, Sun H, Liu Y. Short-term exposure to ambient fine particulate matter constituents and myocardial infarction mortality. CHEMOSPHERE 2024; 364:143101. [PMID: 39151575 DOI: 10.1016/j.chemosphere.2024.143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Short-term ambient fine particulate matter (PM2.5) exposure has been related to an increased risk of myocardial infarction (MI) death, but which PM2.5 constituents are associated with MI death and to what extent remain unclear. We aimed to explore the associations of short-term exposure to PM2.5 constituents with MI death and evaluate excess mortality. We conducted a time-stratified case-crossover study on 237,492 MI decedents in Jiangsu province, China during 2015-2021. Utilizing a validated PM2.5 constituents grid dataset at 1 km spatial resolution, we estimated black carbon (BC), organic carbon (OC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-) exposure by extracting daily concentrations grounding on the home address of each subject. We employed conditional logistic regression models to evaluate the exposure-response relationship between PM2.5 constituents and MI death. Overall, per interquartile range (IQR) increase of BC (lag 06-day; IQR: 1.75 μg/m3) and SO42- (lag 04-day; IQR: 5.06 μg/m3) exposures were significantly associated with a 3.91% and 2.94% increase in odds of MI death, respectively, and no significant departure from linearity was identified in the exposure-response curves for BC and SO42-. If BC and SO42- exposures were reduced to theoretical minimal risk exposure concentration (0.89 μg/m3 and 1.51 μg/m3), an estimate of 4.55% and 4.80% MI deaths would be avoided, respectively. We did not find robust associations of OC, NO3-, NH4+, and Cl- exposures with MI death. Individuals aged ≥80 years were more vulnerable to PM2.5 constituent exposures in MI death (p for difference <0.05). In conclusion, short-term exposure to PM2.5-bound BC and SO42- was significantly associated with increased odds of MI death and resulted in extensive excess mortality, notably in older adults. Our findings emphasized the necessity of reducing toxic PM2.5 constituent exposures to prevent deaths from MI and warranted further studies on the relative contribution of specific constituents.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Lu
- Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Qingqing Wang
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Wancheng Ma
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China
| | - Rui Wang
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ziquan Lv
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Sun
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
77
|
Luo J, Jones RR, Jin Z, Polonsky T, Kim K, Olopade CO, Pinto J, Ahsan H, Aschebrook-Kilfoy B. Differing associations of PM 2.5 exposure with systolic and diastolic blood pressures across exposure durations in a predominantly non-Hispanic Black cohort. Sci Rep 2024; 14:20256. [PMID: 39217205 PMCID: PMC11366009 DOI: 10.1038/s41598-024-64851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/13/2024] [Indexed: 09/04/2024] Open
Abstract
Environmental health research has suggested that fine particulate matter (PM2.5) exposure can lead to high blood pressures, but it is unclear whether the impacts remain the same for systolic and diastolic blood pressures (SBP and DBP). This study aimed to examine whether the effects of PM2.5 exposure on SBP and DBP differ using data from a predominantly non-Hispanic Black cohort collected between 2013 and 2019 in the US. PM2.5 exposure was assessed based on a satellite-derived model across exposure durations from 1 to 36 months. The average PM2.5 exposure level was between 9.5 and 9.8 μg/m3 from 1 through 36 months. Mixed effects models were used to estimate the association of PM2.5 with SBP, DBP, and related hypertension types, adjusted for potential confounders. A total of 6381 participants were included. PM2.5 exposure was positively associated with both SBP and DBP. The association magnitudes depended on exposure durations. The association with SBP was null at the 1-month duration (β = 0.05, 95% CI: - 0.23, 0.33), strengthened as duration increased, and plateaued at the 24-month duration (β = 1.14, 95% CI: 0.54, 1.73). The association with DBP started with β = 0.29 (95% CI: 0.11, 0.47) at the 1-month duration, and plateaued at the 12-month duration (β = 1.61, 95% CI: 1.23, 1.99). PM2.5 was associated with isolated diastolic hypertension (12-month duration: odds ratio = 1.20, 95% CI: 1.07, 1.34) and systolic-diastolic hypertension (12-month duration: odds ratio = 1.18, 95% CI: 1.10, 1.26), but not with isolated systolic hypertension. The findings suggest DBP is more sensitive to PM2.5 exposure and support differing effects of PM2.5 exposure on SBP and DBP. As elevation of SBP and DBP differentially predict CVD outcomes, this finding is relevant for prevention and treatment.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Public Health Sciences, The University of Chicago, Chicago, USA
- Institute for Population and Precision Health, The University of Chicago, Chicago, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Tamar Polonsky
- Department of Medicine, The University of Chicago, Chicago, USA
| | - Karen Kim
- Department of Medicine, The University of Chicago, Chicago, USA
| | | | - Jayant Pinto
- Department of Medicine, The University of Chicago, Chicago, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, USA
- Institute for Population and Precision Health, The University of Chicago, Chicago, USA
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, The University of Chicago, Chicago, USA.
- Institute for Population and Precision Health, The University of Chicago, Chicago, USA.
- Institute for Population and Precision Health, The University of Chicago, 5841 S. Maryland Ave., MC 6100, Room TC-620, Chicago, IL, 60637, USA.
| |
Collapse
|
78
|
Rocha-Velasco OA, Morales-Suárez-Varela M, Llopis-González A. Dietary Flavonoids: Mitigating Air Pollution's Cardiovascular Risks. Nutrients 2024; 16:2647. [PMID: 39203784 PMCID: PMC11356943 DOI: 10.3390/nu16162647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Air pollution significantly impacts cardiovascular health, yet pollution reduction strategies in cardiovascular disease prevention remain limited. Dietary flavonoids show promise in protecting cardiovascular health, but their potential to mitigate air-pollution-induced risks is unexplored. This study investigates this research gap. Following PRISMA-ScR guidelines, literature from 2014-2024 was searched across MedLine/PubMed, ScienceDirect, and MDPI databases. Of 463 identified studies, 53 were eligible for analysis based on PICO criteria. Findings revealed significant impacts of air pollution on cardiovascular health, including increased disease risks and mortality. Flavonoid intake demonstrated protective effects against these risks. Flavonoid mechanisms include improved endothelial function, antioxidant and anti-inflammatory effects, blood pressure regulation, antiplatelet effects, cardioprotection, and enhanced lipid and glucose metabolism. Higher flavonoid intake was consistently associated with reduced cardiovascular risks. While reducing pollution remains crucial, promoting flavonoid-rich diets is a promising complementary strategy. Public health initiatives should raise awareness about these benefits. Further research on direct interactions between flavonoid intake and air pollution exposure is needed. Current evidence supports integrating dietary interventions into broader strategies to reduce air pollution's cardiovascular impacts.
Collapse
Affiliation(s)
- Oscar Andrés Rocha-Velasco
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, Spain; (O.A.R.-V.); (A.L.-G.)
| | - María Morales-Suárez-Varela
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, Spain; (O.A.R.-V.); (A.L.-G.)
- Biomedical Research Center in Epidemiology and Public Health Network (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Spain
| | - Agustín Llopis-González
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, Spain; (O.A.R.-V.); (A.L.-G.)
- Biomedical Research Center in Epidemiology and Public Health Network (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Spain
| |
Collapse
|
79
|
Moreira RP, da Silva CBC, de Sousa TC, Leitão FLBF, Morais HCC, de Oliveira ASS, Duarte-Clíments G, Gómez MBS, Cavalcante TF, Costa AC. The Influence of Climate, Atmospheric Pollution, and Natural Disasters on Cardiovascular Diseases and Diabetes Mellitus in Drylands: A Scoping Review. Public Health Rev 2024; 45:1607300. [PMID: 39176255 PMCID: PMC11338784 DOI: 10.3389/phrs.2024.1607300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives In the face of escalating global aridification, this study examines the complex relationship between climate variability, air pollution, natural disasters, and the prevalence of cardiovascular disease (CVD) and diabetes mellitus (DM) in arid regions. Methods The study conducted a scoping review of multiple databases using JBI guidelines and included 74 studies. Results The results show that acute myocardial infarction (n = 20) and stroke (n = 13) are the primary CVDs affected by these factors, particularly affecting older adults (n = 34) and persons with hypertension (n = 3). Elevated air temperature and heat waves emerge as critical risk factors for CVD, exacerbating various cardiovascular mechanisms. Atmospheric pollutants and natural disasters increase this risk. Indirect effects of disasters amplify risk factors such as socioeconomic vulnerability (n = 4), inadequate medical care (n = 3), stress (n = 3), and poor diet (n = 2), increasing CVD and DM risk. Conclusion The study underscores the need for nations to adhere to the Paris Agreement, advocating for reduced air pollutants, resilient environments, and collaborative, multidisciplinary research to develop targeted health interventions to mitigate the adverse effects of climate, pollution, and natural disasters.
Collapse
Affiliation(s)
- Rafaella Pessoa Moreira
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Clara Beatriz Costa da Silva
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Tainara Chagas de Sousa
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | | | | | | | - Gonzalo Duarte-Clíments
- School of Nursing, University of La Laguna, San Cristóbal de La Laguna, Spain
- School of Nursing, Valencian International University, Castelló de la Plana, Spain
| | - María Begoña Sánchez Gómez
- School of Nursing, University of La Laguna, San Cristóbal de La Laguna, Spain
- Department of Nursing, UCAM Catholic University of Murcia, Guadalupe, Spain
| | - Tahissa Frota Cavalcante
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Alexandre Cunha Costa
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
80
|
Rowland N, McVicar D, Vlachos S, Jahanshahi B, McGovern ME, O'Reilly D. Long-term exposure to ambient PM 2.5 and population health: evidence from linked census data. ECONOMICS AND HUMAN BIOLOGY 2024; 55:101417. [PMID: 39208556 DOI: 10.1016/j.ehb.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Particulate matter suspended in the air that is comprised of microscopic particles with a diameter of 2.5μm or less (PM2.5) is among the most impactful pollutants globally. Extensive evidence shows exposure to ambient PM2.5 is associated with a wide range of poor health outcomes. However, few studies examine long-run pollution exposures in nationally representative data. This study exploits Census data for Northern Ireland, linked to average PM2.5 concentrations at the 1x1km grid-square level during the period 2002-2010. We combine outcome measures in 2011 with data on complete residential histories. Before adjusting for other covariates, we show strong relationships between PM2.5 exposure, self-rated general health, disability, and all available (eleven) domain-specific health measures in the data. Associations with poor general health, chronic illness, breathing difficulties, mobility difficulties, and deafness are robust to extensive conditioning and to further analysis designed to examine sensitivity to unobserved confounders.
Collapse
Affiliation(s)
- Neil Rowland
- Queen's Business School, Queen's University Belfast, Belfast, UK
| | - Duncan McVicar
- Queen's Business School, Queen's University Belfast, Belfast, UK; IZA, Bonn, Germany
| | - Stavros Vlachos
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Babak Jahanshahi
- Queen's Business School, Queen's University Belfast, Belfast, UK
| | - Mark E McGovern
- Rutgers School of Public Health, Rutgers University, Piscataway, NJ, United States.
| | - Dermot O'Reilly
- Centre of Excellence for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
81
|
Mentias A, Desai MY, Pandey A, Motairek I, Moudgil R, Albert C, Deo SV, Brook RD, Menon V, Rajagopalan S, Al-Kindi S. Ambient Air Pollution Exposure and Adverse Outcomes Among Medicare Beneficiaries With Heart Failure. J Am Heart Assoc 2024; 13:e032902. [PMID: 39082400 DOI: 10.1161/jaha.123.032902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Exposure to fine particulate matter (<2.5 um, particulate matter with an aerodynamic diameter <2.5 microns [PM2.5]) has been implicated in atherogenesis. Limited data in animal studies suggest that PM2.5 exposure leads to myocardial fibrosis and increased incidence of heart failure (HF). Whether PM2.5 is associated with adverse outcomes in patients with preexisting HF has not been widely studied. METHODS AND RESULTS In this retrospective cohort study, Medicare patients hospitalized with first HF between 2013 and 2020 were identified from the Medicare Provider Analysis and Review Part A 100% files. Patients were linked with integrated estimates of ambient PM2.5 obtained at 1×1 km using the zip code of participants' residence. The study outcomes were all-cause death, HF, and all-cause readmissions burden. A total of 2 599 525 patients were included in this study, with 6 321 731 person-years of follow-up. Mean PM2.5 was 7.3±1.7 μg/m3. Each interquartile range of PM2.5 was associated with 0.9% increased hazard of all-cause death, 4.5% increased hazard of first HF readmission, 3.1% increased risk of HF hospitalization burden, and 5.2% increase in all-cause readmission burden, after adjusting for 11 sociodemographic and medical factors. Subgroup analyses showed that the effects were more pronounced at levels <7 μg/m3 and in patients aged <75 years, Asians, and those residing in rural areas. CONCLUSIONS Ambient air pollution is associated with higher risk of adverse events in Medicare beneficiaries with established HF. These associations persist below the National Air Quality Standards (12 μg/m3), supporting that no threshold effect exists for health effects of air pollution exposure.
Collapse
Affiliation(s)
- Amgad Mentias
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation Cleveland OH USA
| | - Milind Y Desai
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation Cleveland OH USA
| | - Ambarish Pandey
- Division of Cardiovascular Medicine University of Texas Southwestern Dallas TX USA
| | - Issam Motairek
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University Cleveland OH USA
| | - Rohit Moudgil
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation Cleveland OH USA
| | - Chonyang Albert
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation Cleveland OH USA
| | - Salil V Deo
- Louis Stokes VA Hospital and Case Western Reserve University Cleveland OH USA
| | - Robert D Brook
- Cardiovascular Prevention Wayne State University and Wayne Health Detroit MI USA
| | - Venu Menon
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation Cleveland OH USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University Cleveland OH USA
| | - Sadeer Al-Kindi
- Center for Health and Nature and the DeBakey Heart and Vascular Center Houston TX USA
| |
Collapse
|
82
|
Kurtz M, Lezón C, Masci I, Boyer P, Brites F, Bonetto J, Bozal C, Álvarez L, Tasat D. Air pollution induces morpho-functional, biochemical and biomechanical vascular dysfunction in undernourished rats. Food Chem Toxicol 2024; 190:114777. [PMID: 38824989 DOI: 10.1016/j.fct.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Air pollution (gases and particulate matter -PM) and child undernutrition are globally recognized stressors with significant consequences. PM and its components breach the respiratory alveolar-capillary barrier, entering the vasculature transporting not only harmful particles and its mediators but, altering vascular paracrine and autocrine functions. The aim of this study was to investigate the effects of Residual Oil Fly Ash (ROFA), on the vasculature of young animals with nutritional growth retardation (NGR). Weanling rats were fed a diet restricted 20% (NGR) compared to ad libitum intake (control-C) for 4 weeks. Rats were intranasally instilled with 1 mg/kg BW of ROFA. After 24h exposure, histological and immunohistochemical, biochemical and contractile response to NA/ACh were evaluated in aortas. ROFA induced changes in the tunica media of the aorta in all groups regarding thickness, muscular cells and expression of Connexin-43. ROFA increased TGF-β1 and decreased eNOs levels and calcium channels in C and NGR animals. An increment in cytokines IL-6 and IL-10 was observed in C, with no changes in NGR. ROFA exposure altered the vascular contractile capacity. In conclusion, ROFA exposure could increase the risk for CVD through the alteration of vascular biochemical parameters, a possible step of the endothelial dysfunction.
Collapse
Affiliation(s)
- Melisa Kurtz
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina.
| | - Christian Lezón
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ivana Masci
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Patricia Boyer
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julián Bonetto
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Carola Bozal
- Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Álvarez
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Deborah Tasat
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
83
|
Zhao T, Hopke PK, Utell MJ, Croft DP, Thurston SW, Lin S, Ling FS, Chen Y, Yount CS, Rich DQ. A case-crossover study of ST-elevation myocardial infarction and organic carbon and source-specific PM 2.5 concentrations in Monroe County, New York. Front Public Health 2024; 12:1369698. [PMID: 39148650 PMCID: PMC11324441 DOI: 10.3389/fpubh.2024.1369698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Previous work reported increased rates of cardiovascular hospitalizations associated with increased source-specific PM2.5 concentrations in New York State, despite decreased PM2.5 concentrations. We also found increased rates of ST elevation myocardial infarction (STEMI) associated with short-term increases in concentrations of ultrafine particles and other traffic-related pollutants in the 2014-2016 period, but not during 2017-2019 in Rochester. Changes in PM2.5 composition and sources resulting from air quality policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this study aimed to estimate whether rates of STEMI were associated with organic carbon and source-specific PM2.5 concentrations. Methods Using STEMI patients treated at the University of Rochester Medical Center, compositional and source-apportioned PM2.5 concentrations measured in Rochester, a time-stratified case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increases in mean primary organic carbon (POC), secondary organic carbon (SOC), and source-specific PM2.5 concentrations on lag days 0, 0-3, and 0-6 during 2014-2019. Results The associations of an increased rate of STEMI with interquartile range (IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations in the previous few days were not found from 2014 to 2019. However, IQR increases in GAS concentrations were associated with an increased rate of STEMI on the same day in the 2014-2016 period (Rate ratio [RR] = 1.69; 95% CI = 0.98, 2.94; 1.73 μg/m3). In addition, each IQR increase in mean SOC concentration in the previous 6 days was associated with an increased rate of STEMI, despite imprecision (RR = 1.14; 95% CI = 0.89, 1.45; 0.42 μg/m3). Conclusion Increased SOC concentrations may be associated with increased rates of STEMI, while there seems to be a declining trend in adverse effects of GAS on triggering of STEMI. These changes could be attributed to changes in PM2.5 composition and sources following the Tier 3 vehicle introduction.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, United States
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
84
|
Yi J, Kim SH, Lee H, Chin HJ, Park JY, Jung J, Song J, Kwak N, Ryu J, Kim S. Air quality and kidney health: Assessing the effects of PM 10, PM 2.5, CO, and NO 2 on renal function in primary glomerulonephritis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116593. [PMID: 38917585 DOI: 10.1016/j.ecoenv.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND While extensive studies have elucidated the relationships between exposure to air pollution and chronic diseases, such as cardiovascular disorders and diabetes, the intricate effects on specific kidney diseases, notably primary glomerulonephritis (GN)-an immune-mediated kidney ailment-are less well understood. Considering the escalating incidence of GN and conspicuous lack of investigative focus on its association with air quality, investigation is dedicated to examining the long-term effects of air pollutants on renal function in individuals diagnosed with primary GN. METHODS This retrospective cohort analysis was conducted on 1394 primary GN patients who were diagnosed at Seoul National University Bundang Hospital and Seoul National University Hospital. Utilizing time-varying Cox regression and linear mixed models (LMM), we examined the effect of yearly average air pollution levels on renal function deterioration (RFD) and change in estimated glomerular filtration rate (eGFR). In this context, RFD is defined as sustained eGFR of less than 60 mL/min per 1.73 m2. RESULTS During a mean observation period of 5.1 years, 350 participants developed RFD. Significantly, elevated interquartile range (IQR) levels of air pollutants-including PM10 (particles ≤10 micrometers, HR 1.389, 95 % CI 1.2-1.606), PM2.5 (particles ≤2.5 micrometers, HR 1.353, 95 % CI 1.162-1.575), CO (carbon monoxide, HR 1.264, 95 % CI 1.102-1.451), and NO2 (nitrogen dioxide, HR 1.179, 95 % CI 1.021-1.361)-were significantly associated with an increased risk of RFD, after factoring in demographic and health variables. Moreover, exposure to PM10 and PM2.5 was associated with decreased eGFR. CONCLUSIONS This study demonstrates a substantial link between air pollution exposure and renal function impairment in primary GN, accentuating the significance of environmental determinants in the pathology of immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Jinyeong Yi
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, the Republic of Korea
| | - Su Hwan Kim
- Department of Information Statistics, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, the Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, the Republic of Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, the Republic of Korea
| | - Jae Yoon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang 10326, the Republic of Korea; Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju 38066, the Republic of Korea; Research Center for Chronic Disease and Environmental Medicine, Dongguk University College of Medicine, Gyeongju 38066, the Republic of Korea
| | - Jiyun Jung
- Research Center for Chronic Disease and Environmental Medicine, Dongguk University College of Medicine, Gyeongju 38066, the Republic of Korea; Clinical Trial Center, Dongguk University Ilsan Hospital, Goyang 10326, the Republic of Korea
| | - Jeongin Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, the Republic of Korea
| | - Nojun Kwak
- Department of Intelligence and Information, Seoul National University, Seoul 08826, the Republic of Korea
| | - Jiwon Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, the Republic of Korea.
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, the Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, the Republic of Korea.
| |
Collapse
|
85
|
Higashiyama A, Kohsaka S, Fujiyoshi A. Primary Prevention of Coronary and Other Cardiovascular Diseases: A Focused Review. J Atheroscler Thromb 2024; 31:1113-1128. [PMID: 38825504 PMCID: PMC11300672 DOI: 10.5551/jat.rv22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 06/04/2024] Open
Abstract
In 2022, the Japan Atherosclerosis Society (JAS) updated its prevention guidelines, the "Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022" (JAS2022GL), expanding its scope from coronary artery disease (CAD) to atherosclerotic cardiovascular diseases (ASCVDs), including atherothrombotic stroke. The following year, the Japanese Circulation Society (JCS) updated its guidelines for primary prevention entitled "JCS 2023 Guideline on the Primary Prevention of Coronary Artery Disease" (JCS2023GL). Since those publications, scientific advancements in relevant fields have continued. This review article outlines the current recommendations provided by the guidelines, provides background information supporting these recommendations, introduces scientific findings subsequent to prior publications, and discusses future directions on select topics for the primary prevention of CVD. The topics covered in this review are traditional risk factors, including dyslipidemia and hypertension, the application of comprehensive risk stratification or risk scoring systems, patient-specific topics, salt and alcohol, and environmental factors. These topics were deliberate and selected by the authors, who were involved in the compilation of either or both JAS2022GL and JCS2023GL. This review not only emphasizes the pivotal role of continuously updated guidelines in shaping clinical practice but also stresses the urgent need for ongoing research to bridge existing knowledge and practice gaps.
Collapse
Affiliation(s)
- Aya Higashiyama
- Department of Hygiene, Wakayama Medical University, Wakayama, Japan
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine, Keio University, Tokyo, Japan
| | - Akira Fujiyoshi
- Department of Hygiene, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
86
|
Luo J, Craver A, Jin Z, Zheng L, Kim K, Polonsky T, Olopade CO, Pinto JM, Ahsan H, Aschebrook-Kilfoy B. Contextual Deprivation, Race and Ethnicity, and Income in Air Pollution and Cardiovascular Disease. JAMA Netw Open 2024; 7:e2429137. [PMID: 39158908 PMCID: PMC11333981 DOI: 10.1001/jamanetworkopen.2024.29137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Importance Socioeconomically disadvantaged subpopulations are more vulnerable to fine particulate matter (PM2.5) exposure. However, as prior studies focused on individual-level socioeconomic characteristics, how contextual deprivation modifies the association of PM2.5 exposure with cardiovascular health remains unclear. Objective To assess disparities in PM2.5 exposure association with cardiovascular disease among subpopulations defined by different socioeconomic characteristics. Design, Setting, and Participants This cohort study used longitudinal data on participants with electronic health records (EHRs) from the All of Us Research Program between calendar years 2016 and 2022. Statistical analysis was performed from September 25, 2023, through February 23, 2024. Exposure Satellite-derived 5-year mean PM2.5 exposure at the 3-digit zip code level according to participants' residential address. Main Outcome and Measures Incident myocardial infarction (MI) and stroke were obtained from the EHRs. Stratified Cox proportional hazards regression models were used to estimate the hazard ratio (HR) between PM2.5 exposure and incident MI or stroke. We evaluated subpopulations defined by 3 socioeconomic characteristics: contextual deprivation (less deprived, more deprived), annual household income (≥$50 000, <$50 000), and race and ethnicity (non-Hispanic Black, non-Hispanic White). We calculated the ratio of HRs (RHR) to quantify disparities between these subpopulations. Results A total of 210 554 participants were analyzed (40% age >60 years; 59.4% female; 16.7% Hispanic, 19.4% Non-Hispanic Black, 56.1% Non-Hispanic White, 7.9% other [American Indian, Asian, more than 1 race and ethnicity]), among whom 954 MI and 1407 stroke cases were identified. Higher PM2.5 levels were associated with higher MI and stroke risks. However, disadvantaged groups (more deprived, income <$50 000 per year, Black race) were more vulnerable to high PM2.5 levels. The disparities were most pronounced between groups defined by contextual deprivation. For instance, increasing PM2.5 from 6 to 10 μg/m3, the HR for stroke was 1.13 (95% CI, 0.85-1.51) in the less-deprived vs 2.57 (95% CI, 2.06-3.21) in the more-deprived cohort; 1.46 (95% CI, 1.07-2.01) in the $50 000 or more per year vs 2.27 (95% CI, 1.73-2.97) in the under $50 000 per year cohort; and 1.70 (95% CI, 1.35-2.16) in White individuals vs 2.76 (95% CI, 1.89-4.02) in Black individuals. The RHR was highest for contextual deprivation (2.27; 95% CI, 1.59-3.24), compared with income (1.55; 95% CI, 1.05-2.29) and race and ethnicity (1.62; 95% CI, 1.02-2.58). Conclusions and Relevance In this cohort study, while individual race and ethnicity and income remained crucial in the adverse association of PM2.5 with cardiovascular risks, contextual deprivation was a more robust socioeconomic characteristic modifying the association of PM2.5 exposure.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Public Health Sciences, Biological Science Division, The University of Chicago, Chicago, Illinois
- Institute for Population and Precision Health, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Andrew Craver
- Institute for Population and Precision Health, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Liang Zheng
- Department of Thyroid Surgery, the First Hospital Affiliated with Sun Yat-Sen University, Guangzhou, China
| | - Karen Kim
- Department of Medicine, Pennsylvania State College of Medicine, Hershey
| | - Tamar Polonsky
- Department of Medicine, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Christopher O. Olopade
- Department of Medicine, Biological Science Division, The University of Chicago, Chicago, Illinois
- Department of Family Medicine, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Jayant M. Pinto
- Department of Surgery, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Habibul Ahsan
- Department of Public Health Sciences, Biological Science Division, The University of Chicago, Chicago, Illinois
- Institute for Population and Precision Health, Biological Science Division, The University of Chicago, Chicago, Illinois
- Department of Family Medicine, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, Biological Science Division, The University of Chicago, Chicago, Illinois
- Institute for Population and Precision Health, Biological Science Division, The University of Chicago, Chicago, Illinois
| |
Collapse
|
87
|
Liu J, Wang P, Shang L, Ye F, Liu L, He Z. Adverse Associations of Long-Term Exposure to PM 2.5 and Its Components with Platelet Traits among Subway Shift-Workers without Air Purifier Use. TOXICS 2024; 12:529. [PMID: 39195631 PMCID: PMC11359941 DOI: 10.3390/toxics12080529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
Air purifier use, shift work, and long-term exposure to fine particulate matter (PM2.5) are linked to platelet abnormality. However, the role of air purifier use and shift work in the individual or joint associations of PM2.5 and its components with platelet indices are largely unknown. A total of 8772 participants were recruited from a population of subway workers in China. PM2.5 and its component data were obtained from the Tracking Air Pollution in China dataset. The role of air purifier use and shift work in the association between PM2.5 and its components and platelet indices were analyzed. Among shift workers without air purifier use, positive associations of PM2.5 and each component in PM2.5 with the mean platelet volume (MPV) or platelet counts (PLT) were observed, whereas negative associations of PM2.5 and each component in PM2.5 with the platelet distribution width (PDW) were observed. Furthermore, estimated changes (95%CIs) in PLT, MPV, and PDW in response to each 10th percentile increment in the mixture of PM2.5 and its components were 0.8657 (0.2496, 1.4819), 0.0192 (0.0054, 0.0329), and -0.0648 (-0.0945, -0.0351), respectively, and sulfate in PM2.5 was the major contributor to those associations. Long-term exposure to PM2.5 and its components was related to increased platelet disorders among shift workers without air purifier use, and those associations were mainly attributed to sulfate in PM2.5.
Collapse
Affiliation(s)
- Junling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Pei Wang
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Lv Shang
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| | - Fang Ye
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Y.); (L.L.)
| | - Li Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Y.); (L.L.)
| | - Zhenyu He
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (J.L.); (P.W.); (L.S.)
| |
Collapse
|
88
|
Healy DR, Zarei I, Mikkonen S, Soininen S, Viitasalo A, Haapala EA, Auriola S, Hanhineva K, Kolehmainen M, Lakka TA. Longitudinal associations of an exposome score with serum metabolites from childhood to adolescence. Commun Biol 2024; 7:890. [PMID: 39039257 PMCID: PMC11263428 DOI: 10.1038/s42003-024-06146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/05/2024] [Indexed: 07/24/2024] Open
Abstract
Environmental and lifestyle factors, including air pollution, impaired diet, and low physical activity, have been associated with cardiometabolic risk factors in childhood and adolescence. However, environmental and lifestyle exposures do not exert their physiological effects in isolation. This study investigated associations between an exposome score to measure the impact of multiple exposures, including diet, physical activity, sleep duration, air pollution, and socioeconomic status, and serum metabolites measured using LC-MS and NMR, compared to the individual components of the score. A general population of 504 children aged 6-9 years at baseline was followed up for eight years. Data were analysed with linear mixed-effects models using the R software. The exposome score was associated with 31 metabolites, of which 12 metabolites were not associated with any individual exposure category. These findings highlight the value of a composite score to predict metabolic changes associated with multiple environmental and lifestyle exposures since childhood.
Collapse
Affiliation(s)
- Darren R Healy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland.
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio Campus, Finland
| | - Sonja Soininen
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Timo A Lakka
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
89
|
Mayntz SP, Mohamed RA, Mejldal A, Møller JJK, Lindholt JS, Diederichsen ACP, Frohn LM, Lambrechtsen J. Statistical Analysis Plan for the AIRCARD Study: Individual Long-Term Air and Noise Pollution Exposure and Cardiovascular Disease Incidence and Mortality - A Prospective Cohort Study Utilizing DANCAVAS and VIVA Screening Trials. Cardiology 2024; 150:56-62. [PMID: 38952116 DOI: 10.1159/000539459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION The AIRCARD study is designed to investigate the relationship between long-term exposure to air and noise pollution and cardiovascular disease incidence and mortality. We aim to conduct a robust prospective cohort analysis assessing the cumulative and differential impacts of air and noise pollution exposure on cardiovascular disease and mortality. This study will adjust for relevant confounders, including traditional cardiovascular risk factors, socioeconomic indicators, and lipid-lowering agents. METHODS This prospective cohort study will include 27,022 male participants aged 65-74, recruited from the two large Danish DANCAVAS and VIVA trials, both population-based randomized, multicentered, clinically controlled studies. We will assess long-term exposure to air pollutants using the state-of-the-art DEHM/UBM/AirGIS modeling system and noise pollution through the Nord2000 and SoundPLAN models, covering data from 1979 to 2019. This statistical analysis plan is strictly formulated to predefine the analytical approach for all outcomes and key study variables before data access. The primary analysis will utilize Cox proportional hazards models, adjusted for confounders identified in our cohort (age, body mass index, hypertension, diabetes, smoking status, family history of heart disease, socioeconomic factors, and lipid-lowering agents). This statistical analysis plan further includes Spearman rank correlation to explore inter-pollutant associations. CONCLUSION The AIRCARD study addresses global concerns about the impact of air and noise pollution on cardiovascular disease. This research is important for understanding how the pollutants contribute to cardiovascular disease. We aim to provide insights into this area, emphasizing the need for public health measures to mitigate pollution exposure. Our goal is to provide policymakers and healthcare professionals with information on the role of environmental factors in cardiovascular health that could influence global strategies to reduce the cardiovascular disease burden associated with pollution. The design of this SAP ensures transparency and verifiability, considering the complexities of evaluating environmental health impacts over an extended period.
Collapse
Affiliation(s)
- Stephan Peronard Mayntz
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
| | - Roda Abdulkadir Mohamed
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
| | - Anna Mejldal
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
| | - Jens-Jakob Kjer Møller
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
| | - Jes Sanddal Lindholt
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Axel Cosmos Pyndt Diederichsen
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jess Lambrechtsen
- OPEN, Open Patient data Explorative Network, Odense University Hospital, Region of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
| |
Collapse
|
90
|
Han Y, Chen Y, Tang S, Liu Y, Zhao Y, Zhao X, Lei J, Fan Z. Association between synoptic types in Beijing and acute myocardial infarction hospitalizations: A comprehensive analysis of environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173278. [PMID: 38754509 DOI: 10.1016/j.scitotenv.2024.173278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Environmental factors like air pollution and temperature can trigger acute myocardial infarction (AMI). However, the link between large-scale weather patterns (synoptic types) and AMI admissions has not been extensively studied. This research aimed to identify the different synoptic air types in Beijing and investigate their association with AMI occurrences. METHODS We analyzed data from Beijing between 2013 and 2019, encompassing 2556 days and 149,632 AMI cases. Using principal component analysis and hierarchical clustering, classification into distinct synoptic types was conducted based on weather and pollution measurements. To assess the impact of each type on AMI risk over 14 days, we employed a distributed lag non-linear model (DLNM), with the reference being the lowest risk type (Type 2). RESULTS Four synoptic types were identified: Type 1 with warm, humid weather; Type 2 with warm temperatures, low humidity, and long sunshine duration; Type 3 with cold weather and heavy air pollution; and Type 4 with cold temperatures, dryness, and high wind speed. Type 4 exhibited the greatest cumulative relative risk (CRR) of 1.241 (95%CI: 1.150, 1.339) over 14 days. Significant effects of Types 1, 3, and 4 on AMI events were observed at varying lags: 4-12 days for Type 1, 1-6 days for Type 3, and 1-11 days for Type 4. Females were more susceptible to Types 1 and 3, while individuals younger than 65 years old showed increased vulnerability to Types 3 and 4. CONCLUSION Among the four synoptic types identified in Beijing from 2013 to 2019, Type 4 (cold, dry, and windy) presented the highest risk for AMI hospitalizations. This risk was particularly pronounced for males and people under 65. Our findings collectively highlight the need for improved methods to identify synoptic types. Additionally, developing a warning system based on these synoptic conditions could be crucial for prevention.
Collapse
Affiliation(s)
- Yitao Han
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiong Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Siqi Tang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanbo Liu
- Department of Healthcare, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yakun Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinlong Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinyan Lei
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
91
|
Yoo EH, Roberts JE. Differential effects of air pollution exposure on mental health: Historical redlining in New York State. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174516. [PMID: 39009165 DOI: 10.1016/j.scitotenv.2024.174516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Growing evidence suggests that ambient air pollution has adverse effects on mental health, yet our understanding of its unequal impact remains limited, especially in areas with historical redlining practices. This study investigates whether the impact of daily fluctuations in ambient air pollutant levels on emergency room (ER) visits for mental disorders (MDs) varies across neighborhoods affected by redlining. Furthermore, we explored how demographic characteristics and ambient temperature may modify the effects of air pollution. To assess the disproportional short-term effects of PM2.5, NO2, and O3 on ER visits across redlining neighborhoods, we used a symmetric bidirectional case-crossover design with a conditional logistic regression model. We analyzed data from 2 million ER visits for MDs between 2005 and 2016 across 17 cities in New York State, where redlining policies were historically implemented. A stratified analysis was performed to examine potential effect modification by individuals' demographic characteristics (sex, age, and race/ethnicity) and ambient temperature. We found that both PM2.5 and NO2 were significantly associated with MD-related ER visits primarily in redlined neighborhoods. Per 10μgm-3 increase in daily PM2.5 and per 10 ppb increase in NO2 concentration were associated with 1.04 % (95 % Confidence Interval (CI): 0.57 %, 1.50 %) and 0.44 % (95 % CI: 0.21 %, 0.67 %) increase in MD-related ER visits in redlined neighborhoods, respectively. We also found significantly greater susceptibility among younger persons (below 18 years old) and adults aged 35-64 among residents in grade C or D, but not in A or B. Furthermore, we found that positive and statistically significant associations between increases in air pollutants (PM2.5 and NO2) and MD-related ER visits exist during medium temperatures (4.90 °C to 21.11 °C), but not in low or high temperature. Exposures to both PM2.5 and NO2 were significantly associated with MD-related ER visits, but these adverse effects were disproportionately pronounced in redlined neighborhoods.
Collapse
Affiliation(s)
- Eun-Hye Yoo
- Department of Geography, State University of New York at Buffalo, Buffalo, NY, USA.
| | - John E Roberts
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
92
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
93
|
Kim KN, Park S, Choi J, Hwang IU. Associations between short-term exposure to air pollution and thyroid function in a representative sample of the Korean population. ENVIRONMENTAL RESEARCH 2024; 252:119018. [PMID: 38685294 DOI: 10.1016/j.envres.2024.119018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Disruption of thyroid function can profoundly affect various organ systems. However, studies on the association between air pollution and thyroid function are relatively scarce and most studies have focused on the long-term effects of air pollution among pregnant women. OBJECTIVES This study aimed to explore the associations between short-term exposure to air pollution and thyroid function in the general population. METHODS Data from the Korea National Health and Nutrition Examination Survey (2013-2015) were analyzed (n = 5,626). Air pollution concentrations in residential addresses were estimated using Community Multiscale Air Quality models. The moving averages of air pollution over 7 days were set as exposure variables through exploratory analyses. Linear regression and quantile g-computation models were constructed to assess the effects of individual air pollutants and air pollution mixture, respectively. RESULTS A 10-ppb increase in NO2 (18.8-μg/m3 increase) and CO (11.5-μg/m3 increase) was associated with 2.43% [95% confidence interval (CI): 0.42, 4.48] and 0.19% (95% CI: 0.01, 0.36) higher thyroid-stimulating hormone (TSH) levels, respectively. A 10-μg/m3 increase in PM2.5 and a 10-ppb increase in O3 (19.6-μg/m3 increment) were associated with 0.87% (95% CI: 1.47, -0.27) and 0.59% (95% CI: 1.18, -0.001) lower free thyroxine (fT4) levels, respectively. A simultaneous quartile increase in PM2.5, NO2, O3, and CO levels was associated with lower fT4 but not TSH levels. CONCLUSIONS As the subtle changes in thyroid function can affect various organ systems, the present results may have substantial public health implications despite the relatively modest effect sizes. Because this was a cross-sectional study, it is necessary to conduct further experimental or repeated-measures studies to consolidate the current results.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SoHyun Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Junseo Choi
- Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Il-Ung Hwang
- Division of Public Health and Medical Care, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
94
|
Madrigano J, Yan D, Liu T, Bonilla E, Yulianti N, Mickley LJ, Marlier ME. Air Pollution and Blood Pressure: Evidence From Indonesia. GEOHEALTH 2024; 8:e2024GH001014. [PMID: 38962697 PMCID: PMC11217989 DOI: 10.1029/2024gh001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
Indonesia faces significant air quality issues due to multiple emissions sources, including rapid urbanization and peatland fires associated with agricultural land management. Limited prior research has estimated the episodic shock of intense fires on morbidity and mortality in Indonesia but has largely ignored the impact of poor air quality throughout the year on biomarkers of cardiovascular disease risk. We conducted a cross-sectional study of the association between particulate matter less than 2.5 microns in diameter (PM2.5) and blood pressure. Blood pressure measurements were obtained from the fifth wave of the Indonesian Family Life Survey (IFLS5), an ongoing population-based socioeconomic and health survey. We used the GEOS-Chem chemical transport model to simulate daily PM2.5 concentrations at 0.5° × 0.625° resolution across the IFLS domain. We assessed the association between PM2.5 and diastolic and systolic blood pressure, using mixed effects models with random intercepts for regency/municipality and household and adjusted for individual covariates. An interquartile range increase in monthly PM2.5 exposure was associated with a 0.234 (95% CI: 0.003, 0.464) higher diastolic blood pressure, with a greater association seen in participants age 65 and over (1.16 [95% CI: 0.24, 2.08]). For the same exposure metric, there was a 1.90 (95% CI: 0.43, 3.37) higher systolic blood pressure in participants 65 and older. Our assessment of fire-specific PM2.5 yielded null results, potentially due to the timing and locations of health data collection. To our knowledge, this is the first study to provide evidence for an association between PM2.5 and blood pressure in Indonesia.
Collapse
Affiliation(s)
- Jaime Madrigano
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- RAND CorporationSanta MonicaCAUSA
| | - Daisy Yan
- Department of Environmental Health SciencesUniversity of California Los AngelesLos AngelesCAUSA
| | - Tianjia Liu
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
- Now at Department of Earth System ScienceUniversity of California, IrvineIrvineCAUSA
| | - Eimy Bonilla
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- Now at Department of Earth, Environment, and EquityHoward UniversityWashingtonDCUSA
| | - Nina Yulianti
- Graduate Program Study of Environmental Science/Department of AgrotechnologyUniversity of Palangka RayaPalangka RayaIndonesia
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Miriam E. Marlier
- RAND CorporationSanta MonicaCAUSA
- Department of Environmental Health SciencesUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
95
|
Harmon ME, Fiamingo M, Toler S, Lee K, Kim Y, Martin B, Gilmour I, Farraj AK, Hazari MS. The effect of enriched versus depleted housing on eucalyptus smoke-induced cardiovascular dysfunction in mice. Inhal Toxicol 2024; 36:355-366. [PMID: 38776456 PMCID: PMC11632382 DOI: 10.1080/08958378.2024.2352748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Objectives: Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. Materials and Methods: Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. Results: EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. Conclusions: The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.
Collapse
Affiliation(s)
- Molly E. Harmon
- Curriculum in Toxicology and Environmental Medicine, University of NC – Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Fiamingo
- Curriculum in Toxicology and Environmental Medicine, University of NC – Chapel Hill, Chapel Hill, NC, USA
| | - Sydnie Toler
- Gillings School of Global Public Health, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA
| | - Kaleb Lee
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Yongho Kim
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Brandi Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Ian Gilmour
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Aimen K. Farraj
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| | - Mehdi S. Hazari
- Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, NC, USA
| |
Collapse
|
96
|
Wen T, Puett RC, Liao D, Kanter J, Mittleman MA, Lanzkron SM, Yanosky JD. Short-term air pollution levels and sickle cell disease hospital encounters in South Carolina: A case-crossover analysis. ENVIRONMENTAL RESEARCH 2024; 252:118766. [PMID: 38583660 DOI: 10.1016/j.envres.2024.118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic disorder and symptoms may be sensitive to environmental stressors. Although it has been hypothesized that exposure to outdoor air pollution could trigger acute SCD events, evidence is limited. METHODS We obtained SCD administrative data on hospital encounters in South Carolina from 2002 to 2019. We estimated outdoor air pollutant (particulate matter<2.5 μm (PM2.5), ozone (O3), and PM2.5 elemental carbon (EC) concentrations at residential zip codes using spatio-temporal models. Using a random bi-directional, fixed-interval case-crossover study design, we investigated the relationship between air pollution exposure over 1-, 3-, 5-, 9-, and14-day periods with SCD hospital encounters. RESULTS We studied 8410 patients with 144,129 hospital encounters. We did not observe associations among all patients with SCD and adults for PM2.5, O3, and EC. We observed positive associations among children for 9- and 14-day EC (OR: 1.05 (95% confidence interval (CI): 1.02, 1.08) and OR: 1.05 (95% CI: 1.02, 1.09), respectively) and 9- and 14-day O3 (OR: 1.04 (95%CI: 1.00, 1.08)) for both. CONCLUSIONS Our findings suggest that short-term (within two-weeks) levels of EC and O3 and may be associated with SCD hospital encounters among children. Two-pollutant model results suggest that EC is more likely responsible for effects on SCD than O3. More research is needed to confirm our findings.
Collapse
Affiliation(s)
- Tong Wen
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Robin C Puett
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Julie Kanter
- Division of Hematology and Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, Boston, MA, USA
| | - Sophie M Lanzkron
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
97
|
Wen S, Tan Q, Baheti R, Wan J, Yu S, Zhang B, Huang Y. Bibliometric analysis of global research on air pollution and cardiovascular diseases: 2012-2022. Heliyon 2024; 10:e32840. [PMID: 38975195 PMCID: PMC11225841 DOI: 10.1016/j.heliyon.2024.e32840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background The relationship between air pollution and cardiovascular diseases (CVDs) has garnered significant interest among researchers globally. This study employed bibliometric analysis to provide an overview of current research on the association between air pollution and CVDs, offering a comprehensive analysis of global research trends in this area. Methods An exhaustive scrutiny of literature pertaining to the nexus between air pollution and CVDs from 2012 to 2022 was conducted through rigorous screening of the Web of Science Core Collection (WoSCC). Publications were exclusively considered in English. Subsequently, sophisticated analytical tools including CiteSpace 6.2.4R, Vosviewer 1.6.19, HistCite 2.1, Python 3.7.5, Microsoft Charticulator, and Bibliometrix Online Analysis Platform were deployed to delineate research trends in this domain. Results The analysis of the dataset, comprising 1710 documents, unveiled a consistent escalation in scientific publications, peaking in 2022 with a total of 248 publications. Moreover, Environmental Science and Toxicology stood out as the predominant categories. Examination of keyword frequency highlighted the terms 'air pollution', 'cardiovascular disease', and 'particulate matter' as the most prevalent. Notably, the most prolific entities, in terms of authors, journals, organizations, and countries, were identified as Robert D. Brook, Environmental Health Perspectives, Harvard University, and the United States, respectively. Conclusion The findings presented a notable increase in high-quality publications on this topic over the past 11 years, suggesting a positive outlook for future research. The study concluded with an examination of three key themes in research trends related to air pollution and CVDs: the initial physiological response to pollutant exposure, the pathways through which pollutants are transmitted, and the subsequent effects on target organs. Additionally, various air pollutants, such as particulate matter, nitric dioxide, and ozone, could contribute to multiple CVDs, including coronary heart disease, hypertension, and heart failure. Although some hypotheses have been put forward, the mechanisms of air pollution-related CVDs still need to be explored in the future.
Collapse
Affiliation(s)
- Song Wen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Qing Tan
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Rewaan Baheti
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, Hubei, China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, Hubei, China
| | - Shuilian Yu
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Bin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yuqing Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
98
|
Chen W, Han Y, Xu Y, Wang T, Wang Y, Chen X, Qiu X, Li W, Li H, Fan Y, Yao Y, Zhu T. Fine particulate matter exposure and systemic inflammation: A potential mediating role of bioactive lipids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172993. [PMID: 38719056 DOI: 10.1016/j.scitotenv.2024.172993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, Hebei, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; China National Environmental Monitoring Centre, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
99
|
Curtis KL, Chang A, Johnston JD, Beard JD, Collingwood SC, LeCheminant JD, Peterson NE, South AJ, Farnsworth CB, Sanjel S, Bikman BT, Arroyo JA, Reynolds PR. Differential Inflammatory Cytokine Elaboration in Serum from Brick Kiln Workers in Bhaktapur, Nepal. Diseases 2024; 12:129. [PMID: 38920561 PMCID: PMC11203241 DOI: 10.3390/diseases12060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Previous studies involving workers at brick kilns in the Kathmandu Valley of Nepal have investigated chronic exposure to hazardous levels of fine particulate matter (PM2.5) common in ambient and occupational environments. Such exposures are known to cause and/or exacerbate chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. However, there is a paucity of data regarding the status of systemic inflammation observed in exposed workers at brick manufacturing facilities within the country. In the current study, we sought to elucidate systemic inflammatory responses by quantifying the molecular cytokine/chemokine profiles in serum from the study participants. A sample of participants were screened from a kiln in Bhaktapur, Nepal (n = 32; 53% female; mean ± standard deviation: 28.42 ± 11.47 years old) and grouped according to job category. Blood was procured from participants on-site, allowed to clot at room temperature, and centrifuged to obtain total serum. A human cytokine antibody array was used to screen the inflammatory mediators in serum samples from each of the participants. For the current study, four job categories were evaluated with n = 8 for each. Comparisons were generated between a control group of administration workers vs. fire master workers, administration workers vs. green brick hand molders, and administration workers vs. top loaders. We discovered significantly increased concentrations of eotaxin-1, eotaxin-2, GCSF, GM-CSF, IFN-γ, IL-1α, IL-1β, IL-6, IL-8, TGF-β1, TNF-α, and TIMP-2 in serum samples from fire master workers vs. administration workers (p < 0.05). Each of these molecules was also significantly elevated in serum from green brick hand molders compared to administration workers (p < 0.05). Further, each molecule in the inflammatory screening with the exception of TIMP-2 was significantly elevated in serum from top loaders compared to administration workers (p < 0.05). With few exceptions, the fire master workers expressed significantly more systemic inflammatory molecular abundance when compared to all other job categories. These results reveal an association between pulmonary exposure to PM2.5 and systemic inflammatory responses likely mediated by cytokine/chemokine elaboration. The additional characterization of a broader array of inflammatory molecules may provide valuable insight into the susceptibility to lung diseases among this population.
Collapse
Affiliation(s)
- Katrina L. Curtis
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Ashley Chang
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - James D. Johnston
- Department of Public Health, Brigham Young University, Provo, UT 84602, USA
| | - John D. Beard
- Department of Public Health, Brigham Young University, Provo, UT 84602, USA
| | - Scott C. Collingwood
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT 84112, USA
| | - James D. LeCheminant
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Neil E. Peterson
- College of Nursing, Brigham Young University, Provo, UT 84602, USA
| | - Andrew J. South
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Clifton B. Farnsworth
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Seshananda Sanjel
- Department of Community Medicine and Public Health, Karnali Academy of Health Sciences, Jumla 21200, Nepal
| | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
100
|
Jia X, Zhang B, Yu Y, Xia W, Lu Z, Guo X, Xue F. Greenness mitigate cause-specific mortality associated with air pollutants in ischemic and hemorrhagic stroke patients: An ecological health cohort study. ENVIRONMENTAL RESEARCH 2024; 251:118512. [PMID: 38458591 DOI: 10.1016/j.envres.2024.118512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Air pollution is one of the most serious environmental risks to mortality of stroke. However, there exists a noteworthy knowledge gap concerning the different stroke subtypes, causes of death, the susceptibility of stroke patient, and the role of greenness in this context. METHODS We analyzed data from an ecological health cohort, which included 334,261 patients aged ≥40 years with stroke (comprising 288,490 ischemic stroke and 45,771 hemorrhagic stroke) during the period 2013-2019. We used Cox proportional hazards models with time-varying exposure to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the associations of annual average fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) with both all-cause and cause-specific mortality. Additionally, we conducted analyses to examine the effect modification by greenness and identify potential susceptibility factors through subgroup analyses. RESULT In multivariable-adjusted models, long-term exposure to PM2.5 and NO2 was associated with increased risk of all-cause mortality (HR: 1.038, 95% CI: 1.029-1.047 for PM2.5; HR: 1.055, 95% CI: 1.026-1.085 for NO2, per 10 μg/m3, for ischemic stroke patients; similar for hemorrhagic stroke patients). Gradually increasing effect sizes were shown for CVD mortality and stroke mortality. The HRs of mortality were slightly weaker with high versus low vegetation exposure. Cumulative exposures increased the HRs of pollutant-related mortality, and greater greenness decreased this risk. Two subtypes of stroke patients exhibited diverse patterns of benefit. CONCLUSION Increasing residential greenness attenuates the increased risk of mortality with different patterns due to chronic air pollutants for ischemic and hemorrhagic stroke, offering valuable insights for precise tertiary stroke prevention strategies.
Collapse
Affiliation(s)
- Xianjie Jia
- Department of Biostatistics, School of Public Health, Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ying Yu
- Department of Physiology, Bengbu Medical College, Bengbu, China
| | - Wanning Xia
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Zilong Lu
- Department of Physiology, Bengbu Medical College, Bengbu, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|