51
|
Dias JP, Carlson O, Schweitzer M, Shardell M, Clark JM, Brown TT, Egan JM, Lee CJ. GDF15 and Cortisol Response to Meal Tolerance Test in Post-Sleeve Gastrectomy Patients with Weight Regain. Obes Surg 2022; 32:2641-2648. [PMID: 35672598 PMCID: PMC9972254 DOI: 10.1007/s11695-022-06140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hormonal factors behind weight regain (WR) after surgical weight loss remain inadequately understood. Growth/differentiation factor 15 (GDF15) has emerged as a potential therapeutic target in obesity treatment. Cortisol, another stress hormone, has also been associated with weight gain at both low and high circulating concentrations. We aimed to compare meal-stimulated GDF15 and cortisol response in adults with and without WR after sleeve gastrectomy (SG). We hypothesized that GDF15 and cortisol response to meal tolerance test (MTT) will be lower in those with versus without WR after SG. METHODS Cross-sectional study comprised 21 adults without diabetes, who underwent SG. WR was defined as 100 × (current weight - nadir)/(preoperative weight - nadir) > 10%. GDF15, cortisol, insulin, glucose, and incretins (total glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) circulating concentrations) were measured during MTT (0-240 min) after 3-6 years post-bariatric surgery. RESULTS All participants were 48% White, 85% female, with mean (SD) age: 43(10) years, and BMI: 36.2(7.6) kg/m2. Compared to the non-WR group (n = 6), the WR group (n = 15) had significantly higher BMI (WR: 38.6 ± 7.6 kg/m2, non-WR: 30.3 ± 3.5 kg/m2, p = 0.02) and showed lower GDF15 response (WR AUC vs non-WR AUC (116143 ± 13973 vs 185798 ± 38884 ng*min/L, p = 0.047)) and lower cortisol response (WR AUC vs non-WR AUC (3492 ± 210 vs 4880 ± 655 µg*min/dL, p = 0.015)). Incretin response did not differ between the groups. CONCLUSIONS GDF15 and cortisol responses to MTT were lower in those who regained the weight after SG compared to those who did not, suggesting that dysregulation in GDF15 and cortisol response following bariatric surgery.
Collapse
Affiliation(s)
- Jenny Pena Dias
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD, 21205, USA. .,National Institute of Aging, NIH, Baltimore, MD, USA.
| | - Olga Carlson
- National Institute of Aging, NIH, Baltimore, MD, USA
| | - Michael Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| | - Michelle Shardell
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jeanne M. Clark
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA,Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Todd T. Brown
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA,Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Clare J. Lee
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| |
Collapse
|
52
|
Exercise molecule burns away hunger. Nature 2022; 606:655-656. [PMID: 35705863 DOI: 10.1038/d41586-022-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
53
|
The Effects of Exercise Training on Cardiopulmonary Exercise Testing and Cardiac Biomarkers in Adult Patients with Hypoplastic Left Heart Syndrome and Fontan Circulation. J Cardiovasc Dev Dis 2022; 9:jcdd9060171. [PMID: 35735800 PMCID: PMC9225068 DOI: 10.3390/jcdd9060171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Several studies have shown that adult patients with Hypoplastic Left Heart Syndrome (HLHS) and Fontan circulation have a reduced exercise tolerance that affects daily life. Recent studies have investigated the effects of aerobic exercise training in patients with univentricular heart; however, this research topic is still poorly studied. The aim of this study was to evaluate the effects of an aerobic exercise training program on cardiopulmonary exercise testing parameters and cardiac biomarkers in patients with HLHS. Methods: We enrolled 12 patients with a mean age of 24 ± 2.5 years (range 22−27 years), 50% male, with HLHS at Bambino Gesù Children’s Hospital IRCCS. All patients underwent a cardiopulmonary test and blood sampling before (T0) and after (T1) a 4-week aerobic exercise program. Cardiac biomarkers hs-cTnT, NT-proBNP, ST2, GDF-15 were studied. Results: Data analysis demonstrated an increase in cardiorespiratory performance after 4 weeks of aerobic exercise training activity. In particular, the data showed a significant improvement in test duration (p < 0.05), heart rate at rest (p < 0.05), heart rate recovery 1 min (p < 0.05), VO2 max (p < 0.01) and oxygen uptake efficiency slope (p < 0.05). At the same time, the data showed a significant reduction in NT-proBNP and ST2 values (p < 0.01 and p < 0.05, respectively) and a significant increase in GDF-15 (p < 0.01). No significant changes were found between the hs-cTnT values. Conclusions: Our study demonstrated the 4-week efficacy of an aerobic training program in improving cardiorespiratory performance and cardiac biomarker values in adult patients with HLHS and Fontan circulation. More studies with larger numbers of patients will be needed to confirm these data.
Collapse
|
54
|
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP. Exerkines in health, resilience and disease. Nat Rev Endocrinol 2022; 18:273-289. [PMID: 35304603 PMCID: PMC9554896 DOI: 10.1038/s41574-022-00641-2] [Citation(s) in RCA: 383] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joan M Taylor
- Department of Pathology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for PA Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette van Praag
- Stiles-Nicholson Brain institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Zorina S Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian R Lanza
- Division of Endocrinology, Nutrition, and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl J Lavie
- Division of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Chih-Hao Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre ('imas12'), Madrid, Spain
- CIBER en Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, Inserm UMR1297, Toulouse, France
- Toulouse III University-Paul Sabatier (UPS), Toulouse, France
| | - Ambarish Pandey
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Victoria, Australia
| | - Ashley Xia
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
55
|
Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, Yamagata A, Yabuki Y, Kobayashi K, Shirouzu M, Inagaki T, Huang THM, Musi N, Topisirovic I, Larsson O, Morita M. Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab 2022; 34:564-580.e8. [PMID: 35385705 PMCID: PMC9386786 DOI: 10.1016/j.cmet.2022.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genki Minegishi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yukako Yabuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical Pharmacy, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-shi, Gunma 371-8512, Japan
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; San Antonio Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, Division of Experimental Medicine and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
56
|
Ortolá R, García-Esquinas E, Buño-Soto A, Cabanas-Sánchez V, Martínez-Gómez D, Sotos-Prieto M, Struijk EA, Caballero FF, Lopez-Garcia E, Banegas JR, Rodríguez-Artalejo F. Associations of device-measured sleep, sedentariness and physical activity with growth differentiation factor 15 in older adults. J Cachexia Sarcopenia Muscle 2022; 13:1003-1012. [PMID: 35132822 PMCID: PMC8977966 DOI: 10.1002/jcsm.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF-15) is a biomarker for chronic disease burden that might explain the health effects of sedentary behaviours (SBs) and physical activity (PA). We examined associations of device-measured sleep, SB and PA, and time reallocations among them, with GDF-15 in older adults. METHODS We used data from 2245 older adults participating in the Seniors-ENRICA-2 study. Wrist-worn accelerometers were employed to ascertain total time in sleep, SB, light PA (LPA) and moderate-to vigorous PA (MVPA). Associations between these activities and serum GDF-15 levels were analysed using linear regression, including isotemporal substitution models for time reallocations among activities, and adjusted for potential confounders. Analyses were conducted separately in two groups (less active and more active individuals) according to the median total PA time. RESULTS In the less active participants, 30 min/day more of MVPA were related to lower levels of GDF-15 when replacing sleep (fully adjusted mean percentage differences [95% confidence interval] in GDF-15 of -9.2% [-13.2, -5.0]), SB (-9.8% [-13.6, -5.8]) and LPA (-5.8% [-11.1, -0.3]), whereas 30 min/day more of LPA were related to lower GDF-15 when replacing both sleep (-3.6% [-6.1, -1.0]) and SB (-4.2% [-6.7, -1.7]). In the more active participants, 30 min/day more of MVPA were also associated with lower GDF-15 when replacing sleep (-2.9% [-5.3, -0.3]), SB (-2.4% [-4.6, -0.2]) and LPA (-3.5% [-6.6, -0.3]), but no associations were found for more time in LPA. Spending more time in SB was associated with higher GDF-15 levels only among those less active (1.9% [0.9, 2.9] per 30 min/day increment). Sleep time did not appear to be associated with GDF-15. CONCLUSIONS The MVPA was inversely associated with GDF-15, with stronger associations at lower PA volumes. Also, more LPA and less SB time were linked to lower GDF-15 in the less active individuals. This suggests that simply moving more and sitting less may reduce chronic disease burden in older adults.
Collapse
Affiliation(s)
- Rosario Ortolá
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Esther García-Esquinas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Buño-Soto
- Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,Department of Laboratory Medicine, La Paz University Hospital-IdiPaz, Madrid, Spain
| | | | - David Martínez-Gómez
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,IMDEA Food Institute. CEI UAM + CSIC, Madrid, Spain
| | - Mercedes Sotos-Prieto
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Department of Environmental Health and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco Félix Caballero
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,IMDEA Food Institute. CEI UAM + CSIC, Madrid, Spain
| | - José R Banegas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain.,Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,IMDEA Food Institute. CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
57
|
Frandsen J, Sahl RE, Rømer T, Hansen MT, Nielsen AB, Lie‐Olesen MM, Rasmusen HK, Søgaard D, Ingersen A, Rosenkilde M, Westerterp K, Holst JJ, Andersen JL, Markowski AR, Blachnio‐Zabielska A, Clemmensen C, Sacchetti M, Cataldo A, Traina M, Larsen S, Dela F, Helge JW. Extreme duration exercise affects old and younger men differently. Acta Physiol (Oxf) 2022; 235:e13816. [PMID: 35347845 PMCID: PMC9287057 DOI: 10.1111/apha.13816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Aim & Methods Extreme endurance exercise provides a valuable research model for understanding the adaptive metabolic response of older and younger individuals to intense physical activity. Here, we compare a wide range of metabolic and physiologic parameters in two cohorts of seven trained men, age 30 ± 5 years or age 65 ± 6 years, before and after the participants travelled ≈3000 km by bicycle over 15 days. Results Over the 15‐day exercise intervention, participants lost 2–3 kg fat mass with no significant change in body weight. V̇O2max did not change in younger cyclists, but decreased (p = 0.06) in the older cohort. The resting plasma FFA concentration decreased markedly in both groups, and plasma glucose increased in the younger group. In the older cohort, plasma LDL‐cholesterol and plasma triglyceride decreased. In skeletal muscle, fat transporters CD36 and FABPm remained unchanged. The glucose handling proteins GLUT4 and SNAP23 increased in both groups. Mitochondrial ROS production decreased in both groups, and ADP sensitivity increased in skeletal muscle in the older but not in the younger cohort. Conclusion In summary, these data suggest that older but not younger individuals experience a negative adaptive response affecting cardiovascular function in response to extreme endurance exercise, while a positive response to the same exercise intervention is observed in peripheral tissues in younger and older men. The results also suggest that the adaptive thresholds differ in younger and old men, and this difference primarily affects central cardiovascular functions in older men after extreme endurance exercise.
Collapse
Affiliation(s)
- Jacob Frandsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Ronni Eg Sahl
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Tue Rømer
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mikkel Thunestvedt Hansen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Andreas Blaaholm Nielsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michelle Munk Lie‐Olesen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hanne Kruuse Rasmusen
- Department of Cardiology Bispebjerg‐Frederiksberg University Hospital Copenhagen Denmark
| | - Ditte Søgaard
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Arthur Ingersen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mads Rosenkilde
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Klaas Westerterp
- NUTRIM Maastricht University Medical Centre Maastricht The Netherlands
| | - Jens Juul Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jesper Løvind Andersen
- Department of Orthopedic Surgery M Institute of Sports Medicine Copenhagen Bispebjerg Hospital and Center for Healthy Aging Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Adam Roman Markowski
- Epidemiology and Metabolic disorder Department Medical University of Bialystok Bialystok Poland
| | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences University of Rome “Foro Italico” Rome Italy
| | - Angelo Cataldo
- Department of Sports Science (DISMOT) University of Palermo Palermo Italy
| | - Marcello Traina
- Department of Sports Science (DISMOT) University of Palermo Palermo Italy
| | - Steen Larsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Clinical Research Centre Medical University of Bialystok Bialystok Poland
| | - Flemming Dela
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Geriatrics Bispebjerg‐Frederiksberg University Hospital Copenhagen Denmark
| | - Jørn Wulff Helge
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
58
|
Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022; 75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 15 (GDF15) is recently emerging not only as a stress-related mitokine, but also as a key player in the aging process, being one of the most up-regulated protein with age and associated with a variety of age-related diseases (ARDs). Many data indicate that GDF15 has protective roles in several tissues during different stress and aging, thus playing a beneficial role in apparent contrast with the observed association with many ARDs. A possible detrimental role for this protein is then hypothesized to emerge with age. Therefore, GDF15 can be considered as a pleiotropic factor with beneficial activities that can turn detrimental in old age possibly when it is chronically elevated. In this review, we summarize the current knowledge on the biology of GDF15 during aging. We also propose GDF15 as a part of a dormancy program, where it may play a role as a mediator of defense processes aimed to protect from inflammatory damage and other stresses, according to the life history theory.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Giuliani
- Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy; Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
59
|
Chow CFW, Guo X, Asthana P, Zhang S, Wong SKK, Fallah S, Che S, Gurung S, Wang Z, Lee KB, Ge X, Yuan S, Xu H, Ip JPK, Jiang Z, Zhai L, Wu J, Zhang Y, Mahato AK, Saarma M, Lin CY, Kwan HY, Huang T, Lyu A, Zhou Z, Bian ZX, Wong HLX. Body weight regulation via MT1-MMP-mediated cleavage of GFRAL. Nat Metab 2022; 4:203-212. [PMID: 35177851 DOI: 10.1038/s42255-022-00529-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
GDNF-family receptor a-like (GFRAL) has been identified as the cognate receptor of growth/differentiation factor 15 (GDF15/MIC-1), considered a key signaling axis in energy homeostasis and body weight regulation. Currently, little is known about the physiological regulation of the GDF15-GFRAL signaling pathway. Here we show that membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) is an endogenous negative regulator of GFRAL in the context of obesity. Overnutrition-induced obesity increased MT1-MMP activation, which proteolytically inactivated GFRAL to suppress GDF15-GFRAL signaling, thus modulating the anorectic effects of the GDF15-GFRAL axis in vivo. Genetic ablation of MT1-MMP specifically in GFRAL+ neurons restored GFRAL expression, resulting in reduced weight gain, along with decreased food intake in obese mice. Conversely, depletion of GFRAL abolished the anti-obesity effects of MT1-MMP inhibition. MT1-MMP inhibition also potentiated GDF15 activity specifically in obese phenotypes. Our findings identify a negative regulator of GFRAL for the control of non-homeostatic body weight regulation, provide mechanistic insights into the regulation of GDF15 sensitivity, highlight negative regulators of the GDF15-GFRAL pathway as a therapeutic avenue against obesity and identify MT1-MMP as a promising target.
Collapse
Affiliation(s)
- Chi Fung Willis Chow
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Center for Systems Biology Dresden, Max Planck Institute for Molecular Cell and Biology, Dresden, Germany
| | - Xuanming Guo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shuo Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Sheung Kin Ken Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Samane Fallah
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sijia Che
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Susma Gurung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shiyang Yuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoyu Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhixin Jiang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Arun Kumar Mahato
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Cheng Yuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China.
| | | |
Collapse
|
60
|
Affiliation(s)
- Sebastian Beck Jørgensen
- Bio Innovation Hub, Novo Nordisk A/S, Boston, MA, USA.
- Global Obesity and Liver Diseases Research, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark.
| | - Mads Tang-Christensen
- Global Obesity and Liver Diseases Research, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
61
|
Pedersen MGB, Søndergaard E, Nielsen CB, Johannsen M, Gormsen LC, Møller N, Jessen N, Rittig N. Oral lactate slows gastric emptying and suppresses appetite in young males. Clin Nutr 2022; 41:517-525. [PMID: 35016146 DOI: 10.1016/j.clnu.2021.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lactate serves as an alternative energy fuel but is also an important signaling metabolite. We aimed to investigate whether oral lactate administration affects appetite-regulating hormones, slows gastric emptying rate, and dampens appetite. METHODS Ten healthy male volunteers were investigated on two separate occasions: 1) following oral ingestion of D/L-Na-lactate and 2) following oral ingestion of isotonic iso-voluminous NaCl and intravenous iso-lactemic D/L-Na-lactate infusions. Appetite was evaluated by questionnaires and ad libitum meal tests were performed at the end of each study day. Gastric emptying rate was evaluated using the acetaminophen test. RESULTS Plasma concentrations of growth differential factor 15 (GDF15, primary outcome) increased following oral and iv administration of lactate (p < 0.001) with no detectable difference between interventions (p = 0.15). Oral lactate administration lowered plasma concentrations of acylated ghrelin (p = 0.02) and elevated glucagon like peptide-1 (GLP-1, p = 0.045), insulin (p < 0.001), and glucagon (p < 0.001) compared with iv administration. Oral lactate administration slowed gastric emptying (p < 0.001), increased the feeling of being "full" (p = 0.008) and lowered the "anticipated future food intake" (p = 0.007) compared with iv administration. Food intake during the ad libitum meal test did not differ between the two study days. CONCLUSION Oral lactate administration has a direct effect on the upper gastrointestinal tract, affecting gut hormone secretion, motility and appetite sensations which cannot be mediated through lactate in the systemic circulation alone. These data suggest that compounds rich in lactate may be useful in the treatment of metabolic disease. CLINICAL TRIAL REGISTRY NUMBER NCT0429981, https://clinicaltrials.gov/ct2/show/NCT04299815.
Collapse
Affiliation(s)
- Mette Glavind Bülow Pedersen
- Medical/Steno Aarhus Research Laboratory, Aarhus University, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark.
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Camilla Bak Nielsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 43, 8200 Aarhus N, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 43, 8200 Aarhus N, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Blvd. 165, 8200 Aarhus N, Denmark
| | - Niels Møller
- Medical/Steno Aarhus Research Laboratory, Aarhus University, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200 Aarhus N, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
62
|
Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022; 234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, termed myokines, into the circulation. Importantly, other tissues such as the liver and adipose tissue may also release cytokines and peptides in response to exercise. Hence, exercise-released molecules are collectively called exerkines. Moreover, extracellular vesicles (EVs), in the form of exosomes or microvesicles, may carry some of the signals involved in tissue crosstalk. This review focuses on the role of factors potentially mediating crosstalk between muscle and other tissues in response to exercise.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| |
Collapse
|
63
|
Patsalos A, Halasz L, Medina-Serpas MA, Berger WK, Daniel B, Tzerpos P, Kiss M, Nagy G, Fischer C, Simandi Z, Varga T, Nagy L. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med 2022; 219:e20210420. [PMID: 34846534 PMCID: PMC8635277 DOI: 10.1084/jem.20210420] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-β superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Miguel A. Medina-Serpas
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bence Daniel
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
64
|
Klein AB, Kleinert M, Richter EA, Clemmensen C. GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander? Endocrinology 2022; 163:6440292. [PMID: 34849709 DOI: 10.1210/endocr/bqab242] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor 15 (GDF15) has recently moved to the forefront of metabolism research. When administered pharmacologically, GDF15 reduces food intake and lowers body weight via the hindbrain-situated receptor GFRAL (glial cell-derived neurotrophic factor family receptor alpha-like). Endogenous GDF15 is a ubiquitous cellular stress signal that can be produced and secreted by a variety of cell types. Circulating levels are elevated in a series of disease states, but also in response to exogenous agents such as metformin, colchicine, AICAR, and cisplatin. Recently, exercise has emerged as a relevant intervention to interrogate GDF15 physiology. Prolonged endurance exercise increases circulating GDF15 to levels otherwise associated with certain pathological states and in response to metformin treatment. The jury is still out on whether GDF15 is a functional "exerkine" mediating organ-to-brain crosstalk or whether it is a coincidental bystander. In this review, we discuss the putative physiological implication of exercise-induced GDF15, focusing on the potential impact on appetite and metabolism.
Collapse
Affiliation(s)
- Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition (DIfE), Potsdam - Rehbrücke, Nuthetal, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Imbert A, Vialaneix N, Marquis J, Vion J, Charpagne A, Metairon S, Laurens C, Moro C, Boulet N, Walter O, Lefebvre G, Hager J, Langin D, Saris WHM, Astrup A, Viguerie N, Valsesia A. Network Analyses Reveal Negative Link Between Changes in Adipose Tissue GDF15 and BMI During Dietary-induced Weight Loss. J Clin Endocrinol Metab 2022; 107:e130-e142. [PMID: 34415992 DOI: 10.1210/clinem/dgab621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.
Collapse
Affiliation(s)
- Alyssa Imbert
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
- INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326 Castanet-Tolosan, France
| | - Nathalie Vialaneix
- INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326 Castanet-Tolosan, France
| | - Julien Marquis
- Université de Lausanne, Genomic Technologies Facility, 1015, Lausanne, Switzerland
| | - Julie Vion
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
| | - Aline Charpagne
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Claire Laurens
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
| | - Nathalie Boulet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Adipose tissue, microbiota and cardiometabolic flexibility, 31400, Toulouse, France
| | - Ondine Walter
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Grégory Lefebvre
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Jörg Hager
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, 31000, Toulouse, France
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Denmark
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Institute of Metabolic and Cardiovascular Diseases, Team Metabolic Disorders and Diabesity, 31400, Toulouse, France
- Université de Toulouse, UMR1297, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, 31400, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, Metabolic Health Department, 1015, Lausanne, Switzerland
| |
Collapse
|
66
|
Sanchez-Sanchez JL, He L, Virecoulon Giudici K, Guyonnet S, Parini A, Dray C, Valet P, Pereira O, Vellas B, Rolland Y, de Souto Barreto P. Circulating Levels of Apelin, GDF-15 and Sarcopenia: Lack of Association in the MAPT Study. J Nutr Health Aging 2022; 26:564-570. [PMID: 35718864 DOI: 10.1007/s12603-022-1800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apelin and GDF-15 have been proposed as biomarkers of age-related sarcopenia but evidence in human models is scarce. This study aimed to explore the associations between blood apelin and GDF-15 with sarcopenia incidence and the evolution of sarcopenia components over two years in older adults >70 years. DESIGN Secondary longitudinal analysis of the Multidomain Alzheimer Preventive Trial. PARTICIPANTS Older adults (>70 years) attending primary care centers in France and Monaco. SETTING Community. MEASUREMENTS Serum Apelin (pg/mL) and plasma GDF-15 (pg/mL) were measured. Outcomes included sarcopenia defined by the European Working Group on Sarcopenia in Older People (EWGSOP) and its determinants (appendicular lean mass [ALM] evaluated through a Dual-energy X-ray Absorptiometry (DXA) scan, handgrip strength (HGS) and the 4-meter gait speed) measured over 2 years. Linear mixed models and logistic regression were used to explore the longitudinal associations. RESULTS We included 168 subjects from MAPT (median age=76y, IQR=73-79; 78% women). Serum apelin was not significantly associated with sarcopenia incidence (OR=1.001;95%CI=1.000,1.001;p-value>0.05 in full-adjusted models) nor with ALM (β=-5.8E-05;95%CI=-1.0E-04,2.12E-04;p>0.05), HGS (β=-1.1E-04;95%CI=-5.0E-04,2.8E-04;p>0.05), and GS (β=-5.1E-06;95%CI=-1.0E-05,2.0E-05;p>0.05) in fully adjusted models. Similarly, plasma GDF-15 was not associated with both the incidence of sarcopenia (OR=1.001,95%CI=1.000,1.002,p>0.05) and the evolution of its determinants ([ALM, β=2.1E-05;95%CI=-2.6E-04,3.03E-04;p>0.05], HGS [β=-5.9E-04;95%CI=-1.26E-03,8.1E-05; p>0.05] nor GS [β=-2.6E-06;95%CI=-3.0E-05, 2.3E-05;p>0.05]) in fully adjusted models. CONCLUSIONS Blood apelin and GDF-15 were not associated with sarcopenia incidence or with the evolution of sarcopenia components over a 2-year follow-up in community-dwelling older adults. Well-powered longitudinal studies are needed to confirm or refute our findings.
Collapse
Affiliation(s)
- J L Sanchez-Sanchez
- Juan Luis Sánchez, Gérontopôle de Toulouse, Institut du Vieillissement, 37 Allées Jules Guesde, 31000 Toulouse, France, +34662309412,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Plomgaard P, Hansen JS, Townsend LK, Gudiksen A, Secher NH, Clemmesen JO, Støving RK, Goetze JP, Wright DC, Pilegaard H. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans. Front Endocrinol (Lausanne) 2022; 13:1037948. [PMID: 36545337 PMCID: PMC9760804 DOI: 10.3389/fendo.2022.1037948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVE Growth differentiation factor (GDF)-15 is implicated in regulation of metabolism and circulating GDF15 increases in response to exercise. The source and regulation of the exercise-induced increase in GDF15 is, however not known. METHOD Plasma GDF15 was measured by ELISA under the following conditions: 1) Arterial-to-hepatic venous differences sampled before, during, and after exercise in healthy male subjects (n=10); 2) exogenous glucagon infusion compared to saline infusion in resting healthy subjects (n=10); 3) an acute exercise bout with and without a pancreatic clamp (n=6); 4) healthy subjects for 36 hours (n=17), and 5) patients with anorexia nervosa (n=25) were compared to healthy age-matched subjects (n=25). Tissue GDF15 mRNA content was determined in mice in response to exhaustive exercise (n=16). RESULTS The splanchnic bed released GDF15 to the circulation during exercise and increasing the glucagon-to-insulin ratio in resting humans led to a 2.7-fold (P<0.05) increase in circulating GDF15. Conversely, inhibiting the exercise-induced increase in the glucagon-to-insulin ratio blunted the exercise-induced increase in circulating GDF15. Fasting for 36 hours did not affect circulating GDF15, whereas resting patients with anorexia nervosa displayed elevated plasma concentrations (1.4-fold, P<0.05) compared to controls. In mice, exercise increased GDF15 mRNA contents in liver, muscle, and adipose tissue. CONCLUSION In humans, GDF15 is a "hepatokine" which increases during exercise and is at least in part regulated by the glucagon-to-insulin ratio. Moreover, chronic energy deprivation is associated with elevated plasma GDF15, which supports that GDF15 is implicated in metabolic signalling in humans.
Collapse
Affiliation(s)
- Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Peter Plomgaard,
| | - Jakob S. Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Logan K. Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Copenhagen, ON, Canada
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels H. Secher
- Department of Anaesthesiology, Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens O. Clemmesen
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rene K. Støving
- Center for Eating Disorders, Elite Research Center for Medical Endocrinology, Odense University Hospital, Odense, Denmark
- Mental Health Services in the Region of Southern Denmark, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens P. Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Copenhagen, ON, Canada
- School of kinesiology, Faculty of Land and Food Systems and British Columbia (BC) Children’s Hospital Research Foundation, University of British Columbia, Vancouver, BC, Canada
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
68
|
Townsend LK, Medak KD, Weber AJ, Dibe H, Shamshoum H, Wright DC. CHOP is Dispensable for Exercise-Induced Increases in GDF15. J Appl Physiol (1985) 2021; 132:413-422. [PMID: 34913737 DOI: 10.1152/japplphysiol.00698.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growth differentiating factor-15 (GDF15) is expressed, and secreted, from a wide range of tissues and serves as a marker of cellular stress. A key transcriptional regulator of this hormone is the endoplasmic reticulum stress protein, CHOP (C/EBP Homologous Protein). Exercise increases GDF15 levels but the underlying mechanisms of this are not known. To test whether CHOP regulates GDF15 during exercise we used various models of altered ER stress. We examined the effects of acute exercise on circulating GDF15 and GDF15 mRNA expression in liver, triceps skeletal muscle, and epididymal white adipose tissue and examined the GDF15 response to acute exercise in lean and high-fat diet-induced obese mice, sedentary and exercise trained mice, and CHOP deficient mice. We found that obesity augments exercise-induced circulating GDF15 although ER stress markers were similar in lean and obese mice. Exercise-induced GDF15 was increased in trained and sedentary mice that ran at the same relative exercise intensity, despite trained mice being protected against increased markers of ER stress. Finally, exercise-induced increases in GDF15 at the tissue and whole-body level were intact in CHOP deficient mice. Together, these results provide evidence that exercise-induced GDF15 expression and secretion occurs independent of ER stress/CHOP.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alyssa J Weber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hana Dibe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
69
|
de Sousa MV, Lundsgaard AM, Christensen PM, Christensen L, Randers MB, Mohr M, Nybo L, Kiens B, Fritzen AM. Nutritional optimization for female elite football players-topical review. Scand J Med Sci Sports 2021; 32 Suppl 1:81-104. [PMID: 34865242 DOI: 10.1111/sms.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Women's football is an intermittent sport characterized by frequent intense actions throughout the match. The high number of matches with limited recovery time played across a long competitive season underlines the importance of nutritional strategies to meet these large physical demands. In order to maximize sport performance and maintain good health, energy intake must be optimal. However, a considerable proportion of female elite football players does not have sufficient energy intake to match the energy expenditure, resulting in low energy availability that might have detrimental physiologic consequences and impair performance. Carbohydrates appear to be the primary fuel covering the total energy supply during match-play, and female elite football players should aim to consume sufficient carbohydrates to meet the requirements of their training program and to optimize the replenishment of muscle glycogen stores between training bouts and matches. However, several macro- and micronutrients are important for ensuring sufficient energy and nutrients for performance optimization and for overall health status in female elite football players. The inadequacy of macro-and micronutrients in the diet of these athletes may impair performance and training adaptations, and increase the risk of health disorders, compromising the player's professional career. In this topical review, we present knowledge and relevant nutritional recommendations for elite female football players for the benefit of sports nutritionists, dietitians, sports scientists, healthcare specialists, and applied researchers. We focus on dietary intake and cover the most pertinent topics in sports nutrition for the relevant physical demands in female elite football players as follows: energy intake, macronutrient and micronutrient requirements and optimal composition of the everyday diet, nutritional and hydration strategies to optimize performance and recovery, potential ergogenic effects of authorized relevant supplements, and future research considerations.
Collapse
Affiliation(s)
- Maysa V de Sousa
- Laboratory of Medical Investigation, LIM-18, Endocrinology Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anne-Marie Lundsgaard
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Section of Obesity Research, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Randers
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Poffé C, Robberechts R, Podlogar T, Kusters M, Debevec T, Hespel P. Exogenous ketosis increases blood and muscle oxygenation but not performance during exercise in hypoxia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R844-R857. [PMID: 34668436 DOI: 10.1152/ajpregu.00198.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Available evidence indicates that elevated blood ketones are associated with improved hypoxic tolerance in rodents. From this perspective, we hypothesized that exogenous ketosis by oral intake of the ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) may induce beneficial physiological effects during prolonged exercise in acute hypoxia. As we recently demonstrated KE to deplete blood bicarbonate, which per se may alter the physiological response to hypoxia, we evaluated the effect of KE both in the presence and absence of bicarbonate intake (BIC). Fourteen highly trained male cyclists performed a simulated cycling race (RACE) consisting of 3-h intermittent cycling (IMT180') followed by a 15-min time-trial (TT15') and an all-out sprint at 175% of lactate threshold (SPRINT). During RACE, fraction of inspired oxygen ([Formula: see text]) was gradually decreased from 18.6% to 14.5%. Before and during RACE, participants received either 1) 75 g of ketone ester (KE), 2) 300 mg/kg body mass bicarbonate (BIC), 3) KE + BIC, or 4) a control drink in addition to 60 g of carbohydrates/h in a randomized, crossover design. KE counteracted the hypoxia-induced drop in blood ([Formula: see text]) and muscle oxygenation by ∼3%. In contrast, BIC decreased [Formula: see text] by ∼2% without impacting muscle oxygenation. Performance during TT15' and SPRINT were similar between all conditions. In conclusion, KE slightly elevated the degree of blood and muscle oxygenation during prolonged exercise in moderate hypoxia without impacting exercise performance. Our data warrant to further investigate the potential of exogenous ketosis to improve muscular and cerebral oxygenation status, and exercise tolerance in extreme hypoxia.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Tim Podlogar
- Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Martijn Kusters
- Bakala Academy-Athletic Performance Center, KU Leuven, Leuven, Belgium
| | - Tadej Debevec
- Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Bakala Academy-Athletic Performance Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
71
|
Alcazar J, Frandsen U, Prokhorova T, Kamper RS, Haddock B, Aagaard P, Suetta C. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia Study. J Cachexia Sarcopenia Muscle 2021; 12:1418-1427. [PMID: 34617415 PMCID: PMC8718085 DOI: 10.1002/jcsm.12823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although growth differentiation factor 15 (GDF15) is known to increase with disease and is associated with low physical performance, the role of GDF15 in normal ageing is still not fully understood. Specifically, the influence of circulating GDF15 on impairments in maximal muscle power (a major contributor to functional limitations) and the underlying components has not been investigated. METHODS Data from 1305 healthy women and men aged 20 to 93 years from The Copenhagen Sarcopenia Study were analysed. Circulating levels of GDF15 and markers of inflammation (tumor necrosis factor-alpha, interleukin-6, and high-sensitivity C-reactive protein) were measured by ELISA (R&D Systems) and multiplex bead-based immunoassays (Bio-Rad). Relative (normalized to body mass), allometric (normalized to height squared), and specific (normalized to leg muscle mass) muscle power were assessed by the Nottingham power rig [leg extension power (LEP)] and the 30 s sit-to-stand (STS) muscle power test. Total body fat, visceral fat, and leg lean mass were assessed by dual energy X-ray absorptiometry. Leg skeletal muscle index was measured as leg lean mass normalized to body height squared. RESULTS Systemic levels of GDF15 increased progressively as a function of age in women (1.1 ± 0.4 pg·mL-1 ·year-1 ) and men (3.3 ± 0.6 pg·mL-1 ·year-1 ) (both P < 0.05). Notably, GDF15 increased at a faster rate from the age of 65 years in women (11.5 ± 1.2 pg·mL-1 ·year-1 , P < 0.05) and 70 years in men (19.3 ± 2.3 pg·mL-1 ·year-1 , P < 0.05), resulting in higher GDF15 levels in men compared with women above the age of 65 years (P < 0.05). Independently of age and circulatory markers of inflammation, GDF15 was negatively correlated to relative STS power (P < 0.05) but not LEP, in both women and men. These findings were mainly explained by negative associations of GDF15 with specific STS power in women and men (both P < 0.05). CONCLUSIONS A J-shaped relationship between age and systemic GDF15 was observed, with men at older age showing steeper increases and elevated GDF15 levels compared with women. Importantly, circulating GDF15 was independently and negatively associated with relative STS power, supporting the potential role of GDF15 as a sensitive biomarker of frailty in older people.
Collapse
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Frandsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Tatyana Prokhorova
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rikke S Kamper
- CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- CopenAge - Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Internal Medicine, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| |
Collapse
|
72
|
The Role of GDF15 as a Myomitokine. Cells 2021; 10:cells10112990. [PMID: 34831213 PMCID: PMC8616340 DOI: 10.3390/cells10112990] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15–GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy.
Collapse
|
73
|
de Sousa CAZ, Sierra APR, Martínez Galán BS, Maciel JFDS, Manoel R, Barbeiro HV, de Souza HP, Cury-Boaventura MF. Time Course and Role of Exercise-Induced Cytokines in Muscle Damage and Repair After a Marathon Race. Front Physiol 2021; 12:752144. [PMID: 34721075 PMCID: PMC8554198 DOI: 10.3389/fphys.2021.752144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Endurance exercise induces an increase in the expression of exercise-induced peptides that participate in the repair and regeneration of skeletal muscles. The present study aimed to evaluate the time course and role of exercise-induced cytokines in muscle damage and repair after a marathon race. Fifty-seven Brazilian male amateur marathon finishers, aged 30–55 years, participated in this study. The blood samples were collected 24 h before, immediately after, and 24 and 72 h after the São Paulo International Marathon. The leukogram and muscle damage markers were analyzed using routine automated methodology in the clinical laboratory. The plasma levels of the exercise-induced cytokines were determined using the Human Magnetic Bead Panel or enzyme-linked immunosorbent assays [decorin and growth differentiation factor 15 (GDF-15)]. A muscle damage was characterized by an increase in plasma myocellular proteins and immune changes (leukocytosis and neutrophilia). Running the marathon increased interleukin (IL)-6 (4-fold), IL-8 (1.5-fold), monocyte chemoattractant protein-1 (2.4-fold), tumor necrosis factor alpha (TNF-α) (1.5-fold), IL-10 (11-fold), decorin (1.9-fold), GDF-15 (1.8-fold), brain-derived neurotrophic factor (BDNF) (2.7-fold), follistatin (2-fold), and fibroblast growth factor (FGF-21) (3.4-fold) plasma levels. We also observed a reduction in musclin, myostatin, IL-15, and apelin levels immediately after the race (by 22–36%), 24 h (by 26–52%), and 72 h after the race (by 25–53%). The changes in BDNF levels were negatively correlated with the variations in troponin levels (r = −0.36). The variations in IL-6 concentrations were correlated with the changes in follistatin (r = 0.33) and FGF-21 (r = 0.31) levels after the race and with myostatin and irisin levels 72 h after the race. The changes in IL-8 and IL-10 levels had positive correlation with variation in musclin (p < 0.05). Regeneration of exercise-induced muscle damage involves the participation of classical inflammatory mediators, as well as GDF-15, BDNF, follistatin, decorin, and FGF-21, whose functions include myogenesis, mytophagia, satellite cell activation, and downregulation of protein degradation. The skeletal muscle damage markers were not associated to myokines response. However, BDNF had a negative correlation with a myocardial damage marker. The classical anti-inflammatory mediators (IL-10, IL-8, and IL-6) induced by exercise are associated to myokines response immediately after the race and in the recovery period and may affect the dynamics of muscle tissue repair.
Collapse
Affiliation(s)
- Cesar Augustus Zocoler de Sousa
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | - Bryan Steve Martínez Galán
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | - Jaqueline Fernanda de Sousa Maciel
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | - Richelieau Manoel
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | | | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro Do Sul University, São Paulo, Brazil
| |
Collapse
|
74
|
Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021; 32:904-915. [PMID: 34526227 DOI: 10.1016/j.tem.2021.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are established as stress-responsive cytokines that can modulate energy balance by increasing energy expenditure or suppressing food intake, respectively. Despite their pharmacologically induced beneficial effects on obesity and comorbidities, circulating levels of both cytokines are elevated during obesity and related metabolic complications. On the other hand, endocrine crosstalk via FGF21 and GDF15 was also reported to play a crucial role in genetically modified mouse models of mitochondrial perturbations leading to diet-induced obesity (DIO) resistance. This review aims to dissect the complexities of endogenous FGF21 and GDF15 action in obesity versus DIO resistance for the regulation of energy balance in metabolic health and disease.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Mario Ost
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
75
|
Rochette L, Zeller M, Cottin Y, Vergely C. GDF15: an emerging modulator of immunity and a strategy in COVID-19 in association with iron metabolism. Trends Endocrinol Metab 2021; 32:875-889. [PMID: 34593305 PMCID: PMC8423996 DOI: 10.1016/j.tem.2021.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of respiratory and cardiovascular diseases, known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes the structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). The receptor-binding domain on the surface subunit S1 is responsible for attachment of the virus to angiotensin (Ang)-converting enzyme 2 (ACE2), which is highly expressed in host cells. The cytokine storm observed in patients with COVID-19 contributes to the endothelial vascular dysfunction, which can lead to acute respiratory distress syndrome, multiorgan failure, alteration in iron homeostasis, and death. Growth and differentiation factor 15 (GDF15), which belongs to the transforming growth factor-β (TGF-β) superfamily of proteins, has a pivotal role in the development and progression of diseases because of its role as a metabolic regulator. In COVID-19, GDF15 activity increases in response to tissue damage. GDF15 appears to be a strong predictor of poor outcomes in patients critically ill with COVID-19 and acts as an 'inflammation-induced central mediator of tissue tolerance' via its metabolic properties. In this review, we examine the potential properties of GDF15 as an emerging modulator of immunity in COVID-19 in association with iron metabolism. The virus life cycle in host cell provides potential targets for drug therapy.
Collapse
Affiliation(s)
- Luc Rochette
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France.
| | - Marianne Zeller
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | - Yves Cottin
- Cardiology Unit, Dijon Bourgogne University Hospital, 21000 Dijon, France
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| |
Collapse
|
76
|
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021; 17:592-607. [PMID: 34381196 DOI: 10.1038/s41574-021-00529-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a member of the TGFβ superfamily whose expression is increased in response to cellular stress and disease as well as by metformin. Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. This effect is largely independent of other appetite-regulating hormones (for example, leptin, ghrelin or glucagon-like peptide 1). Consistent with an important role for the GDF15-GFRAL signalling axis, some human genetic studies support an interrelationship with human obesity. Furthermore, findings in both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. Here, we review the mechanisms regulating GDF15 production and secretion, GDF15 signalling in different cell types, and how GDF15-targeted pharmaceutical approaches might be effective in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Logan K Townsend
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Djordje Djordjevic
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
77
|
The wonder exerkines-novel insights: a critical state-of-the-art review. Mol Cell Biochem 2021; 477:105-113. [PMID: 34554363 PMCID: PMC8755664 DOI: 10.1007/s11010-021-04264-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Several benefits can be acquired through physical exercise. Different classes of biomolecules are responsible for the cross-talk between distant organs. The secretome of skeletal muscles, and more widely the field of organokines, is ever-expanding. “Exerkine” has emerged as the umbrella term covering any humoral factors secreted into circulation by tissues in response to exercise. This review aims at describing the most interesting exerkines discovered in the last 3 years, which are paving the way for both physiological novel insights and potential medical strategies. The five exerkines identified all play a significant role in the healthy effect of exercise. Specifically: miR-1192, released by muscles and myocardium into circulation, by modulating cardioprotective effect in trained mice; miR-342-5p, located into exosomes from vascular endothelial cells, also a cardioprotective miRNA in trained young humans; apelin, released by muscles into circulation, involved in anti-inflammatory pathways and muscle regenerative capacity in rats; GDF-15, released into circulation from yet unknown source, whose effects can be observed on multiple organs in young men after a single bout of exercise; oxytocin, released by myoblasts and myotubes, with autocrine and paracrine functions in myotubes. The systemic transport by vesicles and the crosstalk between distant organs deserve a deep investigation. Sources, targets, transport mechanisms, biological roles, population samples, frequency, intensity, time and type of exercise should be considered for the characterization of existing and novel exerkines. The “exercise is medicine” framework should include exerkines in favor of novel insights for public health.
Collapse
|
78
|
GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021; 22:ijms22168889. [PMID: 34445593 PMCID: PMC8396208 DOI: 10.3390/ijms22168889] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.
Collapse
|
79
|
Townsend LK, MacPherson REK, Wright DC. New Horizon: Exercise and a Focus on Tissue-Brain Crosstalk. J Clin Endocrinol Metab 2021; 106:2147-2163. [PMID: 33982072 DOI: 10.1210/clinem/dgab333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 01/03/2023]
Abstract
The world population is aging, leading to increased rates of neurodegenerative disorders. Exercise has countless health benefits and has consistently been shown to improve brain health and cognitive function. The purpose of this review is to provide an overview of exercise-induced adaptations in the brain with a focus on crosstalk between peripheral tissues and the brain. We highlight recent investigations into exercise-induced circulating factors, or exerkines, including irisin, cathepsin B, GPLD1, and ketones and the mechanisms mediating their effects in the brain.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Medicine, McMaster University, Hamilton, L8S 4L8, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences and Centre for Neuroscience, Brock University, St. Catharines, L2S 3A1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| |
Collapse
|
80
|
Richter MM, Plomgaard P. The Regulation of Circulating Hepatokines by Fructose Ingestion in Humans. J Endocr Soc 2021; 5:bvab121. [PMID: 34337280 PMCID: PMC8317633 DOI: 10.1210/jendso/bvab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Context Fibroblast growth factor 21 (FGF21), follistatin, angiopoietin-like 4 (ANGPTL4), and growth differential factor 15 (GDF15) are regulated by energy metabolism. Recent findings in humans demonstrate that fructose ingestion increases circulating FGF21, with increased response in conditions of insulin resistance. Objective This study examines the acute effect of fructose and somatostatin on circulating FGF21, follistatin, ANGPTL4, and GDF15 in humans. Methods Plasma FGF21, follistatin, ANGPTL4, and GDF15 concentrations were measured in response to oral ingestion of 75 g of fructose in 10 young healthy males with and without a 15-minute infusion of somatostatin to block insulin secretion. A control infusion of somatostatin was also performed in the same subjects. Results Following fructose ingestion, plasma FGF21 peaked at 3.7-fold higher than basal concentration (P < 0.05), and it increased 4.9-fold compared with basal concentration (P < 0.05) when somatostatin was infused. Plasma follistatin increased 1.8-fold after fructose ingestion (P < 0.05), but this increase was blunted by concomitant somatostatin infusion. For plasma ANGPTL4 and GDF15, no increases were obtained following fructose ingestion. Infusion of somatostatin alone slightly increased plasma FGF21 and follistatin. Conclusion Here we show that in humans (1) the fructose-induced increase in plasma FGF21 was enhanced when somatostatin was infused, suggesting an inhibitory role of insulin on the fructose-induced FGF21 increase; (2) fructose ingestion also increased plasma follistatin, but somatostatin infusion blunted the increase; and (3) fructose ingestion had no stimulating effect on ANGPTL4 and GDF15 levels, demonstrating differences in the hepatokine response to fructose ingestion.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark.,The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, DK-2100 Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
81
|
Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15. Proc Natl Acad Sci U S A 2021; 118:2106868118. [PMID: 34187898 PMCID: PMC8271778 DOI: 10.1073/pnas.2106868118] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 -/- mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.
Collapse
|
82
|
Buchholz K, Antosik P, Grzanka D, Gagat M, Smolińska M, Grzanka A, Gzil A, Kasperska A, Klimaszewska-Wiśniewska A. Expression of the Body-Weight Signaling Players: GDF15, GFRAL and RET and their clinical relevance in Gastric Cancer. J Cancer 2021; 12:4698-4709. [PMID: 34149933 PMCID: PMC8210553 DOI: 10.7150/jca.55511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
The existence, the functional role and clinical relevance of GDF15 and its signaling through a GFRAL/RET-dependent complex in gastric cancer (GC) and other human tumors remain to be elucidated, despite the widespread recognition of obesity as an important cancer-predisposing factor. Therefore, we aimed to analyze the expression levels of GDF15, GFRAL and RET in GC tissues in relation to each other and clinicopathological features, including patient survival, in order to establish a potential implication of the body-weight signaling pathway in the pathology and clinical outcome of GC. Protein expression was examined by immunohistochemistry on tissue microarrays containing 104 and 30 consecutive GC and normal gastric mucosa samples, whereas gene expression data for The Cancer Genome Atlas cohort of 413 GC patients were obtained from public sources. We found that the protein expression of GDF15, GFRAL and RET was significantly elevated and positively correlated in our set of GC tissues, which was reflected in their tendency to be overexpressed in low-grade and intermediate-grade tumors rather than high-grade ones. No other relationships between the expression status of the examined proteins and clinicopathological characteristics of GC patients were found. Through in silico data analysis, we showed that high GDF15 expression was associated with better overall survival (OS) of GC patients, whereas the opposite was true for high levels of GFRAL or RET. Specifically, GFRAL and RET emerged as independent prognostic factors associated with poor OS. Furthermore, high combined expression of the three markers: GDF15+GFRAL+RET was significantly associated with reduced OS, and it was an independent prognostic factor of borderline significance in terms of OS, when adjusted for covariates. If validated in large-scale studies, the individual and combined expression of GDF15, GFRAL and RET may provide significant clinical implications for the prognosis prediction of GC patients.
Collapse
Affiliation(s)
- Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland.,Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Marta Smolińska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Anna Kasperska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
83
|
Myers MG, Affinati AH, Richardson N, Schwartz MW. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab 2021; 3:737-750. [PMID: 34158655 DOI: 10.1038/s42255-021-00408-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Growing evidence implicates the brain in the regulation of both immediate fuel availability (for example, circulating glucose) and long-term energy stores (that is, adipose tissue mass). Rather than viewing the adipose tissue and glucose control systems separately, we suggest that the brain systems that control them are components of a larger, highly integrated, 'fuel homeostasis' control system. This conceptual framework, along with new insights into the organization and function of distinct neuronal systems, provides a context within which to understand how metabolic homeostasis is achieved in both basal and postprandial states. We also review evidence that dysfunction of the central fuel homeostasis system contributes to the close association between obesity and type 2 diabetes, with the goal of identifying more effective treatment options for these common metabolic disorders.
Collapse
Affiliation(s)
- Martin G Myers
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison H Affinati
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Richardson
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
84
|
Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations. J Clin Med 2021; 10:jcm10081796. [PMID: 33924201 PMCID: PMC8074604 DOI: 10.3390/jcm10081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions.
Collapse
|
85
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
Affiliation(s)
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
86
|
Effects of Exercise Intervention on Mitochondrial Stress Biomarkers in Metabolic Syndrome Patients: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052242. [PMID: 33668309 PMCID: PMC7956208 DOI: 10.3390/ijerph18052242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023]
Abstract
Metabolic syndrome (MetS) pathogenesis involves oxidative stress associated with mitochondrial dysfunction, which triggers integrated stress responses via various compensatory metabolic modulators like mitokines and hepatokines. However, the regulatory mechanisms underlying the exercise-derived benefits with respect to mitokines and hepatokines (potential MetS biomarkers) are unknown. Thus, we investigated the effects of exercise training on MetS biomarkers and their associations with clinical parameters. In this single-center trial, 30 women with MetS were randomly assigned to 12-week supervised exercise or control groups (1:1) and compared with 12 age-matched healthy volunteers. All participants completed the study except one subject in the control group. Expectedly, serum levels of the mitokines, fibroblast growth factor-21 (FGF21), growth differentiation factor-15 (GDF15), and the hepatokine, angiopoietin-like 6 (ANGPTL6), were higher in MetS patients than in healthy volunteers. Moreover, their levels were markedly attenuated in the exercise group. Further, exercise-mediated changes in serum FGF21 and GDF15 correlated with changes in the homeostasis model of assessment of insulin resistance (HOMA-IR) and appendicular lean mass (ALM), respectively. Additionally, changes in serum triglycerides and ANGPTL6 were correlated with changes in leptin. Aberrant mitokine and hepatokine levels can be rectified by relieving metabolic stress burden. Therefore, exercise training may reduce the need for the compensatory upregulation of MetS metabolic modulators by improving gluco-lipid metabolism.
Collapse
|
87
|
Klein AB, Nicolaisen TS, Ørtenblad N, Gejl KD, Jensen R, Fritzen AM, Larsen EL, Karstoft K, Poulsen HE, Morville T, Sahl RE, Helge JW, Lund J, Falk S, Lyngbæk M, Ellingsgaard H, Pedersen BK, Lu W, Finan B, Jørgensen SB, Seeley RJ, Kleinert M, Kiens B, Richter EA, Clemmensen C. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat Commun 2021; 12:1041. [PMID: 33589633 PMCID: PMC7884842 DOI: 10.1038/s41467-021-21309-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Growing evidence supports that pharmacological application of growth differentiation factor 15 (GDF15) suppresses appetite but also promotes sickness-like behaviors in rodents via GDNF family receptor α-like (GFRAL)-dependent mechanisms. Conversely, the endogenous regulation of GDF15 and its physiological effects on energy homeostasis and behavior remain elusive. Here we show, in four independent human studies that prolonged endurance exercise increases circulating GDF15 to levels otherwise only observed in pathophysiological conditions. This exercise-induced increase can be recapitulated in mice and is accompanied by increased Gdf15 expression in the liver, skeletal muscle, and heart muscle. However, whereas pharmacological GDF15 inhibits appetite and suppresses voluntary running activity via GFRAL, the physiological induction of GDF15 by exercise does not. In summary, exercise-induced circulating GDF15 correlates with the duration of endurance exercise. Yet, higher GDF15 levels after exercise are not sufficient to evoke canonical pharmacological GDF15 effects on appetite or responsible for diminishing exercise motivation.
Collapse
Affiliation(s)
- Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine S Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kasper D Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emil L Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Morville
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronni E Sahl
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Lyngbæk
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helga Ellingsgaard
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Wei Lu
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
88
|
Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev 2020; 57:11-18. [PMID: 33317942 DOI: 10.1016/j.cytogfr.2020.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Growth differentiation factor-15 (GDF-15) is cytokine involved in the regulation of multiple systems. Because it has regularly been shown to be increased in cardiovascular disease (CVD) and diabetes, it has been suggested that GDF-15 could be used as a biomarker for these diseases and their severity. However, several studies have demonstrated that GDF-15 has a protective role in regulation of inflammation, endothelial cell function, insulin sensitivity, weight gain, and is cardioprotective in myocardial infarction (MI). While GDF-15 has been implicated in the pathophysiology of many conditions including cancer, this review focuses on the potential functions of GDF-15 and signaling pathways implicated in its role regulating metabolism, insulin sensitivity, and the cardiovascular system.
Collapse
|
89
|
Rochette L, Zeller M, Cottin Y, Vergely C. Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends Endocrinol Metab 2020; 31:939-951. [PMID: 33172749 DOI: 10.1016/j.tem.2020.10.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily proteins. GDF15 acts as an inflammatory marker, and it plays a role in pathogenesis of tumors, ischemic diseases, metabolic disorders, and neurodegenerative processes. GDF15 is not normally expressed in the tissue; it is prominently induced following 'injury'. GDF15 functions are critical for the regulation of endothelial adaptations after vascular damage. Recently, four research groups simultaneously identified glial-derived neurotrophic factor (GDNF)-family receptor α-like (GFRAL) in the brain, an orphan receptor as the receptor for GDF15, signaling through the coreceptor RET. In this article, new aspects of the biology of GDF15 and receptor GFRAL, and their relationship with various pathologies, are commented on.
Collapse
Affiliation(s)
- Luc Rochette
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France.
| | - Marianne Zeller
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France
| | - Yves Cottin
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France; Cardiology Unit, Dijon University Hospital Center, Dijon, France
| | - Catherine Vergely
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France
| |
Collapse
|
90
|
Abstract
GDF15 is a cell activation and stress response cytokine of the glial cell line-derived neurotrophic factor family within the TGF-β superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10-100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.
Collapse
Affiliation(s)
- Samuel N Breit
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - David A Brown
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; .,New South Wales Health Pathology, Institute of Clinical Pathology Research, and Westmead Institute for Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vicky Wang-Wei Tsai
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; ,
| |
Collapse
|
91
|
Campderrós L, Sánchez-Infantes D, Villarroya J, Nescolarde L, Bayès-Genis A, Cereijo R, Roca E, Villarroya F. Altered GDF15 and FGF21 Levels in Response to Strenuous Exercise: A Study in Marathon Runners. Front Physiol 2020; 11:550102. [PMID: 33329017 PMCID: PMC7711067 DOI: 10.3389/fphys.2020.550102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Recreational marathon runners face strong physiological challenges. Assessment of potential biomarkers for the biological responses of runners will help to discriminate individual race responsiveness and their physiological consequences. This study sought to analyze the changes in the plasma levels of GDF15 and FGF21, novel endocrine factors related to metabolic stress, in runners following the strenuous exercise of a marathon race. Methods Blood samples were obtained from eighteen male runners (mean ±SD, age: 41.7 ±5.0 years, BMI: 23.6 ± 1.8) 48 h before, immediately after, and 48 h after a marathon race, and from age-matched sedentary individuals. The level of GDF15, FGF21, and 38 additional biochemical and hematological parameters were determined. Results The basal levels of GDF15 and FGF21 did not differ between runners before the race and sedentary individuals. Significant increases in the mean levels of GDF15 (4.2-fold) and FGF21 (20-fold) were found in runners immediately after the race. The magnitudes of these increases differed markedly among individuals and did not correlate with each other. The GDF15 and FGF21 levels had returned to the basal level 48 h post-race. The post-race value of GDF15 (but not FGF21) correlated positively with increased total white cell count (r = 0.50, P = 0.01) and neutrophilia (r = 0.10, P = 0.01). Conclusion GDF15 and FGF21 are transiently increased in runners following a marathon race. The induction of GDF15 levels is associated with alterations in circulating immune cells levels.
Collapse
Affiliation(s)
- Laura Campderrós
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - David Sánchez-Infantes
- CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain.,Institut de Recerca Germans Trias i Pujol, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Lexa Nescolarde
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Antoni Bayès-Genis
- Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Emma Roca
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| |
Collapse
|
92
|
Kim H, Kim KM, Kang MJ, Lim S. Growth differentiation factor-15 as a biomarker for sarcopenia in aging humans and mice. Exp Gerontol 2020; 142:111115. [PMID: 33069782 DOI: 10.1016/j.exger.2020.111115] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Sarcopenia is a pathologic status characterized by impaired muscle strength or function accompanying decreased muscle mass. It results in increased vulnerability to chronic diseases. Despite growing clinical concerns about sarcopenia in an aging society, there are few validated biomarkers for age-related sarcopenia. We tested the potential of growth differentiation factor-15 (GDF-15) as a biomarker for sarcopenia in mice and humans across wide age ranges. We used four groups of mice (6, 10, 14, and 18 months old) to explore the association between GDF-15 levels and age, muscle mass, and endurance capacity. Among those four groups, 6- and 18-month-old mice were exposed to 8 weeks of treadmill exercise. The GDF-15 levels were measured in serum and muscle at baseline and after exercise intervention. The body composition was assessed using animal dual-energy X-ray absorptiometry (DXA). GDF-15 levels in tissue and serum increased with age in these mice. The serum levels of GDF-15 had a strong negative correlation with both muscle weight and exercise endurance capacity. Expression of GDF-15 in muscle also had a negative trend with muscle weight and endurance capacity. The muscle expression of GDF-15 was significantly attenuated after 8 weeks of exercise compared with the group without exercise, particularly in older mice. GDF-15 levels were also related to functional capacity and showed responses to therapeutic exercise intervention in this model. We also measured serum GDF-15 levels and muscle mass using DXA in healthy human adults (19 men and 18 women). As in mice, serum levels of GDF-15 were correlated positively with age, but negatively with muscle mass in these subjects. These findings support the potential of GDF-15 as a biomarker for age-related sarcopenia.
Collapse
Affiliation(s)
- Hoyoun Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyoung Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, and Seoul National University College of Medicine, Seongnam, Korea.
| | - Min Ji Kang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; National Fitness Team, Korea Sports Promotion Foundation, Seoul, Republic of Korea
| | - Soo Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, and Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
93
|
Reddy A, Bozi LHM, Yaghi OK, Mills EL, Xiao H, Nicholson HE, Paschini M, Paulo JA, Garrity R, Laznik-Bogoslavski D, Ferreira JCB, Carl CS, Sjøberg KA, Wojtaszewski JFP, Jeppesen JF, Kiens B, Gygi SP, Richter EA, Mathis D, Chouchani ET. pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell 2020; 183:62-75.e17. [PMID: 32946811 DOI: 10.1016/j.cell.2020.08.039] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/05/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Abstract
In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
94
|
GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch 2020; 472:1535-1546. [PMID: 32936319 DOI: 10.1007/s00424-020-02459-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a peptide hormone, and a divergent member of the transforming growth factor beta (TGFβ) superfamily. In normal physiology, GDF15 is expressed in multiple tissues at a low concentration. GDF15 is overexpressed during and following many pathological conditions such as tissue injury and inflammation in order to play a protective role. However, GDF15 appears to promote tumour growth in the later stages of malignant cancer. The recently identified endogenous receptor for GDF15, GDNF family receptor a-like (GFRAL), has allowed elucidation of a physiological pathway in which GDF15 regulates energy homeostasis and body weight, primarily via appetite suppression. The anorectic effect of GDF15 provides some therapeutic potential in management of cancer-related anorexia/cachexia and obesity. Despite the identification of GFRAL as a GDF15 receptor, there appears to be other signalling mechanisms utilized by GDF15 that further increase the possibility of development of therapeutic treatments, should these pathways be fully characterized. In this review, GDF15 function in both physiological and pathological conditions in various tissues will be discussed.
Collapse
|
95
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
96
|
Lockhart SM, Saudek V, O’Rahilly S. GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocr Rev 2020; 41:bnaa007. [PMID: 32310257 PMCID: PMC7299427 DOI: 10.1210/endrev/bnaa007] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
GDF15 has recently gained scientific and translational prominence with the discovery that its receptor is a GFRAL-RET heterodimer of which GFRAL is expressed solely in the hindbrain. Activation of this receptor results in reduced food intake and loss of body weight and is perceived and recalled by animals as aversive. This information encourages a revised interpretation of the large body of previous research on the protein. GDF15 can be secreted by a wide variety of cell types in response to a broad range of stressors. We propose that central sensing of GDF15 via GFRAL-RET activation results in behaviors that facilitate the reduction of exposure to a noxious stimulus. The human trophoblast appears to have hijacked this signal, producing large amounts of GDF15 from early pregnancy. We speculate that this encourages avoidance of potential teratogens in pregnancy. Circulating GDF15 levels are elevated in a range of human disease states, including various forms of cachexia, and GDF15-GFRAL antagonism is emerging as a therapeutic strategy for anorexia/cachexia syndromes. Metformin elevates circulating GDF15 chronically in humans and the weight loss caused by this drug appears to be dependent on the rise in GDF15. This supports the concept that chronic activation of the GDF15-GFRAL axis has efficacy as an antiobesity agent. In this review, we examine the science of GDF15 since its identification in 1997 with our interpretation of this body of work now being assisted by a clear understanding of its highly selective central site of action.
Collapse
Affiliation(s)
- Samuel M Lockhart
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vladimir Saudek
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
97
|
Mendez-Gutierrez A, Osuna-Prieto FJ, Aguilera CM, Ruiz JR, Sanchez-Delgado G. Endocrine Mechanisms Connecting Exercise to Brown Adipose Tissue Metabolism: a Human Perspective. Curr Diab Rep 2020; 20:40. [PMID: 32725289 DOI: 10.1007/s11892-020-01319-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To summarize the state-of-the-art regarding the exercise-regulated endocrine signals that might modulate brown adipose tissue (BAT) activity and/or white adipose tissue (WAT) browning, or through which BAT communicates with other tissues, in humans. RECENT FINDINGS Exercise induces WAT browning in rodents by means of a variety of physiological mechanism. However, whether exercise induces WAT browning in humans is still unknown. Nonetheless, a number of protein hormones and metabolites, whose signaling can influence thermogenic adipocyte's metabolism, are secreted during and/or after exercise in humans from a variety of tissues and organs, such as the skeletal muscle, the adipose tissue, the liver, the adrenal glands, or the cardiac muscle. Overall, it seems plausible to hypothesize that, in humans, exercise secretes an endocrine cocktail that is likely to induce WAT browning, as it does in rodents. However, even if exercise elicits a pro-browning endocrine response, this might result in a negligible effect if blood flow is restricted in thermogenic adipocyte-rich areas during exercise, which is still to be determined. Future studies are needed to fully characterize the exercise-induced secretion (i.e., to determine the effect of the different exercise frequency, intensity, type, time, and volume) of endocrine signaling molecules that might modulate BAT activity and/or WAT browning or through which BAT communicates with other tissues, during exercise. The exercise effect on BAT metabolism and/or WAT browning could be one of the still unknown mechanisms by which exercise exerts beneficial health effects, and it might be pharmacologically mimicked.
Collapse
Affiliation(s)
- Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Francisco J Osuna-Prieto
- Department of Analytical Chemistry, Technology Centre for Functional Food Research and Development (CIDAF), University of Granada, Granada, Spain
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, University of Granada, Granada, Spain.
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, University of Granada, Granada, Spain.
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
98
|
Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev 2020; 60:101070. [PMID: 32311500 DOI: 10.1016/j.arr.2020.101070] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The development of clinical interventions that significantly improve human healthspan requires robust markers of biological age as well as thoughtful therapeutic targets. To promote these goals, we performed a systematic review and analysis of human aging and proteomics studies. The systematic review includes 36 different proteomics analyses, each of which identified proteins that significantly changed with age. We discovered 1,128 proteins that had been reported by at least two or more analyses and 32 proteins that had been reported by five or more analyses. Each of these 32 proteins has known connections relevant to aging and age-related disease. GDF15, for example, extends both lifespan and healthspan when overexpressed in mice and is additionally required for the anti-diabetic drug metformin to exert beneficial effects on body weight and energy balance. Bioinformatic enrichment analyses of our 1,128 commonly identified proteins heavily implicated processes relevant to inflammation, the extracellular matrix, and gene regulation. We additionally propose a novel proteomic aging clock comprised of proteins that were reported to change with age in plasma in three or more different studies. Using a large patient cohort comprised of 3,301 subjects (aged 18-76 years), we demonstrate that this clock is able to accurately predict human age.
Collapse
|
99
|
Sarkar S, Legere S, Haidl I, Marshall J, MacLeod JB, Aguiar C, Lutchmedial S, Hassan A, Brunt KR, Kienesberger P, Pulinilkunnil T, Légaré JF. Serum GDF15, a Promising Biomarker in Obese Patients Undergoing Heart Surgery. Front Cardiovasc Med 2020; 7:103. [PMID: 32671100 PMCID: PMC7327098 DOI: 10.3389/fcvm.2020.00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Obesity is a risk factor that negatively impacts outcomes in patients undergoing heart surgery by mechanisms that are not well-defined nor predicated on BMI alone. This knowledge gap has fuelled a search for biomarkers associated with cardiovascular diseases that could provide clinical insight to surgeons. One such biomarker is growth differentiation factor15(GDF15), associated with inflammation, metabolism, and heart failure outcomes but not yet examined in the context of obesity and cardiac surgery outcomes. Methods: Patients undergoing open-heart surgery were consented and enrolled for blood and tissue (atria) sampling at the time of surgery. Biomarker analysis was carried out using ELISA and western blot/qPCR, respectively. Biomarker screening was classified by inflammation(NLR, GDF15, Galectin3, ST2, TNFR2), heart failure(HF)/remodeling(NT-proBNP) and metabolism(glycemia, lipid profile). Patients were categorized based on BMI: obese group (BMI ≥30.0) and non-obese group(BMI 20.0–29.9). Subsequent stratification of GDF15 high patients was conservatively set as being in the 75th percentile. Results: A total of 80 patients undergoing any open-heart surgical interventions were included in the study. Obese (mean BMI = 35.8, n = 38) and non-obese (mean BMI = 25.7, n = 42) groups had no significant differences in age, sex, or co-morbidities. Compared to other biomarkers, plasma GDF15 (mean 1,736 vs. 1,207 ng/l, p < 0.001) was significantly higher in obese patients compared to non-obese. Plasma GDF15 also displayed a significant linear correlation with BMI (R2 = 0.097; p = 0.0049). Atria tissue was shown to be a significant source of GDF15 protein and tissue levels significantly correlated with plasma GDF15 (R2 = 0.4, p = 0.0004). Obesity was not associated with early/late mortality at median follow-up >2years. However, patients with high GDF15 (>1,580 ng/l) had reduced survival (65%) compared to the remaining patients with lower GDF15 levels (95%) by Kaplan Meier Analysis (median >2 years; p = 0.007). Conclusions: Circulating GDF15 is a salient biomarker likely sourced from heart tissue that appears to predict higher risk obese patients for adverse outcomes. More importantly, elevated GDF15 accounted for more sensitive outcome association than BMI at 2 years post-cardiac surgery, suggesting it heralds links to pathogenicity and should be actively studied prospectively and dynamically in a post-operative follow-up. Trial number: NCT03248921.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John, NB, Canada.,Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Stephanie Legere
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ian Haidl
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | | | - Christie Aguiar
- New Brunswick Heart Centre, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Sohrab Lutchmedial
- New Brunswick Heart Centre, Saint John, NB, Canada.,Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Ansar Hassan
- New Brunswick Heart Centre, Saint John, NB, Canada.,Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Keith R Brunt
- New Brunswick Heart Centre, Saint John, NB, Canada.,Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Petra Kienesberger
- Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada.,Department of Biochemistry, Dalhousie University, Halifax, NS, Canada
| | - Thomas Pulinilkunnil
- Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada.,Department of Biochemistry, Dalhousie University, Halifax, NS, Canada
| | - Jean-François Légaré
- New Brunswick Heart Centre, Saint John, NB, Canada.,Dalhousie Medicine New Brunswick, Saint John, NB, Canada.,IMPART Investigator Team Canada, Saint John, NB, Canada
| |
Collapse
|
100
|
Herpich C, Franz K, Ost M, Otten L, Coleman V, Klaus S, Müller-Werdan U, Norman K. Associations Between Serum GDF15 Concentrations, Muscle Mass, and Strength Show Sex-Specific Differences in Older Hospital Patients. Rejuvenation Res 2020; 24:14-19. [PMID: 32475214 DOI: 10.1089/rej.2020.2308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by a progressive decline of muscle mass and strength and also higher levels of circulating cytokines such as growth differentiation factor 15 (GDF15). Studies evaluating the association of GDF15 with muscle mass and strength are rare. In this analysis, we investigated GDF15 concentrations and their relationship with muscle mass and strength in older men compared with women. GDF15 serum concentrations were measured in 103 (60 years and older) hospital patients and an age-matched control group with an immunosorbent assay. Skeletal muscle mass was determined with the bioelectrical impedance analysis. Grip strength and knee extension strength were assessed and normalized for height. Associations between GDF15 concentrations and muscle mass and strength were evaluated with general linear models. Male patients showed higher levels of GDF15 compared with female patients (p = 0.021). Elevated GDF15 concentrations were associated with lower measures of muscle mass, exclusively in men, after adjustment for age and number of drugs per day. Our results indicate sex differences between associations of GDF15 with muscle mass and strength parameters in a cohort of older hospital patients.
Collapse
Affiliation(s)
- Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Kristina Franz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany
| | - Mario Ost
- Department of Physiology and Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Lindsey Otten
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany
| | - Verena Coleman
- Department of Physiology and Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology and Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Ursula Müller-Werdan
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany.,Protestant Geriatric Centre Berlin, Berlin, Germany
| | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Research Group on Geriatrics, Working Group Nutrition and Body Composition, Berlin, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| |
Collapse
|