51
|
Mansour L S, Di Biase MA, Smith RE, Zalesky A, Seguin C. Connectomes for 40,000 UK Biobank participants: A multi-modal, multi-scale brain network resource. Neuroimage 2023; 283:120407. [PMID: 37839728 DOI: 10.1016/j.neuroimage.2023.120407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
We mapped functional and structural brain networks for more than 40,000 UK Biobank participants. Structural connectivity was estimated with tractography and diffusion MRI. Resting-state functional MRI was used to infer regional functional connectivity. We provide high-quality structural and functional connectomes for multiple parcellation granularities, several alternative measures of interregional connectivity, and a variety of common data pre-processing techniques, yielding more than one million connectomes in total and requiring more than 200,000 h of compute time. For a single subject, we provide 28 out-of-the-box versions of structural and functional brain networks, allowing users to select, e.g., the parcellation and connectivity measure that best suit their research goals. Furthermore, we provide code and intermediate data for the time-efficient reconstruction of more than 1000 different versions of a subject's connectome based on an array of methodological choices. All connectomes are available via the UK Biobank data-sharing platform and our connectome mapping pipelines are openly available. In this report, we describe our connectome resource in detail for users, outline key considerations in developing an efficient pipeline to map an unprecedented number of connectomes, and report on the quality control procedures that were completed to ensure connectome reliability and accuracy. We demonstrate that our structural and functional connectivity matrices meet a number of quality control checks and replicate previously established findings in network neuroscience. We envisage that our resource will enable new studies of the human connectome in health, disease, and aging at an unprecedented scale.
Collapse
Affiliation(s)
- Sina Mansour L
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
52
|
Saito Y, Hayakawa Y, Kamagata K, Kikuta J, Mita T, Andica C, Taoka T, Uchida W, Takabayashi K, Tuerxun R, Mahemuti Z, Yoshida S, Kitagawa T, Arai T, Suzuki A, Sato K, Nishizawa M, Akashi T, Shimoji K, Wada A, Aoki S. Glymphatic system impairment in sleep disruption: diffusion tensor image analysis along the perivascular space (DTI-ALPS). Jpn J Radiol 2023; 41:1335-1343. [PMID: 37368182 DOI: 10.1007/s11604-023-01463-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE This study aimed to evaluate the relationship between sleep quality as assessed using the Pittsburgh Sleep Quality Index (PSQI) and the index of diffusivity along the perivascular space (ALPS index), a possible indirect indicator of glymphatic system activity. MATERIALS AND METHODS This study included the diffusion magnetic resonance imaging (MRI) data of 317 people with sleep disruption and 515 healthy controls (HCs) from the Human Connectome Project (WU-MINN HCP 1200). The ALPS index was calculated automatically based on diffusion tensor image analysis (DTI)-ALPS of diffusion MRI. The ALPS index of the sleep disruption and HC groups was compared using general linear model (GLM) analysis with covariates, such as age, sex, level of education, and intracranial volume. In addition, to confirm the relationship between sleep quality and the ALPS index in the sleep disruption group as well as evaluate the effect of each PSQI component on the ALPS index, correlation analyses between the ALPS indices and PSQI scores of all the components and between the ALPS index and each PSQI component was performed using GLM analysis with the abovementioned covariates, respectively. RESULTS The ALPS index was significantly lower in the sleep disruption group than in the HC group (p = 0.001). Moreover, the ALPS indices showed significant negative correlations with the PSQI scores of all the components (false discovery rate [FDR]-corrected p < 0.001). Two significant negative correlations were also found between the ALPS index and PSQI component 2 (sleep latency, FDR-corrected p < 0.001) and 6 (the use of sleep medication, FDR-corrected p < 0.001). CONCLUSION Our findings suggest that glymphatic system impairment contributes to sleep disruption in young adults.
Collapse
Affiliation(s)
- Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Yayoi Hayakawa
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan.
| | - Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Takeshi Mita
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Rukeye Tuerxun
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Zaimire Mahemuti
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Seina Yoshida
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takafumi Kitagawa
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Takashi Arai
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Akiyoshi Suzuki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Kanako Sato
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Mitsuo Nishizawa
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Keigo Shimoji
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| |
Collapse
|
53
|
Karadachka K, Assem M, Mitchell DJ, Duncan J, Medendorp WP, Mars RB. Structural connectivity of the multiple demand network in humans and comparison to the macaque brain. Cereb Cortex 2023; 33:10959-10971. [PMID: 37798142 PMCID: PMC10646692 DOI: 10.1093/cercor/bhad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species' brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.
Collapse
Affiliation(s)
- Katrin Karadachka
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
54
|
Manzano-Patron JP, Moeller S, Andersson JLR, Ugurbil K, Yacoub E, Sotiropoulos SN. DENOISING DIFFUSION MRI: CONSIDERATIONS AND IMPLICATIONS FOR ANALYSIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550348. [PMID: 37546835 PMCID: PMC10402048 DOI: 10.1101/2023.07.24.550348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Development of diffusion MRI (dMRI) denoising approaches has experienced considerable growth over the last years. As noise can inherently reduce accuracy and precision in measurements, its effects have been well characterised both in terms of uncertainty increase in dMRI-derived features and in terms of biases caused by the noise floor, the smallest measurable signal given the noise level. However, gaps in our knowledge still exist in objectively characterising dMRI denoising approaches in terms of both of these effects and assessing their efficacy. In this work, we reconsider what a denoising method should and should not do and we accordingly define criteria to characterise the performance. We propose a comprehensive set of evaluations, including i) benefits in improving signal quality and reducing noise variance, ii) gains in reducing biases and the noise floor and improving, iii) preservation of spatial resolution, iv) agreement of denoised data against a gold standard, v) gains in downstream parameter estimation (precision and accuracy), vi) efficacy in enabling noise-prone applications, such as ultra-high-resolution imaging. We further provide newly acquired complex datasets (magnitude and phase) with multiple repeats that sample different SNR regimes to highlight performance differences under different scenarios. Without loss of generality, we subsequently apply a number of exemplar patch-based denoising algorithms to these datasets, including Non-Local Means, Marchenko-Pastur PCA (MPPCA) in the magnitude and complex domain and NORDIC, and compare them with respect to the above criteria and against a gold standard complex average of multiple repeats. We demonstrate that all tested denoising approaches reduce noise-related variance, but not always biases from the elevated noise floor. They all induce a spatial resolution penalty, but its extent can vary depending on the method and the implementation. Some denoising approaches agree with the gold standard more than others and we demonstrate challenges in even defining such a standard. Overall, we show that dMRI denoising performed in the complex domain is advantageous to magnitude domain denoising with respect to all the above criteria.
Collapse
Affiliation(s)
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
- Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, UK
| |
Collapse
|
55
|
Sarwar T, Ramamohanarao K, Daducci A, Schiavi S, Smith RE, Zalesky A. Evaluation of tractogram filtering methods using human-like connectome phantoms. Neuroimage 2023; 281:120376. [PMID: 37714389 DOI: 10.1016/j.neuroimage.2023.120376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Tractography algorithms are prone to reconstructing spurious connections. The set of streamlines generated with tractography can be post-processed to retain the streamlines that are most biologically plausible. Several microstructure-informed filtering algorithms are available for this purpose, however, the comparative performance of these methods has not been extensively evaluated. In this study, we aim to evaluate streamline filtering and post-processing algorithms using simulated connectome phantoms. We first establish a framework for generating connectome phantoms featuring brain-like white matter fiber architectures. We then use our phantoms to systematically evaluate the performance of a range of streamline filtering algorithms, including SIFT, COMMIT, and LiFE. We find that all filtering methods successfully improve connectome accuracy, although filter performance depends on the complexity of the underlying white matter fiber architecture. Filtering algorithms can markedly improve tractography accuracy for simple tubular fiber bundles (F-measure deterministic- unfiltered: 0.49 and best filter: 0.72; F-measure probabilistic- unfiltered: 0.37 and best filter: 0.81), but for more complex brain-like fiber architectures, the improvement is modest (F-measure deterministic- unfiltered: 0.53 and best filter: 0.54; F-measure probabilistic- unfiltered: 0.46 and best filter: 0.50). Overall, filtering algorithms have the potential to improve the accuracy of connectome mapping pipelines, particularly for weighted connectomes and pipelines using probabilistic tractography methods. Our results highlight the need for further advances tractography and streamline filtering to improve the accuracy of connectome mapping.
Collapse
Affiliation(s)
- Tabinda Sarwar
- School of Computing Technologies, RMIT University, Victoria, 3000, Australia.
| | | | | | - Simona Schiavi
- Department of Computer Science, University of Verona, 37129, Italy
| | - Robert E Smith
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, 2010, Australia
| |
Collapse
|
56
|
Newman BT, Patrie JT, Druzgal TJ. An intracellular isotropic diffusion signal is positively associated with pubertal development in white matter. Dev Cogn Neurosci 2023; 63:101301. [PMID: 37717292 PMCID: PMC10511341 DOI: 10.1016/j.dcn.2023.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Puberty is a key event in adolescent development that involves significant, hormone-driven changes to many aspects of physiology including the brain. Understanding how the brain responds during this time period is important for evaluating neuronal developments that affect mental health throughout adolescence and the adult lifespan. This study examines diffusion MRI scans from the cross-sectional ABCD Study baseline cohort, a large multi-site study containing thousands of participants, to describe the relationship between pubertal development and brain microstructure. Using advanced, 3-tissue constrained spherical deconvolution methods, this study is able to describe multiple tissue compartments beyond only white matter (WM) axonal qualities. After controlling for age, sex, brain volume, subject handedness, scanning site, and sibling relationships, we observe a positive relationship between an isotropic, intracellular diffusion signal fraction and pubertal development across a majority of regions of interest (ROIs) in the WM skeleton. We also observe regional effects from an intracellular anisotropic signal fraction compartment and extracellular isotropic free water-like compartment in several ROIs. This cross-sectional work suggests that changes in pubertal status are associated with a complex response from brain tissue that cannot be completely described by traditional methods focusing only on WM axonal properties.
Collapse
Affiliation(s)
- Benjamin T Newman
- Department of Radiology and Medical Imaging, School of Medicine, University of Virginia, USA.
| | - James T Patrie
- Department of Public Health Sciences, School of Medicine, University of Virginia, USA
| | - T Jason Druzgal
- Department of Radiology and Medical Imaging, School of Medicine, University of Virginia, USA
| |
Collapse
|
57
|
Kanakaraj P, Cai LY, Yao T, Rheault F, Rogers BP, Anderson A, Schilling KG, Landman BA. Efficient approximate signal reconstruction for correction of gradient nonlinearities in diffusion-weighted imaging. Magn Reson Imaging 2023; 102:20-25. [PMID: 36965836 PMCID: PMC10517071 DOI: 10.1016/j.mri.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
In diffusion weighted MRI (DW-MRI), hardware nonlinearities lead to spatial variations in the orientation and magnitude of diffusion weighting. While the correction of these spatial distortions has been well established for analyses of DW-MRI, the existing voxel-wise empirical correction for gradient nonlinearities requires reimplementation of existing models, as the resultant gradients vary by voxel. Herein, we propose a two-step signal approximation after voxel-wise correction of gradient nonlinearity effects in DW-MRI. The proposed technique (1) scales the diffusion signal and (2) resamples the gradient orientations. This results in uniform gradients across the corrected image and provides the key advantage of seamless integration into current diffusion workflows. We investigated the validity of our technique by fitting a multi-compartment neurite orientation dispersion and density imaging (NODDI) model to the empirical correction and proposed approximation in five subjects from the MASiVar pediatric dataset. We evaluated intra-cellular volume fraction (iVF), CSF volume fraction (cVF), and orientation dispersion index (ODI) from NODDI. The Cohen's d of iVF, cVF and ODI between the techniques was <0.2 indicating the proposed technique does not exhibit significant differences from the voxel-wise correction technique. Our two-step signal approximation is an efficient representation of the voxel-wise gradient table correction. Using this approximation, correction of gradient nonlinearities can be easily incorporated into existing diffusion preprocessing pipelines and is implemented in "PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images".
Collapse
Affiliation(s)
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Tianyuan Yao
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
| | - Francois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Baxter P Rogers
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Adam Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA.
| | - Kurt G Schilling
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA.
| |
Collapse
|
58
|
Fotiadis P, Cieslak M, He X, Caciagli L, Ouellet M, Satterthwaite TD, Shinohara RT, Bassett DS. Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex. Nat Commun 2023; 14:6115. [PMID: 37777569 PMCID: PMC10542365 DOI: 10.1038/s41467-023-41686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Recent work has demonstrated that the relationship between structural and functional connectivity varies regionally across the human brain, with reduced coupling emerging along the sensory-association cortical hierarchy. The biological underpinnings driving this expression, however, remain largely unknown. Here, we postulate that intracortical myelination and excitation-inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) and its temporal variance across the cortical hierarchy. We employ atlas- and voxel-based connectivity approaches to analyze neuroimaging data acquired from two groups of healthy participants. Our findings are consistent across six complementary processing pipelines: 1) SFC and its temporal variance respectively decrease and increase across the unimodal-transmodal and granular-agranular gradients; 2) increased myelination and lower EI-ratio are associated with more rigid SFC and restricted moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to myelination as the principal predictor of SFC occurs when traversing from granular to agranular cortical regions. Collectively, our work delivers a framework to conceptualize structure-function relationships in the human brain, paving the way for an improved understanding of how demyelination and/or EI-imbalances induce reorganization in brain disorders.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu Ouellet
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
59
|
Oldham S, Ball G. A phylogenetically-conserved axis of thalamocortical connectivity in the human brain. Nat Commun 2023; 14:6032. [PMID: 37758726 PMCID: PMC10533558 DOI: 10.1038/s41467-023-41722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The thalamus enables key sensory, motor, emotive, and cognitive processes via connections to the cortex. These projection patterns are traditionally considered to originate from discrete thalamic nuclei, however recent work showing gradients of molecular and connectivity features in the thalamus suggests the organisation of thalamocortical connections occurs along a continuous dimension. By performing a joint decomposition of densely sampled gene expression and non-invasive diffusion tractography in the adult human thalamus, we define a principal axis of genetic and connectomic variation along a medial-lateral thalamic gradient. Projections along this axis correspond to an anterior-posterior cortical pattern and are aligned with electrophysiological properties of the cortex. The medial-lateral axis demonstrates phylogenetic conservation, reflects transitions in neuronal subtypes, and shows associations with neurodevelopment and common brain disorders. This study provides evidence for a supra-nuclear axis of thalamocortical organisation characterised by a graded transition in molecular properties and anatomical connectivity.
Collapse
Affiliation(s)
- Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
60
|
Chu DY, Adluru N, Nair VA, Choi T, Adluru A, Garcia-Ramos C, Dabbs K, Mathis J, Nencka AS, Gundlach C, Conant L, Binder JR, Meyerand ME, Alexander AL, Struck AF, Hermann B, Prabhakaran V. Association of neighborhood deprivation with white matter connectome abnormalities in temporal lobe epilepsy. Epilepsia 2023; 64:2484-2498. [PMID: 37376741 PMCID: PMC10530287 DOI: 10.1111/epi.17702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Social determinants of health, including the effects of neighborhood disadvantage, impact epilepsy prevalence, treatment, and outcomes. This study characterized the association between aberrant white matter connectivity in temporal lobe epilepsy (TLE) and disadvantage using a US census-based neighborhood disadvantage metric, the Area Deprivation Index (ADI), derived from measures of income, education, employment, and housing quality. METHODS Participants including 74 TLE patients (47 male, mean age = 39.2 years) and 45 healthy controls (27 male, mean age = 31.9 years) from the Epilepsy Connectome Project were classified into ADI-defined low and high disadvantage groups. Graph theoretic metrics were applied to multishell connectome diffusion-weighted imaging (DWI) measurements to derive 162 × 162 structural connectivity matrices (SCMs). The SCMs were harmonized using neuroCombat to account for interscanner differences. Threshold-free network-based statistics were used for analysis, and findings were correlated with ADI quintile metrics. A decrease in cross-sectional area (CSA) indicates reduced white matter integrity. RESULTS Sex- and age-adjusted CSA in TLE groups was significantly reduced compared to controls regardless of disadvantage status, revealing discrete aberrant white matter tract connectivity abnormalities in addition to apparent differences in graph measures of connectivity and network-based statistics. When comparing broadly defined disadvantaged TLE groups, differences were at trend level. Sensitivity analyses of ADI quintile extremes revealed significantly lower CSA in the most compared to least disadvantaged TLE group. SIGNIFICANCE Our findings demonstrate (1) the general impact of TLE on DWI connectome status is larger than the association with neighborhood disadvantage; however, (2) neighborhood disadvantage, indexed by ADI, revealed modest relationships with white matter structure and integrity on sensitivity analysis in TLE. Further studies are needed to explore this relationship and determine whether the white matter relationship with ADI is driven by social drift or environmental influences on brain development. Understanding the etiology and course of the disadvantage-brain integrity relationship may serve to inform care, management, and policy for patients.
Collapse
Affiliation(s)
- Daniel Y Chu
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nagesh Adluru
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Veena A Nair
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy Choi
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Anusha Adluru
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Camille Garcia-Ramos
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jedidiah Mathis
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carson Gundlach
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary E Meyerand
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- William S. Middleton Veterans Hospital, Madison, Wisconsin, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Vivek Prabhakaran
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
61
|
Barbosa DAN, Gattas S, Salgado JS, Kuijper FM, Wang AR, Huang Y, Kakusa B, Leuze C, Luczak A, Rapp P, Malenka RC, Hermes D, Miller KJ, Heifets BD, Bohon C, McNab JA, Halpern CH. An orexigenic subnetwork within the human hippocampus. Nature 2023; 621:381-388. [PMID: 37648849 PMCID: PMC10499606 DOI: 10.1038/s41586-023-06459-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.
Collapse
Affiliation(s)
- Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Juliana S Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Université Paris Cité, Paris, France
- Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Allan R Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhao Huang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Leuze
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Paul Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dora Hermes
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
62
|
Li M, Habes M, Grabe H, Kang Y, Qi S, Detre JA. Disconnectome associated with progressive white matter hyperintensities in aging: a virtual lesion study. Front Aging Neurosci 2023; 15:1237198. [PMID: 37719871 PMCID: PMC10500060 DOI: 10.3389/fnagi.2023.1237198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Objective White matter hyperintensities (WMH) are commonly seen on T2-weighted magnetic resonance imaging (MRI) in older adults and are associated with an increased risk of cognitive decline and dementia. This study aims to estimate changes in the structural connectome due to age-related WMH by using a virtual lesion approach. Methods High-quality diffusion-weighted imaging data of 30 healthy subjects were obtained from the Human Connectome Project (HCP) database. Diffusion tractography using q-space diffeomorphic reconstruction (QSDR) and whole brain fiber tracking with 107 seed points was conducted using diffusion spectrum imaging studio and the brainnetome atlas was used to parcellate a total of 246 cortical and subcortical nodes. Previously published WMH frequency maps across age ranges (50's, 60's, 70's, and 80's) were used to generate virtual lesion masks for each decade at three lesion frequency thresholds, and these virtual lesion masks were applied as regions of avoidance (ROA) in fiber tracking to estimate connectivity changes. Connections showing significant differences in fiber density with and without ROA were identified using paired tests with False Discovery Rate (FDR) correction. Results Disconnections appeared first from the striatum to middle frontal gyrus (MFG) in the 50's, then from the thalamus to MFG in the 60's and extending to the superior frontal gyrus in the 70's, and ultimately including much more widespread cortical and hippocampal nodes in the 80's. Conclusion Changes in the structural disconnectome due to age-related WMH can be estimated using the virtual lesion approach. The observed disconnections may contribute to the cognitive and sensorimotor deficits seen in aging.
Collapse
Affiliation(s)
- Meng Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohamad Habes
- Biggs Alzheimer’s Institute, University of Texas San Antonio, San Antonio, TX, United States
| | - Hans Grabe
- Department of Psychiatry and Psychotherapy, University of Greifswald, Stralsund, Germany
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
63
|
Bagheri A, Dehshiri M, Bagheri Y, Akhondi-Asl A, Nadjar Araabi B. Brain effective connectome based on fMRI and DTI data: Bayesian causal learning and assessment. PLoS One 2023; 18:e0289406. [PMID: 37594972 PMCID: PMC10437876 DOI: 10.1371/journal.pone.0289406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
Neuroscientific studies aim to find an accurate and reliable brain Effective Connectome (EC). Although current EC discovery methods have contributed to our understanding of brain organization, their performances are severely constrained by the short sample size and poor temporal resolution of fMRI data, and high dimensionality of the brain connectome. By leveraging the DTI data as prior knowledge, we introduce two Bayesian causal discovery frameworks -the Bayesian GOLEM (BGOLEM) and Bayesian FGES (BFGES) methods- that offer significantly more accurate and reliable ECs and address the shortcomings of the existing causal discovery methods in discovering ECs based on only fMRI data. Moreover, to numerically assess the improvement in the accuracy of ECs with our method on empirical data, we introduce the Pseudo False Discovery Rate (PFDR) as a new computational accuracy metric for causal discovery in the brain. Through a series of simulation studies on synthetic and hybrid data (combining DTI from the Human Connectome Project (HCP) subjects and synthetic fMRI), we demonstrate the effectiveness of our proposed methods and the reliability of the introduced metric in discovering ECs. By employing the PFDR metric, we show that our Bayesian methods lead to significantly more accurate results compared to the traditional methods when applied to the Human Connectome Project (HCP) data. Additionally, we measure the reproducibility of discovered ECs using the Rogers-Tanimoto index for test-retest data and show that our Bayesian methods provide significantly more reliable ECs than traditional methods. Overall, our study's numerical and visual results highlight the potential for these frameworks to significantly advance our understanding of brain functionality.
Collapse
Affiliation(s)
- Abdolmahdi Bagheri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahdi Dehshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yamin Bagheri
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Akhondi-Asl
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Babak Nadjar Araabi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
64
|
Liu R, Li M, Dunson DB. PPA: Principal parcellation analysis for brain connectomes and multiple traits. Neuroimage 2023; 276:120214. [PMID: 37286151 DOI: 10.1016/j.neuroimage.2023.120214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023] Open
Abstract
Our understanding of the structure of the brain and its relationships with human traits is largely determined by how we represent the structural connectome. Standard practice divides the brain into regions of interest (ROIs) and represents the connectome as an adjacency matrix having cells measuring connectivity between pairs of ROIs. Statistical analyses are then heavily driven by the (largely arbitrary) choice of ROIs. In this article, we propose a human trait prediction framework utilizing a tractography-based representation of the brain connectome, which clusters fiber endpoints to define a data-driven white matter parcellation targeted to explain variation among individuals and predict human traits. This leads to Principal Parcellation Analysis (PPA), representing individual brain connectomes by compositional vectors building on a basis system of fiber bundles that captures the connectivity at the population level. PPA eliminates the need to choose atlases and ROIs a priori, and provides a simpler, vector-valued representation that facilitates easier statistical analysis compared to the complex graph structures encountered in classical connectome analyses. We illustrate the proposed approach through applications to data from the Human Connectome Project (HCP) and show that PPA connectomes improve power in predicting human traits over state-of-the-art methods based on classical connectomes, while dramatically improving parsimony and maintaining interpretability. Our PPA package is publicly available on GitHub, and can be implemented routinely for diffusion image data.
Collapse
Affiliation(s)
- Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Meng Li
- Department of Statistics, Rice University, Houston, TX, USA.
| | - David B Dunson
- Department of Statistical Science, Duke University, Durham, NC, USA
| |
Collapse
|
65
|
Tewarie PKB, Hindriks R, Lai YM, Sotiropoulos SN, Kringelbach M, Deco G. Non-reversibility outperforms functional connectivity in characterisation of brain states in MEG data. Neuroimage 2023; 276:120186. [PMID: 37268096 DOI: 10.1016/j.neuroimage.2023.120186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.
Collapse
Affiliation(s)
- Prejaas K B Tewarie
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands; Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands; Sir Peter Mansfield Imaging Centre, School of Physics, University of Nottingham, Nottingham, United Kingdom.
| | - Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yi Ming Lai
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
66
|
Lucena O, Lavrador JP, Irzan H, Semedo C, Borges P, Vergani F, Granados A, Sparks R, Ashkan K, Ourselin S. Assessing informative tract segmentation and nTMS for pre-operative planning. J Neurosci Methods 2023; 396:109933. [PMID: 37524245 PMCID: PMC10861808 DOI: 10.1016/j.jneumeth.2023.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Deep learning-based (DL) methods are the best-performing methods for white matter tract segmentation in anatomically healthy subjects. However, tract annotations are variable or absent in clinical data and manual annotations are especially difficult in patients with tumors where normal anatomy may be distorted. Direct cortical and subcortical stimulation is the gold standard ground truth to determine the cortical and sub-cortical lo- cation of motor-eloquent areas intra-operatively. Nonetheless, this technique is invasive, prolongs the surgical procedure, and may cause patient fatigue. Navigated Transcranial Magnetic Stimulation (nTMS) has a well-established correlation to direct cortical stimulation for motor mapping and the added advantage of being able to be acquired pre-operatively. NEW METHOD In this work, we evaluate the feasibility of using nTMS motor responses as a method to assess corticospinal tract (CST) binary masks and estimated uncertainty generated by a DL-based tract segmentation in patients with diffuse gliomas. RESULTS Our results show CST binary masks have a high overlap coefficient (OC) with nTMS response masks. A strong negative correlation is found between estimated uncertainty and nTMS response mask distance to the CST binary mask. COMPARISON WITH EXISTING METHODS We compare our approach (UncSeg) with the state-of-the-art TractSeg in terms of OC between the CST binary masks and nTMS response masks. CONCLUSIONS In this study, we demonstrate that estimated uncertainty from UncSeg is a good measure of the agreement between the CST binary masks and nTMS response masks distance to the CST binary mask boundary.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Keyoumars Ashkan
- King's College London, London, UK; King's College Hospital Foundation Trust, London, UK
| | | |
Collapse
|
67
|
Kumar VJ, Scheffler K, Grodd W. The structural connectivity mapping of the intralaminar thalamic nuclei. Sci Rep 2023; 13:11938. [PMID: 37488187 PMCID: PMC10366221 DOI: 10.1038/s41598-023-38967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Collapse
Affiliation(s)
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany
| | - Wolfgang Grodd
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
68
|
Guaje J, Koudoro S, Garyfallidis E. Horizon, closing the gap between cinematic visualization and medical imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.11.23292519. [PMID: 37503305 PMCID: PMC10370242 DOI: 10.1101/2023.07.11.23292519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Medical imaging has become a fascinating field with detailed visualizations of the body's internal environments. Although the field has grown fast and is sensitive to new technologies, it does not use the latest rendering techniques available in other domains, such as day-to-day movie production or game development. In this work, we bring forward Horizon, a new engine that provides cinematic rendering capabilities in real-time for quality controlling medical data. In addition, Horizon is provided as free, open-source software to be used as a foundation stone for building the next generation of medical imaging applications. In this introductory paper, we focus on the extensive development of advanced shaders, which can be used to highlight untapped features of the data and allow fast interaction with machine learning algorithms. In addition, Horizon provides physically-based rendering capabilities, the epitome of advanced visualization, adapted for the needs of medical imaging analysis practices.
Collapse
Affiliation(s)
- Javier Guaje
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA
| | - Serge Koudoro
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA
| | - Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA
| |
Collapse
|
69
|
Chang Y, Halai AD, Lambon Ralph MA. Distance-dependent distribution thresholding in probabilistic tractography. Hum Brain Mapp 2023; 44:4064-4076. [PMID: 37145963 PMCID: PMC10258532 DOI: 10.1002/hbm.26330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Tractography is widely used in human studies of connectivity with respect to every brain region, function, and is explored developmentally, in adulthood, ageing, and in disease. However, the core issue of how to systematically threshold, taking into account the inherent differences in connectivity values for different track lengths, and to do this in a comparable way across studies has not been solved. By utilising 54 healthy individuals' diffusion-weighted image data taken from HCP, this study adopted Monte Carlo derived distance-dependent distributions (DDDs) to generate distance-dependent thresholds with various levels of alpha for connections of varying lengths. As a test case, we applied the DDD approach to generate a language connectome. The resulting connectome showed both short- and long-distance structural connectivity in the close and distant regions as expected for the dorsal and ventral language pathways, consistent with the literature. The finding demonstrates that the DDD approach is feasible to generate data-driven DDDs for common thresholding and can be used for both individual and group thresholding. Critically, it offers a standard method that can be applied to various probabilistic tracking datasets.
Collapse
Affiliation(s)
- Ya‐Ning Chang
- Miin Wu School of ComputingNational Cheng Kung UniversityTainanTaiwan
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Ajay D. Halai
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
70
|
Taraku B, Zavaliangos-Petropulu A, Loureiro JR, Al-Sharif NB, Kubicki A, Joshi SH, Woods RP, Espinoza R, Narr KL, Sahib AK. White matter microstructural perturbations after total sleep deprivation in depression. Front Psychiatry 2023; 14:1195763. [PMID: 37457774 PMCID: PMC10345348 DOI: 10.3389/fpsyt.2023.1195763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Total sleep deprivation (TSD) transiently reverses depressive symptoms in a majority of patients with depression. How TSD modulates diffusion tensor imaging (DTI) measures of white matter (WM) microstructure, which may be linked with TSD's rapid antidepressant effects, remains uncharacterized. Methods Patients with depression (N = 48, mean age = 33, 26 women) completed diffusion-weighted imaging and Hamilton Depression Rating (HDRS) and rumination scales before and after >24 h of TSD. Healthy controls (HC) (N = 53, 23 women) completed the same assessments at baseline, and after receiving TSD in a subset of HCs (N = 15). Tract based spatial statistics (TBSS) investigated voxelwise changes in fractional anisotropy (FA) across major WM pathways pre-to-post TSD in patients and HCs and between patients and HCs at baseline. Post hoc analyses tested for TSD effects for other diffusion metrics, and the relationships between change in diffusion measures with change in mood and rumination symptoms. Results Significant improvements in mood and rumination occurred in patients with depression (both p < 0.001), but not in HCs following TSD. Patients showed significant (p < 0.05, corrected) decreases in FA values in multiple WM tracts, including the body of the corpus callosum and anterior corona radiata post-TSD. Significant voxel-level changes in FA were not observed in HCs who received TSD (p > 0.05). However, differential effects of TSD between HCs and patients were found in the superior corona radiata, frontal WM and the posterior thalamic radiation (p < 0.05, corrected). A significant (p < 0.05) association between change in FA and axial diffusivity within the right superior corona radiata and improvement in rumination was found post-TSD in patients. Conclusion Total sleep deprivation leads to rapid microstructural changes in WM pathways in patients with depression that are distinct from WM changes associated with TSD observed in HCs. WM tracts including the superior corona radiata and posterior thalamic radiation could be potential biomarkers of the rapid therapeutic effects of TSD. Changes in superior corona radiata FA, in particular, may relate to improvements in maladaptive rumination.
Collapse
Affiliation(s)
- Brandon Taraku
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Artemis Zavaliangos-Petropulu
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joana R. Loureiro
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noor B. Al-Sharif
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Antoni Kubicki
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantanu H. Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger P. Woods
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashish K. Sahib
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
71
|
Wu D, Li X. Graph propagation network captures individual specificity of the relationship between functional and structural connectivity. Hum Brain Mapp 2023; 44:3885-3896. [PMID: 37186004 PMCID: PMC10203799 DOI: 10.1002/hbm.26320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Functional connectivity (FC) network characterizes the functional interactions between brain regions and is considered to root in the underlying structural connectivity (SC) network. If this is the case, individual variations in SC should cause corresponding individual variations in FC. However, divergences exist in the correspondence between direct SC and FC and researchers still cannot capture individual differences in FC via direct SC. As brain regions may interact through multi-hop indirect SC pathways, we conceived that one can capture the individual specific SC-FC relationship via incorporating indirect SC pathways appropriately. In this study, we designed graph propagation network (GPN) that models the information propagation between brain regions based on the SC network. Effects of interactions through multi-hop SC pathways naturally emerge from the multilayer information propagation in GPN. We predicted the individual differences in FC network based on SC network via multilayer GPN and results indicate that multilayer GPN incorporating effects of multi-hop indirect SCs greatly enhances the ability to predict individual FC network. Furthermore, the SC-FC relationship evaluated via the prediction accuracy is negatively correlated with the functional gradient, suggesting that the SC-FC relationship gradually uncouples along the functional hierarchy spanning from unimodal to transmodal cortex. We also revealed important intermediate brain regions along multi-hop SC pathways involving in the individual SC-FC relationship. These results suggest that multilayer GPN can serve as a method to establish individual SC-FC relationship at the macroneuroimaging level.
Collapse
Affiliation(s)
- Dongya Wu
- School of Information Science and TechnologyNorthwest UniversityXi'anChina
| | - Xin Li
- School of MathematicsNorthwest UniversityXi'anChina
| |
Collapse
|
72
|
Garcia-Ramos C, Adluru N, Chu DY, Nair V, Adluru A, Nencka A, Maganti R, Mathis J, Conant LL, Alexander AL, Prabhakaran V, Binder JR, Meyerand ME, Hermann B, Struck AF. Multi-shell connectome DWI-based graph theory measures for the prediction of temporal lobe epilepsy and cognition. Cereb Cortex 2023; 33:8056-8065. [PMID: 37067514 PMCID: PMC10267614 DOI: 10.1093/cercor/bhad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE.
Collapse
Affiliation(s)
- Camille Garcia-Ramos
- Department of Neurology, University of Wisconsin-Madison, Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI 53705-2281, United States
| | - Nagesh Adluru
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, United States
| | - Daniel Y Chu
- Department of Neurology, University of Wisconsin-Madison, Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI 53705-2281, United States
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States
| | - Veena Nair
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States
| | - Anusha Adluru
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States
| | - Andrew Nencka
- Department of Radiology, Medical College of Wisconsin, 9200 W. Wisconsin Ave. Milwaukee, WI 53226, United States
| | - Rama Maganti
- Department of Neurology, University of Wisconsin-Madison, Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI 53705-2281, United States
| | - Jedidiah Mathis
- Department of Neurology, Medical College of Wisconsin, 9200 W. Wisconsin Ave. Milwaukee, WI 53226, United States
| | - Lisa L Conant
- Department of Neurology, Medical College of Wisconsin, 9200 W. Wisconsin Ave. Milwaukee, WI 53226, United States
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, United States
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Rm 1005, Madison, WI 53705-2275, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, 9200 W. Wisconsin Ave. Milwaukee, WI 53226, United States
| | - Mary E Meyerand
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Rm 1005, Madison, WI 53705-2275, United States
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI 53705-2281, United States
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI 53705-2281, United States
- William S. Middleton VA Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States
| |
Collapse
|
73
|
Tro' R, Roascio M, Arnulfo G, Tortora D, Severino M, Rossi A, Napolitano A, Fato MM. Influence of adaptive denoising on Diffusion Kurtosis Imaging at 3T and 7T. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 234:107508. [PMID: 37018885 DOI: 10.1016/j.cmpb.2023.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Choosing the most appropriate denoising method to improve the quality of diagnostic images maximally is key in pre-processing of diffusion MRI images. Recent advancements in acquisition and reconstruction techniques have questioned traditional noise estimation methods favoring adaptive denoising frameworks, circumventing the need to know a priori information that is hardly available in a clinical setting. In this observational study, we compared two innovative adaptive techniques sharing some features, Patch2Self and Nlsam, through application on reference adult data at 3T and 7T. The primary aim was identifying the most effective method in case of Diffusion Kurtosis Imaging (DKI) data - particularly susceptible to noise and signal fluctuations - at 3T and 7T fields. A side goal consisted of investigating the dependence of kurtosis metrics' variability with respect to the magnetic field on the adopted denoising methodology. METHODS For comparison purposes, we focused on qualitative and quantitative analysis of DKI data and related microstructural maps before and after applying the two denoising approaches. Specifically, we assessed computational efficiency, preservation of anatomical details via perceptual metrics, consistency of microstructure model fitting, alleviation of degeneracies in model estimation, and joint variability with varying field strength and denoising method. RESULTS Accounting for all these factors, Patch2Self framework has turned out to be specifically suitable for DKI data, with improving performance at 7T. Nlsam method is more robust in alleviating degenerate black voxels while introducing some blurring, which in turn is reflected in an overall loss of image sharpness. Regarding the impact of denoising on field-dependent variability, both methods have been shown to make variations from standard to Ultra-High Field more concordant with theoretical evidence, claiming that kurtosis metrics are sensitive to susceptibility-induced background gradients, directly proportional to the magnetic field strength and sensitive to the microscopic distribution of iron and myelin. CONCLUSIONS This study serves as a proof-of-concept stressing the need for an accurate choice of a denoising methodology, specifically tailored for the data under analysis and allowing higher spatial resolution acquisition within clinically compatible timings, with all the potential benefits that improving suboptimal quality of diagnostic images entails.
Collapse
Affiliation(s)
- Rosella Tro'
- Department of Informatics, Bioengineering Robotics and System Engineering (DIBRIS), University of Genoa, Via all'Opera Pia, 13, Genoa 16145, Italy; RAISE Ecosystem, Genova, Italy.
| | - Monica Roascio
- Department of Informatics, Bioengineering Robotics and System Engineering (DIBRIS), University of Genoa, Via all'Opera Pia, 13, Genoa 16145, Italy; RAISE Ecosystem, Genova, Italy
| | - Gabriele Arnulfo
- Department of Informatics, Bioengineering Robotics and System Engineering (DIBRIS), University of Genoa, Via all'Opera Pia, 13, Genoa 16145, Italy; Neuroscience Center Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; RAISE Ecosystem, Genova, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Marco M Fato
- Department of Informatics, Bioengineering Robotics and System Engineering (DIBRIS), University of Genoa, Via all'Opera Pia, 13, Genoa 16145, Italy; RAISE Ecosystem, Genova, Italy
| |
Collapse
|
74
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
75
|
Li Z, Fan Q, Bilgic B, Wang G, Wu W, Polimeni JR, Miller KL, Huang SY, Tian Q. Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat). Med Image Anal 2023; 86:102744. [PMID: 36867912 PMCID: PMC10517382 DOI: 10.1016/j.media.2023.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Diffusion MRI is a useful neuroimaging tool for non-invasive mapping of human brain microstructure and structural connections. The analysis of diffusion MRI data often requires brain segmentation, including volumetric segmentation and cerebral cortical surfaces, from additional high-resolution T1-weighted (T1w) anatomical MRI data, which may be unacquired, corrupted by subject motion or hardware failure, or cannot be accurately co-registered to the diffusion data that are not corrected for susceptibility-induced geometric distortion. To address these challenges, this study proposes to synthesize high-quality T1w anatomical images directly from diffusion data using convolutional neural networks (CNNs) (entitled "DeepAnat"), including a U-Net and a hybrid generative adversarial network (GAN), and perform brain segmentation on synthesized T1w images or assist the co-registration using synthesized T1w images. The quantitative and systematic evaluations using data of 60 young subjects provided by the Human Connectome Project (HCP) show that the synthesized T1w images and results for brain segmentation and comprehensive diffusion analysis tasks are highly similar to those from native T1w data. The brain segmentation accuracy is slightly higher for the U-Net than the GAN. The efficacy of DeepAnat is further validated on a larger dataset of 300 more elderly subjects provided by the UK Biobank. Moreover, the U-Nets trained and validated on the HCP and UK Biobank data are shown to be highly generalizable to the diffusion data from Massachusetts General Hospital Connectome Diffusion Microstructure Dataset (MGH CDMD) acquired with different hardware systems and imaging protocols and therefore can be used directly without retraining or with fine-tuning for further improved performance. Finally, it is quantitatively demonstrated that the alignment between native T1w images and diffusion images uncorrected for geometric distortion assisted by synthesized T1w images substantially improves upon that by directly co-registering the diffusion and T1w images using the data of 20 subjects from MGH CDMD. In summary, our study demonstrates the benefits and practical feasibility of DeepAnat for assisting various diffusion MRI data analyses and supports its use in neuroscientific applications.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Biomedical Engineering, Tsinghua University, Beijing, China; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Guangzhi Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Qiyuan Tian
- Department of Biomedical Engineering, Tsinghua University, Beijing, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
76
|
Kanakaraj P, Cai LY, Rheault F, Yehe FC, Rogers BP, Schilling KG, Landman BA. Mapping the impact of nonlinear gradient fields with noise on diffusion MRI. Magn Reson Imaging 2023; 98:124-131. [PMID: 36632947 PMCID: PMC10275501 DOI: 10.1016/j.mri.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
In diffusion MRI, gradient nonlinearities cause spatial variations in the magnitude and direction of diffusion gradients. Studies have shown artifacts from these distortions can results in biased diffusion tensor information and tractography. Here, we investigate the impact of gradient nonlinearity correction in the presence of noise. We introduced empirically derived gradient nonlinear fields at different signal-to-noise ratio (SNR) levels in two experiments: tensor field simulation and simulation of the brain. For each experiment, this work compares two techniques empirically: voxel-wise gradient table correction and approximate correction by scaling the signal directly. The impact was assessed through diffusion metrics including mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and principal eigen vector (V1). The study shows (1) the correction of gradient nonlinearities will not lead to substantively incorrect estimation of diffusion metrics in a linear system, (2) gradient nonlinearity correction does not interact adversely with noise, (3) nonlinearity correction suppresses the impact of nonlinearities in typical SNR data, (4) for SNR below 30, the performance of both the gradient nonlinearity correction techniques were similar, and (5) larger impacts are seen in regions where the gradient nonlinearities are distinct. Thus, this study suggests that there were greater beneficial effects than adverse effects due to the correction of nonlinearities. Additionally, correction of nonlinearities is recommended when region of interests are in areas with pronounced nonlinearities.
Collapse
Affiliation(s)
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Francois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Fang-Cheng Yehe
- Department of Neurological Surgery, University of Pittsburg, School of Medicine, Pittsburg, PA, USA.
| | - Baxter P Rogers
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Kurt G Schilling
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA.
| |
Collapse
|
77
|
Schmithorst V, Ceschin R, Lee V, Wallace J, Sahel A, Chenevert TL, Parmar H, Berman JI, Vossough A, Qiu D, Kadom N, Grant PE, Gagoski B, LaViolette PS, Maheshwari M, Sleeper LA, Bellinger DC, Ilardi D, O’Neil S, Miller TA, Detterich J, Hill KD, Atz AM, Richmond ME, Cnota J, Mahle WT, Ghanayem NS, Gaynor JW, Goldberg CS, Newburger JW, Panigrahy A. Single Ventricle Reconstruction III: Brain Connectome and Neurodevelopmental Outcomes: Design, Recruitment, and Technical Challenges of a Multicenter, Observational Neuroimaging Study. Diagnostics (Basel) 2023; 13:1604. [PMID: 37174995 PMCID: PMC10178603 DOI: 10.3390/diagnostics13091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with hypoplastic left heart syndrome who have been palliated with the Fontan procedure are at risk for adverse neurodevelopmental outcomes, lower quality of life, and reduced employability. We describe the methods (including quality assurance and quality control protocols) and challenges of a multi-center observational ancillary study, SVRIII (Single Ventricle Reconstruction Trial) Brain Connectome. Our original goal was to obtain advanced neuroimaging (Diffusion Tensor Imaging and Resting-BOLD) in 140 SVR III participants and 100 healthy controls for brain connectome analyses. Linear regression and mediation statistical methods will be used to analyze associations of brain connectome measures with neurocognitive measures and clinical risk factors. Initial recruitment challenges occurred that were related to difficulties with: (1) coordinating brain MRI for participants already undergoing extensive testing in the parent study, and (2) recruiting healthy control subjects. The COVID-19 pandemic negatively affected enrollment late in the study. Enrollment challenges were addressed by: (1) adding additional study sites, (2) increasing the frequency of meetings with site coordinators, and (3) developing additional healthy control recruitment strategies, including using research registries and advertising the study to community-based groups. Technical challenges that emerged early in the study were related to the acquisition, harmonization, and transfer of neuroimages. These hurdles were successfully overcome with protocol modifications and frequent site visits that involved human and synthetic phantoms.
Collapse
Affiliation(s)
- Vanessa Schmithorst
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Floor 2, Pittsburgh, PA 15224, USA
| | - Rafael Ceschin
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Floor 2, Pittsburgh, PA 15224, USA
- Department of Biomedical Informatics, University of Pittsburgh School, 5607 Baum Blvd., Pittsburgh, PA 15206, USA
| | - Vincent Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Floor 2, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Floor 2, Pittsburgh, PA 15224, USA
| | - Aurelia Sahel
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Floor 2, Pittsburgh, PA 15224, USA
| | - Thomas L. Chenevert
- Michigan Medicine Department of Radiology, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Hemant Parmar
- Michigan Medicine Department of Radiology, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Jeffrey I. Berman
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Patricia Ellen Grant
- Children’s Hospital Boston, Fetal-Neonatal Neuroimaging and Developmental Science Center (FNNDSC), 300 Longwood Avenue, Boston, MA 02115, USA
| | - Borjan Gagoski
- Department of Radiology, Children’s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Peter S. LaViolette
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Mohit Maheshwari
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Lynn A. Sleeper
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - David C. Bellinger
- Cardiac Neurodevelopmental Program, Department of Neurology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dawn Ilardi
- Department of Neuropsychology, Children’s Healthcare of Atlanta, 1400 Tullie Road NE, Atlanta, GA 30329, USA
| | - Sharon O’Neil
- Children’s Hospital Los Angeles, Neuropsychology Core of the Saban Research Institute, 4661 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Thomas A. Miller
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Jon Detterich
- Division of Pediatric Cardiology, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Kevin D. Hill
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, 7506 Hospital North, DUMC Box 3090, Durham, NC 27710, USA
| | - Andrew M. Atz
- Division of Pediatric Cardiology, Medical University of South Carolina, 96 Jonathan Lucas St. Ste. 601, MSC 617, Charleston, SC 29425, USA
| | - Marc E. Richmond
- Program for Pediatric Cardiomyopathy, Heart Failure, and Transplantation, New York-Presbyterian Morgan Stanley Children’s Hospital, 3959 Broadway MSCH North, 2nd Floor, New York, NY 10032, USA
| | - James Cnota
- Fetal Heart Program, Cincinnati Children’s, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - William T. Mahle
- Division of Pediatric Cardiology, Children’s Healthcare of Atlanta, 1400 Tullie Rd NE Suite 630, Atlanta, GA 30329, USA
| | - Nancy S. Ghanayem
- Section of Pediatric Critical Care, Department of Pediatrics, Comer Children’s Hospital, University of Chicago Medicine, 5721 S. Maryland Avenue, Chicago, IL 60637, USA
- Department of Pediatrics, Medical College of Wisconsin Section of Pediatric Critical Care, 9000 W. Wisconsin Avenue MS 681, Milwaukee, WI 53226, USA
| | - J. William Gaynor
- Heart Failure and Transplant Program, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Caren S. Goldberg
- Department of Pediatrics, Division of Cardiology, C.S. Mott Children’s Hospital, 1540 E Hospital Dr #4204, Ann Arbor, MI 48109, USA
| | - Jane W. Newburger
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Floor 2, Pittsburgh, PA 15224, USA
| |
Collapse
|
78
|
Elmalem MS, Moody H, Ruffle JK, de Schotten MT, Haggard P, Diehl B, Nachev P, Jha A. A framework for focal and connectomic mapping of transiently disrupted brain function. Commun Biol 2023; 6:430. [PMID: 37076578 PMCID: PMC10115870 DOI: 10.1038/s42003-023-04787-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
The distributed nature of the neural substrate, and the difficulty of establishing necessity from correlative data, combine to render the mapping of brain function a far harder task than it seems. Methods capable of combining connective anatomical information with focal disruption of function are needed to disambiguate local from global neural dependence, and critical from merely coincidental activity. Here we present a comprehensive framework for focal and connective spatial inference based on sparse disruptive data, and demonstrate its application in the context of transient direct electrical stimulation of the human medial frontal wall during the pre-surgical evaluation of patients with focal epilepsy. Our framework formalizes voxel-wise mass-univariate inference on sparsely sampled data within the statistical parametric mapping framework, encompassing the analysis of distributed maps defined by any criterion of connectivity. Applied to the medial frontal wall, this transient dysconnectome approach reveals marked discrepancies between local and distributed associations of major categories of motor and sensory behaviour, revealing differentiation by remote connectivity to which purely local analysis is blind. Our framework enables disruptive mapping of the human brain based on sparsely sampled data with minimal spatial assumptions, good statistical efficiency, flexible model formulation, and explicit comparison of local and distributed effects.
Collapse
Affiliation(s)
- Michael S Elmalem
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Hanna Moody
- UCL Queen Square Institute of Neurology, London, UK
| | - James K Ruffle
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénérative, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Parashkev Nachev
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| | - Ashwani Jha
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
79
|
Lin H, Figini M, D'Arco F, Ogbole G, Tanno R, Blumberg SB, Ronan L, Brown BJ, Carmichael DW, Lagunju I, Cross JH, Fernandez-Reyes D, Alexander DC. Low-field magnetic resonance image enhancement via stochastic image quality transfer. Med Image Anal 2023; 87:102807. [PMID: 37120992 DOI: 10.1016/j.media.2023.102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023]
Abstract
Low-field (<1T) magnetic resonance imaging (MRI) scanners remain in widespread use in low- and middle-income countries (LMICs) and are commonly used for some applications in higher income countries e.g. for small child patients with obesity, claustrophobia, implants, or tattoos. However, low-field MR images commonly have lower resolution and poorer contrast than images from high field (1.5T, 3T, and above). Here, we present Image Quality Transfer (IQT) to enhance low-field structural MRI by estimating from a low-field image the image we would have obtained from the same subject at high field. Our approach uses (i) a stochastic low-field image simulator as the forward model to capture uncertainty and variation in the contrast of low-field images corresponding to a particular high-field image, and (ii) an anisotropic U-Net variant specifically designed for the IQT inverse problem. We evaluate the proposed algorithm both in simulation and using multi-contrast (T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR)) clinical low-field MRI data from an LMIC hospital. We show the efficacy of IQT in improving contrast and resolution of low-field MR images. We demonstrate that IQT-enhanced images have potential for enhancing visualisation of anatomical structures and pathological lesions of clinical relevance from the perspective of radiologists. IQT is proved to have capability of boosting the diagnostic value of low-field MRI, especially in low-resource settings.
Collapse
Affiliation(s)
- Hongxiang Lin
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, Zhejiang, China; Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom.
| | - Matteo Figini
- Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
| | - Godwin Ogbole
- Department of Radiology, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | | | - Stefano B Blumberg
- Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom; Centre for Artificial Intelligence, University College London, London WC1E 6BT, United Kingdom
| | - Lisa Ronan
- Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| | - Biobele J Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - David W Carmichael
- School of Biomedical Engineering & Imaging Sciences, King's College London, London NW3 3ES, United Kingdom; UCL Great Ormond Street Institute of Child Health, London WC1N 3JH, United Kingdom
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Judith Helen Cross
- UCL Great Ormond Street Institute of Child Health, London WC1N 3JH, United Kingdom
| | - Delmiro Fernandez-Reyes
- Department of Computer Science, University College London, London WC1E 6BT, United Kingdom; Department of Paediatrics, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom; Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
80
|
Schmithorst V, Ceschin R, Lee V, Wallace J, Sahel A, Chenevert T, Parmar H, Berman JI, Vossough A, Qiu D, Kadom N, Grant PE, Gagoski B, LaViolette P, Maheshwari M, Sleeper LA, Bellinger D, Ilardi D, O’Neil S, Miller TA, Detterich J, Hill KD, Atz AM, Richmond M, Cnota J, Mahle WT, Ghanayem N, Gaynor W, Goldberg CS, Newburger JW, Panigrahy A. Single Ventricle Reconstruction III: Brain Connectome and Neurodevelopmental Outcomes: Design, Recruitment, and Technical Challenges of a Multicenter, Observational Neuroimaging Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.12.23288433. [PMID: 37131744 PMCID: PMC10153324 DOI: 10.1101/2023.04.12.23288433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patients with hypoplastic left heart syndrome who have been palliated with the Fontan procedure are at risk for adverse neurodevelopmental outcomes, lower quality of life, and reduced employability. We describe the methods (including quality assurance and quality control protocols) and challenges of a multi-center observational ancillary study, SVRIII (Single Ventricle Reconstruction Trial) Brain Connectome. Our original goal was to obtain advanced neuroimaging (Diffusion Tensor Imaging and Resting-BOLD) in 140 SVR III participants and 100 healthy controls for brain connectome analyses. Linear regression and mediation statistical methods will be used to analyze associations of brain connectome measures with neurocognitive measures and clinical risk factors. Initial recruitment challenges occurred related to difficulties with: 1) coordinating brain MRI for participants already undergoing extensive testing in the parent study, and 2) recruiting healthy control subjects. The COVID-19 pandemic negatively affected enrollment late in the study. Enrollment challenges were addressed by 1) adding additional study sites, 2) increasing the frequency of meetings with site coordinators and 3) developing additional healthy control recruitment strategies, including using research registries and advertising the study to community-based groups. Technical challenges that emerged early in the study were related to the acquisition, harmonization, and transfer of neuroimages. These hurdles were successfully overcome with protocol modifications and frequent site visits that involved human and synthetic phantoms. Trial registration number ClinicalTrials.gov Registration Number: NCT02692443.
Collapse
Affiliation(s)
- Vanessa Schmithorst
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave, Floor 2, Pittsburgh, PA 15224 USA
| | - Rafael Ceschin
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave, Floor 2, Pittsburgh, PA 15224 USA
- Department of Biomedical Informatics, University of Pittsburgh School, 5607 Baum Blvd, Pittsburgh, PA 15206-3701 USA
| | - Vince Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave, Floor 2, Pittsburgh, PA 15224 USA
| | - Julia Wallace
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave, Floor 2, Pittsburgh, PA 15224 USA
| | - Aurelia Sahel
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave, Floor 2, Pittsburgh, PA 15224 USA
| | - Thomas Chenevert
- Department of Radiology, Michigan Medicine, University of Michigan, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Hemant Parmar
- Department of Radiology, Michigan Medicine, University of Michigan, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Jeffrey I. Berman
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta, Emory University, 1364 Clifton Rd, Atlanta, GA 30322 USA
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta, Emory University, 1364 Clifton Rd, Atlanta, GA 30322 USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Children’s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Borjan Gagoski
- Department of Radiology, Children’s Hospital Boston, 300 Longwood Ave, Boston, MA 02115 USA
| | - Peter LaViolette
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA
| | - Mohit Maheshwari
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA
| | - Lynn A. Sleeper
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| | - David Bellinger
- Cardiac Neurodevelopmental Program, Department of Neurology, Boston, Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Dawn Ilardi
- Department of Neuropsychology, Children’s Healthcare of Atlanta, 1400 Tullie Road NE, Atlanta, GA 30329
| | - Sharon O’Neil
- Neuropsychology Core of the Saban Research Institute, Children’s Hospital Los Angeles, 4661 Sunset Blvd., Los Angeles, CA 90027 USA
| | - Thomas A. Miller
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, School of Medicine, 30 N 1900 E, Salt Lake City, UT 84132 USA
| | - Jon Detterich
- Division of Pediatric Cardiology, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027 USA
| | - Kevin D. Hill
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University, School of Medicine, 7506 Hospital North, DUMC Box 3090, Durham, NC 27710 USA
| | - Andrew M. Atz
- Division of Pediatric Cardiology, Medical University of South Carolina, 96 Jonathan Lucas St. Ste. 601, MSC 617, Charleston, SC 29425 USA
| | - Marc Richmond
- Program for Pediatric Cardiomyopathy, Heart Failure, and Transplantation, New York-Presbyterian Morgan Stanley Children’s Hospital, 3959 Broadway MSCH North, 2 Floor, New York, NY 10032 USA
| | - James Cnota
- Fetal Heart Program, Cincinnati Children’s, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026 USA
| | - William T. Mahle
- Division of Pediatric Cardiology, Children’s Healthcare of Atlanta, 1400 Tullie Rd NE Suite 630, Atlanta, GA 30329
| | - Nancy Ghanayem
- Section of Pediatric Critical Care, Department of Pediatrics, University of Chicago Medicine, Comer Children’s Hospital, 5721 S. Maryland Ave., Chicago, IL 60637 USA
- Section of Pediatric Critical Care, Department of Pediatrics, Medical College of Wisconsin, 9000 W. Wisconsin Ave. MS 681, Milwaukee, WI 53226 USA
| | - William Gaynor
- Heart Failure and Transplant Program, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104 USA
| | - Caren S. Goldberg
- Department of Pediatrics, Division of Cardiology, C.S. Mott Children’s Hospital, 1540 E Hospital Dr #4204, Ann Arbor, MI 48109 USA
| | - Jane W. Newburger
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave, Floor 2, Pittsburgh, PA 15224 USA
| |
Collapse
|
81
|
McGowan AL, Sayed F, Boyd ZM, Jovanova M, Kang Y, Speer ME, Cosme D, Mucha PJ, Ochsner KN, Bassett DS, Falk EB, Lydon-Staley DM. Dense Sampling Approaches for Psychiatry Research: Combining Scanners and Smartphones. Biol Psychiatry 2023; 93:681-689. [PMID: 36797176 PMCID: PMC10038886 DOI: 10.1016/j.biopsych.2022.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Together, data from brain scanners and smartphones have sufficient coverage of biology, psychology, and environment to articulate between-person differences in the interplay within and across biological, psychological, and environmental systems thought to underlie psychopathology. An important next step is to develop frameworks that combine these two modalities in ways that leverage their coverage across layers of human experience to have maximum impact on our understanding and treatment of psychopathology. We review literature published in the last 3 years highlighting how scanners and smartphones have been combined to date, outline and discuss the strengths and weaknesses of existing approaches, and sketch a network science framework heretofore underrepresented in work combining scanners and smartphones that can push forward our understanding of health and disease.
Collapse
Affiliation(s)
- Amanda L McGowan
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Farah Sayed
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zachary M Boyd
- Department of Mathematics, Brigham Young University, Provo, Utah
| | - Mia Jovanova
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yoona Kang
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan E Speer
- Department of Psychology, Columbia University, New York, New York
| | - Danielle Cosme
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, New York, New York
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Santa Fe Institute, Santa Fe, New Mexico
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania; Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania; Operations, Information and Decisions, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Lydon-Staley
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
82
|
Lynch KM, Cabeen RP, Toga AW. Spatiotemporal patterns of cortical microstructural maturation in children and adolescents with diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.534636. [PMID: 37034810 PMCID: PMC10081273 DOI: 10.1101/2023.03.31.534636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neocortical maturation is a dynamic process that proceeds in a hierarchical manner; however, the spatiotemporal organization of cortical microstructure with diffusion MRI has yet to be fully defined. This study characterized cortical microstructural maturation using diffusion MRI (fwe-DTI and NODDI multi-compartment modeling) in a cohort of 637 children and adolescents between 8 and 21 years of age. We found spatially heterogeneous developmental patterns broadly demarcated into functional domains where NODDI metrics increased and fwe-DTI metrics decreased with age. Using non-negative matrix factorization, we found cortical regions that correspond to lower-order sensory regions mature earlier than higher-order association regions. Our findings corroborate previous histological and neuroimaging studies that show spatially-varying patterns of cortical maturation that may reflect unique developmental processes of cytoarchitectonically-determined regional patterns of change.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
83
|
Wang AR, Kuijper FM, Barbosa DAN, Hagan KE, Lee E, Tong E, Choi EY, McNab JA, Bohon C, Halpern CH. Human habit neural circuitry may be perturbed in eating disorders. Sci Transl Med 2023; 15:eabo4919. [PMID: 36989377 DOI: 10.1126/scitranslmed.abo4919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023]
Abstract
Circuit-based mechanisms mediating the development and execution of habitual behaviors involve complex cortical-striatal interactions that have been investigated in animal models and more recently in humans. However, how human brain circuits implicated in habit formation may be perturbed in psychiatric disorders remains unclear. First, we identified the locations of the sensorimotor putamen and associative caudate in the human brain using probabilistic tractography from Human Connectome Project data. We found that multivariate connectivity of the sensorimotor putamen was altered in humans with binge eating disorder and bulimia nervosa and that the degree of alteration correlated with severity of disordered eating behavior. Furthermore, the extent of this circuit aberration correlated with mean diffusivity in the sensorimotor putamen and decreased basal dopamine D2/3 receptor binding potential in the striatum, consistent with previously reported microstructural changes and dopamine signaling mediating habit learning in animal models. Our findings suggest a neural circuit that links habit learning and binge eating behavior in humans, which could, in part, explain the treatment-resistant behavior common to eating disorders and other psychiatric conditions.
Collapse
Affiliation(s)
- Allan R Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Université Paris Cité, Paris 75006, France
- Assistance Publique des Hôpitaux de Paris, Paris 75012, France
| | - Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, Richards Medical Research Laboratories, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey E Hagan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, Richards Medical Research Laboratories, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
84
|
Cabeen RP, Toga AW, Allman JM. Mapping frontoinsular cortex from diffusion microstructure. Cereb Cortex 2023; 33:2715-2733. [PMID: 35753692 PMCID: PMC10016069 DOI: 10.1093/cercor/bhac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited. We delineated FI by jointly modeling cortical surface geometry and its coincident diffusion microstructure parameters. We found that neurite orientation dispersion in cortical gray matter can be used to map FI in specific individuals, and the derived measures reflect a range of behavioral factors in young adults from the Human Connectome Project (N=1052). FI volume was larger in the left hemisphere than the right (31%), and the percentage volume of FI was larger in women than men (15.3%). FI volume was associated with measures of decision-making (delay discounting, substance abuse), emotion (negative intrusive thinking and perception of hostility), and social behavior (theory of mind and working memory for faces). The common denominator is that larger FI size is related to greater self-control and social awareness.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
85
|
Gruen J, Groeschel S, Schultz T. Spatially regularized low-rank tensor approximation for accurate and fast tractography. Neuroimage 2023; 271:120004. [PMID: 36898487 DOI: 10.1016/j.neuroimage.2023.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tractography based on diffusion Magnetic Resonance Imaging (dMRI) is the prevalent approach to the in vivo delineation of white matter tracts in the human brain. Many tractography methods rely on models of multiple fiber compartments, but the local dMRI information is not always sufficient to reliably estimate the directions of secondary fibers. Therefore, we introduce two novel approaches that use spatial regularization to make multi-fiber tractography more stable. Both represent the fiber Orientation Distribution Function (fODF) as a symmetric fourth-order tensor, and recover multiple fiber orientations via low-rank approximation. Our first approach computes a joint approximation over suitably weighted local neighborhoods with an efficient alternating optimization. The second approach integrates the low-rank approximation into a current state-of-the-art tractography algorithm based on the unscented Kalman filter (UKF). These methods were applied in three different scenarios. First, we demonstrate that they improve tractography even in high-quality data from the Human Connectome Project, and that they maintain useful results with a small fraction of the measurements. Second, on the 2015 ISMRM tractography challenge, they increase overlap, while reducing overreach, compared to low-rank approximation without joint optimization or the traditional UKF, respectively. Finally, our methods permit a more comprehensive reconstruction of tracts surrounding a tumor in a clinical dataset. Overall, both approaches improve reconstruction quality. At the same time, our modified UKF significantly reduces the computational effort compared to its traditional counterpart, and to our joint approximation. However, when used with ROI-based seeding, joint approximation more fully recovers fiber spread.
Collapse
Affiliation(s)
- Johannes Gruen
- Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany; Bonn-Aachen International Center for Information Technology, University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn, 53115, Germany
| | - Samuel Groeschel
- Experimental Pediatric Neuroimaging and Department of Pediatric Neurology & Developmental Medicine, University Children's Hospital, Hoppe-Seyler-Straße 1, Tuebingen, 72076, Germany
| | - Thomas Schultz
- Bonn-Aachen International Center for Information Technology, University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn, 53115, Germany; Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany.
| |
Collapse
|
86
|
Litwińczuk MC, Muhlert N, Trujillo-Barreto N, Woollams A. Using graph theory as a common language to combine neural structure and function in models of healthy cognitive performance. Hum Brain Mapp 2023; 44:3007-3022. [PMID: 36880608 PMCID: PMC10171528 DOI: 10.1002/hbm.26258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Graph theory has been used in cognitive neuroscience to understand how organisational properties of structural and functional brain networks relate to cognitive function. Graph theory may bridge the gap in integration of structural and functional connectivity by introducing common measures of network characteristics. However, the explanatory and predictive value of combined structural and functional graph theory have not been investigated in modelling of cognitive performance of healthy adults. In this work, a Principal Component Regression approach with embedded Step-Wise Regression was used to fit multiple regression models of Executive Function, Self-regulation, Language, Encoding and Sequence Processing with a collection of 20 different graph theoretic measures of structural and functional network organisation used as regressors. The predictive ability of graph theory-based models was compared to that of connectivity-based models. The present work shows that using combinations of graph theory metrics to predict cognition in healthy populations does not produce a consistent benefit relative to making predictions based on structural and functional connectivity values directly.
Collapse
Affiliation(s)
- Marta Czime Litwińczuk
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Nelson Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Anna Woollams
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| |
Collapse
|
87
|
Robinson EA, Gleeson J, Arun AH, Clemente A, Gaillard A, Rossetti MG, Brambilla P, Bellani M, Crisanti C, Curran HV, Lorenzetti V. Measuring white matter microstructure in 1,457 cannabis users and 1,441 controls: A systematic review of diffusion-weighted MRI studies. FRONTIERS IN NEUROIMAGING 2023; 2:1129587. [PMID: 37554654 PMCID: PMC10406316 DOI: 10.3389/fnimg.2023.1129587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Cannabis is the most widely used regulated substance by youth and adults. Cannabis use has been associated with psychosocial problems, which have been partly ascribed to neurobiological changes. Emerging evidence to date from diffusion-MRI studies shows that cannabis users compared to controls show poorer integrity of white matter fibre tracts, which structurally connect distinct brain regions to facilitate neural communication. However, the most recent evidence from diffusion-MRI studies thus far has yet to be integrated. Therefore, it is unclear if white matter differences in cannabis users are evident consistently in selected locations, in specific diffusion-MRI metrics, and whether these differences in metrics are associated with cannabis exposure levels. METHODS We systematically reviewed the results from diffusion-MRI imaging studies that compared white matter differences between cannabis users and controls. We also examined the associations between cannabis exposure and other behavioral variables due to changes in white matter. Our review was pre-registered in PROSPERO (ID: 258250; https://www.crd.york.ac.uk/prospero/). RESULTS We identified 30 diffusion-MRI studies including 1,457 cannabis users and 1,441 controls aged 16-to-45 years. All but 6 studies reported group differences in white matter integrity. The most consistent differences between cannabis users and controls were lower fractional anisotropy within the arcuate/superior longitudinal fasciculus (7 studies), and lower fractional anisotropy of the corpus callosum (6 studies) as well as higher mean diffusivity and trace (4 studies). Differences in fractional anisotropy were associated with cannabis use onset (4 studies), especially in the corpus callosum (3 studies). DISCUSSION The mechanisms underscoring white matter differences are unclear, and they may include effects of cannabis use onset during youth, neurotoxic effects or neuro adaptations from regular exposure to tetrahydrocannabinol (THC), which exerts its effects by binding to brain receptors, or a neurobiological vulnerability predating the onset of cannabis use. Future multimodal neuroimaging studies, including recently developed advanced diffusion-MRI metrics, can be used to track cannabis users over time and to define with precision when and which region of the brain the white matter changes commence in youth cannabis users, and whether cessation of use recovers white matter differences. SYSTEMATIC REVIEW REGISTRATION www.crd.york.ac.uk/prospero/, identifier: 258250.
Collapse
Affiliation(s)
- Emily Anne Robinson
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - John Gleeson
- Digital Innovation in Mental Health and Well-Being Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Arush Honnedevasthana Arun
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Camilla Crisanti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - H. Valerie Curran
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Clinical Psychopharmacology Unit, University College London, London, United Kingdom
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
88
|
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111:1391-1401.e5. [PMID: 36889313 DOI: 10.1016/j.neuron.2023.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Maciej Jedynak
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Olivier David
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Sina Mansour
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
89
|
Lv J, Zeng R, Ho MP, D'Souza A, Calamante F. Building a tissue-unbiased brain template of fiber orientation distribution and tractography with multimodal registration. Magn Reson Med 2023; 89:1207-1220. [PMID: 36299169 PMCID: PMC10952616 DOI: 10.1002/mrm.29496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Brain templates provide an essential standard space for statistical analysis of brain structure and function. Despite recent advances, diffusion MRI still lacks a template of fiber orientation distribution (FOD) and tractography that is unbiased for both white and gray matter. Therefore, we aim to build up a set of such templates for better white-matter analysis and joint structural and functional analysis. METHODS We have developed a multimodal registration method to leverage the complementary information captured by T1 -weighted, T2 -weighted, and diffusion MRI, so that a coherent transformation is generated to register FODs into a common space and average them into a template. Consequently, the anatomically constrained fiber-tracking method was applied to the FOD template to generate a tractography template. Fiber-centered functional connectivity analysis was then performed as an example of the benefits of such an unbiased template. RESULTS Our FOD template preserves fine structural details in white matter and also, importantly, clear folding patterns in the cortex and good contrast in the subcortex. Quantitatively, our templates show better individual-template agreement at the whole-brain scale and segmentation scale. The tractography template aligns well with the gray matter, which led to fiber-centered functional connectivity showing high cross-group consistency. CONCLUSION We have proposed a novel methodology for building a tissue-unbiased FOD and anatomically constrained tractography template based on multimodal registration. Our templates provide a standard space and statistical platform for not only white-matter analysis but also joint structural and functional analysis, therefore filling an important gap in multimodal neuroimage analysis.
Collapse
Affiliation(s)
- Jinglei Lv
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Rui Zeng
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Mai Phuong Ho
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
| | - Arkiev D'Souza
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Translational Research Collective, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Fernando Calamante
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney ImagingThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
90
|
Pouwels PJW, Vriend C, Liu F, de Joode NT, Otaduy MCG, Pastorello B, Robertson FC, Venkatasubramanian G, Ipser J, Lee S, Batistuzzo MC, Hoexter MQ, Lochner C, Miguel EC, Narayanaswamy JC, Rao R, Janardhan Reddy YC, Shavitt RG, Sheshachala K, Stein DJ, van Balkom AJLM, Wall M, Simpson HB, van den Heuvel OA. Global multi-center and multi-modal magnetic resonance imaging study of obsessive-compulsive disorder: Harmonization and monitoring of protocols in healthy volunteers and phantoms. Int J Methods Psychiatr Res 2023; 32:e1931. [PMID: 35971639 PMCID: PMC9976605 DOI: 10.1002/mpr.1931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES We describe the harmonized MRI acquisition and quality assessment of an ongoing global OCD study, with the aim to translate representative, well-powered neuroimaging findings in neuropsychiatric research to worldwide populations. METHODS We report on T1-weighted structural MRI, resting-state functional MRI, and multi-shell diffusion-weighted imaging of 140 healthy participants (28 per site), two traveling controls, and regular phantom scans. RESULTS Human image quality measures (IQMs) and outcome measures showed smaller within-site variation than between-site variation. Outcome measures were less variable than IQMs, especially for the traveling controls. Phantom IQMs were stable regarding geometry, SNR, and mean diffusivity, while fMRI fluctuation was more variable between sites. CONCLUSIONS Variation in IQMs persists, even for an a priori harmonized data acquisition protocol, but after pre-processing they have less of an impact on the outcome measures. Continuous monitoring IQMs per site is valuable to detect potential artifacts and outliers. The inclusion of both cases and healthy participants at each site remains mandatory.
Collapse
Affiliation(s)
- Petra J. W. Pouwels
- Department of Radiology and Nuclear MedicineAmsterdam UMCVrije Universiteit AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Chris Vriend
- Department of PsychiatryDepartment of Anatomy and NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Feng Liu
- Columbia University Irving Medical CenterColumbia UniversityNew York State Psychiatric InstituteNew YorkNYUSA
| | - Niels T. de Joode
- Department of PsychiatryDepartment of Anatomy and NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Maria C. G. Otaduy
- Department of RadiologyLIM44, InstituteHospital Das Clinicas‐HCFMUSPUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Bruno Pastorello
- Department of RadiologyLIM44, InstituteHospital Das Clinicas‐HCFMUSPUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Frances C. Robertson
- Cape Universities Body Imaging CentreUniversity of Cape TownCape TownSouth Africa
| | | | - Jonathan Ipser
- Department of PsychiatrySAMRC Unit on Risk & Resilience in Mental DisordersNeuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Seonjoo Lee
- Columbia University Irving Medical CenterColumbia UniversityNew York State Psychiatric InstituteNew YorkNYUSA
| | - Marcelo C. Batistuzzo
- Obsessive‐Compulsive Spectrum Disorders ProgramDepartmento de Psiquiatria da Faculdade de MedicinaLIM23Hospital Das Clinicas HCFMUSPUniversidade de São PauloSao PauloSPBrazil
- Department of Methods and Techniques in PsychologyPontifical Catholic UniversitySao PauloSPBrazil
| | - Marcelo Q. Hoexter
- Obsessive‐Compulsive Spectrum Disorders ProgramDepartmento de Psiquiatria da Faculdade de MedicinaLIM23Hospital Das Clinicas HCFMUSPUniversidade de São PauloSao PauloSPBrazil
| | - Christine Lochner
- Department of PsychiatrySAMRC Unit on Risk & Resilience in Mental DisordersStellenbosch UniversityCape TownSouth Africa
| | - Euripedes C. Miguel
- Obsessive‐Compulsive Spectrum Disorders ProgramDepartmento de Psiquiatria da Faculdade de MedicinaLIM23Hospital Das Clinicas HCFMUSPUniversidade de São PauloSao PauloSPBrazil
| | | | - Rashmi Rao
- National Institute of Mental Health & Neurosciences (NIMHANS)BangaloreIndia
| | | | - Roseli G. Shavitt
- Obsessive‐Compulsive Spectrum Disorders ProgramDepartmento de Psiquiatria da Faculdade de MedicinaLIM23Hospital Das Clinicas HCFMUSPUniversidade de São PauloSao PauloSPBrazil
| | | | - Dan J. Stein
- Department of PsychiatrySAMRC Unit on Risk & Resilience in Mental DisordersNeuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Anton J. L. M. van Balkom
- Department of PsychiatryAmsterdam UMCVrije UniversiteitAmsterdam Public Health Research InstituteSpecialised Mental Health CareAmsterdamThe Netherlands
| | - Melanie Wall
- Columbia University Irving Medical CenterColumbia UniversityNew York State Psychiatric InstituteNew YorkNYUSA
| | - Helen Blair Simpson
- Columbia University Irving Medical CenterColumbia UniversityNew York State Psychiatric InstituteNew YorkNYUSA
| | - Odile A. van den Heuvel
- Department of PsychiatryDepartment of Anatomy and NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
91
|
Jitsuishi T, Yamaguchi A. Characteristic cortico-cortical connection profile of human precuneus revealed by probabilistic tractography. Sci Rep 2023; 13:1936. [PMID: 36732604 PMCID: PMC9895448 DOI: 10.1038/s41598-023-29251-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
It is generally hypothesized that functional connectivity (FC) reflects the underlying structural connectivity (SC). The precuneus is associated with highly integrated cognitive functions. However, our understanding of the structural connections that could underlie them is limited. This study aimed to characterize the cortico-cortical connections by probabilistic tractography. The precuneus corresponds to the five cortical areas (7Am, PCV, 7Pm, 7m, POS2) on the HCP MMP atlas. We first conducted the atlas-based probabilistic tractography. The anterior part (7Am) was strongly connected to the sensorimotor region. The dorsal part (7Am, 7Pm) was highly connected with the adjacent parietal and temporal cortex, while the ventral part (PCV, 7m) showed strong connections with the adjacent posterior cingulate and medial prefrontal cortex. The most posterior part (POS2) was explicitly connected to the visual cortex. In addition, there was a correlation between SC and resting-state fMRI connectivity (Spearman's rank correlation coefficient = 0.322 ± 0.019, p < 0.05 corrected at subject level). Collectively, the current study revealed the characteristic connectional profile of precuneus, which could shed light on the structural heterogeneity for the future functional analyses.
Collapse
Affiliation(s)
- Tatsuya Jitsuishi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Yamaguchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
92
|
Kanakaraj P, Rheault F, Cai LY, Newlin N, Yeh FC, Rogers BP, Schilling KG, Landman BA. Mapping the Impact of Approximate Gradient Nonlinearity Fields Correction on Tractography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:1246427. [PMID: 37621418 PMCID: PMC10448744 DOI: 10.1117/12.2653884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nonlinear gradients impact diffusion weighted MRI by introducing spatial variation in estimated diffusion tensors. Recent studies have shown that increasing signal-to-noise ratios and the use of ultra-strong gradients may lead to clinically significant impacts on analyses due to these nonlinear gradients in microstructural measures. These effects can potentially bias tractography results and cause misinterpretation of data. Herein, we characterize the impact of an "approximate" gradient nonlinearity correction technique in tractography using empirically derived gradient nonlinear fields. This technique scales the diffusion signal by the change in magnitude due to the gradient nonlinearities, without concomitant correction of gradient direction errors. The impact of this correction on tractography is assessed through white matter bundle segmentation and connectomics via bundle-wise volume, fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, primary eigenvector, and length; as well as the modularity, global efficiency, and characteristic path length connectomics graph measures. We investigate the differences between (1) these measures directly and (2) the within session variability of these measures before and after approximate correction in 61 subjects from the MASiVar pediatric reproducibility dataset. We find approximate correction results is little to no differences on the population level, but large differences on the subject-specific level for both the measures directly and their within session variability. Thus, this study suggests though approximate correction of gradient nonlinearities may not change tractography findings on the population level, subject-specific interpretations may exhibit large fluctuations. A limitation is the lack of comparison with the empirical voxel-wise gradient table correction.
Collapse
Affiliation(s)
| | - Francois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nancy Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburg, School of Medicine, Pittsburg, PA, USA
| | - Baxter P Rogers
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA
| |
Collapse
|
93
|
Bruce HA, Kochunov P, Kvarta MD, Goldwaser EL, Chiappelli J, Schwartz A, Lightner S, Endres J, Yuen A, Ma Y, Van der Vaart A, Hatch KS, Gao S, Ye Z, Wu Q, Chen S, Mitchell BD, Hong LE. Frontal white matter association with sleep quality and the role of stress. J Sleep Res 2023; 32:e13669. [PMID: 35698853 PMCID: PMC9748025 DOI: 10.1111/jsr.13669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
Abstract
An important measure of brain health is the integrity of white matter connectivity structures that link brain regions. Studies have found an association between poorer sleep quality and decreased white matter integrity. Stress is among the strongest predictors of sleep quality. This study aimed to evaluate the association between sleep quality and white matter and to test if the relationship persisted after accounting for stress. White matter microstructures were measured by diffusion tensor imaging in a population of Old Order Amish/Mennonite (N = 240). Sleep quality was determined by the Pittsburgh Sleep Quality Index. Current stress levels were measured by the perceived stress scale. Exposure to lifetime stress was measured by the lifetime stressor inventory. Microstructures of four white matter tracts: left and right anterior limbs of internal capsule, left anterior corona radiata, and genu of corpus callosum were significantly correlated with sleep quality (all p ≤ 0.001). The current stress level was a significant predictor of sleep quality (p ≤ 0.001) while lifetime stress was not. PSQI remained significantly associated with white matter integrity in these frontal tracts (all p < 0.01) after accounting for current stress and lifetime stress, while current and lifetime stress were not significant predictors of white matter in any of the four models. Sleep quality did not have any substantial mediation role between stress and white matter integrity. Sleep quality was significantly associated with several frontal white matter tracts that connect brain structures important for sleep regulation regardless of current or past stress levels.
Collapse
Affiliation(s)
- Heather A Bruce
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Mark D Kvarta
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Eric L Goldwaser
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Adina Schwartz
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Samantha Lightner
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jane Endres
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexa Yuen
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yizhou Ma
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Andrew Van der Vaart
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Kathryn S Hatch
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Si Gao
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Zhenyao Ye
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Qiong Wu
- University of Maryland, College Park, Maryland, USA
| | - Shuo Chen
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
94
|
Avecillas-Chasin JM, Levinson S, Kuhn T, Omidbeigi M, Langevin JP, Pouratian N, Bari A. Connectivity-based parcellation of the amygdala and identification of its main white matter connections. Sci Rep 2023; 13:1305. [PMID: 36693904 PMCID: PMC9873600 DOI: 10.1038/s41598-023-28100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The amygdala plays a role in emotion, learning, and memory and has been implicated in behavioral disorders. Better understanding of the amygdala circuitry is crucial to develop new therapies for these disorders. We used data from 200 healthy-subjects from the human connectome project. Using probabilistic tractography, we created population statistical maps of amygdala connectivity to brain regions involved in limbic, associative, memory, and reward circuits. Based on the amygdala connectivity with these regions, we applied k-means clustering to parcellate the amygdala into three clusters. The resultant clusters were averaged across all subjects and the main white-matter pathways of the amygdala from each averaged cluster were generated. Amygdala parcellation into three clusters showed a medial-to-lateral pattern. The medial cluster corresponded with the centromedial and cortical nuclei, the basal cluster with the basal nuclei and the lateral cluster with the lateral nuclei. The connectivity analysis revealed different white-matter pathways consistent with the anatomy of the amygdala circuit. This in vivo connectivity-based parcellation of the amygdala delineates three clusters of the amygdala in a mediolateral pattern based on its connectivity with brain areas involved in cognition, memory, emotion, and reward. The human amygdala circuit presented in this work provides the first step for personalized amygdala circuit mapping for patients with behavioral disorders.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Department of Neurosurgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, 68198-8437, USA. .,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Simon Levinson
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Mahmoud Omidbeigi
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neurosurgery Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
95
|
Levinson S, Miller M, Iftekhar A, Justo M, Arriola D, Wei W, Hazany S, Avecillas-Chasin JM, Kuhn TP, Horn A, Bari AA. A structural connectivity atlas of limbic brainstem nuclei. FRONTIERS IN NEUROIMAGING 2023; 1:1009399. [PMID: 37555163 PMCID: PMC10406319 DOI: 10.3389/fnimg.2022.1009399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Background Understanding the structural connectivity of key brainstem nuclei with limbic cortical regions is essential to the development of therapeutic neuromodulation for depression, chronic pain, addiction, anxiety and movement disorders. Several brainstem nuclei have been identified as the primary central nervous system (CNS) source of important monoaminergic ascending fibers including the noradrenergic locus coeruleus, serotonergic dorsal raphe nucleus, and dopaminergic ventral tegmental area. However, due to practical challenges to their study, there is limited data regarding their in vivo anatomic connectivity in humans. Objective To evaluate the structural connectivity of the following brainstem nuclei with limbic cortical areas: locus coeruleus, ventral tegmental area, periaqueductal grey, dorsal raphe nucleus, and nucleus tractus solitarius. Additionally, to develop a group average atlas of these limbic brainstem structures to facilitate future analyses. Methods Each nucleus was manually masked from 197 Human Connectome Project (HCP) structural MRI images using FSL software. Probabilistic tractography was performed using FSL's FMRIB Diffusion Toolbox. Connectivity with limbic cortical regions was calculated and compared between brainstem nuclei. Results were aggregated to produce a freely available MNI structural atlas of limbic brainstem structures. Results A general trend was observed for a high probability of connectivity to the amygdala, hippocampus and DLPFC with relatively lower connectivity to the orbitofrontal cortex, NAc, hippocampus and insula. The locus coeruleus and nucleus tractus solitarius demonstrated significantly greater connectivity to the DLPFC than amygdala while the periaqueductal grey, dorsal raphe nucleus, and ventral tegmental area did not demonstrate a significant difference between these two structures. Conclusion Monoaminergic and other modulatory nuclei in the brainstem project widely to cortical limbic regions. We describe the structural connectivity across the several key brainstem nuclei theorized to influence emotion, reward, and cognitive functions. An increased understanding of the anatomic basis of the brainstem's role in emotion and other reward-related processing will support targeted neuromodulatary therapies aimed at alleviating the symptoms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Simon Levinson
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Department of Neurosurgery, Stanford University, Palo Alto CA, United States
| | - Michelle Miller
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Ahmed Iftekhar
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Monica Justo
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Arriola
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Wenxin Wei
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | | | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin, Germany
- Department of Neurology, Center for Brain Circuit Therapeutics, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
- Massachusetts General Hospital Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ausaf A. Bari
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
96
|
Talaei N, Ghaderi A. Integration of structural brain networks is related to openness to experience: A diffusion MRI study with CSD-based tractography. Front Neurosci 2022; 16:1040799. [PMID: 36570828 PMCID: PMC9775296 DOI: 10.3389/fnins.2022.1040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Openness to experience is one of the big five traits of personality which recently has been the subject of several studies in neuroscience due to its importance in understanding various cognitive functions. However, the neural basis of openness to experience is still unclear. Previous studies have found largely heterogeneous results, suggesting that various brain regions may be involved in openness to experience. Here we suggested that performing structural connectome analysis may shed light on the neural underpinnings of openness to experience as it provides a more comprehensive look at the brain regions that are involved in this trait. Hence, we investigated the involvement of brain network structural features in openness to experience which has not yet been explored to date. The magnetic resonance imaging (MRI) data along with the openness to experience trait score from the self-reported NEO Five-Factor Inventory of 100 healthy subjects were evaluated from Human Connectome Project (HCP). CSD-based whole-brain probabilistic tractography was performed using diffusion-weighted images as well as segmented T1-weighted images to create an adjacency matrix for each subject. Using graph theoretical analysis, we computed global efficiency (GE) and clustering coefficient (CC) which are measures of two important aspects of network organization in the brain: functional integration and functional segregation respectively. Results revealed a significant negative correlation between GE and openness to experience which means that the higher capacity of the brain in combining information from different regions may be related to lower openness to experience.
Collapse
Affiliation(s)
- Nima Talaei
- Department of Psychology, Faculty of Literature and Human Sciences, Shahid Bahonar University, Kerman, Iran,*Correspondence: Nima Talaei,
| | - Amirhossein Ghaderi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Psychology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
97
|
Shah HA, Mehta NH, Saleem MI, D’Amico RS. Connecting the connectome: A bibliometric investigation of the 50 most cited articles. Clin Neurol Neurosurg 2022; 223:107481. [DOI: 10.1016/j.clineuro.2022.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
98
|
Ali TS, Lv J, Calamante F. Gradual changes in microarchitectural properties of cortex and juxtacortical white matter: Observed by anatomical and diffusion MRI. Magn Reson Med 2022; 88:2485-2503. [PMID: 36045582 DOI: 10.1002/mrm.29413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Characterization of cerebral cortex is challenged by the complexity and heterogeneity of its cyto- and myeloarchitecture. This study evaluates quantitative MRI metrics, measured across two cortical depths and in subcortical white matter (WM) adjacent to cortex (juxtacortical WM), indicative of myelin content, neurite density, and diffusion microenvironment, for a comprehensive characterization of cortical microarchitecture. METHODS High-quality structural and diffusion MRI data (N = 30) from the Human Connectome Project were processed to compute myelin index, neurite density index, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from superficial cortex, deep cortex, and juxtacortical WM. The distributional patterns of these metrics were analyzed individually, correlated to one another, and were compared to established parcellations. RESULTS Our results supported that myeloarchitectonic and the coexisting cytoarchitectonic structures influence the diffusion properties of water molecules residing in cortex. Full cortical thickness showed myelination patterns similar to those previously observed in humans. Higher myelin indices with similar distributional patterns were observed in deep cortex whereas lower myelin indices were observed in superficial cortex. Neurite density index and other diffusion MRI derived parameters provided complementary information to myelination. Reliable and reproducible correlations were identified among the cortical microarchitectural properties and fiber distributional patterns in proximal WM structures. CONCLUSION We demonstrated gradual changes across the cortical sheath by assessing depth-specific cortical micro-architecture using anatomical and diffusion MRI. Mutually independent but coexisting features of cortical layers and juxtacortical WM provided new insights towards structural organizational units and variabilities across cortical regions and through depth.
Collapse
Affiliation(s)
- Tonima S Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| |
Collapse
|
99
|
Del Mauro G, Del Maschio N, Abutalebi J. The relationship between reading abilities and the left occipitotemporal sulcus: A dual perspective study. BRAIN AND LANGUAGE 2022; 235:105189. [PMID: 36260960 DOI: 10.1016/j.bandl.2022.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Reading activates a region within the left lateral occipitotemporal sulcus (OTS) known as the 'visual word form area' (VWFA). While several studies have investigated the impact of reading on brain structure through neuroplastic mechanisms, it has been recently suggested that individual differences in the pattern of the posterior OTS may predict reading skills in adults. In the present study, we first examined whether the structure and morphology and the anatomical connectivity of the left OTS are associated to reading ability. Second, we explored whether reading skills are predicted by the pattern of the left OTS. We found that reading skills were positively associated with increased connectivity between the left OTS and a network of reading-related regions in the left hemisphere. On the other hand, we did not observe an association between the pattern of the left OTS and reading skills. Finally, we found evidence that the morphology and the connectivity of the left OTS are correlated to its sulcal pattern.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy; TheArctic University of Norway, Tromsø, Norway.
| |
Collapse
|
100
|
DACO: Distortion/artefact correction for diffusion MRI data. Neuroimage 2022; 262:119571. [PMID: 35985619 DOI: 10.1016/j.neuroimage.2022.119571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023] Open
Abstract
In this paper, we propose a registration-based algorithm to correct various distortions or artefacts (DACO) commonly observed in diffusion-weighted (DW) magnetic resonance images (MRI). The registration in DACO is accomplished by means of a pseudo b0 image, which is synthesized from the anatomical images such as T1-weighted image or T2-weighted image, and a pseudo diffusion MRI (dMRI) data, which is derived from the Gaussian model of diffusion tensor imaging (DTI) or the Hermite model of mean apparent propagator (MAP)-MRI. DACO corrects (1) the susceptibility-induced distortions and (2) the misalignment between the dMRI data and anatomical images by registering the real b0 image to the pseudo b0 image, and corrects (3) the eddy current-induced distortions and (4) the head motions by registering each image in the real dMRI data to the corresponding image in the pseudo dMRI data. DACO estimates the models of artefacts simultaneously in an iterative and interleaved manner. The mathematical formulation of the models and the estimation procedures are detailed in this paper. Using the human connectome project (HCP) data the evaluation shows that DACO could estimate the model parameters accurately. Furthermore, the evaluation conducted on the real human data acquired from clinical MRI scanners reveals that the method could reduce the artefacts effectively. The DACO method leverages the anatomical image, which is routinely acquired in clinical practice, to correct the artefacts, omitting the additional acquisitions needed to conduct the algorithm. Therefore, our method should be beneficial to most dMRI data, particularly to those acquired without field maps or reverse phase-encoding images.
Collapse
|