51
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
52
|
Mamelak M. Nightmares and the Cannabinoids. Curr Neuropharmacol 2020; 18:754-768. [PMID: 31934840 PMCID: PMC7536831 DOI: 10.2174/1570159x18666200114142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 01/11/2020] [Indexed: 11/22/2022] Open
Abstract
The cannabinoids, Δ9 tetrahydrocannabinol and its analogue, nabilone, have been found to reliably attenuate the intensity and frequency of post-traumatic nightmares. This essay examines how a traumatic event is captured in the mind, after just a single exposure, and repeatedly replicated during the nights that follow. The adaptive neurophysiological, endocrine and inflammatory changes that are triggered by the trauma and that alter personality and behavior are surveyed. These adaptive changes, once established, can be difficult to reverse. But cannabinoids, uniquely, have been shown to interfere with all of these post-traumatic somatic adaptations. While cannabinoids can suppress nightmares and other symptoms of post-traumatic stress disorder, they are not a cure. There may be no cure. The cannabinoids may best be employed, alone, but more likely in conjunction with other agents, in the immediate aftermath of a trauma to mitigate or even abort the metabolic changes which are set in motion by the trauma and which may permanently alter the reactivity of the nervous system. Steps in this direction have already been taken.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, University of Toronto, Baycrest Hospital, Permanent Address: 19 Tumbleweed Road, Toronto, OntarioM2J 2N2, Canada
| |
Collapse
|
53
|
Hauer D, Toth R, Schelling G. Endocannabinoids, “New-Old” Mediators of Stress Homeostasis. STRESS CHALLENGES AND IMMUNITY IN SPACE 2020:181-204. [DOI: 10.1007/978-3-030-16996-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
54
|
Herzberg MP, Gunnar MR. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. Neuroimage 2019; 209:116493. [PMID: 31884055 DOI: 10.1016/j.neuroimage.2019.116493] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Investigating the developmental sequelae of early life stress has provided researchers the opportunity to examine adaptive responses to extreme environments. A large body of work has established mechanisms by which the stressful experiences of childhood poverty, maltreatment, and institutional care can impact the brain and the distributed stress systems of the body. These mechanisms are reviewed briefly to lay the foundation upon which the current neuroimaging literature has been built. More recently, developmental cognitive neuroscientists have identified a number of the effects of early adversity, including differential behavior and brain function. Among the most consistent of these findings are differences in the processing of emotion and reward-related information. The neural correlates of emotion processing, particularly frontolimbic functional connectivity, have been well studied in early life stress samples with results indicating accelerated maturation following early adversity. Reward processing has received less attention, but here the evidence suggests a deficit in reward sensitivity. It is as yet unknown whether the accelerated maturation of emotion-regulation circuits comes at the cost of delayed development in other systems, most notably the reward system. This review addresses the early life stress neuroimaging literature that has investigated emotion and reward processing, identifying important next steps in the study of brain function following adversity.
Collapse
Affiliation(s)
- Max P Herzberg
- Institute of Child Development, University of Minnesota, USA.
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota, USA
| |
Collapse
|
55
|
Abstract
As an increasing number of states legalize cannabis use for recreational and/or medical purposes, it is increasingly important to understand the neural and cognitive consequences of recreational cannabis use in adolescent consumers. Adolescence is marked by ongoing neuromaturational processes, making this a particularly vulnerable period, particularly regarding exposure to drugs, including cannabis. This review highlights evidence from studies documenting the neural impact of cannabis use in adolescence and explores mediating factors related to cannabis use.
Collapse
Affiliation(s)
- Yasmin Mashhoon
- Department of Psychiatry, Harvard Medical School, 2 West, Room 305, 401 Park Drive, Boston, MA 02215, USA; Behavioral Psychopharmacology Research Laboratory, McLean Imaging Center, Mclean Hospital, 115 Mill Street, Mailstop 204, Belmont, MA 02478, USA
| | - Kelly A Sagar
- Department of Psychiatry, Harvard Medical School, 2 West, Room 305, 401 Park Drive, Boston, MA 02215, USA; Cognitive and Clinical Neuroimaging Core, McLean Hospital, McLean Imaging Center, 115 Mill Street, Mailstop 204, Belmont, MA 02478, USA; Marijuana Investigations for Neuroscientific Discovery, McLean Hospital, McLean Imaging Center, 115 Mill Street, Mailstop 204, Belmont, MA 02478, USA
| | - Staci A Gruber
- Department of Psychiatry, Harvard Medical School, 2 West, Room 305, 401 Park Drive, Boston, MA 02215, USA; Cognitive and Clinical Neuroimaging Core, McLean Hospital, McLean Imaging Center, 115 Mill Street, Mailstop 204, Belmont, MA 02478, USA; Marijuana Investigations for Neuroscientific Discovery, McLean Hospital, McLean Imaging Center, 115 Mill Street, Mailstop 204, Belmont, MA 02478, USA.
| |
Collapse
|
56
|
Burggren AC, Shirazi A, Ginder N, London ED. Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:563-579. [PMID: 31365275 PMCID: PMC7027431 DOI: 10.1080/00952990.2019.1634086] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Background: Cannabis is the most widely used illicit substance worldwide, and legalization for recreational and medical purposes has substantially increased its availability and use in the United States.Objectives: Decades of research have suggested that recreational cannabis use confers risk for cognitive impairment across various domains, and structural and functional differences in the brain have been linked to early and heavy cannabis use.Methods: With substantial evidence for the role of the endocannabinoid system in neural development and understanding that brain development continues into early adulthood, the rising use of cannabis in adolescents and young adults raises major concerns. Yet some formulations of cannabinoid compounds are FDA-approved for medical uses, including applications in children.Results: Potential effects on the trajectory of brain morphology and cognition, therefore, should be considered. The goal of this review is to update and consolidate relevant findings in order to inform attitudes and public policy regarding the recreational and medical use of cannabis and cannabinoid compounds.Conclusions: The findings point to considerations for age limits and guidelines for use.
Collapse
Affiliation(s)
- Alison C Burggren
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
| | - Anaheed Shirazi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Ginder
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
57
|
Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol 2019; 54:100774. [PMID: 31348932 DOI: 10.1016/j.yfrne.2019.100774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/22/2022]
Abstract
Stress-related psychiatric conditions are one of the main causes of disability in developed countries. They account for a large portion of resource investment in stress-related disorders, become chronic, and remain difficult to treat. Research on the neurobehavioral effects of stress reveals how changes in certain brain areas, mediated by a number of neurochemical messengers, markedly alter behavior. The cerebellum is connected with stress-related brain areas and expresses the machinery required to process stress-related neurochemical mediators. Surprisingly, it is not regarded as a substrate of stress-related behavioral alterations, despite numerous studies that show cerebellar responsivity to stress. Therefore, this review compiles those studies and proposes a hypothesis for cerebellar function in stressful conditions, relating it to stress-induced psychopathologies. It aims to provide a clearer picture of stress-related neural circuitry and stimulate cerebellum-stress research. Consequently, it might contribute to the development of improved treatment strategies for stress-related disorders.
Collapse
|
58
|
Endocannabinoids, stress signaling, and the locus coeruleus-norepinephrine system. Neurobiol Stress 2019; 11:100176. [PMID: 31236436 PMCID: PMC6582240 DOI: 10.1016/j.ynstr.2019.100176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
The endocannabinoid (eCB) system has been implicated in a variety of physiological functions due to abundant expression of its receptors and endogenous ligands in the central nervous system. Substantial progress has been made in understanding how the eCB system influences the brain norepinephrine (NE) system, an important neurochemical target in the continued development of new therapies for stress-induced psychiatric disorders. We, and others, have characterized the neuroanatomical, biochemical and pharmacological effects of cannabinoid receptor modulation on brain noradrenergic circuitry and defined how molecular elements of the eCB system are positioned to directly impact the locus coeruleus (LC)-prefrontal cortex pathway, a neural circuit well recognized for contributing to symptoms of hyperarousal, a key pathophysiological feature of stress-related disorders. We also described molecular and electrophysiological properties of LC noradrenergic neurons and NE release in the medial prefrontal cortex under conditions of cannabinoid type 1 receptor deletion. Finally, we identified how stress influences cannabinoid modulation of the coeruleo-cortical pathway. A number of significant findings emerged from these studies that will be summarized in the present review and have important implications for clinical studies targeting the eCB system in the treatment of stress-induced psychiatric disorders.
Collapse
|
59
|
Harris BN, Hohman ZP, Campbell CM, King KS, Tucker CA. FAAH genotype, CRFR1 genotype, and cortisol interact to predict anxiety in an aging, rural Hispanic population: A Project FRONTIER study. Neurobiol Stress 2019; 10:100154. [PMID: 30949563 PMCID: PMC6430712 DOI: 10.1016/j.ynstr.2019.100154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/21/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
The neurophysiological underpinnings involved in susceptibility to and maintenance of anxiety are not entirely known. However, two stress-responsive systems, the hypothalamic-pituitary-adrenal axis and the endocannabinoid system, may interact in anxiety. Here, we examine the relationship between FAAH genotype, CRFR1 genotype, baseline cortisol, and state anxiety in a rural adult population using data from Project FRONTIER. We predicted that FAAH A (AA and AC vs CC; rs324420) and three CRFR1 SNP minor alleles (rs7209436 C→ T [minor allele]; rs110402, G → A [minor]; and rs242924 G→ T [minor]), would interact to predict low baseline cortisol and low state anxiety scores. We found partial support for our prediction. In CRFR1 minor carriers, the FAAH AA or AC (vs. CC) genotype was associated with higher cortisol and with lower anxiety. In CRFR1 non-minors, those with FAAH AA or AC (vs. CC) showed decreased cortisol and higher anxiety. These results suggest that FAAH CC genotype only conveys risk for anxiety in individuals who are also carriers of the CRFR1 minor combination. FAAH genotype was significantly associated with baseline cortisol but was not independently associated with anxiety. Contrary to our predictions, baseline cortisol was negatively associated with anxiety. Lastly, we did not find any independent relationships between any of our SNPs and baseline cortisol or anxiety. These data suggest FAAH and cortisol interact to predict state anxiety, but that the relationship depends on CRFR1 genotype. The Project FRONTIER dataset is supported by Texas Tech University Health Sciences Center Garrison Institute on Aging.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Zachary P Hohman
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Callie M Campbell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kaleb S King
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Cody A Tucker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
60
|
Tarragon E, Moreno JJ. Role of Endocannabinoids on Sweet Taste Perception, Food Preference, and Obesity-related Disorders. Chem Senses 2019; 43:3-16. [PMID: 29293950 DOI: 10.1093/chemse/bjx062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity and obesity-related disorders such as type 2 diabetes (T2D) and metabolic syndrome has increased significantly in the past decades, reaching epidemic levels and therefore becoming a major health issue worldwide. Chronic overeating of highly palatable foods is one of the main responsible aspects behind overweight. Food choice is driven by food preference, which is influenced by environmental and internal factors, from availability to rewarding properties of food. Consequently, the acquisition of a dietary habit that may lead to metabolic alterations is the result of a learning process in which many variables take place. From genetics to socioeconomic status, the response to food and how this food affects energy metabolism is heavily influenced, even before birth. In this work, we review how food preference is acquired and established, particularly as regards sweet taste; towards which flavors and tastes we are positively predisposed by our genetic background, our early experience, further lifestyle, and our surroundings; and, especially, the role that the endocannabinoid system (ECS) plays in all of this. Ultimately, we try to summarize why this system is relevant for health purposes and how this is linked to important aspects of eating behavior, as its function as a modulator of energy homeostasis affects, and is affected by, physiological responses directly associated with obesity.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Germany
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| |
Collapse
|
61
|
Loprinzi PD, Frith E. Protective and therapeutic effects of exercise on stress-induced memory impairment. J Physiol Sci 2019; 69:1-12. [PMID: 30203315 PMCID: PMC10717705 DOI: 10.1007/s12576-018-0638-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The objective of this paper was to systematically evaluate the potential preventive and therapeutic effects of exercise in attenuating stress-induced memory impairment. A systematic review was employed, searching PubMed, PsychInfo, Sports Discus and Google Scholar databases. For eligibility, studies had to be published in English, employ an experimental design, have the acute or chronic bout of exercise occur prior to, during or after the stressor, implement a psychophysiological stressor, and have an assessment of memory function occurring after the stressor. In total, 23 studies were evaluated, all of which were conducted among animal models. All 23 studies employed a chronic exercise protocol and a chronic stress protocol. Eight studies evaluated a preventive model, three employed a concurrent model, ten studies employed a therapeutic model, and two studies evaluated both a preventive and therapeutic model within the same study. Among the eight studies employing a preventive model, all eight demonstrated that the stress regimen impaired memory function. In all eight of these studies, when exercise occurred prior to the stressor, exercise attenuated the stress-induced memory impairment effect. Among the ten studies employing a therapeutic model, one study showed that the stress protocol enhanced memory function, one showed that the stress protocol did not influence memory, and eight demonstrated that the stress regimen impaired memory function. Among the eight studies showing that the stress protocol impaired memory function, all eight studies demonstrated that exercise, after the stressor, attenuated stress-induced memory impairment. Within animal models, chronic stress is associated with memory impairment and chronic exercise has both a preventive and therapeutic effect in attenuating stress-induced memory impairment. Additional experimental work in human studies is needed. Such work should also examine acute exercise and stress protocols.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, 229 Turner Center, University, MS, 38677, USA.
| | - Emily Frith
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, 229 Turner Center, University, MS, 38677, USA
| |
Collapse
|
62
|
Stampanoni Bassi M, Gilio L, Maffei P, Dolcetti E, Bruno A, Buttari F, Centonze D, Iezzi E. Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Front Mol Neurosci 2018; 11:424. [PMID: 30515077 PMCID: PMC6256035 DOI: 10.3389/fnmol.2018.00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) has been recently recognized as a prominent promoter of the emotional homeostasis, mediating the effects of different environmental signals including rewarding and stressing stimuli. The ECS modulates the rewarding effects of environmental stimuli, influencing synaptic transmission in the dopaminergic projections to the limbic system, and mediates the neurophysiological and behavioral consequences of stress. Notably, the individual psychosocial context is another key element modulating the activity of the ECS. Finally, inflammation represents an additional factor that could alter the cannabinoid signaling in the CNS inducing a "sickness behavior," characterized by anxiety, anhedonia, and depressive symptoms. The complex influences of the ECS on both the environmental and internal stimuli processing, make the cannabinoid-based drugs an appealing option to treat different psychiatric conditions. Although ample experimental evidence shows beneficial effects of ECS modulation on mood, scarce clinical indication limits the use of cannabis-based treatments. To better define the possible clinical indications of cannabinoid-based drugs in psychiatry, a number of issues should be better addressed, including genetic variability and psychosocial factors possibly affecting the individual response. In particular, better knowledge of the multifaceted effects of cannabinoids could help to understand how to boost their therapeutic use in anxiety and depression treatment.
Collapse
Affiliation(s)
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Pierpaolo Maffei
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Ettore Dolcetti
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
63
|
Schwendt M, Shallcross J, Hadad NA, Namba MD, Hiller H, Wu L, Krause EG, Knackstedt LA. A novel rat model of comorbid PTSD and addiction reveals intersections between stress susceptibility and enhanced cocaine seeking with a role for mGlu5 receptors. Transl Psychiatry 2018; 8:209. [PMID: 30291225 PMCID: PMC6173705 DOI: 10.1038/s41398-018-0265-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
PTSD is highly comorbid with cocaine use disorder (CUD), and cocaine users with PTSD + CUD are more resistant to treatment. Here we sought to develop a rat model of PTSD + CUD in order to identify the neurobiological changes underlying such comorbidity and screen potential medications for reducing cocaine seeking in the PTSD population. We utilized a predator scent stress model of PTSD, wherein rats received a single exposure to the fox pheromone 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). One week after TMT exposure, stress-susceptible (susceptible), intermediate, and resilient phenotypes were detected and were consistent with behavioral, corticosterone, and gene expression profiles 3 weeks post TMT. We assessed phenotypic differences in cocaine self-administration, extinction, and cue-primed reinstatement. Susceptible rats exhibited deficits in extinction learning and increased cue-primed reinstatement that was not prevented by Ceftriaxone, an antibiotic that consistently attenuates the reinstatement of cocaine seeking. TMT-exposed resilient rats displayed increased mGlu5 gene expression in the amygdala and medial prefrontal cortex and did not display the enhanced cocaine seeking observed in susceptible rats. Combined treatment with the mGlu5 positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1 H-pyrazol-5-yl)benzamide (CDPPB), fear extinction, and ceftriaxone prevented the reinstatement of cocaine seeking in susceptible rats with fear extinction an important mediating condition. These results highlight the need for animal models of PTSD to consider stress-responsivity, as only a subset of trauma-exposed individuals develop PTSD and these individuals likely exhibit distinct neurobiological changes compared with trauma-exposed populations who are resilient to stress. This work further identifies glutamate homeostasis and mGlu5 as a target for treating relapse in comorbid PTSD-cocaine addiction.
Collapse
Affiliation(s)
- Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA. .,Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
| | - John Shallcross
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Natalie A. Hadad
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Mark D. Namba
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Helmut Hiller
- 0000 0004 1936 8091grid.15276.37Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610 USA
| | - Lizhen Wu
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Eric G. Krause
- 0000 0004 1936 8091grid.15276.37Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610 USA
| | - Lori A. Knackstedt
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA ,0000 0004 1936 8091grid.15276.37Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
64
|
Papilloud A, Guillot de Suduiraut I, Zanoletti O, Grosse J, Sandi C. Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala. Transl Psychiatry 2018; 8:156. [PMID: 30111823 PMCID: PMC6093900 DOI: 10.1038/s41398-018-0215-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/09/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022] Open
Abstract
Play fighting is a highly rewarding behavior that helps individuals to develop social skills. Early-life stress has been shown to alter play fighting in rats and hamsters as well as to increase aggressive behaviors at adulthood. However, it is not known whether individual differences in stress-induced play fighting are related to differential developmental trajectories towards adult aggression. To address this question, we used a rat model of peripubertal stress (PPS)-induced psychopathology that involves increased aggression at adulthood. We report that, indeed, PPS leads to enhanced play fighting at adolescence. Using a stratification approach, we identify individuals with heightened levels of play fighting as the ones that show abnormal forms of aggression at adulthood. These animals showed as well a rapid habituation of their corticosterone responsiveness to repeated stressor exposure at peripuberty. They also showed a striking increase in mitochondrial function in the amygdala-but not nucleus accumbens-when tested ex vivo. Conversely, low, but not high players, displayed increased expression of the CB1 cannabinoid receptor in the nucleus accumbens shell. Our results highlight adolescence as a potential critical period in which aberrant play fighting is linked to the emergence of adult aggression. They also point at brain energy metabolism during adolescence as a possible target to prevent adult aggression.
Collapse
Affiliation(s)
- Aurélie Papilloud
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
65
|
Worley NB, Hill MN, Christianson JP. Prefrontal endocannabinoids, stress controllability and resilience: A hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:180-188. [PMID: 28392485 PMCID: PMC6746235 DOI: 10.1016/j.pnpbp.2017.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 01/29/2023]
Abstract
Stressor exposure is a predisposing risk factor for many psychiatric conditions such as PTSD and depression. However, stressors do not influence all individuals equally and in response to an identical stressor some individuals may be vulnerable while others are resilient. While various biological and behavioral factors contribute to vulnerability versus resilience, an individual's degree of control over the stressor is among the most potent. Even with only one experience with control over stress, behavioral control has been shown to have acute and long-lasting stress-mitigating effects. This suggests that control both blunts the response to acute stress and prepares the subject to be resilient to future stressors. In this review, we first summarize the evidence which suggests the ventromedial prefrontal cortex (vmPFC) is a critical component of stressor controllability circuits and a locus of neuroplasticity supporting the acute and long-lasting consequences of control. We next review the central endocannabinoid (eCB) system as a possible mediator of short and long-term synaptic transmission in the vmPFC, and offer a hypothesis whereby eCBs regulate vmPFC circuits engaged when a subject has control over stress and may contribute to the encoding of acute stress coping into long lasting stressor resilience.
Collapse
Affiliation(s)
- Nicholas B. Worley
- Department of Psychology, Boston College, Chestnut Hill, MA USA,Corresponding Author: Nicholas Worley, Boston College, Department of Psychology, McGuinn Hall Rm. 300, Chestnut Hill, MA 02467 USA,
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, CAN
| | | |
Collapse
|
66
|
Pekala K, Michalak A, Kruk-Slomka M, Budzynska B, Biala G. Impacts of cannabinoid receptor ligands on nicotine- and chronic mild stress-induced cognitive and depression-like effects in mice. Behav Brain Res 2018; 347:167-174. [DOI: 10.1016/j.bbr.2018.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 02/03/2023]
|
67
|
Sagar KA, Gruber SA. Marijuana matters: reviewing the impact of marijuana on cognition, brain structure and function, & exploring policy implications and barriers to research. Int Rev Psychiatry 2018; 30:251-267. [PMID: 29966459 PMCID: PMC6455965 DOI: 10.1080/09540261.2018.1460334] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The neurobiologic effects of cannabis, commonly referred to as 'marijuana' (MJ), have been studied for decades. The impact of recreational MJ use on cognition and measures of brain function and structure is outlined, and variables influencing study results are discussed, including age of the consumer, patterns of MJ use, variations in MJ potency, and the presence of additional cannabinoids. Although evidence suggests that chronic, heavy recreational MJ use is related to cognitive decrements and neural changes, particularly when use begins in adolescence, findings from studies of recreational MJ users may not be applicable to medical marijuana (MMJ) patients given differences in demographic variables, product selection, and reasons for use. Although additional research is needed to fully understand the impact of MJ and individual cannabinoids on the brain, current findings are beginning to inform public policy, including considerations for age limits, potential limits for some cannabinoids, and guidelines for use. However, barriers continue to impede researchers' ability to conduct studies that will guide policy change and provide vital information to consumers and patients regarding best practices and safest methods for use. The need for information is critical, as legalization of MJ for medical and recreational use is increasingly widespread.
Collapse
Affiliation(s)
- Kelly A. Sagar
- McLean Hospital, Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, 115 Mill St, Belmont, MA, 02478,Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02115,Boston University School of Medicine, 72 E Concord St Boston, MA, 02118
| | - Staci A. Gruber
- McLean Hospital, Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, 115 Mill St, Belmont, MA, 02478,Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02115,Corresponding Author Information Address: McLean Hospital, 115 Mill Street, Belmont, MA 02478, Telephone: 617-855-2762, Fax: 617-855-3713,
| |
Collapse
|
68
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
69
|
McEwen BS. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front Neuroendocrinol 2018; 49:8-30. [PMID: 29132949 DOI: 10.1016/j.yfrne.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. This article is both an account of an emerging field elucidating brain-body interactions at multiple levels, from molecules to social organization, as well as a personal account of my laboratory's role and, most importantly, the roles of trainees and colleagues, along with my involvement in interdisciplinary groups working on this topic.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA. http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| |
Collapse
|
70
|
Fatty acid-binding proteins 5 and 7 gene deletion increases sucrose consumption and diminishes forced swim immobility time. Behav Pharmacol 2018; 29:503-508. [PMID: 29570114 DOI: 10.1097/fbp.0000000000000402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inhibition and genetic deletion of fatty acid-binding proteins (FABPs) 5 and 7 have been shown to increase the levels of the endocannabinoid anandamide as well as the related N-acylethanolamine's palmitoylethanolamide and oleoylethanolamide. This study examined the role of these FABPs on forced-swim (FS) behavior and on sucrose consumption in two experiments: (experiment 1) using wild-type (WT) mice treated with the FABP inhibitor SBFI26 or vehicle and (experiment 2) using WT and FABP5/7 deficient mice. Results from experiment 1 showed that acute treatment with SBFI26 did not have any effect on sucrose intake or FS behavior in mice. In experiment 2, male and female FABP5/7 deficient mice showed significant increases in sucrose consumption (25 and 21%, respectively) compared with their WT counterparts. In addition, immobility time during the FS was decreased by 27% in both male and female FABP5/7 knockout mice compared with their WT counterparts. The fact that such differences were seen between the acute pharmacological approach and the genetic approach (gene deletion) of FABP needs to be further investigated. The function of FABPs and their specific effects on endocannabinoid anandamide, oleoylethanolamide, and palmitoylethanolamide may play an important role in the development of reward and mood behaviors and could provide opportunities for potential therapeutic targets.
Collapse
|
71
|
Gruber SA, Sagar KA, Dahlgren MK, Gonenc A, Smith RT, Lambros AM, Cabrera KB, Lukas SE. The Grass Might Be Greener: Medical Marijuana Patients Exhibit Altered Brain Activity and Improved Executive Function after 3 Months of Treatment. Front Pharmacol 2018; 8:983. [PMID: 29387010 PMCID: PMC5776082 DOI: 10.3389/fphar.2017.00983] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022] Open
Abstract
The vast majority of states have enacted full or partial medical marijuana (MMJ) programs, causing the number of patients seeking certification for MMJ use to increase dramatically in recent years. Despite increased use of MMJ across the nation, no studies thus far have examined the specific impact of MMJ on cognitive function and related brain activation. In the present study, MMJ patients seeking treatment for a variety of documented medical conditions were assessed prior to initiating MMJ treatment and after 3 months of treatment as part of a larger longitudinal study. In order to examine the effect of MMJ treatment on task-related brain activation, MMJ patients completed the Multi-Source Interference Test (MSIT) while undergoing functional magnetic resonance imaging (fMRI). We also collected data regarding conventional medication use, clinical state, and health-related measures at each visit. Following 3 months of treatment, MMJ patients demonstrated improved task performance accompanied by changes in brain activation patterns within the cingulate cortex and frontal regions. Interestingly, after MMJ treatment, brain activation patterns appeared more similar to those exhibited by healthy controls from previous studies than at pre-treatment, suggestive of a potential normalization of brain function relative to baseline. These findings suggest that MMJ use may result in different effects relative to recreational marijuana (MJ) use, as recreational consumers have been shown to exhibit decrements in task performance accompanied by altered brain activation. Moreover, patients in the current study also reported improvements in clinical state and health-related measures as well as notable decreases in prescription medication use, particularly opioids and benzodiapezines after 3 months of treatment. Further research is needed to clarify the specific neurobiologic impact, clinical efficacy, and unique effects of MMJ for a range of indications and how it compares to recreational MJ use.
Collapse
Affiliation(s)
- Staci A Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kelly A Sagar
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Mary K Dahlgren
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychology, Tufts University, Medford, MA, United States
| | - Atilla Gonenc
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Rosemary T Smith
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States
| | - Ashley M Lambros
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States
| | - Korine B Cabrera
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Marijuana Investigations for Neuroscientific Discovery Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States
| | - Scott E Lukas
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Behavioral Psychopharmacology Research Laboratory, McLean Imaging Center, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
72
|
Krug RG, Lee HB, El Khoury LY, Sigafoos AN, Petersen MO, Clark KJ. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PLoS One 2018; 13:e0190897. [PMID: 29304078 PMCID: PMC5756047 DOI: 10.1371/journal.pone.0190897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
The ability to orchestrate appropriate physiological and behavioral responses to stress is important for survival, and is often dysfunctional in neuropsychiatric disorders that account for leading causes of global disability burden. Numerous studies have shown that the endocannabinoid neurotransmitter system is able to regulate stress responses and could serve as a therapeutic target for the management of these disorders. We used quantitative reverse transcriptase-polymerase chain reactions to show that genes encoding enzymes that synthesize (abhd4, gde1, napepld), enzymes that degrade (faah, faah2a, faah2b), and receptors that bind (cnr1, cnr2, gpr55-like) endocannabinoids are expressed in zebrafish (Danio rerio). These genes are conserved in many other vertebrates, including humans, but fatty acid amide hydrolase 2 has been lost in mice and rats. We engineered transcription activator-like effector nucleases to create zebrafish with mutations in cnr1 and faah2a to test the role of these genes in modulating stress-associated behavior. We showed that disruption of cnr1 potentiated locomotor responses to hyperosmotic stress. The increased response to stress was consistent with rodent literature and served to validate the use of zebrafish in this field. Moreover, we showed for the first time that disruption of faah2a attenuated the locomotor responses to hyperosmotic stress. This later finding suggests that FAAH2 may be an important mediator of stress responses in non-rodent vertebrates. Accordingly, FAAH and FAAH2 modulators could provide distinct therapeutic options for stress-aggravated disorders.
Collapse
Affiliation(s)
- Randall G. Krug
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences (Neurobiology of Disease Track), Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Han B. Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences (Neurobiology of Disease Track), Mayo Clinic, Rochester, MN, United States of America
| | - Louis Y. El Khoury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Ashley N. Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Morgan O. Petersen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
73
|
Surkin PN, Gallino SL, Luce V, Correa F, Fernandez-Solari J, De Laurentiis A. Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology 2018; 87:131-140. [PMID: 29065362 DOI: 10.1016/j.psyneuen.2017.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Abstract
Activation of the hypothalamic-pituitary-adrenal axis (HPA) is critical for survival when the organism is exposed to a stressful stimulus. The endocannabinoid system (ECS) is currently considered an important neuromodulator involved in numerous pathophysiological processes and whose primary function is to maintain homeostasis. In the tissues constituting the HPA axis, all the components of the ECS are present and the activation of this system acts in parallel with changes in the activity of numerous neurotransmitters, including nitric oxide (NO). NO is widely distributed in the brain and adrenal glands and recent studies have shown that free radicals, and in particular NO, may play a crucial role in the regulation of stress response. Our objective was to determine the participation of the endocannabinoid and NOergic systems as probable mediators of the neuroendocrine HPA axis response to a psychophysical acute stress model in the adult male rat. Animals were pre-treated with cannabinoid receptors agonists and antagonists at central and systemic level prior to acute restraint exposure. We also performed in vitro studies incubating adrenal glands in the presence of ACTH and pharmacological compounds that modifies ECS components. Our results showed that the increase in corticosterone observed after acute restraint stress is blocked by anandamide administered at both central and peripheral level. At hypothalamic level both cannabinoid receptors (CB1 and CB2) are involved, while in the adrenal gland, anandamide has a very potent effect in suppressing ACTH-induced corticosterone release that is mainly mediated by vanilloid TRPV1 receptors. We also observed that stress significantly increased hypothalamic mRNA levels of CB1 as well as adrenal mRNA levels of TRPV1 receptor. In addition, anandamide reduced the activity of the nitric oxide synthase enzyme during stress, indicating that the anti-stress action of endocannabinoids may involve a reduction in NO production at hypothalamic and adrenal levels. In conclusion, an endogenous cannabinoid tone maintains the HPA axis in a stable basal state, which is lost with a noxious stimulus. In this case, the ECS dampens the response to stress allowing the recovery of homeostasis. Moreover, our work further contributes to in vitro evidence for a participation of the endocannabinoid system by inhibiting corticosterone release directly at the adrenal gland level.
Collapse
Affiliation(s)
- Pablo Nicolás Surkin
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofia Ludmila Gallino
- Centro de Estudios Farmacológicos y Botánicos, CEFyBO-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Luce
- Centro de Estudios Farmacológicos y Botánicos, CEFyBO-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Centro de Estudios Farmacológicos y Botánicos, CEFyBO-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Fernandez-Solari
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea De Laurentiis
- Centro de Estudios Farmacológicos y Botánicos, CEFyBO-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
74
|
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018; 43:80-102. [PMID: 28745306 PMCID: PMC5719095 DOI: 10.1038/npp.2017.162] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.
Collapse
|
75
|
N-3 PUFA diet enrichment prevents amyloid beta-induced depressive-like phenotype. Pharmacol Res 2017; 129:526-534. [PMID: 29203442 DOI: 10.1016/j.phrs.2017.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Among neuropsychiatric diseases, depression is one of the most prevalent. Many pathologies have been indicated as comorbid with depression and in particular, neurodegenerative disorders such as Alzheimer's diseases (AD). In this regard, several evidences endorse a strong relationship between depression and AD, so much that this mental illness has been proposed either as a risk factor for AD or as a prodromic AD phase. Furthermore, amyloid beta (Aβ) peptide, the main constituent of amyloid plaques commonly considered the principal hallmark of AD brains, has been shown to be increased, in its soluble form, in depressed patients. Accordingly, we have previously found that Aβ, intracerebroventricularly (i.c.v.) injected, is able to evoke a depressive-like profile in rats accompanied by low cortical serotonin and reduced neurotrophin content. Taking into account the great increase in AD and depression prevalence, many environmental factors have been under study, particularly dietary factors, and the role of polyunsaturated fatty acids (PUFA) is becoming central in this field of research. Thus, aim of the present study was to evaluate the neurobehavioral effects of lifelong exposure to either n-3 PUFA rich or n-3 PUFA poor diet after Aβ central administration. Results showed that n-3 PUFA enriched diet prevented the Aβ- induced depressive-like behaviors, as reveled by the reduction in the immobility time in the FST test. Furthermore, n-3 PUFA rich diet exposure reverted also serotonin and neurotrophin level reduction in prefrontal cortex of Aβ treated rats. Taken together, our data support the concept that supplementation of diet with n-3 PUFA represents a valid approach to reduce the risk of developing depressive symptoms, as well as reducing the risk of Aβ-related pathologies, such as AD.
Collapse
|
76
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
77
|
Gray JD, Kogan JF, Marrocco J, McEwen BS. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 2017; 13:661-673. [PMID: 28862266 DOI: 10.1038/nrendo.2017.97] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the discovery of glucocorticoid receptors in the hippocampus and other brain regions, research has focused on understanding the effects of glucocorticoids in the brain and their role in regulating emotion and cognition. Glucocorticoids are essential for adaptation to stressors (allostasis) and in maladaptation resulting from allostatic load and overload. Allostatic overload, which can occur during chronic stress, can reshape the hypothalamic-pituitary-adrenal axis through epigenetic modification of genes in the hippocampus, hypothalamus and other stress-responsive brain regions. Glucocorticoids exert their effects on the brain through genomic mechanisms that involve both glucocorticoid receptors and mineralocorticoid receptors directly binding to DNA, as well as by non-genomic mechanisms. Furthermore, glucocorticoids synergize both genomically and non-genomically with neurotransmitters, neurotrophic factors, sex hormones and other stress mediators to shape an organism's present and future responses to a stressful environment. Here, we discuss the mechanisms of glucocorticoid action in the brain and review how glucocorticoids interact with stress mediators in the context of allostasis, allostatic load and stress-induced neuroplasticity.
Collapse
Affiliation(s)
- Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| |
Collapse
|
78
|
Childs E, Lutz JA, de Wit H. Dose-related effects of delta-9-THC on emotional responses to acute psychosocial stress. Drug Alcohol Depend 2017; 177:136-144. [PMID: 28599212 PMCID: PMC6349031 DOI: 10.1016/j.drugalcdep.2017.03.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Cannabis smokers often report that they use the drug to relax or to relieve emotional stress. However, few clinical studies have shown evidence of the stress-relieving effects of cannabis or cannabinoid agonists. In this study, we sought to assess the influence of delta-9-tetrahydrocannabinol (THC), a main active ingredient of cannabis, upon emotional responses to an acute psychosocial stressor among healthy young adults. METHODS Healthy volunteers (N=42) participated in two experimental sessions, one with psychosocial stress (Trier Social Stress Test, TSST) and another with a non-stressful task, after receiving 0 (N=13), 7.5mg (N=14) or 12.5mg (N=15) oral THC. Capsules were administered under randomized, double blind conditions, 2.5h before the tasks began. We measured subjective mood and drug effects, vital signs and salivary cortisol before and at repeated times after the capsule and tasks. Subjects also appraised the tasks, before and after completion. RESULTS In comparison to placebo, 7.5mg THC significantly reduced self-reported subjective distress after the TSST and attenuated post-task appraisals of the TSST as threatening and challenging. By contrast, 12.5mg THC increased negative mood overall i.e., both before and throughout the tasks, and pre-task ratings of the TSST as threatening and challenging. It also impaired TSST performance and attenuated blood pressure reactivity to the stressor. CONCLUSIONS Our findings suggest that a low dose of THC produces subjective stress-relieving effects in line with those commonly reported among cannabis users, but that higher doses may non-specifically increase negative mood.
Collapse
Affiliation(s)
- Emma Childs
- The University of Chicago, Department of Psychiatry Behavioral Neuroscience, 5841 S. Maryland Ave., MC3077, Chicago IL 60637, United States.
| | | | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 S. Maryland Ave., MC3077, Chicago, Illinois 60637
| |
Collapse
|
79
|
Abstract
The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, which promote adaptation ("allostasis") but also contribute to pathophysiology ("allostatic load/overload") when overused and dysregulated. The adult as well as developing brain possesses a remarkable ability to show structural and functional plasticity in response to stressful and other experiences, including neuronal replacement, dendritic remodeling and synapse turnover. Stress can cause an imbalance of neural circuitry subserving cognition, decision making, anxiety and mood that can increase or decrease expression of those behaviors and behavioral states. This imbalance, in turn, affects systemic physiology via neuroendocrine, autonomic, immune and metabolic mediators. In the short term, these changes may be adaptive; but, if the threat passes and the behavioral state persists along with the changes in neural circuitry, such maladaptation requires intervention with a combination of pharmacological and behavioral therapies. There are important sex differences in how the brain responds to stressors. Moreover, adverse early life experience, interacting with alleles of certain genes, produces lasting effects on brain and body via epigenetic mechanisms. While prevention is key, the plasticity of the brain gives hope for therapies that utilize brain-body interactions. Policies of government and the private sector are important to promote health and increase "healthspan."
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
80
|
Carnevali L, Rivara S, Nalivaiko E, Thayer JF, Vacondio F, Mor M, Sgoifo A. Pharmacological inhibition of FAAH activity in rodents: A promising pharmacological approach for psychological—cardiac comorbidity? Neurosci Biobehav Rev 2017; 74:444-452. [DOI: 10.1016/j.neubiorev.2016.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023]
|
81
|
Gruber SA, Sagar KA. Marijuana on the Mind? The Impact of Marijuana on Cognition, Brain Structure, and Brain Function, and Related Public Policy Implications. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/2372732216684851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although marijuana (MJ) has been used for thousands of years, the public’s opinion of MJ has shifted drastically over the past century, leaving many wondering about its potential risks and benefits. This article summarizes research detailing the impact of recreational MJ and related variables (frequency, magnitude, potency, and mode of MJ use) on cognition, brain structure, and brain function. MJ use, particularly at young ages, has been reported to undermine cognition, as well as alter brain structure and function. Furthermore, we discuss how data from recreational MJ studies, as well as more recent medical marijuana (MMJ) research findings, relate to legalization efforts. Considerations for policymakers, such as age limits, guidelines for safe use, and the therapeutic potential of certain constituents of MJ (i.e., cannabidiol), are also outlined. In recent years, policy has outpaced science; important areas in need of further research are noted.
Collapse
Affiliation(s)
- Staci A. Gruber
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kelly A. Sagar
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
82
|
Clarke DJ, Stuart J, McGregor IS, Arnold JC. Endocannabinoid dysregulation in cognitive and stress-related brain regions in the Nrg1 mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:9-15. [PMID: 27521758 DOI: 10.1016/j.pnpbp.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system is dysregulated in schizophrenia. Mice with heterozygous deletion of neuregulin 1 (Nrg1 HET mice) provide a well-characterised animal model of schizophrenia, and display enhanced sensitivity to stress and cannabinoids during adolescence. However, no study has yet determined whether these mice have altered brain endocannabinoid concentrations. Nrg1 application to hippocampal slices decreased 2-arachidonoylglycerol (2-AG) signalling and disrupted long-term depression, a form of synaptic plasticity critical to spatial learning. Therefore we specifically aimed to examine whether Nrg1 HET mice exhibit increased 2-AG concentrations and disruption of spatial learning. As chronic stress influences brain endocannabinoids, we also sought to examine whether Nrg1 deficiency moderates adolescent stress-induced alterations in brain endocannabinoids. Adolescent Nrg1 HET and wild-type (WT) mice were submitted to chronic restraint stress and brain endocannabinoid concentrations were analysed. A separate cohort of WT and Nrg1 HET mice was also assessed for spatial learning performance in the Morris Water Maze. Partial genetic deletion of Nrg1 increased anandamide concentrations in the amygdala and decreased 2-AG concentrations in the hypothalamus. Further, Nrg1 HET mice exhibited increased 2-AG concentrations in the hippocampus and impaired spatial learning performance. Chronic adolescent stress increased anandamide concentrations in the amygdala, however, Nrg1 disruption did not influence this stress-induced change. These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain. Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry.
Collapse
Affiliation(s)
- David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jordyn Stuart
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Iain S McGregor
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia; Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
83
|
Endocannabinoid System: the Direct and Indirect Involvement in the Memory and Learning Processes-a Short Review. Mol Neurobiol 2016; 54:8332-8347. [PMID: 27924524 PMCID: PMC5684264 DOI: 10.1007/s12035-016-0313-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
The endocannabinoid system via cannabinoid (CB: CB1 and CB2) receptors and their endogenous ligands is directly and indirectly involved in many physiological functions, especially in memory and learning processes. Extensive studies reported that this system strictly modulates cognition-related processes evaluated in various animal models. However, the effects of cannabinoids on the cognition have been contradictory. The cannabinoid compounds were able to both impair or improve different phases of memory processes through direct (receptor related) or indirect (non-receptor related) mechanism. The memory-related effects induced by the cannabinoids can be depended on the kind of cannabinoid compound used, dosage, and route of administration as well as on the memory task chosen. Therefore, the objectives of this paper are to review and summarize the results describing the role of endocannabinoid system in cognition, including various stages of memory.
Collapse
|
84
|
Mohammadmirzaei N, Rezayof A, Ghasemzadeh Z. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat. Brain Res 2016; 1646:219-226. [DOI: 10.1016/j.brainres.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
|
85
|
Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation. Proc Natl Acad Sci U S A 2016; 113:9904-9. [PMID: 27528659 DOI: 10.1073/pnas.1525066113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.
Collapse
|
86
|
Wolf OT, Atsak P, de Quervain DJ, Roozendaal B, Wingenfeld K. Stress and Memory: A Selective Review on Recent Developments in the Understanding of Stress Hormone Effects on Memory and Their Clinical Relevance. J Neuroendocrinol 2016; 28. [PMID: 26708929 DOI: 10.1111/jne.12353] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
Abstract
Stress causes a neuroendocrine response cascade, leading to the release of catecholamines and glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR) and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory processing at the same time as impairing the retrieval of memory of emotionally arousing experiences. The present selective review addresses four recent developments in this area. First, the role of the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs on different memory processes in humans are summarised. Next, a series of human experiments on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented. Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by the description of patients with anxiety disorders who demonstrate an enhancement of extinction-based therapies by GC treatment. The review highlights the substantial progress made in our mechanistic understanding of the memory-modulating properties of GCs, as well as their clinical potential.
Collapse
Affiliation(s)
- O T Wolf
- Department of Cognitive Psychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - P Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - D J de Quervain
- Division of Cognitive Neuroscience, Faculty of Medicine, Department of Psychology, University Psychiatric Clinics Basel, Basel, Switzerland
| | - B Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - K Wingenfeld
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
87
|
Yi B, Nichiporuk I, Nicolas M, Schneider S, Feuerecker M, Vassilieva G, Thieme D, Schelling G, Choukèr A. Reductions in circulating endocannabinoid 2-arachidonoylglycerol levels in healthy human subjects exposed to chronic stressors. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:92-7. [PMID: 26780604 DOI: 10.1016/j.pnpbp.2016.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/15/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that chronic stress, such as social isolation, plays an important role in the development of a variety of psychiatric and somatic disorders. Meanwhile, chronic stress imposed by prolonged isolation and confinement in the spacecraft is also one of the major concerns for the health of future interplanetary space travelers. Preclinical studies suggest that the peripheral endocannabinoid (eCB) system is involved in the regulation of the stress response and eCB signaling is implicated in the pathogenesis of stress-related diseases. However, there are only few human studies addressing this topic, of which most focusing on patients who have already developed a certain type of disorder. It remains unknown whether chronic stress may affect eCB signaling in healthy humans. A 520-d isolation and confinement study simulating a flight to Mars provided an extraordinary chance to study the effects of prolonged stress in healthy humans. During the study period, the participants lived in confinement and could not meet their families, friends, or strangers for more than 500 days. We examined the impact of chronic exposure to isolation and confinement through monitoring their psychological state, brain cortical activity, sympathetic adrenal-medullary system response and eCB signaling response. We observed reduced positive emotion ratings, decreased brain cortical activities and high levels of catecholamine release, indicating that prolonged exposure to isolation and confinement stressors may bring about changes both psychologically and physiologically. Importantly, for eCB signaling response, blood concentrations of eCB 2-arachidonoylglycerol (2-AG), but not anandamide (AEA), were significantly reduced (p<0.001), suggesting that dysregulation of 2-AG signaling might be specifically implicated in the response to chronic stressors.
Collapse
Affiliation(s)
- Buqing Yi
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany.
| | - Igor Nichiporuk
- Institute of Biomedical Problems, 123007 Moscow, Russian Federation
| | - Michel Nicolas
- University of Burgundy, SPMS (EA 4180), 21000 Dijon, France
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Matthias Feuerecker
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany
| | | | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry, D-01731 Dresden, Germany
| | - Gustav Schelling
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany.
| | - Alexander Choukèr
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany.
| |
Collapse
|
88
|
Wilker S, Pfeiffer A, Elbert T, Ovuga E, Karabatsiakis A, Krumbholz A, Thieme D, Schelling G, Kolassa IT. Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 2016; 67:198-206. [PMID: 26923850 DOI: 10.1016/j.psyneuen.2016.02.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system has been implicated in the regulation of the stress response, fear memory formation, and inflammatory processes. Posttraumatic stress disorder (PTSD) can result from exposure to extreme stress and is characterized by strong, associative memories for the traumatic events experienced. Furthermore, an elevated physical disease risk has been observed in PTSD, likely to be mediated by inflammatory processes. Therefore, altered endocannabinoid regulation can be expected in individuals with PTSD. However, attempts to assess PTSD-associated differences in the endocannabinoid system from human blood samples have provided inconsistent results, possibly due to fluctuating levels of endocannabinoids. In hair, these neuromodulators are accumulated over time and thus give access to a more stable and reliable assessment. We therefore investigated PTSD-associated differences in hair concentrations of endocannabinoids (N-acyl-ethanolamides palmitoylethanolamide [PEA], oleoylethanolamide [OEA] and stearoylethanolamide [SEA]) in 38 rebel war survivors from Northern Uganda suffering from PTSD and N=38 healthy rebel war survivors without current and lifetime PTSD. PTSD diagnosis and symptom severity were assessed in structured clinical interviews employing the Posttraumatic Diagnostic Scale (PDS). A significant group difference was observed for OEA, with PTSD patients showing reduced hair concentrations. Regression analyses further revealed strong negative relationships between all investigated N-acyl-ethanolamides and symptom severity of PTSD. The observed reductions in endocannabinoids might account for the increased inflammatory state as well as for the failure to extinguish fear memories observed in PTSD. Our findings add to the accumulating evidence suggesting the endocannabinoid system as a target for pharmacological enhancement of exposure-based psychotherapy for PTSD.
Collapse
Affiliation(s)
- Sarah Wilker
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany.
| | - Anett Pfeiffer
- Clinical Psychology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Thomas Elbert
- Clinical Psychology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Emilio Ovuga
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Aniko Krumbholz
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig-Maximilians University, 82131 Munich, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| |
Collapse
|
89
|
Gunduz-Cinar O, Flynn S, Brockway E, Kaugars K, Baldi R, Ramikie TS, Cinar R, Kunos G, Patel S, Holmes A. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids. Neuropsychopharmacology 2016; 41:1598-609. [PMID: 26514583 PMCID: PMC4832021 DOI: 10.1038/npp.2015.318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA,Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Room 2N09, Rockville, MD 20852-9411, USA, Tel: +1 301 443 4052, Fax: +1 301 480 8035, E-mail: or
| | - Shaun Flynn
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emma Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine Kaugars
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rita Baldi
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teniel S Ramikie
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Resat Cinar
- Laboratory of Physiological Studies, NIAAA, NIH, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiological Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Sachin Patel
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA,Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Room 2N09, Rockville, MD 20852-9411, USA, Tel: +1 301 443 4052, Fax: +1 301 480 8035, E-mail: or
| |
Collapse
|
90
|
Castro-Vale I, van Rossum EF, Machado JC, Mota-Cardoso R, Carvalho D. Genetics of glucocorticoid regulation and posttraumatic stress disorder—What do we know? Neurosci Biobehav Rev 2016; 63:143-57. [DOI: 10.1016/j.neubiorev.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/30/2015] [Accepted: 02/05/2016] [Indexed: 02/05/2023]
|
91
|
Tomas-Roig J, Piscitelli F, Gil V, del Río J, Moore T, Agbemenyah H, Salinas-Riester G, Pommerenke C, Lorenzen S, Beißbarth T, Hoyer-Fender S, Di Marzo V, Havemann-Reinecke U. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice. Behav Brain Res 2016; 303:34-43. [DOI: 10.1016/j.bbr.2016.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 12/12/2022]
|
92
|
Morgese MG, Tucci P, Mhillaj E, Bove M, Schiavone S, Trabace L, Cuomo V. Lifelong Nutritional Omega-3 Deficiency Evokes Depressive-Like State Through Soluble Beta Amyloid. Mol Neurobiol 2016; 54:2079-2089. [PMID: 26924315 PMCID: PMC5355522 DOI: 10.1007/s12035-016-9809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Recent evidence pointed out that the prevalence of depression has reached epidemic proportions in last decades. This increase has been linked to many environmental factors, among these the influence of dietary factors has gained great attention. In particular, it has been reported that low n-3 polyunsaturated fatty acid (n-3 PUFA) intake in diet is correlated to the development of depressive and anxiety-like symptoms. Furthermore, maternal malnutrition is a widely accepted risk factor for developing mental illness in later adulthood; among others, depression has been strongly associated to this event. On the other hand, we have previously found that acute intracerebral injection of the soluble beta amyloid 1–42 (Aβ1–42) peptide induces a depressive-like behavior in rats, associated to altered hypothalamic–pituitary-adrenal (HPA) axis activation and reduced cortical serotonin and neurotrophin levels. The aim of the present work was to study the effect of pre- and post-natal (5 weeks post-weaning) exposure to diets differently enriched in n-3, n-6, as well as n-6/n-3 PUFA balanced, on immobility time displayed on the forced swimming test (FST), along with neuroendocrine quantification in offspring rats. Results showed that n-6 PUFA-enriched diet increased depressive- and anxiety-like behaviors, as shown by the elevation in the immobility time in the FST test and self-grooming in the open field test. Those effects were accompanied by reduced cortical serotonin, high plasmatic corticosterone and hypothalamic corticotropin-releasing factor levels. Finally, enhanced plasmatic Aβ1–42 levels after n-6 PUFA diet and reduced plasmatic Aβ1–42 levels after n-3 PUFA were found. Taken together, our data indicate that Aβ1–42 might be crucially involved in behavioral alterations found after n-6 rich PUFA diet and strongly endorse the protective role of n-3 and the detrimental effect of improper n-6 PUFA diet consumption.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Mhillaj
- Physiology and Pharmacology, La Sapienza, University of Rome, Rome, Italy
| | - Maria Bove
- Physiology and Pharmacology, La Sapienza, University of Rome, Rome, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Cuomo
- Physiology and Pharmacology, La Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
93
|
Johnson AC, Greenwood-Van Meerveld B. The Pharmacology of Visceral Pain. ADVANCES IN PHARMACOLOGY 2016; 75:273-301. [PMID: 26920016 DOI: 10.1016/bs.apha.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain describes pain emanating from the internal thoracic, pelvic, or abdominal organs. Unlike somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. While current therapeutics provides some relief from somatic pain, drugs used for treatment of chronic visceral pain are typically less efficacious and limited by multiple adverse side effects. Thus, the treatment of visceral pain represents a major unmet medical need. Further, more basic research into the physiology and pathophysiology of visceral pain is needed to provide novel targets for future drug development. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. However, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders. We will focus on stress-induced exacerbation of chronic visceral pain and provide supporting evidence that centrally acting drugs targeting the pain and stress-responsive brain regions may represent a valid target for the development of novel and effective therapeutics.
Collapse
Affiliation(s)
- Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
94
|
McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016; 41:3-23. [PMID: 26076834 PMCID: PMC4677120 DOI: 10.1038/npp.2015.171] [Citation(s) in RCA: 907] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
The hippocampus provided the gateway into much of what we have learned about stress and brain structural and functional plasticity, and this initial focus has expanded to other interconnected brain regions, such as the amygdala and prefrontal cortex. Starting with the discovery of adrenal steroid, and later, estrogen receptors in the hippocampal formation, and subsequent discovery of dendritic and spine synapse remodeling and neurogenesis in the dentate gyrus, mechanistic studies have revealed both genomic and rapid non-genomic actions of circulating steroid hormones in the brain. Many of these actions occur epigenetically and result in ever-changing patterns of gene expression, in which there are important sex differences that need further exploration. Moreover, glucocorticoid and estrogen actions occur synergistically with an increasing number of cellular mediators that help determine the qualitative nature of the response. The hippocampus has also been a gateway to understanding lasting epigenetic effects of early-life experiences. These findings in animal models have resulted in translation to the human brain and have helped change thinking about the nature of brain malfunction in psychiatric disorders and during aging, as well as the mechanisms of the effects of early-life adversity on the brain and the body.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. Tel: +1 212 327 8624, Fax: +1 212 327 8634, E-mail: or http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA
| |
Collapse
|
95
|
Maren S, Holmes A. Stress and Fear Extinction. Neuropsychopharmacology 2016; 41:58-79. [PMID: 26105142 PMCID: PMC4677122 DOI: 10.1038/npp.2015.180] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
Stress has a critical role in the development and expression of many psychiatric disorders, and is a defining feature of posttraumatic stress disorder (PTSD). Stress also limits the efficacy of behavioral therapies aimed at limiting pathological fear, such as exposure therapy. Here we examine emerging evidence that stress impairs recovery from trauma by impairing fear extinction, a form of learning thought to underlie the suppression of trauma-related fear memories. We describe the major structural and functional abnormalities in brain regions that are particularly vulnerable to stress, including the amygdala, prefrontal cortex, and hippocampus, which may underlie stress-induced impairments in extinction. We also discuss some of the stress-induced neurochemical and molecular alterations in these brain regions that are associated with extinction deficits, and the potential for targeting these changes to prevent or reverse impaired extinction. A better understanding of the neurobiological basis of stress effects on extinction promises to yield novel approaches to improving therapeutic outcomes for PTSD and other anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology, Institute of Neuroscience, Texas A&M University, College Station, TX, USA
| | - Andrew Holmes
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
96
|
McEwen BS. Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain Res 2015; 1645:50-4. [PMID: 26740399 DOI: 10.1016/j.brainres.2015.12.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
The discovery of steroid hormone receptors in brain regions that mediate virtually every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as determining the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neurogenesis leading to neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. The two Brain Research papers noted in this review played an important role in triggering these advances. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
97
|
Lemieux A, al'Absi M. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions. PROGRESS IN BRAIN RESEARCH 2015; 223:43-62. [PMID: 26806770 DOI: 10.1016/bs.pbr.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this chapter, we briefly review the basic biology of psychological stress and the stress response. We propose that psychological stress and the neurobiology of the stress response play in substance use initiation, maintenance, and relapse. The proposed mechanisms for this include, on the one hand, the complex interactions between biological mediators of the stress response and the dopaminergic reward system and, on the other hand, mediators of the stress response and other systems crucial in moderating key addiction-related behaviors such as endogenous opioids, the sympathetic-adrenal-medullary system, and endocannabinoids. Exciting new avenues of study including genomics, sex as a moderator of the stress response, and behavioral addictions (gambling, hypersexuality, dysfunctional internet use, and food as an addictive substance) are also briefly presented within the context of stress as a moderator of the addictive process.
Collapse
Affiliation(s)
| | - Mustafa al'Absi
- University of Minnesota School of Medicine, Duluth, MN, USA.
| |
Collapse
|
98
|
Lee TTY, Gorzalka BB. Evidence for a Role of Adolescent Endocannabinoid Signaling in Regulating HPA Axis Stress Responsivity and Emotional Behavior Development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:49-84. [PMID: 26638764 DOI: 10.1016/bs.irn.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adolescence is a period characterized by many distinct physical, behavioral, and neural changes during the transition from child- to adulthood. In particular, adolescent neural changes often confer greater plasticity and flexibility, yet with this comes the potential for heightened vulnerability to external perturbations such as stress exposure or recreational drug use. There is substantial evidence to suggest that factors such as adolescent stress exposure have longer lasting and sometimes more deleterious effects on an organism than stress exposure during adulthood. Moreover, the adolescent neuroendocrine response to stress exposure is different from that of adults, suggesting that further maturation of the adolescent hypothalamic-pituitary-adrenal (HPA) axis is required. The endocannabinoid (eCB) system is a potential candidate underlying these age-dependent differences given that it is an important regulator of the adult HPA axis and neuronal development. Therefore, this review will focus on (1) the functionality of the adolescent HPA axis, (2) eCB regulation of the adult HPA axis, (3) dynamic changes in eCB signaling during the adolescent period, (4) the effects of adolescent stress exposure on the eCB system, and (5) modulation of HPA axis activity and emotional behavior by adolescent cannabinoid treatment. Collectively, the emerging picture suggests that the eCB system mediates interactions between HPA axis stress responsivity, emotionality, and maturational stage. These findings may be particularly relevant to our understanding of the development of affective disorders and the risks of adolescent cannabis consumption on emotional health and stress responsivity.
Collapse
Affiliation(s)
- Tiffany T-Y Lee
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
99
|
Carey CE, Agrawal A, Zhang B, Conley ED, Degenhardt L, Heath AC, Li D, Lynskey MT, Martin NG, Montgomery GW, Wang T, Bierut LJ, Hariri AR, Nelson EC, Bogdan R. Monoacylglycerol lipase (MGLL) polymorphism rs604300 interacts with childhood adversity to predict cannabis dependence symptoms and amygdala habituation: Evidence from an endocannabinoid system-level analysis. JOURNAL OF ABNORMAL PSYCHOLOGY 2015; 124:860-77. [PMID: 26595473 PMCID: PMC4700831 DOI: 10.1037/abn0000079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite evidence for heritable variation in cannabis involvement and the discovery of cannabinoid receptors and their endogenous ligands, no consistent patterns have emerged from candidate endocannabinoid (eCB) genetic association studies of cannabis involvement. Given interactions between eCB and stress systems and associations between childhood stress and cannabis involvement, it may be important to consider childhood adversity in the context of eCB-related genetic variation. We employed a system-level gene-based analysis of data from the Comorbidity and Trauma Study (N = 1,558) to examine whether genetic variation in six eCB genes (anabolism: DAGLA, DAGLB, NAPEPLD; catabolism: MGLL, FAAH; binding: CNR1; SNPs N = 65) and childhood sexual abuse (CSA) predict cannabis dependence symptoms. Significant interactions with CSA emerged for MGLL at the gene level (p = .009), and for rs604300 within MGLL (ΔR2 = .007, p < .001), the latter of which survived SNP-level Bonferroni correction and was significant in an additional sample with similar directional effects (N = 859; ΔR2 = .005, p = .026). Furthermore, in a third sample (N = 312), there was evidence that rs604300 genotype interacts with early life adversity to predict threat-related basolateral amygdala habituation, a neural phenotype linked to the eCB system and addiction (ΔR2 = .013, p = .047). Rs604300 may be related to epigenetic modulation of MGLL expression. These results are consistent with rodent models implicating 2-arachidonoylglycerol (2-AG), an endogenous cannabinoid metabolized by the enzyme encoded by MGLL, in the etiology of stress adaptation related to cannabis dependence, but require further replication.
Collapse
Affiliation(s)
- Caitlin E Carey
- Department of Psychology, Washington University in St. Louis
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis
| | - Bo Zhang
- Department of Genetics, Washington University in St. Louis
| | | | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis
| | - Daofeng Li
- Department of Genetics, Washington University in St. Louis
| | | | | | | | - Ting Wang
- Department of Genetics, Washington University in St. Louis
| | - Laura J Bierut
- Department of Psychiatry, Washington University in St. Louis
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in St. Louis
| | - Ryan Bogdan
- Department of Psychology, Washington University in St. Louis
| |
Collapse
|
100
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|