51
|
Li Q, Jia M, Song H, Peng J, Zhao W, Zhang W. Astaxanthin Inhibits STING Carbonylation and Enhances Antiviral Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1188-1195. [PMID: 38391298 DOI: 10.4049/jimmunol.2300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
STING-mediated DNA sensing pathway plays a crucial role in the innate antiviral immune responses. Clarifying its regulatory mechanism and searching STING agonists has potential clinical implications. Although multiple STING agonists have been developed to target cancer, there are few for the treatment of infectious diseases. Astaxanthin, a natural and powerful antioxidant, serves many biological functions and as a potential candidate drug for many diseases. However, how astaxanthin combats viruses and whether astaxanthin regulates the cyclic GMP-AMP synthase-STING pathway remains unclear. In this study, we showed that astaxanthin markedly inhibited HSV-1-induced lipid peroxidation and inflammatory responses and enhanced the induction of type I IFN in C57BL/6J mice and mouse primary peritoneal macrophages. Mechanistically, astaxanthin inhibited HSV-1 infection and oxidative stress-induced STING carbonylation and consequently promoted STING translocation to the Golgi apparatus and oligomerization, which activated STING-dependent host defenses. Thus, our study reveals that astaxanthin displays a strong antiviral activity by targeting STING, suggesting that astaxanthin might be a promising STING agonist and a therapeutic target for viral infectious diseases.
Collapse
Affiliation(s)
- Qizhao Li
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mutian Jia
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
52
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
53
|
Wang H, Wang Y, Yang L, Feng J, Tian S, Chen L, Huang W, Liu J, Wang X. Integrated 16S rRNA sequencing and metagenomics insights into microbial dysbiosis and distinct virulence factors in inflammatory bowel disease. Front Microbiol 2024; 15:1375804. [PMID: 38591039 PMCID: PMC10999624 DOI: 10.3389/fmicb.2024.1375804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction The escalation of urbanization correlates with rising rates of inflammatory bowel disease (IBD), necessitating research into new etiological factors. This study aims to elucidate the gut microbiota profiles in IBD patients and compare them with healthy controls in a western city of China. Methods We conducted a multicenter case-control study from the end of 2020, using 16S rRNA gene sequencing (n = 36) and metagenomic sequencing (n = 12) to analyze the gut microbiota of newly diagnosed IBD patients, including those with Crohn's disease (CD) and ulcerative colitis (UC). Results Our results demonstrated a significant enrichment of the phylum Proteobacteria, particularly the genus Escherichia-Shigella, in CD patients. Conversely, the genus Enterococcus was markedly increased in UC patients. The core gut microbiota, such as the Christensenellaceae R-7 group, Fusicatenibacter, and Holdemanella, were primarily identified in healthy subjects. Additionally, significant interactions between the microbiome and virulence factors were observed. Discussion The findings suggest that oxidative stress may play a pivotal role in the pathology of IBD. This study contributes to the growing dialogue about the impact of gut microbiota on the development of IBD and its variations across different geographies, highlighting potential avenues for further research.
Collapse
Affiliation(s)
- Haijing Wang
- Medical College of Qinghai University, Xining, China
| | - Yuanjun Wang
- Medical College of Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Libin Yang
- Ningxia Hui Autonomous Region People's Hospital, Yinchuan, China
| | - Jiawen Feng
- Medical College of Qinghai University, Xining, China
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Shou Tian
- Medical College of Qinghai University, Xining, China
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Lingyan Chen
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Wei Huang
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Jia Liu
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Xiaojin Wang
- Medical College of Qinghai University, Xining, China
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| |
Collapse
|
54
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
55
|
Xia Y, Wang H, Xie Z, Liu ZH, Wang HL. Inhibition of ferroptosis underlies EGCG mediated protection against Parkinson's disease in a Drosophila model. Free Radic Biol Med 2024; 211:63-76. [PMID: 38092273 DOI: 10.1016/j.freeradbiomed.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Ferroptosis, a new type of cell death accompanied by iron accumulation and lipid peroxidation, is implicated in the pathology of Parkinson's disease (PD), which is a prevalent neurodegenerative disorder that primarily occurred in the elderly population. Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea with known neuroprotective effects in PD patients. But whether EGCG-mediated neuroprotection against PD involves regulation of ferroptosis has not been elucidated. In this study, we established a PD model using PINK1 mutant Drosophila. Iron accumulation, lipid peroxidation and decreased activity of GPX, were detected in the brains of PD flies. Additionally, phenotypes of PD, including behavioral defects and dopaminergic neurons loss, were ameliorated by ferroptosis inhibitor ferrostatin-1 (Fer-1). Notably, the increased iron level, lipid peroxidation and decreased GPX activity in the brains of PD flies were relieved by EGCG. We found that EGCG exerted neuroprotection mainly by restoring iron homeostasis in the PD flies. EGCG inhibited iron influx by suppressing Malvolio (Mvl) expression and simultaneously promoted the upregulation of ferritin, the intracellular iron storage protein, leading to a reduction in free iron ions. Additionally, EGCG downregulated the expression of Duox and Nox, two NADPH oxidases that produce reactive oxygen species (ROS) and increased SOD enzyme activity. Finally, modulation of intracellular iron levels or regulation of oxidative stress by genetic means exerted great influence on PD phenotypes. As such, the results demonstrated that ferroptosis has a role in the established PD model. Altogether, EGCG has therapeutic potentials for treating PD by targeting the ferroptosis pathway, providing new strategies for the prevention and treatment of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanzhou Xia
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, PR China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, PR China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
56
|
Song B, Chen Q, Tong C, Li Y, Li S, Shen X, Niu W, Hao M, Ma Y, Wang Y. Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. Curr Drug Deliv 2024; 21:1050-1061. [PMID: 37818569 DOI: 10.2174/0115672018255493230922101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 10/12/2023]
Abstract
Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qian Chen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuqi Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Shuang Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Xue Shen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Wenqi Niu
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Meihan Hao
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Yunfei Ma
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Department of Biological Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
57
|
Wang J, Dong D, Zhao W, Wang J. Intravital microscopy visualizes innate immune crosstalk and function in tissue microenvironment. Eur J Immunol 2024; 54:e2350458. [PMID: 37830252 DOI: 10.1002/eji.202350458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Significant advances have been made in the field of intravital microscopy (IVM) on myeloid cells due to the growing number of validated fluorescent probes and reporter mice. IVM provides a visualization platform to directly observe cell behavior and deepen our understanding of cellular dynamics, heterogeneity, plasticity, and cell-cell communication in native tissue environments. This review outlines the current studies on the dynamic interaction and function of innate immune cells with a focus on those that are studied with IVM and covers the advances in data analysis with emerging artificial intelligence-based algorithms. Finally, the prospects of IVM on innate immune cells are discussed.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Dong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
58
|
Yang Z, Bao L, Shen Y, Wang J, Su D, Liu H, Bao Y. Isolation and functional identification of immune cells in hemolymph of blood clams Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109320. [PMID: 38122950 DOI: 10.1016/j.fsi.2023.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Blood clam Tegillarca granosa is a type of economically cultivated bivalve mollusk with red blood, and it primarily relies on hemocytes in its hemolymph for immune defense. However, there are currently no reports on the isolation and identification of immune cells in T. granosa, which hinders our understanding of their immune defense. In this study, we employed single-cell transcriptome sequencing (scRNA-seq) to visualize the molecular profile of hemocytes in T. granosa. Based on differential expression of immune genes and hemoglobin genes, hemocytes can be molecularly classified into immune cells and erythrocytes. In addition, we separated immune cells using density gradient centrifugation and demonstrated their stronger phagocytic capacity compared to erythrocytes, as well as higher levels of ROS and NO. In summary, our experiments involved the isolation and functional identification of immune cells in hemolymph of T. granosa. This study will provide valuable insights into the innate immune system of red-blood mollusks and further deepen the immunological research of mollusks.
Collapse
Affiliation(s)
- Zexin Yang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Lingxing Bao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yiru Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jiacheng Wang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Dan Su
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Hongxin Liu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
| |
Collapse
|
59
|
Nel A, Heber D. Precision Nutrition in Allergy and Immune Function. PRECISION NUTRITION 2024:299-316. [DOI: 10.1016/b978-0-443-15315-0.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
60
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
61
|
Xiong Y, Kong X, Mei H, Wang J, Zhou S. Bioinformatics-based analysis of the relationship between disulfidptosis and prognosis and treatment response in pancreatic cancer. Sci Rep 2023; 13:22218. [PMID: 38097783 PMCID: PMC10721597 DOI: 10.1038/s41598-023-49752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
Tumor formation is closely associated with disulfidptosis, a new form of cell death induced by disulfide stress-induced. The exact mechanism of action of disulfidptosis in pancreatic cancer (PCa) is not clear. This study analyzed the impact of disulfidptosis-related genes (DRGs) on the prognosis of PCa and identified clusters of DRGs, and based on this, a risk score (RS) signature was developed to assess the impact of RS on the prognosis, immune and chemotherapeutic response of PCa patients. Based on transcriptomic data and clinical information from PCa tissue and normal pancreatic tissue samples obtained from the TCGA and GTEx databases, differentially expressed and differentially surviving DRGs in PCa were identified from among 15 DRGs. Two DRGs clusters were identified by consensus clustering by merging the PCa samples in the GSE183795 dataset. Analysis of DRGs clusters about the PCa tumor microenvironment and differential analysis to obtain differential genes between the two DRG clusters. Patients were then randomized into the training and testing sets, and a prognostic prediction signature associated with disulfidptosis was constructed in the training set. Then all samples were divided into high-disulfidptosis-risk (HDR) and low-disulfidptosis-risk (LDR) subgroups based on the RS calculated from the signature. The predictive efficacy of the signature was assessed by survival analysis, nomograms, correlation analysis of clinicopathological characteristics, and the receiver operating characteristic (ROC) curves. To assess differences between different risk subgroups in immune cell infiltration, expression of immune checkpoint molecules, somatic gene mutations, and effectiveness of immunotherapy and chemotherapy. The GSE57495 dataset was used as external validation, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of DRGs. A total of 12 DRGs with differential expression and prognosis in PCa were identified, based on which a risk-prognosis signature containing five differentially expressed genes (DEGs) was developed. The signature was a good predictor and an independent risk factor. The nomogram and calibration curve shows the signature's excellent clinical applicability. Functional enrichment analysis showed that RS was associated with tumor and immune-related pathways. RS was strongly associated with the tumor microenvironment, and analysis of response to immunotherapy and chemotherapy suggests that the signature can be used to assess the sensitivity of treatments. External validation further demonstrated the model's efficacy in predicting the prognosis of PCa patients, with RT-qPCR and immunohistochemical maps visualizing the expression of each gene in PCa cell lines and the tissue. Our study is the first to apply the subtyping model of disulfidptosis to PCa and construct a signature based on the disulfidptosis subtype, which can provide an accurate assessment of prognosis, immunotherapy, and chemotherapy response in PCa patients, providing new targets and directions for the prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaoyu Kong
- School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Haoran Mei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jie Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shifa Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
62
|
Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM, Gelman BB, Clifford DB, Franklin D, Heaton RK, Ellis RJ, Fennema-Notestine C, Letendre SL. Elevated Plasma Protein Carbonyl Concentration Is Associated with More Abnormal White Matter in People with HIV. Viruses 2023; 15:2410. [PMID: 38140650 PMCID: PMC10747698 DOI: 10.3390/v15122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Structural brain abnormalities, including those in white matter (WM), remain common in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies. Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for the total WM volume (nAWM). In this multisite project, all regression models were adjusted for the scanner. The candidate covariates included demographics, HIV disease characteristics, and comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045). In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative stress and its associated adverse health effects, including within the central nervous system. If confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or prevent WM injury in PWH.
Collapse
Affiliation(s)
- Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Leah H. Rubin
- Departments of Neurology, Psychiatry and Behavioral Sciences, and Epidemiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mt Sinai School of Medicine, New York, NY 10029, USA
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Benjamin B. Gelman
- Departments of Pathology, and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David B. Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
63
|
Pileco Cappelleti C, Santos Silva KT, Rodrigues-Conrad K, Grams KC, Kottwitz da Silva I, Frielink AP, da Rocha Abdallah S, de Fátima Colet C, Woutheres Bortolotto J, Bonfanti-Azzolin G, Migliorini Parisi M. Cytotoxic and oxidative changes in individuals occupationally exposed to recyclable municipal solid waste. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:898-908. [PMID: 37691320 DOI: 10.1080/15287394.2023.2256782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
aste collectors are exposed to a wide variety of bacteria, endotoxins, fungi, allergens, particulate matter, irritating inhalants, and vehicle exhaust, making them more prone to development of chronic diseases. Although several studies described the impact of occupational exposure on the overall health of waste collectors, few investigations were conducted regarding cellular and molecular changes that may occur due to exposure. The aim of this study was to assess biomarkers of oxidative stress such as levels of reactive oxygen species (ROS), lipoperoxidation, total antioxidant capacity (TAC), apoptosis, butyrylcholinesterase (BChE) activity and mitochondrial function (MitoTrackerTM Green FM and MitoTrackerTM Red) using the peripheral blood from individuals occupationally exposed to recyclable solid waste in Southern Brazil. The study included 30 waste collectors and 30 control individuals, who did not perform activities with recognized exposure to biological and chemical substances. Waste collectors were found to exhibit in peripheral blood leukocytes (PBL) higher rates of apoptosis, increased production of ROS, and reduced mitochondrial membrane potential (MMP), associated with decreased total antioxidant capacity (TAC) and elevated activity of BChE in plasma. Therefore, evidence indicates that cytotoxicity, oxidative stress, and inflammatory responses may be involved in the multiplicity of adverse health outcomes related to contaminant exposure in waste collectors. It is thus necessary to implement and/or improve occupational health programs aimed at workers as well as mandatory inspections for the use of personal protective equipment.
Collapse
Affiliation(s)
- Camila Pileco Cappelleti
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Karen Taiane Santos Silva
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Kelly Rodrigues-Conrad
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Kendra Caroline Grams
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Isadora Kottwitz da Silva
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Ana Paula Frielink
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Suelen da Rocha Abdallah
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
| | - Christiane de Fátima Colet
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
- Postgraduate Program in Environmental and Sustainability Systems, Regional University of the Northwest of the State of Rio Grande do Sul, Ijuí, Brazil
| | - Josiane Woutheres Bortolotto
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Gabriela Bonfanti-Azzolin
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| | - Mariana Migliorini Parisi
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Unicruz, Unijuí, Uri Erechim, Cruz Alta, Brazil
| |
Collapse
|
64
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
65
|
Zhang Y, Liu Y, Yang S, Yan S. Mechanism of Nrf2 in the treatment of ulcerative colitis via regulating macrophage polarization. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1746-1752. [PMID: 38432866 PMCID: PMC10929960 DOI: 10.11817/j.issn.1672-7347.2023.230281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 03/05/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease induced by multiple factors, which causes abnormal activation of intestinal immune cells and excessive release of antibodies and inflammatory factors, repeatedly damaging the intestinal mucosa. Macrophages, as innate intestinal immune cells, often maintain the balance of M1/M2 macrophages polarization to normalize the regression inflammation, and the imbalance of their polarization will cause repeated damage of intestinal mucosa and persistent inflammation, which is a main cause of UC. Nuclear factor E2-related factor 2 (Nrf2), as an important regulator of antioxidant and anti-inflammatory, is often used as a target for the treatment of autoimmune diseases.Nrf2 alleviates intestinal high oxidative stress and inflammatory factors by balancing macrophage polarization, which may be of great significance for the prevention and treatment of UC. Summarizing the mechanism of macrophage polarization imbalance on the course of UC and the possible regulatory mechanism of Nrf2 may provide basis for the development of UC targeted therapeutic drugs.
Collapse
Affiliation(s)
- Yilin Zhang
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046.
| | - Yushan Liu
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046
| | - Shusen Yang
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046
| | - Shuguang Yan
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046.
- Key Laboratory of Prescriptions and Medicines for Gastrointestinal Diseases in Shaanxi Province, Xianyang Shaanxi 712046, China.
| |
Collapse
|
66
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
67
|
Liu W, Peng J, Xiao M, Cai Y, Peng B, Zhang W, Li J, Kang F, Hong Q, Liang Q, Yan Y, Xu Z. The implication of pyroptosis in cancer immunology: Current advances and prospects. Genes Dis 2023; 10:2339-2350. [PMID: 37554215 PMCID: PMC10404888 DOI: 10.1016/j.gendis.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan 421001, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
68
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
69
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Interplay between efferocytosis and atherosclerosis. Arch Cardiovasc Dis 2023; 116:474-484. [PMID: 37659915 DOI: 10.1016/j.acvd.2023.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
In an adult human, billions of cells die and turn over daily. During this process, many apoptotic cells are produced and subsequently cleared by phagocytes - a process termed efferocytosis, which plays a critical role in tissue homeostasis. Efferocytosis is an important mechanism in the control of inflammatory processes. Efficient efferocytosis inhibits accumulation of apoptotic cells/debris and maintains homeostasis before the onset of necrosis (secondary necrosis), which promotes inflammation or injury. During efferocytosis, mitochondrial fission and the oxidative stress process are linked through reactive oxygen species production and oxidative stress control. Autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis by activated inflammatory cells, particularly neutrophils and macrophages. Autophagy in neutrophils is activated by phagocytosis of pathogens or activation of pattern recognition receptors. Autophagy is essential for major neutrophil functions, including degranulation, reactive oxygen species production, oxidative stress and release of neutrophil extracellular cytokines. Failed efferocytosis is a key mechanism driving the development and progression of chronic inflammatory diseases, including atherosclerosis, cardiometabolic pathology, neurodegenerative disease and cancer. Impairment of efferocytosis in apoptotic macrophages is a determinant of atherosclerosis severity and the vulnerability of plaques to rupture. Recent results suggest that inhibition of efferocytosis in the protection of the myocardium results in reduced infiltration of reparatory macrophages into the tissue, in association with oxidative stress reduction. Activated macrophages play a central role in the development and resolution of inflammation. The resolution of inflammation through efferocytosis is an endogenous process that protects host tissues from prolonged or excessive inflammation. Accordingly, therapeutic strategies that ameliorate efferocytosis control would be predicted to dampen inflammation and improve resolution. Thus, therapies targeting efferocytosis will provide a new means of treating and preventing cardiovascular and metabolic diseases involving the chronic inflammatory state.
Collapse
Affiliation(s)
- Luc Rochette
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | - Geoffrey Dogon
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Eve Rigal
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Marianne Zeller
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Yves Cottin
- Service de cardiologie, CHU de Dijon, 21000 Dijon, France
| | - Catherine Vergely
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| |
Collapse
|
70
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
71
|
Mosalev KI, Ivanov ID, Miroshnichenko SM, Tenditnik MV, Bgatova NP, Shults EE, Vavilin VA. The immunomodulatory activity of the betulonic acid based compound. BIOMEDITSINSKAIA KHIMIIA 2023; 69:219-227. [PMID: 37705482 DOI: 10.18097/pbmc20236904219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The immunomodulatory activity of a betulonic acid-based compound with furocoumarin (BABCF; 2-azido, 9-N-methylpiperazinomethyl oreozelone) has been investigated. Male C57BL/6 mice (aged 3 months) treated with the cytostatic agent cyclophosphamide (CP) and intact individuals served as experimental models. The expression of genes was studied in bone marrow (IL-12, IL-10, IL-1β, TNF-α, TGF-β, M-CSF, GM-CSF) or in the suspension of peritoneal cells (IL-12, IL-10; as the injection site). The surface markers of T-lymphocytes (CD3, CD4, and CD8) in fractions of venous blood mononuclear cells (MNCs) were determined by means of flow cytometry using antibodies. Histological and morphometric studies were performed to assess the impact of CP and BABCF on the thymus. BABCF caused a pronounced (about 3-fold) increase in relative expression of the GM-KSF gene. BABCF caused a local increase in the expression of IL-12 in the peritoneal cavity cells and restored the relative content of T-lymphocytes in the blood of CP-treated mice treated affecting mainly CD3⁺CD4⁺ lymphocytes. This substance reduced the tissue density of the thymic cortex and thymic medulla in CP-treated mice. Thus, results of this study suggest that BABCF exhibits a stimulating effect on the cellular link of immunity and promotes maintenance of the number of T-lymphocytes in the blood due to their migration from the central organs of the immune system.
Collapse
Affiliation(s)
- K I Mosalev
- Federal Research Center for Fundamental and Translational Medicine, Moscow, Russia
| | - I D Ivanov
- Federal Research Center for Fundamental and Translational Medicine, Moscow, Russia
| | - S M Miroshnichenko
- Federal Research Center for Fundamental and Translational Medicine, Moscow, Russia
| | - M V Tenditnik
- Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - N P Bgatova
- Scientific Research Institute of Clinical and Experimental Lymphology - Branch of the Federal Research Center of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Shults
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Vavilin
- Federal Research Center for Fundamental and Translational Medicine, Moscow, Russia
| |
Collapse
|
72
|
Chen LW, Jin SH, Lu Q, Zhou JG, Liu JG, Guan XY, Xia HB, He H. Identification of immunological bioprocesses involved in peri-implantitis using weighted gene co-expression network analysis. J Periodontol 2023; 94:1078-1089. [PMID: 37032448 DOI: 10.1002/jper.22-0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/04/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Peri-implantitis is an irreversible infectious disease that occurs with high incidence. Exploring the immune responses of peri-implantitis is key to developing targeted treatment strategies. However, there is limited research on the immune response of peri-implantitis. METHODS This study performed a weighted gene co-expression network analysis to identify the peri-implantitis related gene network and conducted a functional enrichment analysis of the gene network. Thereafter, the candidate hub genes were selected by constructing a protein-protein interaction network and drawing an upset plot. The hub genes were identified through their significant associations with disease condition and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Using the gene set variation analysis, the hub genes were further used to explore infiltrating immunocytes and immune factors in peri-implantitis. Finally, the immunocytes and immune factor related hub genes were intersected to obtain the therapeutic target, which was validated using histological staining. RESULTS The peri-implantitis related gene network was enriched in innate and adaptive immune response. Subsequently, interleukin (IL)1B, IL10, ITGAM, ITGB1, STAT3, and TLR4 were identified as hub genes. Plasmacytoid dendritic cells, macrophages, myeloid-derived suppressor cells, natural killer T cells, and immature B cells were positively and significantly related to the hub genes IL1B, TLR4, ITGAM, and ITGB1 (correlation coefficient > 0.80). While immune factors CXCL10, IL6, and CXCL12 and hub genes IL10 and IL1B held the highest degree in the immune factors network. IL1B may be a promising therapeutic target. CONCLUSION This study provides new insights into the hub genes, immunocytes, and immune factors underlying peri-implantitis immunological bioprocess.
Collapse
Affiliation(s)
- Liang-Wen Chen
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Su-Han Jin
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Lu
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Guo Zhou
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Guo Liu
- School of Stomatology, Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi Medical University, Zunyi, China
| | - Xiao-Yan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hai-Bin Xia
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
73
|
Bakaros E, Voulgaridi I, Paliatsa V, Gatselis N, Germanidis G, Asvestopoulou E, Alexiou S, Botsfari E, Lygoura V, Tsachouridou O, Mimtsoudis I, Tseroni M, Sarrou S, Mouchtouri VA, Dadouli K, Kalala F, Metallidis S, Dalekos G, Hadjichristodoulou C, Speletas M. Innate Immune Gene Polymorphisms and COVID-19 Prognosis. Viruses 2023; 15:1784. [PMID: 37766191 PMCID: PMC10537595 DOI: 10.3390/v15091784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 is characterized by a heterogeneous clinical presentation and prognosis. Risk factors contributing to the development of severe disease include old age and the presence of comorbidities. However, the genetic background of the host has also been recognized as an important determinant of disease prognosis. Considering the pivotal role of innate immunity in the control of SARS-CoV-2 infection, we analyzed the possible contribution of several innate immune gene polymorphisms (including TLR2-rs5743708, TLR4-rs4986790, TLR4-rs4986791, CD14-rs2569190, CARD8-rs1834481, IL18-rs2043211, and CD40-rs1883832) in disease severity and prognosis. A total of 249 individuals were enrolled and further divided into five (5) groups, according to the clinical progression scale provided by the World Health Organization (WHO) (asymptomatic, mild, moderate, severe, and critical). We identified that elderly patients with obesity and/or diabetes mellitus were more susceptible to developing pneumonia and respiratory distress syndrome after SARS-CoV-2 infection, while the IL18-rs1834481 polymorphism was an independent risk factor for developing pneumonia. Moreover, individuals carrying either the TLR2-rs5743708 or the TLR4-rs4986791 polymorphisms exhibited a 3.6- and 2.5-fold increased probability for developing pneumonia and a more severe disease, respectively. Our data support the notion that the host's genetic background can significantly affect COVID-19 clinical phenotype, also suggesting that the IL18-rs1834481, TLR2-rs5743708, and TLR4-rs4986791 polymorphisms may be used as molecular predictors of COVID-19 clinical phenotype.
Collapse
Affiliation(s)
- Evangelos Bakaros
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Ioanna Voulgaridi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (V.A.M.); (K.D.); (C.H.)
| | - Vassiliki Paliatsa
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Nikolaos Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, Full Member of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, 41110 Larissa, Greece; (N.G.); (V.L.); (G.D.)
| | - Georgios Germanidis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.G.); (O.T.); (I.M.); (S.M.)
| | - Evangelia Asvestopoulou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Stamatia Alexiou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Elli Botsfari
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Vasiliki Lygoura
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, Full Member of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, 41110 Larissa, Greece; (N.G.); (V.L.); (G.D.)
| | - Olga Tsachouridou
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.G.); (O.T.); (I.M.); (S.M.)
| | - Iordanis Mimtsoudis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.G.); (O.T.); (I.M.); (S.M.)
| | - Maria Tseroni
- National Public Health Organization, 15123 Athens, Greece;
| | - Styliani Sarrou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Varvara A. Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (V.A.M.); (K.D.); (C.H.)
| | - Katerina Dadouli
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (V.A.M.); (K.D.); (C.H.)
| | - Fani Kalala
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| | - Simeon Metallidis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.G.); (O.T.); (I.M.); (S.M.)
| | - George Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, Full Member of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, 41110 Larissa, Greece; (N.G.); (V.L.); (G.D.)
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (V.A.M.); (K.D.); (C.H.)
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (E.B.); (V.P.); (E.A.); (S.A.); (E.B.); (S.S.); (F.K.)
| |
Collapse
|
74
|
Ren Y, Wang R, Weng S, Xu H, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, Luo P, Cheng Q, Dang Q, Liu Z, Han X. Multifaceted role of redox pattern in the tumor immune microenvironment regarding autophagy and apoptosis. Mol Cancer 2023; 22:130. [PMID: 37563639 PMCID: PMC10413697 DOI: 10.1186/s12943-023-01831-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The reversible oxidation-reduction homeostasis mechanism functions as a specific signal transduction system, eliciting related physiological responses. Disruptions to redox homeostasis can have negative consequences, including the potential for cancer development and progression, which are closely linked to a series of redox processes, such as adjustment of reactive oxygen species (ROS) levels and species, changes in antioxidant capacity, and differential effects of ROS on downstream cell fate and immune capacity. The tumor microenvironment (TME) exhibits a complex interplay between immunity and regulatory cell death, especially autophagy and apoptosis, which is crucially regulated by ROS. The present study aims to investigate the mechanism by which multi-source ROS affects apoptosis, autophagy, and the anti-tumor immune response in the TME and the mutual crosstalk between these three processes. Given the intricate role of ROS in controlling cell fate and immunity, we will further examine the relationship between traditional cancer therapy and ROS. It is worth noting that we will discuss some potential ROS-related treatment options for further future studies.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruizhi Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
75
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
76
|
Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne) 2023; 14:1217669. [PMID: 37497349 PMCID: PMC10366376 DOI: 10.3389/fendo.2023.1217669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Osteosarcoma is a highly aggressive and metastatic malignant tumor. It has the highest incidence of all malignant bone tumors and is one of the most common solid tumors in children and adolescents. Osteosarcoma tissues are often richly infiltrated with inflammatory cells, including tumor-associated macrophages, lymphocytes, and dendritic cells, forming a complex immune microenvironment. The expression of immune checkpoint molecules is also high in osteosarcoma tissues, which may be involved in the mechanism of anti-tumor immune escape. Metabolism and senescence are closely related to the immune microenvironment, and disturbances in metabolism and senescence may have important effects on the immune microenvironment, thereby affecting immune cell function and immune responses. Metabolic modulation and anti-senescence therapy are gaining the attention of researchers as emerging immunotherapeutic strategies for tumors. Through an in-depth study of the interconnection of metabolism and anti- senescence in the tumor immune microenvironment and its regulatory mechanism on immune cell function and immune response, more precise therapeutic strategies can be developed. Combined with the screening and application of biomarkers, personalized treatment can be achieved to improve therapeutic efficacy and provide a scientific basis for clinical decision-making. Metabolic modulation and anti- senescence therapy can also be combined with other immunotherapy approaches, such as immune checkpoint inhibitors and tumor vaccines, to form a multi-level and multi-dimensional immunotherapy strategy, thus further enhancing the effect of immunotherapy. Multidisciplinary cooperation and integrated treatment can optimize the treatment plan and maximize the survival rate and quality of life of patients. Future research and clinical practice will further advance this field, promising more effective treatment options for patients with osteosarcoma. In this review, we reviewed metabolic and senescence characteristics in the immune microenvironment of osteosarcoma and related immunotherapies, and provide a reference for development of more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Hui Ying
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Zhi-Qiang Li
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
77
|
Li W, Li S, Zhang Z, Xu G, Man X, Yang F, Liang H. Developing a Multitargeted Anticancer Palladium(II) Agent Based on the His-242 Residue in the IIA Subdomain of Human Serum Albumin. J Med Chem 2023. [PMID: 37321208 DOI: 10.1021/acs.jmedchem.3c00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To obtain next-generation metal drugs that can overcome the deficiencies of platinum (Pt) drugs and treat cancer more effectively, we proposed to develop a multitargeted palladium (Pd) agent to the tumor microenvironment (TME) based on the specific residue(s) of human serum albumin (HSA). To this end, we optimized a series of Pd(II) 2-benzoylpyridine thiosemicarbazone compounds to obtain a Pd agent (5b) with significant cytotoxicity. The HSA-5b complex structure revealed that 5b bound to the hydrophobic cavity in the HSA IIA subdomain and then His-242 replaced a leaving group (Cl) of 5b, coordinating with the Pd center. The in vivo results showed that the 5b/HSA-5b complex had significant capacity of inhibiting tumor growth, and HSA optimized the therapeutic behavior of 5b. In addition, we confirmed that the 5b/HSA-5b complex inhibited tumor growth through multiple actions on different components of TME: killing cancer cells, inhibiting tumor angiogenesis, and activating T cells.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| |
Collapse
|
78
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
79
|
Hao R, Xiao H, Wang H, Deng P, Yue Y, Li J, Luo Y, Tian L, Xie J, Chen M, Zhou Z, Chen F, Pi H, Yu Z. Transcriptomics integrated with metabolomics unravels the interweaving of inflammatory response and 1-stearoyl-2-arachidonoyl-sn-glycerol metabolic disorder in chronic cadmium exposure-induced hepatotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104172. [PMID: 37295737 DOI: 10.1016/j.etap.2023.104172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Chronic Cd exposure induces an inflammatory response that contributes to liver damage. In the present study, C57BL/6J mice (8 weeks) were administered CdCl2 (0.6mg/L) orally for 6 months, and the underlying mechanism of chronic Cd-induced hepatotoxicity was explored through the application of transcriptomics and metabolomics. Chronic Cd exposure induced focal necrosis and inflammatory cell infiltration in the livers of mice. Importantly, hepatic IL-1β, IL-6, IL-9, IL-10, IL-17 and GM-CSF levels were significantly increased following chronic Cd exposure. Ingenuity Pathway Analysis of the transcriptomics profiles combined with RTqPCR was used to identify and optimize a crucial inflammatory response network in chronic Cd hepatotoxicity. Furthermore, an integrative analysis combining inflammatory response genes with differential metabolites revealed that 1-stearoyl-2-arachidonoyl-sn-glycerol and 4-hydroxybutanoic acid lactone levels were significantly correlated with all inflammatory response genes. Overall, our findings in this study help decipher the underlying mechanisms and key molecular events of chronic Cd hepatotoxicity.
Collapse
Affiliation(s)
- Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Heng Xiao
- Anorectal Section, Zhuzhou Hospital Affiliated to Xiangya Shool of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Fengqiong Chen
- Chongqing Center for Disease Control and Prevention, Chongqing, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| |
Collapse
|
80
|
Patel RS, Agrawal B. Mucosal immunization with lipopeptides derived from conserved regions of SARS-CoV-2 antigens induce robust cellular and cross-variant humoral immune responses in mice. Front Immunol 2023; 14:1178523. [PMID: 37334376 PMCID: PMC10272440 DOI: 10.3389/fimmu.2023.1178523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected >600 million people in the ongoing global pandemic. Several variants of the SARS-CoV-2 have emerged in the last >2 years, challenging the continued efficacy of current COVID vaccines. Therefore, there is a crucial need to investigate a highly cross-protective vaccine effective against variants of SARS-CoV-2. In this study, we examined seven lipopeptides derived from highly conserved, immunodominant epitopes from the S, N, and M proteins of SARS-CoV-2, that are predicted to contain epitopes for clinically protective B cells, helper T cells (TH) and cytotoxic T cells (CTL). Intranasal immunization of mice with most of the lipopeptides led to significantly higher splenocyte proliferation and cytokine production, mucosal and systemic antibody responses, and induction of effector B and T lymphocytes in both lungs and spleen, compared to immunizations with the corresponding peptides without lipid. Immunizations with Spike-derived lipopeptides led to cross-reactive IgG, IgM and IgA responses against Alpha, Beta, Delta, and Omicron Spike proteins as well as neutralizing antibodies. These studies support their potential for development as components of a cross-protective SARS-CoV-2 vaccine.
Collapse
|
81
|
Xu J, Xie L. Advances in immune response to pulmonary infection: Nonspecificity, specificity and memory. Chronic Dis Transl Med 2023; 9:71-81. [PMID: 37305110 PMCID: PMC10249196 DOI: 10.1002/cdt3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
The lung immune response consists of various cells involved in both innate and adaptive immune processes. Innate immunity participates in immune resistance in a nonspecific manner, whereas adaptive immunity effectively eliminates pathogens through specific recognition. It was previously believed that adaptive immune memory plays a leading role during secondary infections; however, innate immunity is also involved in immune memory. Trained immunity refers to the long-term functional reprogramming of innate immune cells caused by the first infection, which alters the immune response during the second challenge. Tissue resilience limits the tissue damage caused by infection by controlling excessive inflammation and promoting tissue repair. In this review, we summarize the impact of host immunity on the pathophysiological processes of pulmonary infections and discuss the latest progress in this regard. In addition to the factors influencing pathogenic microorganisms, we emphasize the importance of the host response.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
82
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
83
|
Yuan Y, Zuo M, Zhang S, Chen S, Feng W, Wang Z, Chen M, Liu Y. Impact of redox-related genes on tumor microenvironment immune characteristics and prognosis of high-grade gliomas. Front Cell Neurosci 2023; 17:1155982. [PMID: 37252189 PMCID: PMC10213429 DOI: 10.3389/fncel.2023.1155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction High-grade glioma (HGG) defines a group of brain gliomas characterized by contrast enhancement, high tumor heterogeneity, and poor clinical outcome. Disturbed reduction-oxidation (redox) balance has been frequently associated with the development of tumor cells and their microenvironment (TME). Methods To study the influence of redox balance on HGGs and their microenvironment, we collected mRNA-sequencing and clinical data of HGG patients from TCGA and CGGA databases and our own cohort. Redox-related genes (ROGs) were defined as genes in the MSigDB pathways with keyword "redox" that were differentially expressed between HGGs and normal brain samples. Unsupervised clustering analysis was used to discover ROG expression clusters. Over-representation analysis (ORA), gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were also employed to understand the biological implication of differentially expressed genes between HGG clusters. CIBERSORTx and ESTIMATE were used to profile the immune TME landscapes of tumors, and TIDE was used to evaluated the potential response to immune checkpoint inhibitors. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression was used to construct HGG-ROG expression risk signature (GRORS). Results Seventy-five ROGs were found and consensus clustering using the expression profile of ROGs divided the both IDH-mutant (IDHmut) and IDH-wildtype (IDHwt) HGGs into subclusters with different prognosis. Functional enrichment analysis revealed that the differential aggressiveness between redox subclusters in IDHmut HGGs were significantly associated with cell cycle regulation pathways, while IDHwt HGG redox subclusters showed differentially activated immune-related pathways. In silico TME analysis on immune landscapes in the TME showed that the more aggressive redox subclusters in both IDHmut and IDHwt HGGs may harbor a more diverse composition of tumor-infiltrating immune cells, expressed a higher level of immune checkpoints and were more likely to respond to immune checkpoint blockade. Next, we established a GRORS which showed AUCs of 0.787, 0.884, and 0.917 in predicting 1-3-year survival of HGG patients in the held-out validation datasets, and the C-index of a nomogram combining the GRORS and other prognostic information reached 0.835. Conclusion Briefly, our results suggest that the expression pattern of ROGs was closely associated with the prognosis as well as the TME immune profile of HGGs, and may serve as a potential indicator for their response to immunotherapies.
Collapse
Affiliation(s)
- Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wentao Feng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mina Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
84
|
Guedes BFS, Cardoso SM, Esteves AR. The Impact of microRNAs on Mitochondrial Function and Immunity: Relevance to Parkinson's Disease. Biomedicines 2023; 11:biomedicines11051349. [PMID: 37239020 DOI: 10.3390/biomedicines11051349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's Disease (PD), the second most common neurodegenerative disorder, is characterised by the severe loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) and by the presence of Lewy bodies. PD is diagnosed upon the onset of motor symptoms, such as bradykinesia, resting tremor, rigidity, and postural instability. It is currently accepted that motor symptoms are preceded by non-motor features, such as gastrointestinal dysfunction. In fact, it has been proposed that PD might start in the gut and spread to the central nervous system. Growing evidence reports that the gut microbiota, which has been found to be altered in PD patients, influences the function of the central and enteric nervous systems. Altered expression of microRNAs (miRNAs) in PD patients has also been reported, many of which regulate key pathological mechanisms involved in PD pathogenesis, such as mitochondrial dysfunction and immunity. It remains unknown how gut microbiota regulates brain function; however, miRNAs have been highlighted as important players. Remarkably, numerous studies have depicted the ability of miRNAs to modulate and be regulated by the host's gut microbiota. In this review, we summarize the experimental and clinical studies implicating mitochondrial dysfunction and immunity in PD. Moreover, we gather recent data on miRNA involvement in these two processes. Ultimately, we discuss the reciprocal crosstalk between gut microbiota and miRNAs. Studying the bidirectional interaction of gut microbiome-miRNA might elucidate the aetiology and pathogenesis of gut-first PD, which could lead to the application of miRNAs as potential biomarkers or therapeutical targets for PD.
Collapse
Affiliation(s)
- Beatriz F S Guedes
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
85
|
Yao J, Liu J, He Y, Liu L, Xu Z, Lin X, Liu N, Kai G. Systems pharmacology reveals the mechanism of Astragaloside IV in improving immune activity on cyclophosphamide-induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116533. [PMID: 37100262 DOI: 10.1016/j.jep.2023.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myelosuppression, also known as bone marrow suppression (BMS), is a pathological phenomenon of the decrease in the production of blood cells and further lead to immune homeostasis disorder. Astragalus mongholicus Bunge (AM, checked with The World Flora Online, http://www.worldfloraonline.org, updated on January 30, 2023) is a traditional Chinese medicine with efficacy of tonifying Qi and strengthening body immunity in thousands of years of clinical practice in China. Astragaloside IV (AS-IV) is a major active ingredient of AM, which plays an important role in regulating immune system through different ways. AIM OF THE STUDY This study was aimed to investigate the protective effect and mechanism of AS-IV on macrophages in vitro and cyclophosphamide (CTX)-induced immunosuppressive mice in vivo, and to provide experimental basis for the prevention and treatment of AS-IV in myelosuppression. MATERIALS AND METHODS Based on network pharmacology and molecular docking technology, the core targets and signaling pathways of saponins of AM against myelosuppression were screened. And then, the immunoregulatory effect of AS-IV on RAW264.7 cells was investigated by cellular immune activity and cellular secretion analysis in vitro. In this way, the effects of AS-IV on the main potential targets of HIF-1α/NF-κB signaling pathway were analyzed by qRT-PCR and Western blot methods. Furthermore, comprehensive analysis of the effects of AS-IV against CTX-induced mice were conducted on the basis of immune organs indices analysis, histopathological analysis, hematological analysis, natural killer cell activity analysis and spleen lymphocyte transformation activity analysis. In order to further verify the relationship between active ingredients and action targets, drug inhibitor experiments were finally conducted. RESULTS AS-IV, as a potential anti-myelosuppressive compound, was screened by systematic pharmacological methods to act on target genes including HIF1A and RELA together with the HIF-1α/NF-κB signaling pathway. Further studies by molecular docking technology showed that AS-IV had good binding activity with HIF1A, RELA, TNF, IL6, IL1B and other core targets. Besides, cellular and animal experiments validation results showed that AS-IV could enhance the migration and phagocytosis of RAW264.7 cells, and protect the immune organs such as spleen and thymus together with bone tissues from damage. By this means, immune cell function including spleen natural killer cell and lymphocyte transformation activity were also enhanced. In addition, white blood cells, red blood cells, hemoglobin, platelets and bone marrow cells were also significantly improved in the suppressed bone marrow microenvironment (BMM). In kinetic experiments, the secretion of cytokines such as TNF-α, IL-6 and IL-1β were increased, and IL-10, TGF-β1 were decreased. The key regulatory proteins such as HIF-1α, NF-κB, PHD3 in HIF-1α/NF-κB signaling pathway were also regulated in the results of upregulated expression of HIF-1α, p-NF-κB p65 and PHD3 at the protein or mRNA level. Finally, the inhibition experiment results suggested that AS-IV could significantly improve protein response in immunity and inflammation such as HIF-1α, NF-κB and PHD3. CONCLUSION AS-IV could significantly relieve CTX-induced immunosuppressive and might improve the immune activity of macrophages by activating HIF-1α/NF-κB signaling pathway, and provide a reliable basis for the clinical application of AS-IV as a potentially valuable regulator of BMM.
Collapse
Affiliation(s)
- Jiaxiong Yao
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Junqiu Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yining He
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zonghui Xu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xianming Lin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Na Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
86
|
Song L, Xiong D, Wen Y, Tan R, Kang X, Jiao X, Pan Z. Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages. Curr Issues Mol Biol 2023; 45:2798-2816. [PMID: 37185707 PMCID: PMC10136974 DOI: 10.3390/cimb45040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The flagellin (FliC) of Salmonella typhimurium is a potential vaccine adjuvant as it can activate innate immunity and promote acquired immune responses. Macrophages are an important component of the innate immune system. The mechanism of flagellin’s adjuvant activity has been shown to be related to its ability to activate macrophages. However, few studies have comprehensively investigated the effects of Salmonella flagellin in macrophages using transcriptome sequencing. In this study, RNA-Seq was used to analyze the expression patterns of RAW264.7 macrophages induced by FliC to identify novel transcriptomic signatures in macrophages. A total of 2204 differentially expressed genes were found in the FliC-treated group compared with the control. Gene ontology and KEGG pathway analyses identified the top significantly regulated functional classification and canonical pathways, which were mainly related to immune responses and regulation. Inflammatory cytokines (IL-6, IL-1β, TNF-α, etc.) and chemokines (CXCL2, CXCL10, CCL2, etc.) were highly expressed in RAW264.7 cells following stimulation. Notably, flagellin significantly increased the expression of interferon (IFN)-β. In addition, previously unidentified IFN regulatory factors (IRFs) and IFN-stimulated genes (ISGs) were also significantly upregulated. The results of RNA-Seq were verified, and furthermore, we demonstrated that flagellin increased the expression of IFN-β and IFN-related genes (IRFs and ISGs) in bone marrow-derived dendritic cells and macrophages. These results suggested that Salmonella flagellin can activate IFN-β-related immune responses in macrophages, which provides new insight into the immune mechanisms of flagellin adjuvant.
Collapse
|
87
|
Xu L, Li F, Jiang M, Li Z, Xu D, Jing J, Wang J, Ding J. Immunosuppression by Inflammation-Stimulated Amplification of Myeloid-Derived Suppressor Cells and Changes in Expression of Immune Checkpoint HHLA2 in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:139-153. [PMID: 36846109 PMCID: PMC9946009 DOI: 10.2147/copd.s394327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Background The interaction between immune checkpoint and myeloid-derived suppressor cells (MDSCs) play a significant role in inflammatory diseases. But their correlation with chronic obstructive pulmonary disease (COPD) remains unclear. Methods The differentially expressed immune checkpoints and immunocytes in the airway tissues of COPD patients were identified by bioinformatics analysis, followed by correlation analysis and identification of immune-related differential genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. The results of bioinformatics analysis were verified by ELISA and Real-Time PCR and transcriptome sequencing of the peripheral blood of both COPD patients and healthy subjects. Results The results of the bioinformatics analysis showed that the level of MDSCs in airway tissue and peripheral blood of COPD patients was higher than that of healthy controls. The expression of CSF1 in airway tissue and peripheral blood of COPD patients increased, and CYBB was increased in airway tissue and decreased in peripheral blood of COPD patients. The expression of HHLA2 in the airway tissue decreased in COPD patients, and showed a negative correlation with MDSCs, with a correlation coefficient of -0.37. The peripheral blood flow cytometry results indicated that MDSCs and Treg cells of COPD patients were higher than those in the healthy control group. The results of peripheral blood ELISA and RT-PCR showed that the HHLA2 and CSF1 levels in COPD patients were higher than those in the healthy control group. Conclusion In COPD, the bone marrow is stimulated to produce MDSCs, and a large number of MDSCs migrate to airway tissue through peripheral blood and cooperate with HHLA2 to exert an immunosuppressive effect. Whether MDSCs play an immunosuppressive effect during migration needs to be further confirmed.
Collapse
Affiliation(s)
- Lijuan Xu
- The Fourth Clinical Medical College, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Jing
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China,Correspondence: Jing Wang, Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China, Tel +86-13999908413, Email
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China,Jianbing Ding, Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China, Tel +86-13999847738, Email
| |
Collapse
|
88
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
89
|
Zapolnik P, Kmiecik W, Mazur A, Czajka H. Trained Immunity, BCG and SARS-CoV-2 General Outline and Possible Management in COVID-19. Int J Mol Sci 2023; 24:ijms24043218. [PMID: 36834629 PMCID: PMC9961109 DOI: 10.3390/ijms24043218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine has been in use for over 100 years. It protects against severe, blood-borne forms of tuberculosis. Observations indicate that it also increases immunity against other diseases. The mechanism responsible for this is trained immunity, an increased response of non-specific immune cells in repeated contact with a pathogen, not necessarily of the same species. In the following review, we present the current state of knowledge on the molecular mechanisms responsible for this process. We also seek to identify the challenges facing science in this area and consider the application of this phenomenon in managing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic.
Collapse
Affiliation(s)
- Paweł Zapolnik
- College of Medical Sciences, University of Rzeszów, 35-315 Rzeszów, Poland
- Correspondence:
| | - Wojciech Kmiecik
- St. Louis Provincial Specialist Children’s Hospital, 31-503 Kraków, Poland
| | - Artur Mazur
- College of Medical Sciences, University of Rzeszów, 35-315 Rzeszów, Poland
| | - Hanna Czajka
- College of Medical Sciences, University of Rzeszów, 35-315 Rzeszów, Poland
| |
Collapse
|
90
|
García-Silva I, Govea-Alonso DO, Rosales-Mendoza S. Current status of mucosal vaccines against SARS-CoV2: a hope for protective immunity. Expert Opin Biol Ther 2023; 23:207-222. [PMID: 36594264 DOI: 10.1080/14712598.2022.2156284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The current vaccines used to fight against COVID-19 are effective, however the induction of protective immunity is a pending goal required to prevent viral transmission, prevent the generation of new variants, and ultimately eradicate SARS-CoV-2. Mucosal immunization stands as a promising approach to achieve protective immunity against SARS-CoV-2; therefore, it is imperative to innovate the current vaccines by developing mucosal candidates, focusing not only on their ability to prevent severe COVID-19 but to neutralize the virus before invasion of the respiratory system and other mucosal compartments. AREAS COVERED This review covers the current advances on the development of anti-COVID-19 mucosal vaccines. Biomedical literature, including PubMed and clinicaltrials.gov website, was analyzed to identify the state of the art for this field. The achievements in preclinical and clinical evaluations are presented and critically analyzed. EXPERT OPINION There is a significant advance on the development of mucosal vaccines against SARSCoV-2, which is a promise to increase the efficacy of immunization against this pathogen. Both preclinical and clinical evaluation for several candidates have been performed. The challenges in this road (e.g. low immunogenicity, a reduced number of adjuvants available, and inaccurate dosage) are identified and also critical perspectives for the field are provided.
Collapse
Affiliation(s)
- Ileana García-Silva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, San Luis Potosí, México.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, México
| | - Dania O Govea-Alonso
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, San Luis Potosí, México.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, México
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, San Luis Potosí, México.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, México
| |
Collapse
|
91
|
Wang H, Wu H, Li KD, Wang YY, Huang RG, Du YJ, Jin X, Zhang QR, Li XB, Li BZ. Intestinal fungi and systemic autoimmune diseases. Autoimmun Rev 2023; 22:103234. [PMID: 36423833 DOI: 10.1016/j.autrev.2022.103234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Nearly 20 years of studies have shown that fungi and the human immune system (non-specific immunity and specific immunity) and bacterial--fungal interactions maintain a balance that can't lead to diseases. Fungi--microorganism that lives in human intestine--may play an important role in human health and disease. Population studies and animal models in some diseases have found the changes in the diversity and composition of fungi. The dysregulation of the fungi can disrupt the normal "running" of the immune system and bacteria, which triggers the development of inflammatory diseases. The latest studies of fungi in inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and type 1 diabetes mellitus were summarized. This review considers how the healthy host protect against the potential harm of intestinal fungi through the immune system and how fungal dysregulation alters host immunity.
Collapse
Affiliation(s)
- Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
92
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525042. [PMID: 36711448 PMCID: PMC9882296 DOI: 10.1101/2023.01.22.525042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Ashley R. Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Andréa B. Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa M. Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Alexandra C. Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Stephanie L. Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heta S. Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M. Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
94
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
95
|
Dang W, Meng C, Wang J, Zhou D, Chen G, Li N. Exploration of the Binding Modes of Toll-Like Receptor 4 Competitive Inhibitors: A Combined Ligand-Based and Target-Based Approach. ChemMedChem 2023; 18:e202200690. [PMID: 36651317 DOI: 10.1002/cmdc.202200690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
The interactions of Toll-like receptor 4 (TLR4) with competitive inhibitors were investigated by a combined ligand-based and target-based approach. Firstly, the ligand-based pharmacophore model of the reported TLR4 inhibitors was constructed by utilizing the common feature method, which included three hydrophobic groups and a hydrogen bond receptor. The Schrödinger software suite glide module was used to dock inhibitors with proteins and verify the importance of these four interaction points from the target level. Then, molecular dynamics, alanine scanning mutagenesis, and binding free energy calculation were used to identify the key amino acids in the binding mode. In addition, blind docking proved that the TLR4 inhibitor does not bind to TLR4 itself like other TLR family proteins. Based on this, we also screened a class of sesquiterpene coumarins which possibly have TLR4 inhibitory activity and will conduct a detailed study later. Together, this study revealed the interactions between TLR4 protein and its competitive inhibitors, which shed light on better access for developing its novel inhibitors.
Collapse
Affiliation(s)
- Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Churen Meng
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
96
|
Wang Y, Zeng M, Xia L, Valerie Olovo C, Su Z, Zhang Y. Bacterial strategies for immune systems - Role of the type VI secretion system. Int Immunopharmacol 2023; 114:109550. [PMID: 36525796 DOI: 10.1016/j.intimp.2022.109550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
The process of host infection by bacteria is complicated. Bacterial infections strongly induce the host immune system, which necessitates a robust clearance of the infection. However, bacteria have over time developed strategies that enable their evasion of attacks by the host immune system. One such strategy is the type VI secretion system (T6SS), a special needle-like secretion system that is widespread in Gram-negative bacteria and is responsible for delivering effector proteins into the external bacterial environment or directly into the host cell cytosol. Bacterial T6SS and its secreted effector proteins play an important role in the interaction between bacteria and host immune system. They also serve as antigens that are employed in the development of vaccines for clinical trials as well as future vaccine candidates. This review focuses mainly on aspects of T6SS effectors that impact the strength of the host immune system, including inflammation, autophagy, and apoptosis (silent programmed cell death). The T6SS-based vaccines are also described.
Collapse
Affiliation(s)
- Yurou Wang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Chinasa Valerie Olovo
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Zhaoliang Su
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
97
|
Xu X, Wang J. Prognostic prediction and multidimensional dissections of a macrophages M0-related gene signature in liver cancer. Front Endocrinol (Lausanne) 2023; 14:1153562. [PMID: 37033261 PMCID: PMC10080084 DOI: 10.3389/fendo.2023.1153562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is the seventh most commonly diagnosed malignancy and the third leading cause of all cancer death worldwide. The undifferentiated macrophages M0 can be induced into polarized M1 and M2 to exert opposite effects in tumor microenvironment. However, the prognostic value of macrophages M0 phenotype remains obscure in LIHC. METHODS The transcriptome data of LIHC was obtained from TCGA database and ICGC database. 365 LIHC samples from TCGA database and 231 LIHC samples from ICGC database were finally included. Macrophages M0-related genes (MRGs) were screened by Pearson correlation analysis and univariate Cox regression analysis based on the infiltration level of Macrophages M0. LASSO regression analysis was employed to construct a prognostic signature based on MRGs, and risk scores were accordingly calculated. Then we investigated the MRGs-based prognostic signature with respects to prognostic value, clinical significance, strengthened pathways, immune infiltration, gene mutation and drug sensitivity. Furthermore, the expression pattern of MRGs in the tumor microenvironment were also detected in LIHC. RESULTS A ten-MRG signature was developed and clarified as independent prognostic predictors in LIHC. The risk score-based nomogram showed favorable capability in survival prediction. Several substance metabolism activities like fatty acid/amino acid metabolism were strengthened in low-risk group. Low risk group was deciphered to harbor TTN mutation-driven tumorigenesis, while TP53 mutation was dominant in high-risk group. We also ascertained that the infiltration levels of immune cells and expressions of immune checkpoints are significantly influenced by the risk score. Besides, we implied that patients in low-risk group may be more sensitive to several anti-cancer drugs. What's more important, single-cell analysis verified the expression of MRGs in the tumor microenvironment of LIHC. CONCLUSION Multidimensional evaluations verified the clinical utility of the macrophages M0-related gene signature to predict prognosis, assist risk decision and guide treatment strategy for patients with LIHC.
Collapse
Affiliation(s)
- Xiaoming Xu
- Department of Gastroenterology, Jining First People’s Hospital, Jining, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng, China
- *Correspondence: Jingzhi Wang,
| |
Collapse
|
98
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
99
|
Zhu J, Zhang W, Chang J, Wu J, Wu H, Zhang X, Ou Z, Tang T, Li L, Liu M, Xin Y. Identification and Validation of a Mitochondria Calcium Uptake-Related Gene Signature for Predicting Prognosis in COAD. J Cancer 2023; 14:741-758. [PMID: 37056383 PMCID: PMC10088886 DOI: 10.7150/jca.81811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/15/2023] Open
Abstract
Background: Mitochondrial calcium uniporter (MCU) complex has been reported to be associated with the tumor occurrence and development in varieties of malignancies. However, the role of MCU complex in colon adenocarcinoma (COAD) remains unclear. Therefore, we constructed a risk score signature based on the MCU complex members to predict the prognosis and response to immunotherapy for patients with COAD. Methods: The MCU complex-associated risk signature (MCUrisk) was constructed based on the expressions of MCU, MCUb, MCUR1, SMDT1, MICU1, MICU2, and MICU3 in COAD. The immune score, stromal score, tumor purity and estimate score were calculated by the ESTIMATE algorithm. We systematically evaluated the relationship among the MCUrisk, mutation signature, immune cell infiltration, and immune checkpoint molecules. The response to immunotherapy was quantified by the Tumor Immune Dysfunction and Exclusion (TIDE). Results: Our results showed that high score of MCUrisk was a worse factor for overall survival (OS) in COAD, and MCUrisk score was significantly higher in advanced COAD. The mutation landscape was different between the MCUrisk-high and MCUrisk-low groups, and the mutation rate of TP53 was remarkably higher in MCUrisk-high group, which strongly suggested TP53 mutation might be associated with mitochondrial calcium dyshomeostasis in COAD. Furthermore, MCUrisk score was negatively correlated with tumor mutation burden (TMB), and combining risk score and TMB as a novel index was better than TMB alone in predicting the prognosis for COAD patients. The compositions of Tregs and M0/M2 macrophages were significantly increased in MCUrisk-high group, whereas CD4+ T cells was significantly decreased in MCUrisk-high group. Consistently, the immune score was lower in MCUrisk-high group. The expression levels of immune checkpoint molecules were negatively correlated with the MCUrisk score, including CD58 and CD226. Furthermore, a lower MCUrisk score indicated better response to immunotherapy, and combining risk score and immune score was a novel indicator to precisely predict the response to immuotherapy for COAD patients. Conclusion: Altogether, a novel MCUrisk signature was constructed based on the mitochondrial calcium uptake-associated genes, and a lower MCUrisk score may predict better OS outcome and better response to immunotherapy in COAD.
Collapse
Affiliation(s)
- Jianjun Zhu
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Department of Hepatological Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wentao Zhang
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjia Chang
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Wu
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hao Wu
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xintong Zhang
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhigao Ou
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Tang
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Liu
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
- ✉ Corresponding authors: Yongfan Xin, E-mail: ; Department of Oncology and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China. Ming Liu, E-mail: ; Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfan Xin
- Department of oncology and vascular intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- ✉ Corresponding authors: Yongfan Xin, E-mail: ; Department of Oncology and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China. Ming Liu, E-mail: ; Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
100
|
Yu D, Chen P, Zhang X, Wang H, Dhuromsingh M, Wu J, Qin B, Guo S, Zhang B, Li C, Zeng H. Association of lymphopenia and RDW elevation with risk of mortality in acute aortic dissection. PLoS One 2023; 18:e0283008. [PMID: 36920980 PMCID: PMC10016706 DOI: 10.1371/journal.pone.0283008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVE The study aimed to investigate whether lymphopenia and red blood cell distribution width (RDW) elevation are associated with an increased risk of mortality in acute aortic dissection (AAD). METHODS This multicenter retrospective cohort study enrolled patients diagnosed with AAD by aortic computed tomographic angiography (CTA) from 2010 to 2021 in five teaching hospitals in central-western China. Cox proportional hazards regression and Kaplan-Meier curves were used in univariable and multivariable models. Clinical outcomes were defined as all-cause in-hospital mortality, while associations were evaluated between lymphopenia, accompanied by an elevated RDW, and risk of mortality. RESULTS Of 1903 participants, the median age was 53 (interquartile range [IQR], 46-62) years, and females accounted for 21.9%. Adjusted increased risk of mortality was linearly related to the decreasing lymphocyte percentage (P-non-linearity = 0.942) and increasing RDW (P-non-linearity = 0.612), and per standard deviation (SD) of increment lymphocyte percentage and RDW was associated with the 26% (0.74, 0.64-0.84) decrement and 5% (1.05, 0.95-1.15) increment in hazard ratios (HRs) and 95% confidence intervals (CIs) of mortality, respectively. Importantly, lymphopenia and elevation of RDW exhibited a significant interaction with increasing the risk of AAD mortality (P-value for interaction = 0.037). CONCLUSIONS Lymphopenia accompanied by the elevation of RDW, which may reflect the immune dysregulation of AAD patients, is associated with an increased risk of mortality. Assessment of immunological biomarkers derived from routine tests may provide novel perspectives for identifying the risk of mortality.
Collapse
Affiliation(s)
- Dan Yu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
- Department of Cardiac Intensive Care Unit, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, China
| | - Peng Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Zhang
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Menaka Dhuromsingh
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Jinxiu Wu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Bingyu Qin
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, China
- * E-mail: (BQ); (SG); (BZ); (CL); (HZ)
| | - Suping Guo
- Department of Cardiac Intensive Care Unit, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, China
- Department of Cardiac Intensive Care Unit, Central China Fuwai Hospital of Zhengzhou University (Fuwai Central China Cardiovascular Hospital), Zhengzhou, China
- * E-mail: (BQ); (SG); (BZ); (CL); (HZ)
| | - Baoquan Zhang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- * E-mail: (BQ); (SG); (BZ); (CL); (HZ)
| | - Chunwen Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (BQ); (SG); (BZ); (CL); (HZ)
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
- * E-mail: (BQ); (SG); (BZ); (CL); (HZ)
| |
Collapse
|