51
|
Ma Y, Yun X, Ruan Z, Lu C, Shi Y, Qin Q, Men Z, Zou D, Du X, Xing B, Xie Y. Review of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) contamination in Chinese soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141212. [PMID: 32827819 DOI: 10.1016/j.scitotenv.2020.141212] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Despite a ban on the production and use of organochlorine pesticides (OCPs) after 1983, serious OCP pollution still exists in the soil in certain areas of China because OCPs degrade very slowly. Based on a systematic review, we identified 136 relevant papers focusing on soil contamination from hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in China (published from 2001 to 2019). We compiled scientific data, extracted and analyzed relevant information, and summarized the pollution characteristics of HCH and DDT in Chinese soils found in two land use types: agricultural land and land for construction. Related studies on HCH and DDT in Chinese soils focus on the Beijing-Tianjin-Hebei region and the Yangtze and Pearl River Deltas, where agricultural soils are predominant. The average concentrations of both HCH and DDT in agricultural soils were generally lower than the risk screening value (100 μg/kg) in most provinces in China, except for DDT concentrations in the Inner Mongolia autonomous region. However, in certain central and eastern regions, mean or maximum recorded DDT concentrations approaching or exceeding 100 μg/kg were recorded. Regarding land for construction, soils with excessive concentrations of HCH and DDT were primarily observed at sites of operational or defunct pesticide factories. According to isomer and metabolite compositions, HCH and DDT at most sites originated from historical residues, but others may have been new inputs after 1983. Since 2015, the concentrations of HCH and DDT in agricultural soils in China have been decreasing, and those in the soils of land for construction (except for sites of operational or defunct pesticide factories) have not exceeded the standard after 2005. This indicates that the measures to prohibit the production and use of OCPs in China have been effective. However, the management of operational or defunct pesticide factories polluted by OCPs requires further improvement.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Xiaotong Yun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Ziyuan Ruan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Chaojun Lu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Yi Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, People's Republic of China.
| | - Qiang Qin
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Zhuming Men
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Dezhi Zou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiaoming Du
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Yunfeng Xie
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, People's Republic of China.
| |
Collapse
|
52
|
Wang F, Cao D, Shi L, He S, Li X, Fang H, Yu Y. Competitive Adsorption and Mobility of Propiconazole and Difenoconazole on Five Different Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:927-933. [PMID: 33112962 DOI: 10.1007/s00128-020-03034-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Propiconazole (PPC) and difenoconazole (DFC) are often combined for field applications. The resulted co-exsistence of PPC and DFC may have an effect on the fate of their individuals in soil. In this study, adsorption, desorption and leaching of PPC and DFC alone and their combinations were investigated in five different soils. Adsorption of PPC and DFC was significantly different on each soil with the Freundlich adsorption coefficients of 2.86-28.69 and 14.86-98.93 negatively correlated with soil pH, respectively. In addition, adsorption of PPC and DFC was declined by 27.12-37.59% and 17.28-25.35% with the presence of coexisting DFC and PPC, respectively. Mobility of PPC and DFC in tested soils was enlarged in coexisting system. The results indicate that adsorption, desorption and mobility of PPC and DFC were mainly affected by soil pH, and these behaviors of individual PPC and DFC were obviously altered by their co-existence.
Collapse
Affiliation(s)
- Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lihong Shi
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuhong He
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
53
|
Tao H, Wang Y, Liang H, Zhang X, Liu X, Li J. Pollution characteristics of phthalate acid esters in agricultural soil of Yinchuan, northwest China, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4313-4326. [PMID: 31900822 DOI: 10.1007/s10653-019-00502-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Eighty-nine agricultural surface soil samples from different types of land of Yinchuan were collected and detected for sixteen phthalate acid ester (PAE) compounds; the pollution characteristics and pollution distribution were analyzed. In addition, the potential health risk exposures to local resident of six priority control phthalates by the US EPA were assessed. All soil samples were contaminated with PAEs, the total concentrations of Σ16PAEs were between 0.391 and 11.924 mg kg-1, and the mean concentrations were 4.427 mg kg-1 in soil. Among the sixteen PAE congeners, DMP was the most abundant component, which accounted for average 44.64% of the total PAEs, then DnBP and DEHP, which accounted for the average contribution rate, were 21.25% and 23.34%, respectively, and DpHP was not detected in all soil samples. Risk assessment indicated that the risk of non-carcinogenesis in this study was within the acceptable range; however, the carcinogenic risk of DEHP through intake dietary significantly exceeded the carcinogenic level recommended by the US EPA (1 × 10-6) and therefore presented a potential carcinogenic risk. More considerable attention should be given to the PAEs contamination status in soils and potential effects on local resident health.
Collapse
Affiliation(s)
- Hong Tao
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Yajuan Wang
- School of Economics and Management, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China.
| | - Haohua Liang
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Xiaohong Zhang
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Xiaopeng Liu
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Jiaoling Li
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| |
Collapse
|
54
|
Sun Y, Chang X, Zhao L, Zhou B, Weng L, Li Y. Comparative study on the pollution status of organochlorine pesticides (OCPs) and bacterial community diversity and structure between plastic shed and open-field soils from northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139620. [PMID: 32563128 DOI: 10.1016/j.scitotenv.2020.139620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 05/16/2023]
Abstract
The pollution status of organochlorine pesticides (OCPs) and microbial community in plastic shed and open-field soils may be different due to the significant variations in environmental factors between the two cultivation modes. However, the differences remain unclear. We conducted a regional-scale survey to investigate the pollution level, distribution, and sources of 20 OCPs, and to evaluate the soil physicochemical properties and bacterial community in soils from plastic shed and open-field locating the north areas of China. We found that levels of total OCPs in the plastic shed soils were significantly higher than those in the nearby open-field soils. Most of these OCPs were attributed to historical application, except for dichlorodiphenyltrichloroethanes (DDTs) due to the fresh input along with dicofol application. Soil pH (for both cultivation modes) and total organic carbon (TOC) content (only for plastic sheds) were significantly correlated with the total OCP concentrations. Additionally, microbial diversity and richness were generally lower in plastic shed soils than in nearby open-field soils for each region. The bacterial community variation among different regions might be principally determined by the soil type. Soil pH had the greatest impact on the microbial community across all plastic shed and open-field samples. These results provide a better understanding of the environmental impact and ecological risk of OCPs in soils with different cultivation modes.
Collapse
Affiliation(s)
- Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xingping Chang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Bin Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
55
|
Da C, Wang R, Xia L, Huang Q, Cai J, Cai F, Gao C. Sediment records of polybrominated diphenyl ethers (PBDEs) in Yangtze River Delta of Yangtze River in China. MARINE POLLUTION BULLETIN 2020; 160:111714. [PMID: 33181970 DOI: 10.1016/j.marpolbul.2020.111714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs) were investigated in five sediment cores from the Yangtze River Delta of Yangtze River in China. The surficial concentrations of nine tri- through hepta-BDE congeners (Σ9BDEs) and BDE209 were highest at urban sites S3 and S2, followed by rural site S1 and estuary sites S5 and S4, respectively, based on dry sediment weight. Both BDE209 and ∑9BDE concentrations exponentially increased between 1990 and 2008. Commercial deca-BDE, penta-BDE, and octa-BDE products were likely PBDE sources in the study area. The relative abundances of BDE209 were higher in sediment cores from estuary than those from urban and rural locations, ascribing to the atmospheric transport from the adjacent densely populated northern and eastern coastal regions. This conclusion was further confirmed by the higher ratios of BDE47/BDE99 and BDE100/BDE99 in cores from the estuary than those from other locations.
Collapse
Affiliation(s)
- Chunnian Da
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; School of Biology, Food and Environment, Hefei University, Hefei 230022, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruwei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Linlin Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jiawei Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Feixuan Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chongjing Gao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
56
|
Sun J, Jin L, He T, Wei Z, Liu X, Zhu L, Li X. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140001. [PMID: 32569910 DOI: 10.1016/j.scitotenv.2020.140001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 05/23/2023]
Abstract
As an important reservoir of intrinsic antimicrobial resistance, soil is subjected to increasing anthropogenic activities that creates sustained selection pressure for the prevalence of antibiotic resistance genes (ARGs), thus constituting an important environmental dissemination pathway to human exposure. This study investigated the levels and spatial distributions of three classes of ARGs in relation to a range of co-occurring chemical mixtures and soil properties at a regional scale of the Yangtze River Delta (YRD), China. The selected eight ARGs were all detected in 241 agricultural soil samples with relative abundances ranging from 1.01 × 10-7 to 2.31 × 10-1 normalized to the 16S rRNA gene. The sulII and tetG were the dominant ARGs with a mean relative abundance of 6.67 × 10-3 and 5.25 × 10-3, respectively. The ARGs were mainly present in agricultural soils alongside Taihu Lake and Shanghai municipality, the most agriculturally and economically vibrant area of the YRD region. Antibiotics, rather than other co-occurring pollutants and soil properties, remain to be the dominant correlate to the ARGs, suggesting their co-introduction into the soils via irrigation and manure application or the sustained selection pressure of antibiotics from these sources for the proliferation of ARGs in the soils. While the current dataset provided useful information to assess the ARGs pollution for mitigation, future studies are warranted to reveal the complete picture on the potential transfer of antimicrobial resistance from soil to agricultural produces to human consumption and associated health implications.
Collapse
Affiliation(s)
- Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xinyi Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
57
|
Zhang ZM, Zhang J, Zhang HH, Shi XZ, Zou YW, Yang GP. Pollution characteristics, spatial variation, and potential risks of phthalate esters in the water-sediment system of the Yangtze River estuary and its adjacent East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114913. [PMID: 32531649 DOI: 10.1016/j.envpol.2020.114913] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Spatiotemporal variability in seawater, spatial variation in sediment, pollution characteristics, and risks related to 16 phthalate esters (PAEs) were investigated in the Yangtze River estuary and its adjacent East China Sea. The total concentrations of ΣPAEs in surface water were 0.588-17.7 μg L-1 in summer, 2.63-22.9 μg L-1 in winter, and 1.93-20.7 μg L-1 in spring, with average values of 2.05, 10.2, and 4.89 μg L-1, respectively. PAE concentrations exhibited notable seasonal variations with the highest value in winter and the lowest value in summer. The seasonal variation in PAE concentrations may be influenced by runoff and diluted water from the Yangtze River. The chemical composition of PAEs showed that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and di(2-ethylhexyl) phthalate (DEHP) had significantly higher (p < 0.05) concentrations than the other congeners and were the most abundant PAE species in sediment and seawater in all three seasons. In addition, DnBP and DiBP were the two main congeners in seawater, and DEHP concentrations were higher in sediment than in seawater. DEHP had higher potential risks to sensitive organisms in water environment than DnBP and DiBP, and DiBP and DnBP which presented high levels of risk in sedimentary environment. DMP and DEP in watery and sedimentary environments and DEHP in sedimentary environment showed no or low risks to sensitive organisms.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Ningbo University, School of Marine Science, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China
| | - Hong-Hai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China
| | - Xi-Zhi Shi
- Ningbo University, School of Marine Science, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Ya-Wen Zou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
58
|
Ma T, Zhou W, Chen L, Li Y, Luo Y, Wu P. Phthalate esters contamination in vegetable-soil system of facility greenhouses in Jingmen, central China and the assessment of health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2703-2721. [PMID: 31907782 DOI: 10.1007/s10653-019-00504-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Residual levels of six priority phthalate esters (PAEs) compounds in top soils and vegetables of 40 selected greenhouses in two typical facility vegetable greenhouse production areas of Jingmen (Hubei, central China) were determined. Total concentrations of six target PAEs (Σ6PAEs) in 72 vegetable and 40 soil samples ranged from 862 ± 209 to 4260 ± 385 µg kg-1 (dry weight, DW), and from 1122 ± 156 to 4134 ± 272 µg kg-1 (DW), respectively. Di-n-butyl phthalate and di-(2-ethylhexyl) phthalate (DEHP) are the two most frequently and massively detected in all samples. The highest Σ6PAEs appeared in leaf samples of Tuanlin, vegetable fruits of Zhongxiang and soils of Tuanlin. No carcinogenic risk was posed based on the results of health risk assessment, but non-carcinogenic risk of DEHP to children less than 6 years old in Tuanlin (all 24 sampling sites) and Zhongxiang (4/16 sampling sites) and people older than 6 years old in Tuanlin (19/24 sampling sites) were achieved from hazard quotient values. The contamination risk problem of PAEs in Tuanlin deserves greatest concern in Jingmen. Combined with the results of our former study, the health risks of target pollutants were clarified and the lack of survey data on PAE concentrations in facility vegetable greenhouses of central China was filled in. Due to high residuals and significant non-carcinogenic risk values, DEHP should be nominated as priority PAEs in China. Our study suggested better regulation for PAEs control in intensively managed greenhouses and references for revision of Chinese environmental standards.
Collapse
Affiliation(s)
- Tingting Ma
- Institute of Hanjiang, Hubei University of Arts and Science, Xiangyang, 441053, Hubei, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Wei Zhou
- School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang, 441053, Hubei, China.
| | - Like Chen
- Shanghai Research Institute of Chemical Industry, Shanghai, 200062, China
| | - Yuqi Li
- School of Food Science and Technology and School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, Hubei, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Peng Wu
- Jiangsu Rainfine Environmental Science and Technology Co. Ltd., Nanjing, 210000, China
| |
Collapse
|
59
|
Deng F, Sun J, Dou R, Yu X, Wei Z, Yang C, Zeng X, Zhu L. Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139181. [PMID: 32417481 DOI: 10.1016/j.scitotenv.2020.139181] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This study focused on contamination levels and spatial distributions of four common pyrethroids found in agricultural soils of the Yangtze River Delta (YRD), China. Pyrethroids were detected in 241 soil samples (88.8% detection rate) with total concentrations ranging from <LOD to 53.5 ng/g dry weight. Mean concentrations of the four pyrethroids were measured in descending order as follows: fenpropathrin (4.92 ng/g) > cypermethrin (1.10 ng/g) > deltamethrin (0.89 ng/g) > cyhalothrin (0.20 ng/g). The highest concentration of fenpropathrin was recorded as 37.6 ng/g. The highest detection rate of 63.9% was found for cyhalothrin. A distinct pattern of spatial distribution was observed where high concentrations of pyrethroids were detected in sites around Taihu Lake. Potential sources of pyrethroids in agricultural soils from the YRD region include pyrethroids used for pest control and wastewater irrigation in the region. Redundancy and correlation analyses show that the soil TOC values have played a significant role in the behavior of pyrethroids in agricultural soils of the YRD region. Potential ecological risks of pyrethroids in agricultural soils of the YRD region are low. Cypermethrin and cyhalothrin showed potential toxic effects on the ecological conditions of agricultural soils in 4.6% and 2.9% of the sampling sites, respectively. Further studies should pay more attention to the potential human health risks posed by pyrethroids in agricultural soils for the protection of soil quality and food safety.
Collapse
Affiliation(s)
- Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Rongni Dou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
60
|
Wei L, Li Z, Sun J, Zhu L. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:137978. [PMID: 32481218 DOI: 10.1016/j.scitotenv.2020.137978] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
As an important environmental reservoir of phthalate esters (PAEs), soil-plant system constitutes a key exposure pathway to human health. In this study, agricultural soil and vegetable samples were collected from the Yangtze River Delta (approximately 211,700 km2), one of the most developed regions in China, to determine the contamination characteristics of priority PAEs. The total concentrations of six PAEs ranged from 5.42 to 1580 ng·g-1 dry weight in soils and from 10.9 to 16,400 ng·g-1 dry weight in vegetables. Di-(2-ethylhexyl) phthalate (DEHP) accounted for 88.3% and 61.9% of the total PAEs in soils and vegetables, respectively. The spatial distribution of PAEs in the soils was as follows: Shanghai city (70.8-1583 ng·g-1 dw) > Anhui province (46.8-1530 ng·g-1 dw) > Jiangsu province (14.4-558 ng·g-1 dw) > Zhejiang province (5.40-488 ng·g-1 dw). Non-cancer risks exist for adults and children in 6.5% and 7.8% of the sites, respectively. Carcinogenic risks were regarded unacceptable in 5.6% and 1.3% of the sites for adults and children, respectively. The bioconcentration factor (BCF) of PAEs showed positive correlation with lipid content of vegetables. A basic reference of the lipid-content threshold to guarantee the safety of leafy vegetables was proposed based on partition-limited model. We suggested to cultivate vegetables with lipid content <0.21% in most heavily contaminated area in the region. This study provides information for effectively controlling PAEs contamination in soil-plant system in developed districts.
Collapse
Affiliation(s)
- Luyun Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Zhiheng Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianteng Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
61
|
Li Z, Wang W, Zhu L. A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114071. [PMID: 32062458 DOI: 10.1016/j.envpol.2020.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0-64.1%, and those in lettuce by 18.8-36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Koc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kss). To precisely calculate the Koc and Kss, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Koc (or Kss) and the logarithm of the octanol-water partition coefficient (log Kow) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Ksf), whose logarithmic value was linearly correlated with the log Kow of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
62
|
Li Y, Huang G, Zhang L, Gu H, Lou C, Zhang H, Liu H. Phthalate esters (PAEs) in soil and vegetables in solar greenhouses irrigated with reclaimed water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22658-22669. [PMID: 32319065 DOI: 10.1007/s11356-020-08882-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Phthalate esters (PAEs) in environments have become a public concern due to their harmful impacts on human and environments, and waste/reclaimed water irrigation maybe one of their sources in agricultural soil. A field experiment was setup to analyze the impacts of reclaimed water irrigation on levels of PAEs in vegetables and topsoil in solar greenhouse on the North China Plain during 2015 and 2016. There were 6 varieties of vegetables. For each variety, there were three irrigation treatments, including groundwater irrigation, reclaimed water irrigation, and alternative irrigation with groundwater and reclaimed water (1:1, v/v). The results show that the levels of the 6 PAEs in soil and vegetables varied between 0.73 and 9.48 mg/kg and 1.89 and 6.35 mg/kg, respectively. There were no significant differences for PAE concentrations among these different treatments at each vegetable harvest (p > 0.05). For both soil and vegetable samples, Di-n-butyl phthalate (DnBP) and Di (2-ethylhexyl) phthalate (DEHP) were the most dominant PAEs, with contents of 0.39-4.43 mg/kg and 0.25-6.31 mg/kg, respectively, contributing12.5-74.60% and 21.24-76.48% of the total 6 PAEs, respectively. The contents of DnBP and dimethyl phthalate (DMP) in topsoil were higher than the suggested allowable values, while the concentration of each individual PAE in topsoil was lower than the suggested cleanup objectives. The levels of 6 PAEs, DEHP, and DnBP in vegetables were below the reference doses. The yields of eggplant, cauliflower, bean, cabbage, cucumber, and carrot were 64.4-67.0 t/ha, 10.9-13.0 t/ha, 12.3-15.1 t/ha, 17.3-17.5 t/ha, 43.9-44.5 t/ha, and 19.0-22.9 t/ha, respectively, and no significant differences were found among these different treatments for each kind of vegetable. The bioaccumulation factors (BCFs) of 6 PAEs in vegetable samples were 0.43-5.79 and the corresponding values for each PAE were 0.00-27.32, respectively. The BCFs of butyl benzyl phthalate were the greatest (with a mean of 9.28), followed by DEHP (with a mean of 3.03) and DMP (with a mean of 1.90). In one word, the reclaimed water in this study did not affect the vegetable yields obviously. PAE levels in soil and vegetables irrigated with reclaimed water were in the acceptable range. Considering the difference of reclaimed water quality of Sewage Treatment Plants in different areas, so more reclaimed water from different areas is needed to assess the impacts of reclaimed water irrigation on PAE contamination in soil and vegetables.
Collapse
Affiliation(s)
- Yan Li
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Guanhua Huang
- College of Water Conservancy & Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Lei Zhang
- Beijing Water Science and Technology Institute, Beijing, 100048, China
- Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing, 100048, China
| | - Hua Gu
- Beijing Water Science and Technology Institute, Beijing, 100048, China
- Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing, 100048, China
| | - Chunhua Lou
- Beijing Water Science and Technology Institute, Beijing, 100048, China
- Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing, 100048, China
| | - Hang Zhang
- Beijing Water Science and Technology Institute, Beijing, 100048, China
- Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing, 100048, China
| | - Honglu Liu
- Beijing Water Science and Technology Institute, Beijing, 100048, China.
- Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing, 100048, China.
| |
Collapse
|
63
|
|
64
|
Luan H, Gao W, Huang S, Tang J, Li M, Zhang H, Chen X, Masiliūnas D. Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems. PLoS One 2020; 15:e0214041. [PMID: 32084129 PMCID: PMC7034837 DOI: 10.1371/journal.pone.0214041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022] Open
Abstract
Soil microbial communities and enzyme activities together affect various ecosystem functions of soils. Fertilization, an important agricultural management practice, is known to modify soil microbial characteristics; however, inconsistent results have been reported. The aim of this research was to make a comparative study of the effects of different nitrogen (N) fertilizer rates and types (organic and inorganic) on soil physicochemical properties, enzyme activities and microbial attributes in a greenhouse vegetable production (GVP) system of Tianjin, China. Results showed that manure substitution of chemical fertilizer, especially at a higher substitution rate, improved soil physicochemical properties (higher soil organic C (SOC) and nutrient (available N and P) contents; lower bulk densities), promoted microbial growth (higher total phospholipid fatty acids and microbial biomass C contents) and activity (higher soil hydrolase activities). Manure application induced a higher fungi/bacteria ratio due to a lower response in bacterial than fungal growth. Also, manure application greatly increased bacterial stress indices, as well as microbial communities and functional diversity. The principal component analysis showed that the impact of manure on microbial communities and enzyme activities were more significant than those of chemical fertilizer. Furthermore, redundancy analysis indicated that SOC and total N strongly influenced the microbial composition, while SOC and ammonium-N strongly influenced the microbial activity. In conclusion, manure substitution of inorganic fertilizer, especially at a higher substitution rate, was more efficient for improving soil quality and biological functions.
Collapse
Affiliation(s)
- Haoan Luan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
- * E-mail: (HL); (WG); (SH)
| | - Wei Gao
- Tianjin Institute of Agricultural Resources and Environment, Tianjin, China
- * E-mail: (HL); (WG); (SH)
| | - Shaowen Huang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (HL); (WG); (SH)
| | - Jiwei Tang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingyue Li
- Tianjin Institute of Agricultural Resources and Environment, Tianjin, China
| | - Huaizhi Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinping Chen
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Dainius Masiliūnas
- Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
65
|
Wang C, Hao Z, Feng Z, Zhang C, Gao J, Li Y, Yu W, Zou X. Rapid changes in organochlorine pesticides in sediments from the East China sea and their response to human-induced catchment changes. WATER RESEARCH 2020; 169:115225. [PMID: 31677434 DOI: 10.1016/j.watres.2019.115225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Human-induced catchment changes have affected the sedimentary processes in marginal seas, which will impact the transport and burial processes of materials and inevitably impact marine biogeochemical cycles. Organochlorine pesticides (OCPs) and sediment characteristics in surface sediments from the East China Sea (ECS) at two time points (2006 and 2018) were compared to understand the response of OCPs to human-induced catchment changes. A significant coarsening trend occurred after the impoundment of the Three Gorges Dam (TGD), with the mean grain size increasing from 6.4 ± 1.2 Φ to 4.4 ± 2.1 Φ, suggesting that the sedimentary environment in the ECS changed drastically. OCP concentrations in the ECS evidently decreased after the impoundment of the TGD, with mean values decreasing from 2.55 ± 1.51 ng g-1 to 1.08 ± 0.84 ng g-1. The deposition flux of OCP also decreased from 2.65 ± 1.67 ng cm-2 yr-1 to 0.89 ± 0.60 ng cm-2 yr-1. The reduction in the riverine input might be the reason that caused variations in the OCP concentration and deposition flux. In addition, sediment coarsening is likely to be the another primary factor influencing the differences in the distribution and deposition flux of the OCPs in the ECS. Therefore, the distribution and burial of OCPs in the ECS have been changed drastically, which may broadly impact the marine environment and biogeochemical cycles.
Collapse
Affiliation(s)
- Chenglong Wang
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Zhe Hao
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210093, China.
| | - Ziyue Feng
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Jianhua Gao
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Yali Li
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210093, China
| | - Wenwen Yu
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China; Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
66
|
Wang H, Yan S, Qu B, Liu H, Ding J, Ren N. Magnetic solid phase extraction using Fe 3O 4@β-cyclodextrin–lipid bilayers as adsorbents followed by GC-QTOF-MS for the analysis of nine pesticides. NEW J CHEM 2020. [DOI: 10.1039/d0nj01191f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A rapid method for the analysis of trace organochlorine pesticides in a complex matrix.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Shaowei Yan
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Bo Qu
- Department of Quality
- AVIC Aerodynamics Research Institute
- Harbin 150009
- China
| | - He Liu
- Jilin Province Environmental Monitoring Center
- Changchun 130011
- China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
67
|
Chou TH, Ou MH, Wu TY, Chen DY, Shih YH. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan. CHEMOSPHERE 2019; 236:124117. [PMID: 31323549 DOI: 10.1016/j.chemosphere.2019.06.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), previously commonly used as flame retardants, should be monitored in the environment since some are listed as persistent organic pollutants. A contaminated site near a northern Taiwan factory using decabrominated diphenyl ether (deca-BDE) was identified based on a vegetable PBDEs monitoring project in 2013. The subsequent spatial and temporal survey of that contaminated site shows the contamination ingredients in soils were close to ones used by the factory, indicating that contamination was from the factory, possibly through an exhaust vent. The average concentration of deca-BDE in the main contaminated soil was 615 μg/kg d. w. (dry weight) soil in 2015, slightly decreasing to 604 μg/kg d. w. soil in 2016, increasing to 844 μg/kg d. w. soil in 2017, and then slightly decreasing to 670 μg/kg d. w. soil in 2018. The slight change of deca-BDE and the minor change in low brominated congener level indicate a low degradation rate. The contamination of peripheral sites was around 5000 μg/kg d. w. soil for one PBDEs sampling site that was higher than those around or within the main contaminated farm, indicating serious pollution. Concentrations of PBDEs in different soil depths show that depth 2-15 cm accounted for the greatest PBDEs accumulation, indicating that deca-BDE pollution had been present over time and transported into deeper soil. There can be PBDEs uptake by crops consumed by humans, as shown in our previous studies, so continuous monitoring of PBDEs in this site is important and treatments should be established urgently.
Collapse
Affiliation(s)
- Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Ming-Han Ou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Tien-Yu Wu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - De-Yu Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
68
|
Xiong X, Liu X, Yu IKM, Wang L, Zhou J, Sun X, Rinklebe J, Shaheen SM, Ok YS, Lin Z, Tsang DCW. Potentially toxic elements in solid waste streams: Fate and management approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:680-707. [PMID: 31330359 DOI: 10.1016/j.envpol.2019.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Solid wastes containing potentially toxic elements (PTEs) are widely generated around the globe. Critical concerns have been raised over their impacts on human health and the environment, especially for the exposure to PTEs during the transfer and disposal of the wastes. It is important to devise highly-efficient and cost-effective treatment technologies for the removal or immobilisation of PTEs in solid wastes. However, there is an inadequate overview of the global flow of PTEs-contaminated solid wastes in terms of geographical distribution patterns, which is vital information for decision making in sustainable waste management. Moreover, in view of the scarcity of resources and the call for a circular economy, there is a pressing need to recover materials (e.g., precious metals and rare earth elements) from waste streams and this is a more sustainable and environmentally friendly practice compared with ore mining. Therefore, this article aims to give a thorough overview to the global flow of PTEs and the recovery of waste materials. This review first summarises PTEs content in various types of solid wastes; then, toxic metal(loid)s, radioactive elements, and rare earth elements are critically reviewed, with respect to their patterns of transport transformation and risks in the changing environment. Different treatments for the management of these contaminated solid wastes are discussed. Based on an improved understanding of the dynamics of metal(loid) fates and a review of existing management options, new scientific insights are provided for future research in the development of high-performance and sustainable treatment technologies for PTEs in solid wastes.
Collapse
Affiliation(s)
- Xinni Xiong
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xueming Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Lei Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, United Kingdom
| | - Jin Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Yong Sik Ok
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
69
|
Zhen X, Liu L, Wang X, Zhong G, Tang J. Fates and ecological effects of current-use pesticides (CUPs) in a typical river-estuarine system of Laizhou Bay, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:573-579. [PMID: 31185345 DOI: 10.1016/j.envpol.2019.05.141] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Current-use pesticides (CUPs) are widely applied in agriculture; however, little is known about their environmental behaviors, especially in the freshwater-seawater transitional zone. Water and sediment samples were collected in an intensively human impacted river (Xiaoqing River) from the headwaters to Laizhou Bay to investigate the distributions and environmental fates of four CUPs: trifluralin, chlorothalonil, chlorpyrifos, and dicofol. These CUPs were frequently detected in water and sediment samples. ∑CUPs in water and sediment samples ranged from 1.20 to 100.2 ng L-1 and 6.6-2972.5 ng g-1 dry weight (dw), respectively. Chlorpyrifos and chlorothalonil were the most abundant CUPs in water and sediment samples, respectively. Spatial distribution of CUPs in the Xiaoqing River aquatic ecosystem was mainly influenced by point sources, agricultural activities, the dilution effect by seawater, and environmental parameters. Field-based sediment water partitioning coefficients, normalized by organic carbon (log Koc), were calculated. Interestingly, temperature and salinity exhibited significant impacts on the distribution of log Koc of the four CUPs. The effect of temperature on the distribution of log Koc of the four CUPs varied between the CUPs. In most water samples, the levels of chlorpyrifos exceed the freshwater screening benchmarks. Hence, urgent control measures need to be devised and implemented.
Collapse
Affiliation(s)
- Xiaomei Zhen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510631, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
70
|
Pan H, Lei H, He X, Xi B, Xu Q. Spatial distribution of organochlorine and organophosphorus pesticides in soil-groundwater systems and their associated risks in the middle reaches of the Yangtze River Basin. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1833-1845. [PMID: 28477163 DOI: 10.1007/s10653-017-9970-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/28/2017] [Indexed: 05/25/2023]
Abstract
Soil and groundwater samples were collected from paddy fields in the middle reaches of the Yangtze River Basin to study the occurrence and the risks associated with organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) in soil and groundwater. Results showed that OCPs and OPPs were widely distributed throughout the study area. The levels of OCPs and OPPs in the soil were much lower than those specified by soil quality standards. However, the levels of four OCPs (heptachlors, aldrin, dieldrin, and γ-hexachlorocyclohexane) in groundwater were higher than those permitted by drinking water standards. The health risk assessment method suggested by the US Environment Protection Agency was used to evaluate the regional risks from selected pesticides. Results showed that there were low health risks from OCPs and OPPs in soil at the regional scale, but high risks from heptachlor, aldrin, and endrin in groundwater, suggesting an urgent need for groundwater protection. There are widespread concerns on dichlorodiphenyltrichloroethane and hexachlorocyclohexane, but little focus on other pesticides in China. However, our results suggest that the presence of, and risks from, other pesticides in groundwater should be a focus from the region aspect.
Collapse
Affiliation(s)
- Hongwei Pan
- School of Water Conservancy College, North China University of Water Conservancy and Electric Power, Zhengzhou, 450011, China
| | - Hongjun Lei
- School of Water Conservancy College, North China University of Water Conservancy and Electric Power, Zhengzhou, 450011, China
| | - Xiaosong He
- School of Water Conservancy College, North China University of Water Conservancy and Electric Power, Zhengzhou, 450011, China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China.
| | - Beidou Xi
- School of Water Conservancy College, North China University of Water Conservancy and Electric Power, Zhengzhou, 450011, China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China.
| | - Qigong Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
| |
Collapse
|
71
|
Zhou Y, Zhu J, Yang J, Lv Y, Zhu Y, Bi W, Yang X, Chen DDY. Magnetic nanoparticles speed up mechanochemical solid phase extraction with enhanced enrichment capability for organochlorines in plants. Anal Chim Acta 2019; 1066:49-57. [DOI: 10.1016/j.aca.2019.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
72
|
Shi M, Sun Y, Wang Z, He G, Quan H, He H. Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:1-7. [PMID: 30981178 DOI: 10.1016/j.envpol.2019.03.064] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 05/06/2023]
Abstract
Plastic film mulching is a common practice to increase crop yield in dryland, while the wide use of plastic film has resulted in ubiquitous phthalate esters (PAEs) releasing into the soil. PAEs in soil could be taken up and accumulated by dietary intake of food crops such as wheat, thus imposing health risks to residents. In the present study, samples from a long-term location-fixed field experiment were examined to clarify the accumulation of PAEs in soil and wheat, and to assess the human health risks from PAEs via dietary intake of wheat grain under plastic film mulching cultivation in dryland. Results showed that concentrations of PAEs in grains from mulching plots ranged from 4.1 to 12.6 mg kg-1, which were significantly higher than those in the control group. There was a positive correlation for the PAE concentrations between wheat grains and field soils. Concentrations of PAEs in the soil were in the range of 1.8-3.5 mg kg-1 for the mulching treatment, and 0.9-2.7 mg kg-1 for the control group. Di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were detected in all soil and grain samples, and DEHP was found to be the dominant PAE compound in grains. Based on DEHP concentrations in wheat grains, the values of carcinogenic risk for adults were higher than the recommended value 10-4. Results indicated that wheat grains from film mulching plots posed a considerable non-carcinogenic risk to residents, with children being the most sensitive resident group. Findings of this work call the attention to the potential pollution of grain crops growing in the plastic film mulching crop production systems.
Collapse
Affiliation(s)
- Mei Shi
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingying Sun
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaohui Wang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Gang He
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanxiang Quan
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongxia He
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
73
|
Wu Y, Sun J, Zheng C, Zhang X, Zhang A, Qi H. Phthalate pollution driven by the industrial plastics market: a case study of the plastic market in Yuyao City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11224-11233. [PMID: 30796663 DOI: 10.1007/s11356-019-04571-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
In attempts to evaluate the environmental risk produced by plastic markets, the levels and congener profiles of phthalate esters (PAEs) in soil, vegetable, and sediment samples collected from the plastic market in China, where numerous plastic products are exchanged every year, were investigated. The concentrations of ∑22PAEs ranged from 2131 to 27,805 ng g-1 in agricultural soils, from 8023 to 37,556 ng g-1 in vegetables and from 9031 to 87,329 ng g-1 in sediments. The predominant PAE pollutants were di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), di-isobutyl phthalate (DiBP), and dibenzyl phthalate (DBzP). The mean percentages of the predominant PAEs in the soil, vegetable, and sediment samples accounted for 98.4%, 97.3%, and 99.5% of the total PAEs, respectively. The concentrations of PAEs at the sites around the plastic market were significantly higher than those at other pollution sites, such as sites contaminated by agricultural plastic film, electronic waste (e-waste) recycling sites, and industrial parks, indicating that the plastic market was an important pollution source. The DEHP concentrations in the soils, vegetables, and sediments and the DnBP concentrations in the vegetables all exceeded the environmental risk levels (ERL) or the environmental allowable levels (EAL), indicating that the plastic market posed potential environmental risks.
Collapse
Affiliation(s)
- Yihua Wu
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianqiang Sun
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaofan Zheng
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaobing Zhang
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hong Qi
- Department of Environmental Engineering, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
74
|
Ji Y, Wang Y, Yao Y, Ren C, Lan Z, Fang X, Zhang K, Sun W, Alder AC, Sun H. Occurrence of organophosphate flame retardants in farmland soils from Northern China: Primary source analysis and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:832-838. [PMID: 30731308 DOI: 10.1016/j.envpol.2019.01.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Ninety-eight soil samples were collected from farmland soils from Beijing-Tianjin-Hebei core area, Northern China, where agricultural lands were subjected to contamination from intense urban and industrial activities. Twelve organophosphates flame retardants (OPFRs) were analyzed with total soil concentrations ranging from 0.543 μg/kg to 54.9 μg/kg. Chlorinated OPFRs were dominating at mean level of 3.64 μg/kg and Tris(2-chloroisopropyl) phosphate contributed the most (mean 3.36 ± 5.61 μg/kg, 98.0%). Tris(2-ethylhexyl) phosphate was fully detected at levels of 0.041-1.95 μg/kg. Generally, tris(2-butoxyethyl) phosphate and triphenyl phosphate contributed the most to alkyl- (53.6%) and aryl-OPFRs (54.3%), respectively. The levels of ∑OPFRs close to the core urban areas were significantly higher than those from background sites. The occurrence and fate of OPFRs in soil were significantly associated with total organic carbon content and mostly with fine soil particles (<0.005 mm), and a transfer potential from the atmosphere was predicted with logKSA values. Comparable soil levels with poly brominated diphenyl ethers s in other studies suggested that the contamination of OPFRs occurred in farmland soil with an increasing trend but currently showed no significant environmental risk based on risk quotient estimation (<1). This investigation warrants further study on behaviors of OPFRs in a soil system and a continual monitoring for their risk assessment.
Collapse
Affiliation(s)
- Yan Ji
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Chao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhonghui Lan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiangguang Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Weijie Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Alfredo C Alder
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China; Eawag, Swiss Federal Institute of Environmental Science and Technology, 8600, Dübendorf, Switzerland
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
75
|
Yu SY, Liu WJ, Xu YS, Zhao YZ, Cai CY, Liu Y, Wang X, Xiong GN, Tao S, Liu WX. Organochlorine pesticides in ambient air from the littoral cities of northern China: Spatial distribution, seasonal variation, source apportionment and cancer risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:163-176. [PMID: 30359799 DOI: 10.1016/j.scitotenv.2018.10.230] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Concentrations, composition and seasonal variations of organochlorine pesticides (OCPs) in the atmosphere (particulate phase and gaseous phase) at coastal cities in northern China were determined. OCP transport from emission source areas and lifetime excess cancer risks by inhalation exposure to specific OCPs were also investigated. The annual average concentration of total OCPs in gaseous phase ranged from 1.0ng/m3 to 6.3ng/m3, with the peak observed in summer at most sites. Particulate phase concentrations ranged from 29.9pg/m3 to 103.3pg/m3, with the maximum found in the local heating period at most locations. The detection rates of gaseous samples were considerably higher than those of particulate ones. The dominant components included endosulfan (I and II), (α- and γ-) chlordane, pentachlorobiphenyl (PeCB), hexachlorobenzene (HCB), heptachlor, (α-, β- and γ-) hexachlorocyclohexane (HCH), dichloro-diphenyl-trichloroethane (DDT) and their metabolic products. The specific ratios indicated different applications of DDT, technical HCH and endosulfan at most sites. Large differences in compositional profiles occurred in January (typical heating period) and July (representative non-heating period), and diurnal changes in component concentrations may have been influenced by local emission pattern. The potential source contribution function (PSCF) manifested seasonal concentrations of airborne OCPs affected by the input of potential sources in different regions. The emission sources with higher contribution probabilities to the sites were primarily distributed in the surrounding areas. The lifetime excess cancer risks for the local residents by inhalation exposure to specific components were not high, though the potential threat of α-HCH and HCB should be concerned. CAPSULE: Gaseous OCPs reached peak values in summer and dominated relative to particulate (PM10) values; meanwhile, surrounding sources affected air OCP concentrations, and cancer risks of OCPs by inhalation exposure were not high.
Collapse
Affiliation(s)
- Shuang Yu Yu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Jian Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yun Song Xu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yong Zhi Zhao
- Center for Environmental Engineering Assessment, Qiqihar, Heilongjiang Province 161005, China
| | - Chuan Yang Cai
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guan Nan Xiong
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wen Xin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
76
|
Huang Y, Wang L, Wang W, Li T, He Z, Yang X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3034-3042. [PMID: 30463153 DOI: 10.1016/j.scitotenv.2018.10.185] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
In the last decades, agricultural soil pollution by heavy metals has been extensively investigated in China. However, nearly all studies were field monitoring in small regions and/or with limited samples, which may not represent soil pollution situation at the national scale. In this paper, attempt was made to provide a comprehensive report about heavy metal pollution in China based on meta-analysis of reviewed data. Given the characteristics of field monitoring studies, the weighted mean values based on "sampling number", "study area", and "standard deviation" were calculated to represent national mean values. In addition, subgroup analysis and cumulative meta-analysis were applied to explore the spatial and temporal variations as well as the influence of cropping systems. 336 articles published from 2005 to 2017 were reviewed in the analysis. Eight heavy metals (cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), arsenic (As), copper (Cu), zinc (Zn) and nickel (Ni)) were analyzed. The contents of Cd and Hg were increased compared to background values, while, other six elements showed no significant accumulation. Little pollution was found in normal farmland, which was far from obvious anthropogenic emissions, but Cd and Hg in mining & smelting areas and industrial areas continued to accumulate significantly. Moreover, the accumulation had slowed down or decreased since 2012, which might be due to reduced use of coals, non-ferrous metals and agro-chemicals. Heavy metal contents were generally higher in southwest and south coastal areas but lower in northwest regions, whereas vegetable and paddy fields had higher concentrations than upland and other land use. This study provides information on soil pollution caused by heavy metals and its affected regions and cropping systems on a national scale. It can be useful for developing heavy metal pollution control and management strategies in China.
Collapse
Affiliation(s)
- Ying Huang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lingyu Wang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenjia Wang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
77
|
Cheng Z, Liu JB, Gao M, Shi GZ, Fu XJ, Cai P, Lv YF, Guo ZB, Shan CQ, Yang ZB, Xu XX, Xian JR, Yang YX, Li KB, Nie XP. Occurrence and distribution of phthalate esters in freshwater aquaculture fish ponds in Pearl River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:883-888. [PMID: 30508791 DOI: 10.1016/j.envpol.2018.11.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
The concentrations, congener profiles and spatial distribution of 13 phthalate esters (PAEs) in the freshwater fish ponds in the Pearl River Delta (PRD) region were investigated in water and sediment samples collect from 22 sites during Jul. 2016-Sept. 2017. The di-2-ethylhexyl phthalate (DEHP) was the predominant compounds in both water and sediment samples, accounting for 70.1% and 66.1% of ∑PAEs, respectively. The DEHP concentrations in the water samples collected from the sites of Zhongshan (35.7 μg/L), Jingmen (17.3 μg/L) and Nanhai (14.2 μg/L) were higher than that collected from other sampling sites (p <0.05), and exceed the Chinese environmental quality standards for surface water (DEHP, 8.00 μg/L). The concentrations of ΣPAEs (mean and median were 11.8 mg/kg dw and 7.95 mg/kg dw) in sediment was higher than that in sediment of river and estuary in the PRD region (p <0.05). The median concentrations of DEHP and di-n-butyl phthalate (DBP) exceeded recommend environmental risk limit (ERL) that posed a potential risk to the aquaculture fish pond environment in the PRD.
Collapse
Affiliation(s)
- Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| | - Jun-Bo Liu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Meng Gao
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Guang-Ze Shi
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Jiao Fu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Peng Cai
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yan-Feng Lv
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Bao Guo
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chun-Qiao Shan
- Dalian Sanyi Bioengineering Research Institute, Dalian, 116036, China
| | - Zhan-Biao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Xun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Jun-Ren Xian
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Xiang Yang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Kai-Bin Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiang-Ping Nie
- Institute of the Hydrobiology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
78
|
Gao D, Li Z, Wang H, Liang H. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1400-1409. [PMID: 30248862 DOI: 10.1016/j.scitotenv.2018.07.093] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 05/12/2023]
Abstract
The toxicity and bioaccumulation potential of phthalate acid esters (PAEs) make their impact on the environment a matter of considerable concern. Due to China's recent economic development and population growth, it has become one of the largest manufacturers and consumers of PAEs, with an associated contamination threat to several environmental compartments. The aim of this overview is to present a systematic account of PAE occurrence in various environmental media in China in the last decade, including the air, surface water, sediments, soil, sewage, and sludge; human exposure to PAEs is also evaluated. This reveals a location-dependence that can be attributed to regional differences in economic and industrial development as well as specific geographic location. A need for further study into the transportation and transformation behavior of PAEs in different environmental media and into PAE control technologies is identified, as a means of effectively assessing potential ecological and health risks.
Collapse
Affiliation(s)
- Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhe Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Hong Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
79
|
Sun J, Pan L, Li Z, Zeng Q, Wang L, Zhu L. Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1509-1516. [PMID: 30292159 DOI: 10.1016/j.envpol.2018.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/02/2018] [Accepted: 09/20/2018] [Indexed: 05/07/2023]
Abstract
A national scale survey was conducted to determine an array of inorganic and organic contaminants in agricultural soils from two cultivation modes (greenhouse vs. open field) in 20 provinces across China. The investigated contaminants include organochlorine pesticides (OCPs), phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd). The large amounts of agrochemicals used and special cultivation mode in greenhouse caused substantial soil pollution and deterioration of soil quality. Mean concentrations of both OCPs and PAEs in greenhouse soil were approximately 100% higher than those in open field. The pH values were 6.85 ± 1.04 and 7.34 ± 0.84 for greenhouse and open field, respectively (p > 0.05). The soil microbial community was predicted to be affected by pollution in greenhouse through the PICRUSt analysis of 16s rRNA sequences. The 12 variables including various chemicals and soil properties together explained 15% of the observed variation in the community composition. In the studied variables, PAEs and lead were the primary factors affecting microbial diversity in greenhouse soils, while pH had the greatest impact on the microbial community in open field soils. These findings enhanced our understanding of the environmental impact and contamination management of greenhouses worldwide.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Environmental Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhiheng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qingtao Zeng
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingwen Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
80
|
Zhang Z, Zhang C, Huang Z, Yi X, Zeng H, Zhang M, Huang M. Residue levels and spatial distribution of phthalate acid esters in water and sediment from urban lakes of Guangzhou, China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 54:127-135. [PMID: 30407113 DOI: 10.1080/10934529.2018.1530539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The residue levels and composition profiles of phthalate acid esters (PAEs) in water and sediment samples were investigated in eight urban lakes of Guangzhou, China. A total of 23 water and 16 sediment samples were collected. Results showed that all target PAEs were detected with dimethyl phthalate and di(2-ethylhexyl) phthalate as the most abundant compounds. The total concentrations of PAEs from different urban lakes were in the range of 273-1173 ng/L for water and 16.5-242 ng/g for sediments, with the geometric mean of 515 ng/L and 75.0 ng/g, respectively. Zhongshan Park Lake and Liwan Lake were the most highly contaminated with PAEs in water and in sediment, respectively. The spatial distribution of PAEs exhibited that distribution coefficients of PAEs between sediment and water are consistent with hydrophilicity of PAEs, and pollution levels and characteristics of PAEs in different lakes had a close relationship with the geographical location of the lake, industrial and commercial types, population density, and the association between the lake and the Pearl River. According to Pearson correlation analysis, PAEs would be derived from similar or identical sources. Risk assessment suggested that the exposure of PAEs in Guangzhou has a moderate toxicity at the current level.
Collapse
Affiliation(s)
- Zhihong Zhang
- a School of Material and Chemical Engineering , Xi'an Technological University , Xi'an , PR China
| | - Chao Zhang
- b Environmental Research Institute, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education , South China Normal University , Guangzhou , PR China
- e School of Geography and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation , Sun Yat-sen University , Guangzhou , PR China
| | - Zehua Huang
- c College of Chemical Engineering , Huaqiao University , Xiamen , China Fujian
| | - XiaoHui Yi
- b Environmental Research Institute, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education , South China Normal University , Guangzhou , PR China
| | - Hui Zeng
- d Guangzhou Hydraulic Research Institute , Guangzhou , PR China
| | - Mingzhu Zhang
- d Guangzhou Hydraulic Research Institute , Guangzhou , PR China
| | - Mingzhi Huang
- b Environmental Research Institute, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education , South China Normal University , Guangzhou , PR China
- e School of Geography and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation , Sun Yat-sen University , Guangzhou , PR China
| |
Collapse
|
81
|
Jing F, Sohi SP, Liu Y, Chen J. Insight into mechanism of aged biochar for adsorption of PAEs: Reciprocal effects of ageing and coexisting Cd 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1098-1107. [PMID: 30096548 DOI: 10.1016/j.envpol.2018.07.124] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Biomass derived biochar is a stable carbon-rich product with potential for soil amendment. Introduced into the natural environment, biochar will naturally experience 'ageing' processes that are liable to change its physicochemical properties and the mobility of sorbed pollutants over the longer term. To elucidate the reciprocal effects of biochar ageing and heavy metal adsorption on the affinity of biochar for organic pollutants, we systematically assessed the adsorption of diethyl phthalate (DEP), representative of phthalic acid esters (PAEs), to fresh and aged biochars with and without coexistence of Cd2+. Long-term oxidative ageing was simulated using 5% H2O2 and applied to biochar samples made from corn cob, maize straw and wheat straw made by pyrolysis at both 450 °C and 650 °C. Our results showed that biochar made at lower temperature (450 °C) and from straw exhibited the higher adsorption capacity, owing to their greater polarity and abundance of O-containing functional groups. The adsorption of DEP onto fresh biochars was found to be driven by van der Waals force and H-bonding. Biochar made at the higher temperature (650 °C) displayed higher carbon stability than that produced at lower pyrolysis temperature. Oxidized biochar showed lower adsorption capacity than fresh biochar owing to the formation of three-dimensional water clusters on biochar surface, which blocked accessible sites and decreased the H-bonding effect between DEP and biochars. The coexistence of Cd2+ suppressed the sorption of DEP, via competition for the same electron-rich sites. This indicates that cation/π-π EDA interactions are the primary mechanism for PAE and Cd2+ stabilization on biochar. Our study sheds light on the mechanism of organic pollutant sorption by biochar, as well as the potential susceptibilities of this sorption to ageing effects in the natural environment.
Collapse
Affiliation(s)
- Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Saran P Sohi
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Yuyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
82
|
Zhang ZM, Zhang HH, Zou YW, Yang GP. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:235-247. [PMID: 29747108 DOI: 10.1016/j.envpol.2018.04.056] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The spatial distribution, chemical composition and ecological risk of 16 phthalate esters (PAEs) were investigated in the sea-surface microlayer (SML), seawater and sediment samples of the Bohai Sea (BS) and the Yellow Sea (YS). The concentration levels of the ΣPAEs spanned a range of 449-13441 ng L-1 in the SML, 453-5108 ng L-1 in seawater, and 1.24-15.8 mg kg-1 in the sediment samples, respectively, with diisobutyl phthalate (DiBP), di-n-butyl phthalate (DBP) and di-ethylhexyl phthalate (DEHP) as the dominant PAEs in both the water and sediment samples. The concentrations of ΣPAEs in the BS were higher than those in the YS. The vertical distribution of ΣPAEs in the water column showed that the concentrations were higher in the surface waters, but decreased slightly with depth, and started to increase at the bottom. Additionally, PAEs were significantly enriched in the SML, with an average enrichment factor of 1.46. The ecological risk of the PAEs was evaluated by the risk quotient (RQ) method, which indicated that DEHP posed a high risk to aquatic organisms in the whole water-phase, while the RQ values of DBP and DiBP reached a high risk levels in sedimentary environment.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao, 266100, China
| | - Hong-Hai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao, 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China
| | - Ya-Wen Zou
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao, 266100, China
| | - Gui-Peng Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
83
|
Assessing the Risk of Phthalate Ester (PAE) Contamination in Soils and Crops Irrigated with Treated Sewage Effluent. WATER 2018. [DOI: 10.3390/w10080999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Waste/reclaimed irrigation water has been promoted due to water shortages in arid and semi-arid areas. However, this process may be one of the sources of phthalate esters (PAEs) in agricultural soils, and the potential risks of PAEs for soil ecosystems and human health have attracted considerable attention. A two-year (from October 2014 to October 2016) field experiment was conducted to assess the contamination risk of PAEs from reclaimed irrigation water in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) fields on the North China Plain. Three types of irrigation water quality were arranged for each variety, including reclaimed water, groundwater, and a mixture of reclaimed water and groundwater (1:1, v/v). The results indicate that the concentrations of the 6 PAEs in topsoil ranged from 2.79 to 5.34 mg/kg at the time of crop harvest. There was no significant effect of reclaimed irrigation water on the concentrations of PAEs in the soil. Di-n-butyl phthalate (DnBP) and di (2-ethylhexyl) phthalate (DEHP) were the most abundant contaminants in all soil samples, accounting for 43.2%~68.7% and 27.1%~48.6%, respectively, of the 6 PAEs. The levels of dimethyl phthalate (DMP) and DnBP in all soil samples exceeded the allowable soil concentrations, but the levels were far below the recommended soil cleanup objectives. The grain yields of winter wheat and summer maize ranged from 4.35 to 7.1 t/ha and 1.03 to 6.46 t/ha, respectively. There were no significant effects of reclaimed water on the growth characteristics and grain yield of winter wheat (p > 0.05); however, the effect of reclaimed irrigation water on summer maize was influenced by climate. The concentrations of the 6 PAEs in wheat grain and maize grain ranged from 1.03 to 4.05 mg/kg and from 0.37 to 3.29 mg/kg, respectively. For the same variety, there was no significant difference in the concentrations of the 6 PAEs in cereal grains among different treatments (p > 0.05). DEHP and DnBP were the most abundant components in most crop samples, accounting for 31.6%~77.9% and 21.1%~64.7%, respectively, of the 6 PAEs. The concentrations of the PAEs, DnBP and DEHP in cereal grains were lower than those in the reference doses. The BCFs of the 6 PAEs and of each PAE in cereal grains were 0.43~1.25 and 0.33~35.75, respectively. The BCFs of butyl benzyl phthalate (BBP) were the highest (1.41~35.75), followed by DMP and DEHP. There were almost no significant differences in the BCFs of each PAE among the three treatments. The total carcinogenic risks of PAEs were 2.82 × 10−5 for adults and 1.81 × 10−5 for children. The total non-carcinogenic risks of PAEs were 3.37 × 10−1 for adults and 7.98 × 10−1 for children. DHEP was the dominant contributor to both risks, and the intake of cereals was the main exposure pathway for the two risks. In conclusion, there were no significant effects of reclaimed irrigation water on the concentrations of PAEs in soil and cereal grains compared with groundwater irrigation, and the human health risks were within the acceptable range. Long-term studies are needed to evaluate the long-term effects of reclaimed irrigation water on the contamination risk posed by PAEs.
Collapse
|
84
|
Lü H, Mo CH, Zhao HM, Xiang L, Katsoyiannis A, Li YW, Cai QY, Wong MH. Soil contamination and sources of phthalates and its health risk in China: A review. ENVIRONMENTAL RESEARCH 2018; 164:417-429. [PMID: 29573717 DOI: 10.1016/j.envres.2018.03.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Phthalates (PAEs) are extensively used as plasticizers and constitute one of the most frequently detected organic contaminants in the environment. With the deterioration of eco-environment in China during the past three decades, many studies on PAE occurrence in soils and their risk assessments have been conducted which allow us to carry out a fairly comprehensive assessment of soil PAE contamination on a nation-wide scale. This review combines the updated information available associated with PAE current levels, distribution patterns (including urban soil, rural or agricultural soil, seasonal and vertical variations), potential sources, and human health exposure. The levels of PAEs in soils of China are generally at the high end of the global range, and higher than the grade II limits of the Environmental Quality Standard for soil in China. The most abundant compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), display obvious spatial distribution in different provinces. It is noted that urbanization and industrialization, application of plastic film (especially plastic film mulching in agricultural soil) and fertilizer are the major sources of PAEs in soil. Uptake of PAEs by crops, and human exposure to PAEs via ingestion of soil and vegetables are reviewed, with scientific gaps highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296 Tromsø, Norway
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
85
|
Reindl AR, Bolałek J. Organochlorine contaminants in the Vistula Lagoon sedimentation zone as possible source of lagoon recontamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:442. [PMID: 29959581 DOI: 10.1007/s10661-018-6804-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/12/2018] [Indexed: 05/15/2023]
Abstract
The presented results include decade of monitoring of the Vistula Lagoon waters and have been supplemented by the determination of chlorinated compounds, as well as on concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the sedimentation zone. Monitoring of river waters entering the Polish part of the lagoon and the lagoon waters confirmed the presence of plant protection chemical; the largest contributors has lindane (34%) and DDTtotal (21%); the same as for sediments were dominate lindane (19%) and DDTtotal (14%) within pp-DDT isomer dominate (13%). In the lagoon water, PCDD/Fs were determined within a range of 1.5-5.6 ng dm-3, leading to average toxicity of 0.18 ± 0.13 ng TEQ·dm-3. In sediments, their concentrations fell within a range of 22.7-405.7 ng kg-1 dw and the average toxicity of the lagoon sediments was set at 5.00 ± 1.98 ng TEQ·kg-1 dw. Both in water and sediments, the greatest share among PCDD/Fs has octa-chlorodibenzodioxin. Due to the hydromorphological conditions of the lagoon, the waters are mixed to the bottom causing the surface layer of sediment to become remobilized-this is suggested as the key factor when it comes to water recontamination and increased access of POPs to marine organisms.
Collapse
Affiliation(s)
- Andrzej R Reindl
- Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdansk, Aleja Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Jerzy Bolałek
- Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdansk, Aleja Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
86
|
Evaluation of Phthalic Acid Esters in Fish Samples Using Gas Chromatography Tandem Mass Spectrometry with Simplified QuEChERS Technique. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1313-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
87
|
He L, Fan S, Müller K, Wang H, Che L, Xu S, Song Z, Yuan G, Rinklebe J, Tsang DCW, Ok YS, Bolan NS. Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:987-993. [PMID: 29996465 DOI: 10.1016/j.scitotenv.2018.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/30/2017] [Accepted: 01/01/2018] [Indexed: 05/22/2023]
Abstract
In recent years, biochar has been extensively studied as a sorbent for immobilizing contaminants and minimizing their bioavailability in soils. Few studies have been conducted to evaluate the interactions between biochar and compost in soils and their impact on degradation of organic contaminants. In the present study, soils with high organic carbon content (HOC) and low organic carbon content (LOC) were spiked with 100mg·kg-1 di-(2-ethylhexyl) phthalate (DEHP) amended with biochar derived from dead pigs, bamboo, and composted sheep manure. The soils were thereafter incubated for 112days at 25°C and periodically sampled for monitoring DEHP concentrations. Degradation of DEHP was described by a logistic model. Results showed that the initial degradation rates were slow, but accelerated after 14days of incubation. The DEHP degradation rates were higher in the HOC soils than in the LOC soils over the incubation period. The half-lives of DEHP were shorter in the LOC soils treated with pig biochar, and bamboo/pig biochar plus compost than in the untreated soil. However, there was no significant difference in the half-lives of DEHP in the HOC control and treated soils. The differential effects of soil amendments on DEHP degradation between LOC and HOC soils could be explained by the properties of the organic amendments, soil pH and the organic carbon contents of the soils.
Collapse
Affiliation(s)
- Lizhi He
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Shiliang Fan
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China; Zhejiang Chengbang Landscape Incorporated, Hangzhou, Zhejiang 310008, China
| | - Karin Müller
- The New Zealand Institute for Plant & Food Research Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Hailong Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, Foshan University, Foshan, Guangdong 528000, China.
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Song Xu
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China.
| | - Zhaoliang Song
- Institute of the Surface-Earth System Science Research, Tianjin University, Tianjin 300072, China
| | - Guodong Yuan
- Zhaoqing University, Zhaoqing, Guangdong 526061, China; Guangdong Dazhong Agriculture Science Co. Ltd., Dongguan, Guangdong 523169, China
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
88
|
Zhang ZM, Zhang HH, Zhang J, Wang QW, Yang GP. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:93-102. [PMID: 29145058 DOI: 10.1016/j.scitotenv.2017.11.070] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
A total of 133 seawater samples and 17 sediment samples were collected from 81 sampling sites in the Changjiang River Estuary and its adjacent area and were analyzed for 16 phthalate esters (PAEs). The Σ16 PAE concentrations in the seawater and sediment samples ranged from 180.3ng·L-1 to 3421ng·L-1 and from 0.48μg·g-1 to 29.94μg·g-1dry weight (dw), respectively, with mean values of 943.6ng·L-1 and 12.88μg·g-1. The distribution of ∑16PAE concentrations in the water column showed that PAE concentrations in the bottom samples were higher than those in the surface samples (except the transect C located inside the Changjiang River Estuary), with the maxima appearing in the bottom layer at the offshore stations. Among the 16 PAEs, di (2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DiBP), and dibutyl phthalate (DnBP) dominated the PAEs, with 25.1%, 21.1%, and 18.9% of the Σ16PAEs in seawater, respectively. The comparison of ∑16PAEs and salinities in transects C and A6 suggested that the Changjiang River runoff was an important driving factor influencing the distribution of PAEs. DEHP concentrations in water samples and DEHP and DnBP concentrations in sediment samples exceeded the environmental risk levels (ERL), indicating their potential hazard to the ocean environment.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China
| | - Hong-Hai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Qian-Wen Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China
| | - Gui-Peng Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao/Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
89
|
Zhu X, Beiyuan J, Lau AYT, Chen SS, Tsang DCW, Graham NJD, Lin D, Sun J, Pan Y, Yang X, Li XD. Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1153-1162. [PMID: 29734594 DOI: 10.1016/j.scitotenv.2017.11.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are common pollutants released from electronic waste (e-waste) dismantling and recycling activities. Our city-wide survey of agricultural soils in Qingyuan (40 sampling sites), where e-waste recycling has been active, observed exceedance of PBDEs above background levels (average of 251.9ngg-1, 87 times the regional baseline concentration) together with elevated levels of metals/metalloids at the contamination hotspots, such as As (180.4mgkg-1), Cu (100.7mgkg-1), Zn (93.4mgkg-1), Pb (37.8mgkg-1), Cr (15.1mgkg-1), and Cd (0.3mgkg-1). Hence, a twenty-cycle batch sorption test on composite soil samples from the e-waste site was conducted to study the fate of BDE-28 (2,4,4'-tribromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) under the influence of co-existing trace elements (TEs) (Cu, Pb, Zn, and Cd, which exceeded Chinese Environmental Quality Standard for Soils), dissolved organic matter (extracted from local peat), and locally available commercial fertilizer. The results showed that the presence of TEs barely affected the sorption of BDEs, probably because the low concentration of BDEs in the environment resulted in nearly complete sorption onto the soil. In contrast, metals sorption onto soil was promoted by the presence of BDEs. The mobility of BDE-28 was higher than BDE-99 in water leaching tests, while the leaching concentration of BDE-99 was further reduced in simulated acid rain possibly due to protonation of π-accepting sites in soil organic matter. In the freshly spiked soil, BDEs of greater hydrophobicity and larger molecular size exhibited higher bioavailability (due to greater affinity to Tenax extraction), which was contrary to the field contaminated soil. Similarly, the co-occurrence of metals and fertilizer increased the bioavailability of newly sorbed BDE-99 more than BDE-28 in the soil. These results illustrate the need to holistically assess the fate and interactions of co-existing organic and inorganic pollutants in the agricultural soils.
Collapse
Affiliation(s)
- Xuan Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingzi Beiyuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Centre of Sustainable Design and Environment, Faculty of Design and Environment, Technological and Higher Education Institute of Hong Kong, Tsing Yi Road, Hong Kong, China
| | - Abbe Y T Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Nigel J D Graham
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Daohui Lin
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianteng Sun
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
90
|
Li K, Chen J, Zhu L. The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:692-699. [PMID: 29339338 DOI: 10.1016/j.envpol.2017.12.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Decabromodiphenyl ether (BDE-209), as a major component of brominated flame retardants, has been detected in the agricultural soil in considerable amount. Given that BDE-209 is toxic, ubiquitous and persistent, BDE-209 might induce toxic effects on rice cultivars planted in contaminated soil. A comparative study was conducted on phytotoxicities and GC-MS based antioxidant-related metabolite levels to investigate the differences of phytotoxicities of BDE-209 to rice cultivars in Yangtze River Delta of China. Rice seedlings were treated with BDE-209 at 0, 10, 50, 100 and 500 μg/L in a hydroponic setup. Results showed that BDE-209-induced phytotoxicites were cultivar-dependent and that the antioxidant defense systems in the cultivars were disturbed differently. Among the three selected cultivars (Jiayou 5, Lianjing 7 and Yongyou 9), Jiayou 5 and Lianjing 7 displayed lower toxic effects than Yongyou 9 in terms of the growth inhibition, lipid peroxidation and DNA damage. The increases of antioxidant enzymes were significantly higher in Jiayou 5 and Lianjing 7 than those in Yongyou 9. Multivariate analysis of antioxidant-related metabolites in the three cultivars indicated that l-tryptophan and l-valine were the most important ones among 10 metabolites responsible for the separation of cultivars. The up-regulation of l-tryptophan and l-valine were likely plant strategies to increase their tolerance. The current results provided an insight into the development of rice cultivars with higher BDE-209 tolerance.
Collapse
Affiliation(s)
- Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
91
|
Notardonato I, Salimei E, Russo MV, Avino P. Simultaneous determination of organophosphorus pesticides and phthalates in baby food samples by ultrasound-vortex-assisted liquid-liquid microextraction and GC-IT/MS. Anal Bioanal Chem 2018; 410:3285-3296. [PMID: 29549507 DOI: 10.1007/s00216-018-0986-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
Abstract
Baby foods are either a soft, liquid paste or an easily chewed food since babies lack developed muscles and teeth to chew effectively. Babies typically move to consuming baby food once nursing or formula is not sufficient for the child's appetite. Some commercial baby foods have been criticized for their contents. This article focuses on the simultaneous determination of organophosphorus pesticides and phthalates by means of a method based on ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap mass spectrometry (GC-IT/MS). The protocol developed allowed the determination of six phthalates [dimethyl phthalate, diethyl phthalate, dibutyl phthalate, isobutyl cyclohexyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate] and 19 organophosphorus pesticides. Freeze-dried product samples (0.1-0.2 g) were dissolved in 10 mL of warm distilled water along with 5 μL of an internal standard (anthracene at 10 mg mL-1 in acetone): the choice of extraction solvent was studied, with the most suitable being n-heptane, which is used for phthalate determination in similar matrices. The solution, held for 5 min in a vortex mixer and for 6 min in a 100-W ultrasonic bath to favor solvent dispersion and consequently analyte extraction, was centrifuged at 4000 rpm for 30 min. Then 1 μL was injected into the GC-IT/MS system (SE-54 capillary column; length 30 m, inner diameter 250 μm, film thickness 0.25 μm). All analytical parameters investigated are discussed in depth. The method was applied to real commercial freeze-dried samples: significant contaminant concentrations were not found. Graphical abstract Simultaneous and sensitive determination of organophosphorus pesticides and phthalates in baby foods by the ultrasound-vortex-assisted liquid-liquid microextraction ֪gas chromatography-ion trap mass spectrometry procedure. 1 methacrifos, 2 pirofos, 3 phorate, 4 seraphos, 5 diazinon, 6 etrimphos, 7 dichlofenthion, 8 chlorpyrifos-methyl, 9 pirimiphos-methyl, 10 malathion, 11 chlorpyrifos, 12 parathion-ethyl, 13 pirimiphos-ethyl, 14 bromophos, 15 chlorfenvinphos, 16 bromophos-ethyl, 17 stirophos, 18 diethion, 19 coumaphos, A dimethyl phthalate, B diethyl phthalate, C dibutyl phthalate, D butyl cyclohexyl phthalate, E benzyl butyl phthalate, F bis(2-ethylhexyl) phthalate, IS internal standard.
Collapse
Affiliation(s)
- Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, 86100, Campobasso, Italy
| | - Elisabetta Salimei
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, 86100, Campobasso, Italy
| | - Mario Vincenzo Russo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, 86100, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, 86100, Campobasso, Italy. .,DIT, INAIL, via R. Ferruzzi 38/40, 00143, Rome, Italy.
| |
Collapse
|
92
|
Sun J, Pan L, Tsang DCW, Zhan Y, Zhu L, Li X. Organic contamination and remediation in the agricultural soils of China: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:724-740. [PMID: 29017123 DOI: 10.1016/j.scitotenv.2017.09.271] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
93
|
Liu Q, Chen D, Wu J, Yin G, Lin Q, Zhang M, Hu H. Determination of phthalate esters in soil using a quick, easy, cheap, effective, rugged, and safe method followed by GC-MS. J Sep Sci 2018; 41:1812-1820. [DOI: 10.1002/jssc.201701126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Qianjun Liu
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Di Chen
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Jiyuan Wu
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Guangcai Yin
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Qintie Lin
- College of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou P. R. China
| | - Min Zhang
- School of Materials Science and Energy Engineering; Foshan University; Foshan P. R. China
| | - Huawen Hu
- School of Materials Science and Energy Engineering; Foshan University; Foshan P. R. China
| |
Collapse
|
94
|
Sun J, Pan L, Zhan Y, Zhu L. Spatial distributions of hexachlorobutadiene in agricultural soils from the Yangtze River Delta region of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3378-3385. [PMID: 29151187 DOI: 10.1007/s11356-017-0707-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Hexachlorobutadiene (HCBD) is one of the persistent organic pollutants (POPs) listed by the Stockholm Convention and poses potential risks to human health and ecosystems. To reveal the regional-scale pollution status of HCBD in agricultural soils from fast-developing areas, an extensive investigation was conducted in the core Yangtze River Delta (YRD), China. The detectable concentrations of HCBD in 241 soil samples ranged from 0.07 to 8.47 ng g-1 dry weight, with an average value of 0.32 ng g-1 and a detection rate of 59.3%. Industrial emissions and intensive agricultural activities were the potential source of HCBD. The concentrations of HCBD were highly associated with the soil physicochemical properties such as organic matter contents. Higher concentrations of HCBD were found in paddy fields than other land-use types. The concentrations of HCBD were much lower than those of organochlorine pesticides and polychlorinated biphenyls. Significant positive correlations were found between HCBD and most organochlorine pesticides. HCBD was not found in ten vegetable samples due to its low concentration and detection rate. A positive relationship was observed between the level of HCBD and the biomass of fungi, indicating that the fungi in soils might be influenced by the existence of HCBD. The potential risks of HCBD to ecosystems and health of inhabitants were estimated to be negligible. The finding from this study provides an important basis for soil quality assessment and risk management of HCBD in China.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang, Hangzhou, 310058, China
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang, Hangzhou, 310058, China.
| |
Collapse
|
95
|
Sun J, Pan L, Tsang DCW, Li Z, Zhu L, Li X. Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34-42. [PMID: 27738865 DOI: 10.1007/s11356-016-7725-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The present study investigated phthalate esters (PAEs) and organochlorine pesticides (OCPs) in agricultural soils and vegetables from eastern China. The concentrations of PAEs ranged from 109 to 5560 ng/g in soils and 60.1 to 2390 ng/g in cabbages, with average concentrations of 946 and 601 ng/g, respectively. The concentrations of OCPs ranged from <0.1 to 662 ng/g in soils and <0.1 to 42.8 ng/g in cabbages, with average concentrations of 134 and 11.6 ng/g, respectively. OCPs were mainly in the 0-30 cm surface soil layers, while PAEs could infiltrate in deep soil profiles to 70-80 cm layer. Potential source analysis traced the occurrence of OCPs to both historical application and current usage, whereas building materials and agricultural plastic film were possible input sources of PAEs in the ambient environment. OCPs showed no apparent effect on soil microbial communities, whereas significant negative relationship was observed between PAEs and fungi in soils (R = -0.54, p < 0.01). Human health risk assessment data revealed marginal noncarcinogenic risks and low carcinogenic risks in these soils. Notably, PAEs posed a comparable or higher risk level compared with that of OCPs. This study suggests the need for better regulation on pollution control and management of PAE-elevated sites to protect soil quality and food safety.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiheng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
96
|
Pan L, Sun J, Li Z, Zhan Y, Xu S, Zhu L. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4-11. [PMID: 27687760 DOI: 10.1007/s11356-016-7664-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Organophosphorus pesticides (OPPs) are used worldwide and pose great risks to human health. However, information on their presence in agricultural soils at regional scale and the associated risks is limited. In this study, an extensive investigation on agricultural soils was conducted throughout the Yangtze River Delta (YRD) of China to reveal the status of OPP pollution. The total concentrations of the nine OPPs ranged from <3.0 to 521 ng g-1 dry weight, with a mean of 64.7 ng g-1 dry weight and a detection rate of 93 %. Dimethoate was found to be the primary compound, followed by methyl parathion and parathion. The highest concentrations of OPPs were found in Jiangsu province due to the intensive agricultural activities. The pollution of OPPs is also highly associated with the land use types. The lower concentrations of OPPs found in vegetable fields could be attributed to their easy photodegradation and hydrolysis in aerobic soils. There was no significant difference in microbial communities among the sample sites, indicating that OPPs in agricultural soils of the YRD region cause negligible effects on microbiota. The risks of OPPs in the soils to human health were further evaluated. The hazard indexes in all the soil samples were below 1, suggesting absence of non-cancer risks. This study provides valuable information for a better understanding of the pollution status of OPPs in agricultural soils and a scientific basis for soil quality assessments.
Collapse
Affiliation(s)
- Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhiheng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Shen Xu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
97
|
Ma WL, Li WL, Zhang ZF, Liu LY, Song WW, Huo CY, Yuan YX, Li YF. Occurrence and source apportionment of atmospheric halogenated flame retardants in Lhasa City in the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1109-1116. [PMID: 28724249 DOI: 10.1016/j.scitotenv.2017.07.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Active air samples were collected in Lhasa, one of the highest cities in the world (3650m above sea level) located in the Tibetan Plateau, and were analyzed for 38 halogenated flame retardants (HFRs), including polybrominated diphenyl ethers (PBDEs), non-PBDE brominated flame retardants (NBFRs) and dechlorane plus (DPs). The median concentrations of PBDEs, NBFRs and DPs were 40, 23 and 0.21pg/m3, respectively. Correlation analysis indicated the common source and/or similar environmental behavior for several HFRs. The Clausius-Clapeyron equation was applied to diagnose the sources of lower molecular weight HFRs (LMW-HFRs), which suggested that the gaseous LMW-HFRs at Lhasa were more controlled by regional or long-range atmospheric transport rather than the temperature-driven evaporation from local contaminated surfaces. Finally, the potential source contribution function model was applied to assess the influences of air parcels on the atmospheric concentrations of HFRs in Lhasa, which suggested that the sources of higher molecular weight HFRs (HMW-HFRs) were mostly originated from local emissions, while the others were originated from long-range atmospheric transport.
Collapse
Affiliation(s)
- Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Xing Yuan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada.
| |
Collapse
|
98
|
Iqbal M, Syed JH, Breivik K, Chaudhry MJI, Li J, Zhang G, Malik RN. E-Waste Driven Pollution in Pakistan: The First Evidence of Environmental and Human Exposure to Flame Retardants (FRs) in Karachi City. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13895-13905. [PMID: 29134799 DOI: 10.1021/acs.est.7b03159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Informal e-waste recycling activities have been shown to be a major emitter of organic flame retardants (FRs), contributing to both environmental and human exposure to laborers at e-waste recycling sites in some West African countries, as well as in China and India. The main objective of this study was to determine the levels of selected organic FRs in both air and soil samples collected from areas with intensive informal e-waste recycling activities in Karachi, Pakistan. Dechlorane Plus (DP) and "novel" brominated flame retardants (NBFRs) were often detected in high concentrations in soils, while phosphorus-based FRs (OPFRs) dominated atmospheric samples. Among individual substances and substance groups, decabromodiphenyl ether (BDE-209) (726 ng/g), decabromodiphenyl ethane (DBDPE) (551 ng/g), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) (362 ng/g), and triphenyl-phosphate (∑TPP) (296 ng/g) were found to be prevalent in soils, while OPFR congeners (5903-24986 ng/m3) were prevalent in air. The two major e-waste recycling areas (Shershah and Lyari) were highly contaminated with FRs, suggesting informal e-waste recycling activities as a major emission source of FRs in the environment in Karachi City. However, the hazards associated with exposure to PM2.5 appear to exceed those attributed to exposure to selected FRs via inhalation and soil ingestion.
Collapse
Affiliation(s)
- Mehreen Iqbal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University , Islamabad 45320, Pakistan
| | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- Department of Meteorology, COMSATS Institute of Information Technology (CIIT) , Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Knut Breivik
- Norwegian Institute for Air Research , Box 100, NO-2027 Kjeller, Norway
- University of Oslo , Department of Chemistry, Box 1033, NO-0315 Oslo, Norway
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University , Islamabad 45320, Pakistan
| |
Collapse
|
99
|
Sun J, Zeng Q, Tsang DCW, Zhu LZ, Li XD. Antibiotics in the agricultural soils from the Yangtze River Delta, China. CHEMOSPHERE 2017; 189:301-308. [PMID: 28942256 DOI: 10.1016/j.chemosphere.2017.09.040] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 05/22/2023]
Abstract
This study focused on the occurrence and spatial distribution of 13 common antibiotics in the agricultural soils of the Yangtze River Delta (YRD), China. Antibiotics were detected in all the 241 soil samples (i.e., 100% detection rate) with the total concentrations ranging from 4.55 to 2,010 ng/g dry weight. The concentrations of three antibiotic classes decreased in the order: quinolones (mean 48.8 ng/g) > tetracyclines (mean 34.9 ng/g) > sulfonamides (mean 2.35 ng/g). Ciprofloxacin was the prevalent compound with a mean concentration of 27.7 ng/g, followed by oxytetracycline (mean of 18.9 ng/g). A distinct spatial distribution was observed, where high concentrations of antibiotics were detected in the sites adjacent to the livestock and poultry farms. The potential sources of antibiotics in the agricultural soils were the application of manure and wastewater irrigation in this region. Risk assessment for single antibiotic compound indicated that tetracyclines and quinolones could pose a potential risk, in which doxycycline and ciprofloxacin had the most severe ecological effect in the agricultural soils. Antibiotic resistance genes (ARGs), such as tetA, sulI, and qnrS, were detected in 15 analyzed soil samples, and sulI showed significant correlations with quinolones, tetracyclines, copper, and zinc. Further studies on the distribution of other ARGs in agricultural soil at a region-scale are needed for the risk management of extensively used antibiotics and major ARGs.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qingtao Zeng
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - L Z Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, China.
| | - X D Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
100
|
Chen W, Wu X, Zhang H, Sun J, Liu W, Zhu L, Li X, Tsang DCW, Tao S, Wang X. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:927-935. [PMID: 28738305 DOI: 10.1016/j.envpol.2017.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Alkylated PAHs (APAHs) have been shown to be more toxic and persistent than their non-alkylated parent compounds. However, little is known about the extent of soil contamination by these pollutants. To help understand agricultural soil pollution by these compounds at a regional scale, a total of 18 methylated PAHs (MPAHs, a major class of APAHs) in 243 soil samples were analyzed. These soil samples were collected from 11 sites in the Yangtze River Delta (YRD) region, a representative fast developing area in China. The total concentration of MPAHs (∑18MPAHs) ranged from 5.5 to 696.2 ng/g dry soil, with methylnaphthalenes (M-NAPs) and methylphenanthrenes (M-PHEs) accounting for more than 70% of the compositional profile. Relatively high concentrations of ∑18MPAHs were found in Jiaxing and Huzhou areas of Zhejiang province, as well as on the border between the cities of Wuxi and Suzhou. Different MPAH groups showed dissimilar spatial distribution patterns. The spatial distribution of lower molecular weight MPAHs was related to agricultural straw burning and emissions/depositions from industrial activities, whereas that of higher molecular weight MPAHs was much more a function of the total organic carbon (TOC) content of soil. Although coal, biomass (crop straw and wood), and petroleum combustion were identified to be the major emission sources for most of the sampling sites, the areas with relatively severe pollution with ∑18MPAHs resulted from the localized hotspots of petroleum leakage. Isomeric MPAHs with methyl group substituted at 2- (β) position exhibited significantly higher concentrations than those substituted at 1- (α) position. Results of this work help to understand soil pollution by MPAHs, and are useful for designing effective strategies for pollution control so as to ensure food safety in areas with fast economic growth.
Collapse
Affiliation(s)
- Weixiao Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinyi Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haiyun Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxin Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|