51
|
Mignini I, Piccirilli G, Galasso L, Termite F, Esposto G, Ainora ME, Gasbarrini A, Zocco MA. From the Colon to the Liver: How Gut Microbiota May Influence Colorectal Cancer Metastatic Potential. J Clin Med 2024; 13:420. [PMID: 38256554 PMCID: PMC10815973 DOI: 10.3390/jcm13020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota's influence on human tumorigenesis is a burning topic in medical research. With the new ontological perspective, which considers the human body and its pathophysiological processes as the result of the interaction between its own eukaryotic cells and prokaryotic microorganisms living in different body niches, great interest has arisen in the role of the gut microbiota on carcinogenesis. Indeed, dysbiosis is currently recognized as a cancer-promoting condition, and multiple molecular mechanisms have been described by which the gut microbiota may drive tumor development, especially colorectal cancer (CRC). Metastatic power is undoubtedly one of the most fearsome features of neoplastic tissues. Therefore, understanding the underlying mechanisms is of utmost importance to improve patients' prognosis. The liver is the most frequent target of CRC metastasis, and new evidence reveals that the gut microbiota may yield an effect on CRC diffusion to the liver, thus defining an intriguing new facet of the so-called "gut-liver axis". In this review, we aim to summarize the most recent data about the microbiota's role in promoting or preventing hepatic metastasis from CRC, highlighting some potential future therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (G.P.); (L.G.); (F.T.); (G.E.); (M.E.A.); (A.G.)
| |
Collapse
|
52
|
Cordeiro FP, Marchiori LLM, Teixeira DC, Andraus RAC, Poli RC. Plasma Levels of Interferon Gamma associated with Hearing Loss and Hearing Loss Sensation through the Handicap Questionnaire Inventory for the Elderly Screening Version. Noise Health 2024; 26:44-50. [PMID: 38570310 PMCID: PMC11141700 DOI: 10.4103/nah.nah_4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 04/05/2024] Open
Abstract
OBJECTIVE The aim of this study was to verify the association between the auditory handicap found in the Hearing Handicap Inventory for the Elderly-Screening Version (HHIE-S) questionnaire and hearing loss and the plasma levels of inflammatory biomarkers. MATERIALS AND METHODS Cross-sectional study with 76 participants, 67 (88%) females and 9 (12%) males, with a mean age of 70 years. Tonal threshold audiometry and self-assessment with HHIE-S questionnaire were performed to measure the plasma levels of interleukin-2 (IL-2), IL-4, IL-6, and IL-10; tumor necrosis factor alpha; and interferon gamma (IFN-γ) flow cytometry method. For all data analyzed, the significance level adopted was P < 0.05 and 95% confidence interval. RESULTS An inverse correlation was observed between the increase in plasma levels of IFN-γ and normal auditory handicap (P = 0.015; rs = -0.280). The severe handicap group showed an increase in the averages I (P = 0.005; rs = 0.350) and II (P = 0.016; rs = 0.368) in the right ear and the light/moderate handicap group increased the means I (P = 0.027; rs = 0.350) and II (P = 0.046; rs = 0.310) of the left ear. A statistically significant association was found between the speech recognition threshold (SRT) test results of the right ear and the severe handicap group (P = 0.002; rs = 0.271). CONCLUSIONS There was an association between the increase in plasma levels of IFN-γ and normal auditory handicap. Additionally, statistically significant associations were observed between the mild/moderate and severe handicap groups with the increase in hearing means and an increase in SRT associated with the severe handicap group.
Collapse
Affiliation(s)
| | | | | | | | - Regina Célia Poli
- Professor of the Master’s and Doctor’s Degree Associated in Rehabilitation Sciences UEL-UNOPAR
| |
Collapse
|
53
|
Li YR, Lyu Z, Tian Y, Fang Y, Zhu Y, Chen Y, Yang L. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Mol Ther Oncolytics 2023; 31:100733. [PMID: 37876793 PMCID: PMC10591018 DOI: 10.1016/j.omto.2023.100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
CRISPR screen technology enables systematic and scalable interrogation of gene function by using the CRISPR-Cas9 system to perturb gene expression. In the field of cancer immunotherapy, this technology has empowered the discovery of genes, biomarkers, and pathways that regulate tumor development and progression, immune reactivity, and the effectiveness of immunotherapeutic interventions. By conducting large-scale genetic screens, researchers have successfully identified novel targets to impede tumor growth, enhance anti-tumor immune responses, and surmount immunosuppression within the tumor microenvironment (TME). Here, we present an overview of CRISPR screens conducted in tumor cells for the purpose of identifying novel therapeutic targets. We also explore the application of CRISPR screens in immune cells to propel the advancement of cell-based therapies, encompassing T cells, natural killer cells, dendritic cells, and macrophages. Furthermore, we outline the crucial components necessary for the successful implementation of immune-specific CRISPR screens and explore potential directions for future research.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
54
|
Yang W, Pan Z, Zhang J, Wang L, lai J, Zhou S, Zhang Z, Fan K, Deng D, Gao Z, Yu S. Extracellular vesicles from adipose stem cells ameliorate allergic rhinitis in mice by immunomodulatory. Front Immunol 2023; 14:1302336. [PMID: 38143758 PMCID: PMC10739383 DOI: 10.3389/fimmu.2023.1302336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Human adipose tissue-derived stem cells (hADSCs) exert potent immunosuppressive effects in the allogeneic transplantation treatment. In mouse model of allergic rhinitis (AR), ADSCs partially ameliorated AR. However, no study has evaluated the potential therapeutic effects of hADSC-derived extracellular vesicles (hADSC-EVs) on AR. Methods Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce AR. One day after the last nasal drop, each group received phosphate buffered saline (PBS) or hADSC-EVs treatment. Associated symptoms and biological changes were then assessed. Results hADSC-EV treatment significantly alleviated nasal symptoms, and reduced inflammatory infiltration. Serum levels of OVA-specific IgE, interleukin (IL)-4 and interferon (IFN)-γ were all significantly reduced. The mRNA levels of IL-4 and IFN-γ in the spleen also changed accordingly. The T helper (Th)1/Th2 cell ratio increased. The treatment efficacy index of hADSC-EV was higher than that of all human-derived MSCs in published reports on MSC treatment of AR. ADSC-EVs exhibited a greater therapeutic index in most measures when compared to our previous treatment involving ADSCs. Conclusion These results demonstrated that hADSC-EVs could ameliorate the symptoms of AR by modulating cytokine secretion and Th1/Th2 cell balance. hADSC-EVs could potentially be a viable therapeutic strategy for AR. Further animal studies are needed to elucidate the underlying mechanisms and to optimize potential clinical protocols.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhiyu Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Ju lai
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Shican Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhili Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
55
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
56
|
Chen H, Wang Q, Li J, Li Y, Chen A, Zhou J, Zhao J, Mao Z, Zhou Z, Zhang J, Wang Y, Wang R, Li Q, Zhang Y, Jiang R, Miao D, Jin J. IFNγ Transcribed by IRF1 in CD4+ Effector Memory T Cells Promotes Senescence-Associated Pulmonary Fibrosis. Aging Dis 2023; 14:2215-2237. [PMID: 37199578 PMCID: PMC10676796 DOI: 10.14336/ad.2023.0320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Physiologically aged lungs are prone to senescence-associated pulmonary diseases (SAPD). This study aimed to determine the mechanism and subtype of aged T cells affecting alveolar type II epithelial (AT2) cells, which promote the pathogenesis of senescence-associated pulmonary fibrosis (SAPF). Cell proportions, the relationship between SAPD and T cells, and the aging- and senescence-associated secretory phenotype (SASP) of T cells between young and aged mice were analyzed using lung single-cell transcriptomics. SAPD was monitored by markers of AT2 cells and found to be induced by T cells. Furthermore, IFNγ signaling pathways were activated and cell senescence, SASP, and T cell activation were shown in aged lungs. Physiological aging led to pulmonary dysfunction and TGF-β1/IL-11/MEK/ERK (TIME) signaling-mediated SAPF, which was induced by senescence and SASP of aged T cells. Especially, IFNγ was produced by the accumulated CD4+ effector memory T (TEM) cells in the aged lung. This study also found that physiological aging increased pulmonary CD4+ TEM cells, IFNγ was produced mainly by CD4+ TEM cells, and pulmonary cells had increased responsiveness to IFNγ signaling. Specific regulon activity was increased in T cell subclusters. IFNγ transcriptionally regulated by IRF1 in CD4+ TEM cells promoted the epithelial-to-mesenchymal transition by activating TIME signaling and cell senescence of AT2 cells with aging. Accumulated IRF1+CD4+ TEM produced IFNγ in lung with aging and anti-IRF1 primary antibody treatment inhibited the expression of IFNγ. Aging might drive T cell differentiation toward helper T cells with developmental trajectories and enhance cell interactions of pulmonary T cells with other surrounding cells. Thus, IFNγ transcribed by IRF1 in CD4+ effector memory T cells promotes SAPF. IFNγ produced by CD4+ TEM cells in physiologically aged lungs could be a therapeutic target for preventing SAPF.
Collapse
Affiliation(s)
- Haiyun Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
- Key Laboratory for Aging & Disease;
- Nanjing Medical University, Nanjing, Jiangsu, China. Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China. Department of Orthopaedics, Xuzhou Central Hospital
| | - Qiuyi Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jie Li
- The State Key Laboratory of Reproductive Medicine
| | - Yuan Li
- The Xuzhou Clinical School of Xuzhou Medical University
| | - Ao Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jiawen Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jingyu Zhao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Zhiyuan Mao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Zihao Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jin’ge Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Yue Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Rong Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Qing Li
- The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China. The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. Department of cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China. Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, China.
| | - Yongjie Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | | | - Dengshun Miao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
- Nanjing Medical University, Nanjing, Jiangsu, China. Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China. Department of Orthopaedics, Xuzhou Central Hospital
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| |
Collapse
|
57
|
Xie X, Zhang W, Zhou X, Xu B, Wang H, Qiu Y, Hu Y, Guo B, Ye Z, Hu L, Zhang H, Li Y, Bai X. Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia. Oncogene 2023; 42:3657-3669. [PMID: 37872214 DOI: 10.1038/s41388-023-02874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Conventional therapies for acute myeloid leukemia (AML) often fail to eliminate the disease-initiating leukemia stem cell (LSC) population, leading to disease relapse. Interferon-γ (IFN-γ) is a known inflammatory cytokine that promotes antitumor responses. Here, we found that low serum IFN-γ levels correlated with a higher percentage of LSCs and greater relapse incidence in AML patients. Furthermore, IFNGR1 was overexpressed in relapsed patients with AML and associated with a poor prognosis. We showed that high doses (5-10 μg/day) of IFN-γ exerted an anti-AML effect, while low doses (0.01-0.05 μg/day) of IFN-γ accelerated AML development and supported LSC self-renewal in patient-derived AML-LSCs and in an LSC-enriched MLL-AF9-driven mouse model. Importantly, targeting the IFN-γ receptor IFNGR1 by using lentiviral shRNAs or neutralizing antibodies induced AML differentiation and delayed leukemogenesis in vitro and in mice. Overall, we uncovered essential roles for IFN-γ and IFNGR1 in AML stemness and showed that targeting IFNGR1 is a strategy to decrease stemness and increase differentiation in relapsed AML patients.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Wuju Zhang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510910, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Bin Guo
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Le Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
58
|
Yin Y, Ouyang S, Li Q, Du Y, Xiong S, Zhang M, Wang W, Zhang T, Liu C, Gao Y. Salivary interleukin-17A and interferon-γ levels are elevated in children with food allergies in China. Front Immunol 2023; 14:1232187. [PMID: 38090557 PMCID: PMC10715589 DOI: 10.3389/fimmu.2023.1232187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Food allergies have a substantial impact on patient health, but their mechanisms are poorly understood, and strategies for diagnosing, preventing, and treating food allergies are not optimal. This study explored the levels of and relationship between IL-17A and IFN-γ in the saliva of children with food allergies, which will form the basis for further mechanistic discoveries as well as prevention and treatment measures for food allergies. Methods A case-control study with 1:1 matching was designed. Based on the inclusion criteria, 20 case-control pairs were selected from patients at the Skin and Allergy Clinic and children of employees. IL-17A and IFN-γ levels in saliva were measured with a Luminex 200 instrument. A general linear model was used to analyze whether the salivary IL-17A and IFN-γ levels in the food allergy group differed from those in the control group. Results The general linear model showed a significant main effect of group (allergy vs. healthy) on the levels of IL-17A and IFN-γ. The mean IL-17A level (0.97 ± 0.09 pg/ml) in the food allergy group was higher than that in the healthy group (0.69 ± 0.09 pg/ml). The mean IFN-γ level (3.0 ± 0.43 pg/ml) in the food allergy group was significantly higher than that in the healthy group (1.38 ± 0.43 pg/ml). IL-17A levels were significantly positively related to IFN-γ levels in children with food allergies (r=0.79) and in healthy children (r=0.98). Discussion The salivary IL-17A and IFN-γ levels in children with food allergies were higher than those in healthy children. This finding provides a basis for research on new methods of diagnosing food allergies and measuring the effectiveness of treatment.
Collapse
Affiliation(s)
- Yan Yin
- Department of Integrated Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Qin Li
- Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuyang Du
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shiqiu Xiong
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Min Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Gao
- Department of Dermatology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
59
|
Fu B, Xiong Y, Sha Z, Xue W, Xu B, Tan S, Guo D, Lin F, Wang L, Ji J, Luo Y, Lin X, Wu H. SEPTIN2 suppresses an IFN-γ-independent, proinflammatory macrophage activation pathway. Nat Commun 2023; 14:7441. [PMID: 37978190 PMCID: PMC10656488 DOI: 10.1038/s41467-023-43283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Interferon-gamma (IFN-γ) signaling is necessary for the proinflammatory activation of macrophages but IFN-γ-independent pathways, for which the initiating stimuli and downstream mechanisms are lesser known, also contribute. Here we identify, by high-content screening, SEPTIN2 (SEPT2) as a negative regulation of IFN-γ-independent macrophage autoactivation. Mechanistically, endoplasmic reticulum (ER) stress induces the expression of SEPT2, which balances the competition between acetylation and ubiquitination of heat shock protein 5 at position Lysine 327, thereby alleviating ER stress and constraining M1-like polarization and proinflammatory cytokine release. Disruption of this negative feedback regulation leads to the accumulation of unfolded proteins, resulting in accelerated M1-like polarization, excessive inflammation and tissue damage. Our study thus uncovers an IFN-γ-independent macrophage proinflammatory autoactivation pathway and suggests that SEPT2 may play a role in the prevention or resolution of inflammation during infection.
Collapse
Affiliation(s)
- Beibei Fu
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, China
| | - Binbin Xu
- School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, China
| | - Shun Tan
- Chongqing Public Health Medical Center, 400036, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Feng Lin
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Lulu Wang
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, 400044, Chongqing, China.
| | - Xiaoyuan Lin
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, 400044, Chongqing, China.
| |
Collapse
|
60
|
Bhat AA, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Singh M, Rohilla S, Saini TK, Kukreti N, Meenakshi DU, Fuloria NK, Sekar M, Gupta G. Uncovering the complex role of interferon-gamma in suppressing type 2 immunity to cancer. Cytokine 2023; 171:156376. [PMID: 37748333 DOI: 10.1016/j.cyto.2023.156376] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cancer involves cells' abnormal growth and ability to invade or metastasize to different body parts. Cancerous cells can divide uncontrollably and spread to other areas through the lymphatic or circulatory systems. Tumors form when malignant cells clump together in an uncontrolled manner. In this context, the cytokine interferon-gamma (IFN-γ) is crucial in regulating immunological responses, particularly malignancy. While IFN-γ is well-known for its potent anti-tumor effects by activating type 1 immunity, recent research has revealed its ability to suppress type 2 immunity, associated with allergy and inflammatory responses. This review aims to elucidate the intricate function of IFN-γ in inhibiting type 2 immune responses to cancer. We explore how IFN-γ influences the development and function of immune cells involved in type 2 immunity, such as mast cells, eosinophils, and T-helper 2 (Th2) cells. Additionally, we investigate the impact of IFN-mediated reduction of type 2 immunity on tumor development, metastasis, and the response to immunotherapeutic interventions. To develop successful cancer immunotherapies, it is crucial to comprehend the complex interplay between type 2 and type 1 immune response and the regulatory role of IFN-γ. This understanding holds tremendous promise for the development of innovative treatment approaches that harness the abilities of both immune response types to combat cancer. However, unraveling the intricate interplay between IFN-γ and type 2 immunity in the tumor microenvironment will be essential for achieving this goal.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334022, India
| | - Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Tarun Kumar Saini
- Dept. Of Neurosurgery ICU, Lok Nayak Hospital, New Delhi (Govt. Of NCT Of Delhi), New Delhi, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
61
|
Park SY, Kim KJ, Jo SM, Jeon JY, Kim BR, Hwang JE, Kim JY. Euglena gracilis (Euglena) powder supplementation enhanced immune function through natural killer cell activity in apparently healthy participants: A randomized, double-blind, placebo-controlled trial. Nutr Res 2023; 119:90-97. [PMID: 37769481 DOI: 10.1016/j.nutres.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Euglena gracilis (Euglena) is a microalgae found in most freshwater environments that produces paramylon, an insoluble β-1,3-glucan linked to human immunity. We hypothesized that Euglena powder has effects on immune function in apparently healthy adults. The study included male or female volunteers between the ages of 20 and 70 years who had white blood cell counts ranging from 4 × 103/µL to 10 × 103/µL, a "severe" rating on the stress questionnaire from the Korea National Health and Nutrition Examination Survey, and at least 2 upper respiratory infections with cold-like symptoms in the previous year. Participants received either a placebo or 700 mg of Euglena powder daily for 8 weeks. The study measured natural killer cell activity, cytokine concentrations, and blood lipid profiles to confirm the immune effect of Euglena consumption. In conclusion, Euglena improved immunological function through natural killer cell activity. Safety assessment showed no significant changes in vital signs or clinical chemistry indicators, and there were no adverse events associated with Euglena consumption. Euglena supplementation may help boost the immune systems of healthy individuals.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - So Min Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jin-Young Jeon
- BIO R&D Center, Daesang Corp., Seoul, 07789, Republic of Korea
| | - Bo-Ra Kim
- BIO R&D Center, Daesang Corp., Seoul, 07789, Republic of Korea
| | - Ji Eun Hwang
- BIO R&D Center, Daesang Corp., Seoul, 07789, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
62
|
Shi F, Tang S, Chen D, Mo F, Li J, Fang C, Wei H, Xing J, Liu L, Gong Y, Tan Z, Zhang Z, Pan X, Zhao S, Huang J. Immunological characteristics of CD103 +CD8 + Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM. Parasitol Res 2023; 122:2513-2524. [PMID: 37707607 DOI: 10.1007/s00436-023-07950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.
Collapse
Affiliation(s)
- Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Shanni Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Zhang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
63
|
Okamoto M, Omori-Miyake M, Kuwahara M, Okabe M, Eguchi M, Yamashita M. The Inhibition of Glycolysis in T Cells by a Jak Inhibitor Ameliorates the Pathogenesis of Allergic Contact Dermatitis in Mice. J Invest Dermatol 2023; 143:1973-1982.e5. [PMID: 37028703 DOI: 10.1016/j.jid.2023.03.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis develop through delayed-type hypersensitivity reactions mediated by T cells. The development of immunomodulatory drugs, such as Jak inhibitors, would be useful for the long-term management of these diseases owing to their profile of favorable adverse effects. However, the efficacy of Jak inhibitors for ACD treatment has not been fully determined under a variety of settings. Therefore, we evaluated the effects of ruxolitinib, a Jak inhibitor for Jak1 and Jak2, using a mouse ACD model. As a result, the lower numbers of immune cells, including CD4+ T cells, CD8+ T cells, neutrophils, and possibly macrophages, as well as milder pathophysiological aspects have been observed in the inflamed skin of ACD with the administration of ruxolitinib. In addition, the treatment of differentiating T cells with ruxolitinib downregulated the level of IL-2-mediated glycolysis in vitro. Furthermore, symptoms of ACD did not develop in T-cell-specific Pgam1-deficient mice whose T cells had no glycolytic capacity. Taken together, our data suggest that the downregulation of glycolysis in T cells by ruxolitinib could be an important factor in the suppression of ACD development in mice.
Collapse
Affiliation(s)
- Michiko Okamoto
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
64
|
Naigles B, Narla AV, Soroczynski J, Tsimring LS, Hao N. Quantifying dynamic pro-inflammatory gene expression and heterogeneity in single macrophage cells. J Biol Chem 2023; 299:105230. [PMID: 37689116 PMCID: PMC10579967 DOI: 10.1016/j.jbc.2023.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023] Open
Abstract
Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.
Collapse
Affiliation(s)
- Beverly Naigles
- Department of Molecular Biology, University of California San Diego, La Jolla, California, USA
| | - Avaneesh V Narla
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | - Jan Soroczynski
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, New York, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, California, USA
| | - Nan Hao
- Department of Molecular Biology, University of California San Diego, La Jolla, California, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
65
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Kim SI, Lu J, Valencia H, Fong Y, Woo Y. Anti-Tumor Immunogenicity of the Oncolytic Virus CF33-hNIS-antiPDL1 against Ex Vivo Peritoneal Cells from Gastric Cancer Patients. Int J Mol Sci 2023; 24:14189. [PMID: 37762490 PMCID: PMC10532045 DOI: 10.3390/ijms241814189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
We studied the immunotherapeutic potential of CF33-hNIS-antiPDL1 oncolytic virus (OV) against gastric cancer with peritoneal metastasis (GCPM). We collected fresh malignant ascites (MA) or peritoneal washings (PW) during routine paracenteses and diagnostic laparoscopies from GC patients (n = 27). Cells were analyzed for cancer cell markers and T cells, or treated with PBS, CF33-GFP, or CF33-hNIS-antiPDL1 (MOI = 3). We analyzed infectivity, replication, cytotoxicity, CD107α upregulation of CD8+ and CD4+ T cells, CD274 (PD-L1) blockade of cancer cells by virus-encoded anti-PD-L1 scFv, and the release of growth factors and cytokines. We observed higher CD45-/large-size cells and lower CD8+ T cell percentages in MA than PW. CD45-/large-size cells were morphologically malignant and expressed CD274 (PD-L1), CD252 (OX40L), and EGFR. CD4+ and CD8+ T cells did not express cell surface exhaustion markers. Virus infection and replication increased cancer cell death at 15 h and 48 h. CF33-hNIS-antiPDL1 treatment produced functional anti-PD-L1 scFv, which blocked surface PD-L1 binding of live cancer cells and increased CD8+CD107α+ and CD4+CD107α+ T cell percentages while decreasing EGF, PDGF, soluble anti-PD-L1, and IL-10. CF33-OVs infect, replicate in, express functional proteins, and kill ex vivo GCPM cells with immune-activating effects. CF33-hNIS-antiPDL1 displays real potential for intraperitoneal GCPM therapy.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Anthony K. Park
- Cancer Immunotherapeutics Program, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Hannah Valencia
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
66
|
Liao Y, Chen Y, Liu S, Wang W, Fu S, Wu J. Low-dose total body irradiation enhances systemic anti-tumor immunity induced by local cryotherapy. J Cancer Res Clin Oncol 2023; 149:10053-10063. [PMID: 37261526 DOI: 10.1007/s00432-023-04928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Strategies that restore the immune system's ability to recognize malignant cells have yielded clinical benefits but only in some patients. Tumor cells survive cryotherapy and produce a vast amount of antigens to trigger innate and adaptive responses. However, because tumor cells have developed immune escape mechanisms, cryotherapy alone may not be enough to induce a significant immune response. METHODS The mice were randomly divided into four groups: Group A: low-dose total body irradiation combined with cryotherapy (L-TBI+cryo); Group B: cryotherapy (cryo); Group C: low-dose total body irradiation(L-TBI); Group D: control group (Control). The tumor growth, recurrence, and survival time of mice in each group were compared and the effects of different treatments on systemic anti-tumor immunity were explored. RESULTS L-TBI in conjunction with cryotherapy can effectively control tumor regrowth, inhibit tumor lung metastasis, extend the survival time of mice, and stimulate a long-term protective anti-tumor immune response to resist the re-challenge of tumor cells. The anti-tumor mechanism of this combination therapy may be related to the stimulation of inflammatory factors IFN-γ and IL-2, as well as an increase in immune effector cells (CD8+ T cells) and a decrease in immunosuppressive cells (MDSC, Treg cells) in the spleen or tumor tissue. CONCLUSIONS We present unique treatment options for enhancing the immune response caused by cryotherapy, pointing to the way forward for cancer treatment.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Weizhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| |
Collapse
|
67
|
Wei X, Ruan H, Zhang Y, Qin T, Zhang Y, Qin Y, Li W. Pan-cancer analysis of IFN-γ with possible immunotherapeutic significance: a verification of single-cell sequencing and bulk omics research. Front Immunol 2023; 14:1202150. [PMID: 37646041 PMCID: PMC10461559 DOI: 10.3389/fimmu.2023.1202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Background Interferon-gamma (IFN-γ), commonly referred to as type II interferon, is a crucial cytokine that coordinates the tumor immune process and has received considerable attention in tumor immunotherapy research. Previous studies have discussed the role and mechanisms associated with IFN-γ in specific tumors or diseases, but the relevant role of IFN-γ in pan-cancer remains uncertain. Methods TCGA and GTEx RNA expression data and clinical data were downloaded. Additionally, we analyzed the role of IFN-γ on tumors by using a bioinformatic approach, which included the analysis of the correlation between IFN-γ in different tumors and expression, prognosis, functional status, TMB, MSI, immune cell infiltration, and TIDE. We also developed a PPI network for topological analysis of the network, identifying hub genes as those having a degree greater than IFN-γ levels. Result IFN-γ was differentially expressed and predicted different survival statuses in a majority of tumor types in TCGA. Additionally, IFN-γ expression was strongly linked to factors like infiltration of T cells, immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors, as well as tumor purity, functional statuses, and prognostic value. Also, prognosis, CNV, and treatment response were all substantially correlated with IFN-γ-related gene expression. Particularly, the IFN-γ-related gene STAT1 exhibited the greatest percentage of SNVs and the largest percentage of SNPs in UCEC. Elevated expression levels of IFN-γ-related genes were found in a wide variety of tumor types, and this was shown to be positively linked to drug sensitivity for 20 different types of drugs. Conclusion IFN-γ is a good indicator of response to tumor immunotherapy and is likely to limit tumor progression, offering a novel approach for immunotherapy's future development.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Hanyi Ruan
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Zhang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Qin
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yujie Zhang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
68
|
Lems CM, Burger GA, Beltman JB. Tumor-mediated immunosuppression and cytokine spreading affects the relation between EMT and PD-L1 status. Front Immunol 2023; 14:1219669. [PMID: 37638024 PMCID: PMC10449452 DOI: 10.3389/fimmu.2023.1219669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and immune resistance mediated by Programmed Death-Ligand 1 (PD-L1) upregulation are established drivers of tumor progression. Their bi-directional crosstalk has been proposed to facilitate tumor immunoevasion, yet the impact of immunosuppression and spatial heterogeneity on the interplay between these processes remains to be characterized. Here we study the role of these factors using mathematical and spatial models. We first designed models incorporating immunosuppressive effects on T cells mediated via PD-L1 and the EMT-inducing cytokine Transforming Growth Factor beta (TGFβ). Our models predict that PD-L1-mediated immunosuppression merely reduces the difference in PD-L1 levels between EMT states, while TGFβ-mediated suppression also causes PD-L1 expression to correlate negatively with TGFβ within each EMT phenotype. We subsequently embedded the models in multi-scale spatial simulations to explicitly describe heterogeneity in cytokine levels and intratumoral heterogeneity. Our multi-scale models show that Interferon gamma (IFNγ)-induced partial EMT of a tumor cell subpopulation can provide some, albeit limited protection to bystander tumor cells. Moreover, our simulations show that the true relationship between EMT status and PD-L1 expression may be hidden at the population level, highlighting the importance of studying EMT and PD-L1 status at the single-cell level. Our findings deepen the understanding of the interactions between EMT and the immune response, which is crucial for developing novel diagnostics and therapeutics for cancer patients.
Collapse
Affiliation(s)
| | | | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
69
|
Heyburn L, Batuure A, Wilder D, Long J, Sajja VS. Neuroinflammation Profiling of Brain Cytokines Following Repeated Blast Exposure. Int J Mol Sci 2023; 24:12564. [PMID: 37628746 PMCID: PMC10454588 DOI: 10.3390/ijms241612564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.
Collapse
|
70
|
Zhang YY, Li J, Li F, Xue S, Xu QY, Zhang YQ, Feng L. Palmitic acid combined with γ-interferon inhibits gastric cancer progression by modulating tumor-associated macrophages' polarization via the TLR4 pathway. J Cancer Res Clin Oncol 2023; 149:7053-7067. [PMID: 36862159 DOI: 10.1007/s00432-023-04655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) constitute the main infiltrating immune cells in the solid tumor microenvironment. Amounting studies have analyzed the antitumor effect on immune response induced by Toll-like receptor (TLR) agonists, such as lipopolysaccharide (LPS), γ-interferon (γ-IFN), and palmitic Acid (PA). However, their combined treatment for gastric cancer (GC) has not been illuminated. METHODS We investigated the relevance of macrophage polarization and the effect of PA and γ-IFN in GC in vitro and in vivo. M1 and M2 macrophage-associated markers were measured by real-time quantitative PCR and flow cytometry, and the activation level of the TLR4 signaling pathways was evaluated by western blot analysis. The effect of PA and γ-IFN on the proliferation, migration, and invasion of GC cells (GCCs) was evaluated by Cell-Counting Kit-8, transwell assays, and wound-healing assays. In vivo animal models were used to verify the effect of PA and γ-IFN on tumor progression, and the M1 and M2 macrophage markers, CD8 + T lymphocytes, regulatory T cells (Treg) cells, and the myeloid-derived suppressor cells (MDSCs) in tumor tissues were analyzed by flow cytometry and immunohistochemical (IHC). RESULTS The results showed that this combination strategy enhanced M1-like macrophages and diminished M2-like macrophages through the TLR4 signaling pathway in vitro. In addition, the combination strategy impairs the proliferative and migratory activity of GCC in vitro and in vivo. While, the antitumor effect was abolished using the TAK-424 (a specific TLR-4 signaling pathway inhibitor) in vitro. CONCLUSIONS The combined treatment of PA and γ-IFN inhibited GC progression by modulating macrophages polarization via the TLR4 pathway.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qing-Yu Xu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ya-Qiong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China.
| |
Collapse
|
71
|
Fu XZ, Wang Y. Interferon-γ regulates immunosuppression in septic mice by promoting the Warburg effect through the PI3K/AKT/mTOR pathway. Mol Med 2023; 29:95. [PMID: 37434129 PMCID: PMC10337057 DOI: 10.1186/s10020-023-00690-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The main cause of high mortality from sepsis is that immunosuppression leads to life-threatening organ dysfunction, and reversing immunosuppression is key to sepsis treatment. Interferon γ (IFNγ) is a potential therapy for immunosuppression of sepsis, promoting glycolysis to restore metabolic defects in monocytes, but the mechanism of treatment is unclear. METHODS To explore the immunotherapeutic mechanism of IFNγ, this study linked the Warburg effect (aerobic glycolysis) to immunotherapy for sepsis and used cecal ligation perforation (CLP) and lipopolysaccharide (LPS) to stimulate dendritic cells (DC) to establish in vivo and in vitro sepsis models, Warburg effect inhibitors (2-DG) and PI3K pathway inhibitors (LY294002) were used to explore the mechanism by which IFNγ regulates immunosuppression in mice with sepsis through the Warburg effect. RESULTS IFNγ markedly inhibited the reduction in cytokine secretion from lipopolysaccharide (LPS)-stimulated splenocytes. IFNγ-treated mice had significantly increased the percentages of positive costimulatory receptor CD86 on Dendritic cells expressing and expression of splenic HLA-DR. IFNγ markedly reduced DC-cell apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax. CLP-induced formation of regulatory T cells in the spleen was abolished in IFNγ -treated mice. IFNγ treatment reduced the expression of autophagosomes in DC cells. IFNγ significant reduce the expression of Warburg effector-related proteins PDH, LDH, Glut1, and Glut4, and promote glucose consumption, lactic acid, and intracellular ATP production. After the use of 2-DG to suppress the Warburg effect, the therapeutic effect of IFNγ was suppressed, demonstrating that IFNγ reverses immunosuppression by promoting the Warburg effect. Moreover, IFNγ increased the expression of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt), rapamycin target protein (mTOR), hypoxia-inducible factor-1 (HIF-1α), pyruvate dehydrogenase kinase (PDK1) protein, the use of 2-DG and LY294002 can inhibit the expression of the above proteins, LY294002 also inhibits the therapeutic effect of IFNγ. CONCLUSIONS It was finally proved that IFNγ promoted the Warburg effect through the PI3K/Akt/mTOR pathway to reverse the immunosuppression caused by sepsis. This study elucidates the potential mechanism of the immunotherapeutic effect of IFNγ in sepsis, providing a new target for the treatment of sepsis.
Collapse
Affiliation(s)
- Xu-Zhe Fu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
72
|
Li J, Liang Y, Zhao X, Wu C. Integrating machine learning algorithms to systematically assess reactive oxygen species levels to aid prognosis and novel treatments for triple -negative breast cancer patients. Front Immunol 2023; 14:1196054. [PMID: 37404810 PMCID: PMC10315494 DOI: 10.3389/fimmu.2023.1196054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Breast cancer has become one of the top health concerns for women, and triple-negative breast cancer (TNBC) leads to treatment resistance and poor prognosis due to its high degree of heterogeneity and malignancy. Reactive oxygen species (ROS) have been found to play a dual role in tumors, and modulating ROS levels may provide new insights into prognosis and tumor treatment. Methods This study attempted to establish a robust and valid ROS signature (ROSig) to aid in assessing ROS levels. The driver ROS prognostic indicators were searched based on univariate Cox regression. A well-established pipeline integrating 9 machine learning algorithms was used to generate the ROSig. Subsequently, the heterogeneity of different ROSig levels was resolved in terms of cellular communication crosstalk, biological pathways, immune microenvironment, genomic variation, and response to chemotherapy and immunotherapy. In addition, the effect of the core ROS regulator HSF1 on TNBC cell proliferation was detected by cell counting kit-8 and transwell assays. Results A total of 24 prognostic ROS indicators were detected. A combination of the Coxboost+ Survival Support Vector Machine (survival-SVM) algorithm was chosen to generate ROSig. ROSig proved to be the superior risk predictor for TNBC. Cellular assays show that knockdown of HSF1 can reduce the proliferation and invasion of TNBC cells. The individual risk stratification based on ROSig showed good predictive accuracy. High ROSig was identified to be associated with higher cell replication activity, stronger tumor heterogeneity, and an immunosuppressive microenvironment. In contrast, low ROSig indicated a more abundant cellular matrix and more active immune signaling. Low ROSig has a higher tumor mutation load and copy number load. Finally, we found that low ROSig patients were more sensitive to doxorubicin and immunotherapy. Conclusion In this study, we developed a robust and effective ROSig model that can be used as a reliable indicator for prognosis and treatment decisions in TNBC patients. This ROSig also allows a simple assessment of TNBC heterogeneity in terms of biological function, immune microenvironment, and genomic variation.
Collapse
Affiliation(s)
- Juan Li
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yu Liang
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaochen Zhao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chihua Wu
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
73
|
Toker J, Iorgulescu JB, Ling AL, Villa GR, Gadet JA, Parida L, Getz G, Wu CJ, Reardon DA, Chiocca EA, Mineo M. Clinical Importance of the lncRNA NEAT1 in Cancer Patients Treated with Immune Checkpoint Inhibitors. Clin Cancer Res 2023; 29:2226-2238. [PMID: 37053197 PMCID: PMC10330151 DOI: 10.1158/1078-0432.ccr-22-3714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE mAbs targeting the PD-1/PD-L1 immune checkpoint are powerful tools to improve the survival of patients with cancer. Understanding the molecular basis of clinical response to these treatments is critical to identify patients who can benefit from this immunotherapy. In this study, we investigated long noncoding RNA (lncRNA) expression in patients with cancer treated with anti-PD-1/PD-L1 immunotherapy. EXPERIMENTAL DESIGN lncRNA expression profile was analyzed in one cohort of patients with melanoma and two independent cohorts of patients with glioblastoma (GBM) undergoing anti-PD-1/PD-L1 immunotherapy. Single-cell RNA-sequencing analyses were performed to evaluate lncRNA expression in tumor cells and tumor-infiltrating immune cells. RESULTS We identified the lncRNA NEAT1 as commonly upregulated between patients with melanoma with complete therapeutic response and patients with GBM with longer survival following anti-PD-1/PD-L1 treatment. Gene set enrichment analyses revealed that NEAT1 expression was strongly associated with the IFNγ pathways, along with downregulation of cell-cycle-related genes. Single-cell RNA-sequencing analyses revealed NEAT1 expression across multiple cell types within the GBM microenvironment, including tumor cells, macrophages, and T cells. High NEAT1 expression levels in tumor cells correlated with increased infiltrating macrophages and microglia. In these tumor-infiltrating myeloid cells, we found that NEAT1 expression was linked to enrichment in TNFα/NFκB signaling pathway genes. Silencing NEAT1 suppressed M1 macrophage polarization and reduced the expression of TNFα and other inflammatory cytokines. CONCLUSIONS These findings suggest an association between NEAT1 expression and patient response to anti-PD-1/PD-L1 therapy in melanoma and GBM and have important implications for the role of lncRNAs in the tumor microenvironment.
Collapse
Affiliation(s)
- Joseph Toker
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard
- Division of Pathology and Laboratory Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander L. Ling
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Genaro R. Villa
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Josephina A.M.A. Gadet
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Faculty of Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | | | - Gad Getz
- Broad Institute of MIT and Harvard
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard
| | - David A. Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marco Mineo
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
74
|
Liang X, Gao H, Xiao J, Han S, He J, Yuan R, Yang S, Yao C. Abrine, an IDO1 inhibitor, suppresses the immune escape and enhances the immunotherapy of anti-PD-1 antibody in hepatocellular carcinoma. Front Immunol 2023; 14:1185985. [PMID: 37334368 PMCID: PMC10272936 DOI: 10.3389/fimmu.2023.1185985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Background Indoleamine-2,3-dioxygenase 1 (IDO1) is responsible for tumor immune escape by regulating T cell-associated immune responses and promoting the activation of immunosuppressive. Given the vital role of IDO1 in immune response, further investigation on the regulation of IDO1 in tumors is needed. Methods Herein, we used ELISA kit to detect the interferon-gamma (IFN-γ), Tryptophan (Trp), and kynurenic acid (Kyn) levels; western blot, Flow cytometry, and immunofluorescence assays detected the expression of the proteins; Molecular docking assay, SPR assay and Cellular Thermal Shift Assay (CETSA) were used to detect the interaction between IDO1 and Abrine; nano live label-free system was used to detect the phagocytosis activity; tumor xenografts animal experiments were used to explore the anti-tumor effect of Abrine; flow cytometry detected the immune cells changes. Results The important immune and inflammatory response cytokine interferon-gamma (IFN-γ) up-regulated the IDO1 expression in cancer cells through the methylation of 6-methyladenosine (m6A) m6A modification of RNA, metabolism of Trp into Kyn, and JAK1/STAT1 signaling pathway, which could be inhibited by IDO1 inhibitor Abrine. CD47 is IFN-γ-stimulated genes (ISGs) and prevents the phagocytosis of macrophages, leading to the cancer immune escape, and this effect could be inhibited by Abrine both in vivo and in vitro. The PD-1/PD-L1 axis is an important immune checkpoint in regulating immune response, overexpression of PD-1 or PD-L1 promotes immune suppression, while in this study Abrine could inhibit the expression of PD-L1 in cancer cells or tumor tissue. The combination treatment of Abrine and anti-PD-1 antibody has a synergistic effect on suppressing the tumor growth through up-regulating CD4+ or CD8+ T cells, down-regulating the Foxp3+ Treg cells, and inhibiting the expression of IDO1, CD47, and PD-L1. Conclusion Overall, this study reveals that Abrine as an IDO1 inhibitor has an inhibition effect on immune escape and has a synergistic effect with the anti-PD-1 antibody on the treatment of HCC.
Collapse
Affiliation(s)
- Xiaowei Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Jian Xiao
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| |
Collapse
|
75
|
Zhang T, Zhuang L, Muaibati M, Wang D, Abasi A, Tong Q, Ma D, Jin L, Huang X. Identification of cervical cancer stem cells using single-cell transcriptomes of normal cervix, cervical premalignant lesions, and cervical cancer. EBioMedicine 2023; 92:104612. [PMID: 37224771 DOI: 10.1016/j.ebiom.2023.104612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Cervical cancer is the fourth leading cause of mortality among gynecological malignancies. However, the identification of cervical cancer stem cells remains unclear. METHODS We performed single-cell mRNA sequencing on ∼122,400 cells from 20 cervical biopsies, including 5 healthy controls, 4 high-grade intraepithelial neoplasias, 5 microinvasive carcinomas of the cervix, and 6 invasive cervical squamous carcinomas. Bioinformatic results were validated by multiplex immunohistochemistry (mIHC) in cervical cancer tissue microarrays (TMA) (n = 85). FINDINGS We identified cervical cancer stem cells and highlighted the functional changes in cervical stem cells during malignant transformation. The original non-malignant stem cell properties (characterized by high proliferation) gradually diminished, whereas the tumor stem cell properties (characterized by epithelial-mesenchymal transformation and invasion) were enhanced. The mIHC results of our TMA cohort confirmed the existence of stem-like cells and indicated that cluster correlated with neoplastic recurrence. Subsequently, we investigated malignant and immune cell heterogeneity in the cervical multicellular ecosystem across different disease stages. We observed global upregulation of interferon responses in the cervical microenvironment during lesion progression. INTERPRETATION Our results provide more insights into cervical premalignant and malignant lesion microenvironments. FUNDING This research was supported by the Guangdong Provincial Natural Science Foundation of China (2023A1515010382), Grant 2021YFC2700603 from the National Key Research & Development Program of China and the Hubei Provincial Natural Science Foundation of China (2022CFB174 and 2022CFB893).
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China; Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China
| | - Munawaer Muaibati
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Dan Wang
- Department of Ophthalmology, Wuhan Children's Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430015, People's Republic of China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Qing Tong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China.
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China.
| |
Collapse
|
76
|
Scott O, Visuvanathan S, Reddy E, Mahamed D, Gu B, Roifman CM, Cohn RD, Guidos CJ, Ivakine EA. The human Stat1 gain-of-function T385M mutation causes expansion of activated T-follicular helper/T-helper 1-like CD4 T cells and sex-biased autoimmunity in specific pathogen-free mice. Front Immunol 2023; 14:1183273. [PMID: 37275873 PMCID: PMC10235531 DOI: 10.3389/fimmu.2023.1183273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shagana Visuvanathan
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Emily Reddy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deeqa Mahamed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronald D. Cohn
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Cynthia J. Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
77
|
Kaszubowska L, Foerster J, Kaczor JJ, Karnia MJ, Kmieć Z. Anti-Inflammatory Klotho Protein Serum Concentration Correlates with Interferon Gamma Expression Related to the Cellular Activity of Both NKT-like and T Cells in the Process of Human Aging. Int J Mol Sci 2023; 24:ijms24098393. [PMID: 37176100 PMCID: PMC10179552 DOI: 10.3390/ijms24098393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Klotho is a beta-glucuronidase that reveals both anti-inflammatory and anti-oxidative properties that have been associated with mechanisms of aging. The study aimed to analyze the relationships between the serum concentration of soluble α-Klotho and cellular activity of two populations of lymphocytes; T and NKT-like cells corresponding to the level of cytokine secretion; i.e., IFN-γ, TNF-α, and IL-6. The studied population comprised three age groups: young individuals ('young'), seniors aged under 85 ('old'), and seniors aged over 85 ('oldest'). Both NKT-like and T cells were either non-cultured or cultured for 48 h and stimulated appropriately with IL-2, LPS or PMA with ionomycin to compare with unstimulated control cells. In all studied age groups non-cultured or cultured NKT-like cells revealed higher expressions of TNF-α, IL-6, and IFN-γ than T cells. α-Klotho concentration in serum decreased significantly in the process of aging. Intriguingly, only IFN-γ expression revealed a positive correlation with α-Klotho protein serum concentration in both non-cultured and cultured T and NKT-like cells. Since IFN-γ is engaged in the maintenance of immune homeostasis, the observed relationships may indicate the involvement of α-Klotho and cellular IFN-γ expression in the network of adaptive mechanisms developed during the process of human aging.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, University of Gdańsk, J. Bażyńskiego 8 Street, 80-308 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
78
|
Wang S, Wang X, Sun J, Yang J, Wu D, Wu F, Zhou H. Down-regulation of DNA key protein-FEN1 inhibits OSCC growth by affecting immunosuppressive phenotypes via IFN-γ/JAK/STAT-1. Int J Oral Sci 2023; 15:17. [PMID: 37185662 PMCID: PMC10130046 DOI: 10.1038/s41368-023-00221-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) escape from the immune system is mediated through several immunosuppressive phenotypes that are critical to the initiation and progression of tumors. As a hallmark of cancer, DNA damage repair is closely related to changes in the immunophenotypes of tumor cells. Although flap endonuclease-1 (FEN1), a pivotal DNA-related enzyme is involved in DNA base excision repair to maintain the stability of the cell genome, the correlation between FEN1 and tumor immunity has been unexplored. In the current study, by analyzing the clinicopathological characteristics of FEN1, we demonstrated that FEN1 overexpressed and that an inhibitory immune microenvironment was established in OSCC. In addition, we found that downregulating FEN1 inhibited the growth of OSCC tumors. In vitro studies provided evidence that FEN1 knockdown inhibited the biological behaviors of OSCC and caused DNA damage. Performing multiplex immunohistochemistry (mIHC), we directly observed that the acquisition of critical immunosuppressive phenotypes was correlated with the expression of FEN1. More importantly, FEN1 directly or indirectly regulated two typical immunosuppressive phenotype-related proteins human leukocyte antigen (HLA-DR) and programmed death receptor ligand 1 (PD-L1), through the interferon-gamma (IFN-γ)/janus kinase (JAK)/signal transducer and activator transcription 1 (STAT1) pathway. Our study highlights a new perspective on FEN1 action for the first time, providing theoretical evidence that it may be a potential immunotherapy target for OSCC.
Collapse
Affiliation(s)
- Shimeng Wang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangjian Wang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Sun
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Medicine, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Deyang Wu
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
79
|
Yang J, Zhang J, Yan P, Zhang Z, Gao W, Xu M, Xu X, Liu B, Chen Z. Asymmetric Assembly and Self-Adjuvanted Antigen Delivery Platform for Improved Antigen Uptake and Antitumor Effect. Bioconjug Chem 2023; 34:856-865. [PMID: 37083372 DOI: 10.1021/acs.bioconjchem.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The development of effective tumor vaccines is an important direction in the field of cancer prevention/immunotherapy. Efficient antigen delivery is essential for inducing effective antitumor responses for tumor vaccines. Lumazine synthase (BLS) from Brucella spp. is a decameric protein with delivery and adjuvant properties, but its application in tumor vaccines is limited. Here, we developed an antigen delivery platform by combining a BLS asymmetric assembly and the Plug-and-Display system of SpyCatcher/SpyTag. An asymmetric assembly system consisting of BLSke and BLSdr was developed to equally assemble two molecules. Then, the MHC-I-restricted ovalbumin peptide (OVA(257-264) SIINFEKL) was conjugated with BLSke, and a cell-penetrating peptide (CPP) KALA was conjugated with BLSdr using the SpyCatcher/SpyTag system. KALA modification enhanced internalization of OVA peptides by DCs as well as promoted the maturation of DCs and the cross-presentation of SIINFEKL. Moreover, the immunotherapy of a KALA-modified vaccine suppressed tumor growth and enhanced CD8+ T cell responses in E.G7-OVA tumor-bearing mice. In the prophylactic model, KALA-modified vaccination showed the most significant protective effect and significantly prolonged the survival period of tumor challenged mice. In conclusion, the asymmetric assembly platform equally assembles two proteins or peptides, avoiding their spatial or functional interference. This asymmetric assembly and Plug-and-Display technology provide a universal platform for rapid development of personalized tumor vaccines.
Collapse
Affiliation(s)
- Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Jinsong Zhang
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Key Laboratory of Tropical Diseases Control, School of public health, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ping Yan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Zhao Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Weiyu Gao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Man Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Xinling Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, P. R. China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Key Laboratory of Tropical Diseases Control, School of public health, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| |
Collapse
|
80
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
81
|
Numpadit S, Ito C, Nakaya T, Hagiwara K. Investigation of oncolytic effect of recombinant Newcastle disease virus in primary and metastatic oral melanoma. Med Oncol 2023; 40:138. [PMID: 37022566 PMCID: PMC10079733 DOI: 10.1007/s12032-023-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Malignant melanoma is aggressive cancer with a high rate of local invasiveness and metastasis. Currently, the treatment options for patients with advanced-stage and metastatic oral melanoma are limited. A promising treatment option is oncolytic viral therapy. This study aimed to evaluate novel therapies for malignant melanoma using a canine model. Oral melanoma, which frequently occurs in dogs is used as a model for human melanoma, was isolated and cultured and used for the evaluation of the tumor lytic effect induced by viral infection. We constructed a recombinant Newcastle disease virus (rNDV) that promotes the extracellular release of IFNγ from the virus-infected melanoma. The expression of oncolytic and apoptosis-related genes, the immune response by lymphocytes, and IFNγ expression were evaluated in virus-infected melanoma cells. The results showed that the rate of rNDV infection varied according to the isolated melanoma cells and the oncolytic effect differed between melanoma cells owing to the infectivity of the virus. The oncolytic effect tended to be greater for the IFNγ-expressing virus than for the GFP-expressing prototype virus. Additionally, lymphocytes co-cultured with the virus showed induced expression of Th1 cytokines. Therefore, recombinant NDV expressing IFNγ is expected to induce cellular immunity and oncolytic activity. This oncolytic treatment shows promise as a therapeutic approach for melanoma treatment once evaluated using clinical samples from humans.
Collapse
Affiliation(s)
- Supaporn Numpadit
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Chiaki Ito
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Takaaki Nakaya
- Department of Infectious Disease, Kyoto Prefectural University of Medicine, Kamigyo-ku Kajii-cho, Kawaramachi-Hirokoji, Kyoto-shi, 602-8566, Japan
| | - Katsuro Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
| |
Collapse
|
82
|
Gutierrez E, Bigelow M, LaCroix C, Beech J, Kirby P, Markowitz L, Shifrin M, Naill M, Braun A, O'Neil S, Cuillerot JM, Cheung A, Grinberg A, Wagtmann N. An optimized IL-12-Fc expands its therapeutic window, achieving strong activity against mouse tumors at tolerable drug doses. MED 2023; 4:326-340.e5. [PMID: 37059099 DOI: 10.1016/j.medj.2023.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Interleukin-12 (IL-12) has emerged as one of the most potent cytokines for tumor immunotherapy due to its ability to induce interferon γ (IFNγ) and polarize Th1 responses. Clinical use of IL-12 has been limited by a short half-life and narrow therapeutic index. METHODS We generated a monovalent, half-life-extended IL-12-Fc fusion protein, mDF6006, engineered to retain the high potency of native IL-12 while significantly expanding its therapeutic window. In vitro and in vivo activity of mDF6006 was tested against murine tumors. To translate our findings, we developed a fully human version of IL-12-Fc, designated DF6002, which we characterized in vitro on human cells and in vivo in cynomolgus monkeys in preparation for clinical trials. FINDINGS The extended half-life of mDF6006 modified the pharmacodynamic profile of IL-12 to one that was better tolerated systemically while vastly amplifying its efficacy. Mechanistically, mDF6006 led to greater and more sustained IFNγ production than recombinant IL-12 without inducing high, toxic peak serum concentrations of IFNγ. We showed that mDF6006's expanded therapeutic window allowed for potent anti-tumor activity as single agent against large immune checkpoint blockade-resistant tumors. Furthermore, the favorable benefit-risk profile of mDF6006 enabled effective combination with PD-1 blockade. Fully human DF6002, similarly, demonstrated an extended half-life and a protracted IFNγ profile in non-human primates. CONCLUSION An optimized IL-12-Fc fusion protein increased the therapeutic window of IL-12, enhancing anti-tumor activity without concomitantly increasing toxicity. FUNDING This research was funded by Dragonfly Therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ann Cheung
- Dragonfly Therapeutics, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
83
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
84
|
Harihar S, Welch DR. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023; 42:183-196. [PMID: 36720764 PMCID: PMC10103016 DOI: 10.1007/s10555-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, USA
- The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Blvd. Kansas City, Kansas City, KS 66160, USA
| |
Collapse
|
85
|
Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett 2023; 555:216038. [PMID: 36529238 DOI: 10.1016/j.canlet.2022.216038] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The application of immune checkpoint inhibitors (ICIs) has markedly enhanced the treatment of hepatocellular carcinoma (HCC), and HCC patients who respond to ICIs have shown prolonged survival. However, only a subset of HCC patients benefit from ICIs, and those who initially respond to ICIs may develop resistance. ICI resistance is likely related to various factors, including the immunosuppressive tumor microenvironment (TME), the absence of antigen expression and impaired antigen presentation, tumor heterogeneity, and gut microbiota. Therefore, exploring the possible mechanisms of ICI resistance is crucial to improve the clinical benefit of ICIs further. Various combination therapies for HCC immunotherapy have prevented and reversed ICI resistance to a certain extent. In addition, many new combination therapies that can overcome resistance are being explored. This review seeks to characterize the complex TME in HCC, explore the possible mechanisms of immune resistance to ICIs in different resistance categories, and review the combination therapies currently being applied and those under investigation for immunotherapy.
Collapse
|
86
|
Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023:10.1038/s41417-023-00599-x. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the β3-AR modulation influenced the host immune system response against tumor. Results demonstrated that β3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, β3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that β3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy. .,Department of Health Sciences, University of Florence, Florence, Italy.
| | - Nicoletta Nastasi
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessia Boaretto
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela De Marco
- Pediatric Hematology and Oncology, University Hospital of Pisa, Pisa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
87
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
88
|
Maternal Immune Activation Induced by Prenatal Lipopolysaccharide Exposure Leads to Long-Lasting Autistic-like Social, Cognitive and Immune Alterations in Male Wistar Rats. Int J Mol Sci 2023; 24:ijms24043920. [PMID: 36835329 PMCID: PMC9968168 DOI: 10.3390/ijms24043920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.
Collapse
|
89
|
Sawaisorn P, Atjanasuppat K, Uaesoontrachoon K, Rattananon P, Treesuppharat W, Hongeng S, Anurathapan U. Comparison of the efficacy of second and third generation lentiviral vector transduced CAR CD19 T cells for use in the treatment of acute lymphoblastic leukemia both in vitro and in vivo models. PLoS One 2023; 18:e0281735. [PMID: 36780428 PMCID: PMC9925013 DOI: 10.1371/journal.pone.0281735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
T cells genetically engineered to express a chimeric antigen receptor (CAR) specifically binding to a CD19 antigen has become the frontline of hematological malignancies immunotherapy. Their remarkable antitumor effect has exerted complete remission in treating B-cell malignancies. Although successful patient treatment has been shown, improvement to the structure of CAR to enhance its safety and efficacy profile is warranted. Transduction with a lentiviral vector (LVV) leading to the expression of CARs is also a critical step in redirecting T cells to target specific tumor antigens. To improve the efficacy of CD19 CARs in this study, the transduction ability of second and third generations LVV were compared. Ex vivo expansion of CD19 CARs T cells from healthy donors' peripheral blood mononuclear cells was performed after transduction of T cells with second and third generations LVV. Transduction efficacy of transduced T cells was determined to show a higher percentage in the third generations LVV transduced cells, with no changes in viability and identity of cells characterized by immunophenotyping. Testing the cytotoxic capacity of third generations LVV-transduced T cells against target cells showed higher reactivity against control cells. Cytokine expression was detected on the CD19 CARs T cells, suggesting that these cells limit in vitro growth of B-cell leukemia via secretion of the pro-inflammatory cytokine IFN γ. To investigate whether the third generation LVV transduced T cells can limit CD19 lymphoma growth in vivo, an analysis of tumor burden in a mouse model assessed by bioluminescence imaging was performed. We found that, in the presence of CD19 CARs T cells, the level of tumor burden was markedly reduced. In addition, an increase in the length of survival in mice receiving CAR-CD19 T cells was also observed. This suggests that transduction with third generations LVV generate a functional CAR-CD19 T cells, which may provide a safer and effective therapy for B-cell malignancies.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Korakot Atjanasuppat
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Worapapar Treesuppharat
- Thammasat University Research Unit in Mechanisms of Drug Action and Molecular Imaging, Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
90
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
91
|
Zhang Z, Shen X, Tan Z, Mei Y, Lu T, Ji Y, Cheng S, Xu Y, Wang Z, Liu X, He W, Chen Z, Chen S, Lv Q. Interferon gamma-related gene signature based on anti-tumor immunity predicts glioma patient prognosis. Front Genet 2023; 13:1053263. [PMID: 36712869 PMCID: PMC9880184 DOI: 10.3389/fgene.2022.1053263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Glioma is the most common primary tumor of the central nervous system. The conventional glioma treatment strategies include surgical excision and chemo- and radiation-therapy. Interferon Gamma (IFN-γ) is a soluble dimer cytokine involved in immune escape of gliomas. In this study, we sought to identify IFN-γ-related genes to construct a glioma prognostic model to guide its clinical treatment. Methods: RNA sequences and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA). Using univariate Cox analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, IFN-γ-related prognostic genes were selected to construct a risk scoring model, and analyze its correlation with the clinical features. A high-precision nomogram was drawn to predict prognosis, and its performance was evaluated using calibration curve. Finally, immune cell infiltration and immune checkpoint molecule expression were analyzed to explore the tumor microenvironment characteristics associated with the risk scoring model. Results: Four out of 198 IFN-γ-related genes were selected to construct a risk score model with good predictive performance. The expression of four IFN-γ-related genes in glioma tissues was significantly increased compared to normal brain tissue (p < 0.001). Based on ROC analysis, the risk score model accurately predicted the overall survival rate of glioma patients at 1 year (AUC: The Cancer Genome Atlas 0.89, CGGA 0.59), 3 years (AUC: TCGA 0.89, CGGA 0.68), and 5 years (AUC: TCGA 0.88, CGGA 0.70). Kaplan-Meier analysis showed that the overall survival rate of the high-risk group was significantly lower than that of the low-risk group (p < 0.0001). Moreover, high-risk scores were associated with wild-type IDH1, wild-type ATRX, and 1P/19Q non-co-deletion. The nomogram predicted the survival rate of glioma patients based on the risk score and multiple clinicopathological factors such as age, sex, pathological grade, and IDH Status, among others. Risk score and infiltrating immune cells including CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell (Tregs), M2 macrophages, resting NK cells, activated mast cells, and neutrophils were positively correlated (p < 0.05). In addition, risk scores closely associated with expression of immune checkpoint molecules such as PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, CD48, CD226, and CD96. Conclusion: Our risk score model reveals that IFN-γ -associated genes are an independent prognostic factor for predicting overall survival in glioma, which is closely associated with immune cell infiltration and immune checkpoint molecule expression. This model will be helpful in predicting the effectiveness of immunotherapy and survival rate in patients with glioma.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Xiaoli Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zilong Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuran Mei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tianzhu Lu
- Department of Radiation Oncology and Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Yulong Ji
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Sida Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zekun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinxian Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei He
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuhui Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China,*Correspondence: Qiaoli Lv,
| |
Collapse
|
92
|
Deng H, Deng D, Qi T, Liu Z, Wu L, Yuan J. An IFN-γ-related signature predicts prognosis and immunotherapy response in bladder cancer: Results from real-world cohorts. Front Genet 2023; 13:1100317. [PMID: 36685901 PMCID: PMC9846040 DOI: 10.3389/fgene.2022.1100317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Bladder cancer (BLCA) is featured with high incidence and mortality. Whether the IFN-γ signaling could be used as an immunotherapy determinant for BLCA has not been fully confirmed. In this study, the transcriptome data and clinical information of BLCA samples were collected from The Cancer Genome Atlas (TCGA). Besides, four immunotherapy cohorts including IMvigor210 cohort, Gide cohort, Van Allen cohort, and Lauss cohort were collected. The Xiangya real-world cohort was used for independent validation. An IFN-γ-related signature was developed and validated in BLCA for predicting prognosis, mutation, tumor microenvironment status, and immunotherapy response. This is the first study focusing on the comprehensive evaluation of predictive values on the IFN-γ-related signature in BLCA. The potential clinical application of the IFN-γ-related signature was expected to be further validated with more prospective clinical cohorts.
Collapse
Affiliation(s)
- Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tiezheng Qi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Longxiang Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Junbin Yuan, ; Longxiang Wu,
| | - Junbin Yuan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Junbin Yuan, ; Longxiang Wu,
| |
Collapse
|
93
|
Huang X, Chi H, Gou S, Guo X, Li L, Peng G, Zhang J, Xu J, Nian S, Yuan Q. An Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic Adenocarcinoma. Genes (Basel) 2023; 14:124. [PMID: 36672865 PMCID: PMC9859148 DOI: 10.3390/genes14010124] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common, highly malignant, and aggressive gastrointestinal tumor. The conventional treatment of PAAD shows poor results, and patients have poor prognosis. The synthesis and degradation of proteins are essential for the occurrence and development of tumors. Aggrephagy is a type of autophagy that selectively degrades aggregated proteins. It decreases the formation of aggregates by degrading proteins, thus reducing the harm to cells. By breaking down proteins, it decreases the formation of aggregates; thus, minimizing damage to cells. For evaluating the response to immunotherapy and prognosis in PAAD patients, in this study, we developed a reliable signature based on aggrephagy-related genes (ARGs). We obtained 298 AGGLncRNAs. Based on the results of one-way Cox and LASSO analyses, the lncRNA signature was constructed. In the risk model, the prognosis of patients in the low-risk group was noticeably better than that of the patients in the high-risk group. Additionally, the ROC curves and nomograms validated the capacity of the risk model to predict the prognosis of PAAD. The patients in the low-risk and high-risk groups showed considerable variations in functional enrichment and immunological analysis. Regarding drug sensitivity, the low-risk and high-risk groups had different half-maximal inhibitory concentrations (IC50).
Collapse
Affiliation(s)
- Xueyuan Huang
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Siqi Gou
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jiayu Xu
- Statistics Department, School of Science, Minzu University of China, Beijing 100081, China
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
94
|
Lu W, Xie B, Tan G, Dai W, Ren J, Pervaz S, Li K, Li F, Wang Y, Wang M. Elafin is related to immune infiltration and could predict the poor prognosis in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1088944. [PMID: 36742380 PMCID: PMC9893492 DOI: 10.3389/fendo.2023.1088944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecologic malignancy, yet the clinical results for OC patients are still variable. Therefore, we examined how elafin expression affects the patients' prognoses and immunotherapy responses in OC, which may facilitate treatment selection and improve prognosis. METHODS The elafin mRNA expression profile was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus. Elafin's prognostic potential and its relationship with clinical variables were investigated using Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves as well as univariate and multivariate Cox regression models. As validation, protein expression in the tumor and adjacent tissues of OC patients was investigated by using immunohistochemistry (IHC). Comprehensive analyses were then conducted to explore the correlation between immune infiltration and elafin expression. RESULTS A higher mRNA expression of elafin was associated with an unfavorable prognosis in TCGA cohort and was validated in GSE31245 and IHC. Moreover, elafin was indicated as an independent risk factor for OC. A significantly higher protein expression of elafin was detected in the adjacent tissues of OC patients with shorter overall survival (OS). The immune-related pathways were mainly enriched in the high-elafin-mRNA-expression group. However, the mRNA expression of elafin was favorably correlated with indicators of the immune filtration and immunotherapy response, which also proved better immunotherapy outcomes. CONCLUSION The high elafin expression was associated with an unfavorable OS, while it also indicated better immunotherapy responses. Thus, the detection of elafin is beneficial to diagnosis and treatment selection.
Collapse
Affiliation(s)
- Weiyu Lu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wanying Dai
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jingyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kun Li
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Meijiao Wang,
| |
Collapse
|
95
|
Li X, Huang Y, Liu Y, Yan S, Li L, Cheng L, Li H, Zhan H, Zhang F, Li Y. Circulating VEGF-A, TNF-α, CCL2, IL-6, and IFN-γ as biomarkers of cancer in cancer-associated anti-TIF1-γ antibody-positive dermatomyositis. Clin Rheumatol 2023; 42:817-830. [PMID: 36357631 PMCID: PMC9935732 DOI: 10.1007/s10067-022-06425-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The objective of the current study was to detect plasma profiles of inflammatory cytokines for determining potential biomarkers indicating cancer presence among the anti-TIF1-γ antibody-positive dermatomyositis (DM) patients. METHODS Twenty-seven cancer-associated anti-TIF1-γ antibody-positive DM (Cancer TIF1-γ-DM) patients were compared with 20 anti-TIF1-γ antibody-positive DM patients without cancer (Non-cancer TIF1-γ-DM) and 10 healthy controls (HC). The plasma levels of 17 cytokines were determined using the Luminex 200 system. The ability of plasma VEGF-A, TNF-α, CCL2, IL-6, and IFN-γ levels to distinguish the presence of cancer was evaluated through the area under the curve (AUC) analysis. Potential protein interactions of TIF1-γ and the five cytokines were analyzed using the STRING database. RESULTS VEGF-A, TNF-α, CCL2, IL-6, and IFN-γ plasma levels were significantly higher in the Cancer TIF1-γ-DM group, especially those without any anticancer treatment, than those in the non-cancer TIF1-γ-DM and HC groups. Meanwhile, anti-TIF1-γ antibody and the five cytokines could distinguish cancer presence in anti-TIF1-γ antibody-positive DM patients. The STRING network indicated that TIF1-γ potentially interacted with the cytokines. Positive correlations of VEGF-A among CCL2, IL-6, and IFN-γ and between IFN-γ and IL-6 were observed in Cancer TIF1-γ-DM patients. VEGF-A, TNF-α, CCL2, and IL-6 were positively associated with muscle-associated enzymes among the Cancer TIF1-γ-DM patients. CONCLUSION The present study identified VEGF-A, TNF-α, CCL2, IL-6, and IFN-γ as significant potential biomarkers indicating the presence of cancer and demonstrated a more detailed cytokine profile during diagnosis. These biomarkers could provide better screening strategies and insight into the Cancer TIF1-γ-DM pathogenesis. Key Points • VEGF-A, TNF-α, CCL2, IL-6, and IFN-γ are potential biomarkers of cancer in cancer-associated anti-TIF1-γ antibody-positive dermatomyositis. Potential pathogenic molecular mechanism of the cancer-associated anti-TIF1-γ antibody-positive dermatomyositis.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liubing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
96
|
Xiu G, Li X, Chen J, Li J, Chen K, Liu P, Ling B, Yang Y. Role of Serum Inflammatory Cytokines in Sepsis Rats Following BMSCs Transplantation: Protein Microarray Analysis. Cell Transplant 2023; 32:9636897231198175. [PMID: 37706441 PMCID: PMC10503277 DOI: 10.1177/09636897231198175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) have emerged as a potential therapy for sepsis, yet the underlying mechanisms remain unclear. In this study, we investigated the effects of BMSCs on serum inflammatory cytokines in a rat model of lipopolysaccharide (LPS)-induced sepsis. Sepsis was induced by intravenous injection of LPS, followed by transplantation of BMSCs. We monitored survival rates for 72 h and evaluated organ functions, histopathological changes, and cytokines expression. Sepsis rats showed decreased levels of white blood cells, platelets, lymphocyte ratio, and oxygen partial pressure, along with increased levels of neutrophil ratio, carbon dioxide partial pressure, lactic acid, alanine aminotransferase, and aspartate aminotransferase. Histologically, lung, intestine, and liver tissues exhibited congestion, edema, and infiltration of inflammatory cells. However, after BMSCs treatment, there was improvement in organ functions, histopathological injuries, and survival rates. Protein microarray analysis revealed significant changes in the expression of 12 out of 34 inflammatory cytokines. These findings were confirmed by enzyme-linked immunosorbent assay. Pro-inflammatory factors, such as interleukin-1β (IL-1β), IL-1α, tumor necrosis factor-α (TNF-α), tissue inhibitor of metal protease 1 (TIMP-1), matrix metalloproteinase 8 (MMP-8), Leptin, and L-selectin were upregulated in sepsis, whereas anti-inflammatory and growth factors, including IL-4, β-nerve growth factor (β-NGF), ciliary neurotrophic factor (CNTF), interferon γ (IFN-γ), and Activin A were downregulated. BMSCs transplantation led to a decrease in pro-inflammatory cytokines and an increase in anti-inflammatory and growth factors. We summarized relevant molecular signaling pathways that resulted from cytokines in BMSCs for treating sepsis. Our results illustrated that BMSCs could promote tissue repair and improve organ functions and survival rates in sepsis through modulating cytokine networks.
Collapse
Affiliation(s)
- Guanghui Xiu
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| | - Xiuling Li
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Juan Chen
- Department of Infectious Diseases, The First People’s Hospital of Fuzhou, Fuzhou, China
| | - Jintao Li
- Institute of Neuroscience, Kunming Medicine University, Kunming, China
| | - Kun Chen
- The Third Clinical School of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Ping Liu
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| | - Bin Ling
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| | - Ying Yang
- Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), School of Medicine, Yunnan University, Kunming, China
| |
Collapse
|
97
|
Gauthier T, Chen W. IFN-γ and TGF-β, Crucial Players in Immune Responses: A Tribute to Howard Young. J Interferon Cytokine Res 2022; 42:643-654. [PMID: 36516375 PMCID: PMC9917322 DOI: 10.1089/jir.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
Interferon gamma (IFN-γ) and transforming growth factor beta (TGF-β), both pleiotropic cytokines, have been long studied and described as critical mediators of the immune response, notably in T cells. One of the investigators who made seminal and critical discoveries in the field of IFN-γ biology is Dr. Howard Young. In this review, we provide an overview of the biology of IFN-γ as well as its role in cancer and autoimmunity with an emphasis on Dr. Young's critical work in the field. We also describe how Dr. Young's work influenced our own research studying the role of TGF-β in the modulation of immune responses.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
98
|
Samuel CE. Interferonopathy Resulting from Dysregulation of Interferon Production. J Interferon Cytokine Res 2022; 42:655-657. [PMID: 35793522 DOI: 10.1089/jir.2022.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
99
|
Donnelly RP. Howard A. Young: Always Willing to Lend a Helping Hand. J Interferon Cytokine Res 2022; 42:608-610. [PMID: 35647936 DOI: 10.1089/jir.2022.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Raymond P Donnelly
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
100
|
Haeryfar SMM. Finding a Mentor While "Storm" Chasing with Howard Young. J Interferon Cytokine Res 2022; 42:658-661. [PMID: 36070592 DOI: 10.1089/jir.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|