51
|
Carlson KW, Smolker HR, Smith LL, Snyder HR, Hankin BL, Banich MT. Individual differences in intolerance of uncertainty is primarily linked to the structure of inferior frontal regions. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-024-01262-0. [PMID: 39870976 DOI: 10.3758/s13415-024-01262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/29/2025]
Abstract
Increased intolerance of uncertainty (IU), or distress felt when encountering situations with unknown outcomes, occurs transdiagnostically across various forms of psychopathology and is targeted in therapeutic intervention. Increased intolerance of uncertainty shows overlap with symptoms of internalizing disorders, such as depression and anxiety, including negative affect and anxious apprehension (worry). While neuroanatomical correlates of IU have been reported, previous investigations have not disentangled the specific neural substrates of IU above and beyond any overlapping relationships with aspects of internalizing psychopathology. The current study did so in a sample of 42 adults and 79 adolescents, who completed questionnaires assessing IU and internalizing symptoms, and underwent structural MRI. When controlling for internalizing symptoms, across adults and adolescents, specific associations of IU were found with the structure of the inferior frontal cortex and orbitofrontal cortex, regions implicated in cognitive control and emotional valuation/regulation. In addition, in adolescents, associations were observed with rostral middle frontal cortex and portions of the cingulate cortex. No associations were observed with threat-related regions, such as the amygdala. Potential cognitive/emotional mechanisms that might explain the association between individual differences in intolerance of uncertainty and morphology of the inferior frontal cortex are discussed.
Collapse
Affiliation(s)
- Kenneth W Carlson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Louisa L Smith
- Department of Psychology & Neuroscience, University of Colorado Boulder, D447C Muenzinger Hall, UCB 345, Boulder, CO, 80309, USA
| | - Hannah R Snyder
- Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Benjamin L Hankin
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
- Department of Psychology & Neuroscience, University of Colorado Boulder, D447C Muenzinger Hall, UCB 345, Boulder, CO, 80309, USA.
| |
Collapse
|
52
|
Isherwood S, Kemp SA, Miletić S, Stevenson N, Bazin PL, Forstmann B. Multi-study fMRI outlooks on subcortical BOLD responses in the stop-signal paradigm. eLife 2025; 12:RP88652. [PMID: 39841120 PMCID: PMC11753779 DOI: 10.7554/elife.88652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.
Collapse
Affiliation(s)
- Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | - Sarah A Kemp
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Sensorimotor Neuroscience and Ageing Research Lab, School of Psychological Sciences, University of TasmaniaHobartAustralia
| | - Steven Miletić
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Department of Psychology, Faculty of Social Sciences, Leiden UniversityLeidenNetherlands
| | - Niek Stevenson
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | | | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
53
|
Li Y, Wang Z, Yang Y, Deng Y, Shen Y, Wang X, Wang W, Liu H. Exploring low- and high-order functional connectivity in chronic ankle instability through resting-state fMRI. Med Phys 2025; 52:565-575. [PMID: 39436380 DOI: 10.1002/mp.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The functional connectivity (FC) has emerged as a valuable tool for comprehending the cerebral operational mechanism. Understanding the FC changes in patients with chronic ankle instability (CAI) helps reveal the underlying central nervous system mechanisms of the disease and provides clues for developing personalized treatment plans. OBJECTIVES To explore differences between low- and high-order FC in patients with CAI and healthy controls, as well as the correlation among the feature connections and clinical data. METHODS In our study, we recruited 40 patients with CAI and 42 healthy individuals who had not experienced ankle injuries. All participants underwent clinical assessments of ankle joints, collected the number of ankle sprains within the past 6 months, and performed resting-state functional magnetic resonance imaging (rs-fMRI) scans. Pearson correlation and matrix variate normal distribution (MVND) were used to construct low-order and high-order FC networks, respectively. Feature selections between groups were performed by two-sample t-tests, and a multi-kernel support vector machine (MK-SVM) was subsequently applied to combine the multiple connection patterns for the classification. Using leave-one-out cross-validation (LOOCV) to assess classification performance and identify the consensus connections contributing most to classification. RESULTS FC was reduced in certain brain regions of CAI patients. More consensus connections were recognized in low-order FC network than in high-order FC network. The highest classification accuracy of 91.30% was achieved by combining three connection patterns. The most discriminating functional connections were primarily centered on the default mode network and spanned the visual network, sensorimotor network, ventral attention network, and central executive network. In addition, FC strength in the left cingulate and paracingulate gyrus (DCG.L) and right superior temporal gyrus (STG.R) was negatively correlated with the number of ankle sprains in the past 6 months in all FC networks (p < 0.05). CONCLUSIONS Abnormalities in connectivity in patients with CAI were observed in both low- and high-order FC networks. The adaptive changes in the brain related to CAI may extend beyond the sensorimotor networks, primarily involving higher-level default mode networks associated with attention. Moreover, the FC strength between DCG.L and STG.R may predict the risk of ankle re-sprains and help clinicians develop personalized treatment plans.
Collapse
Affiliation(s)
- Yajie Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Zhifeng Wang
- Department of Orthopedic, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yan Deng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yiyuan Shen
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Xu Wang
- Department of Orthopedic, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Weiwei Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Hanqiu Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
54
|
Samandra R, Rosa MGP, Mansouri FA. How Do Common Marmosets Maintain the Balance Between Response Execution and Action Inhibition? Am J Primatol 2025; 87:e23717. [PMID: 39783787 PMCID: PMC11714342 DOI: 10.1002/ajp.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Socio-dynamic situations require a balance between response execution and action inhibition. Nonadaptive imbalance between response inhibition and execution exists in neurodevelopmental and neuropsychological disorders. To investigate the underlying neural mechanisms of cognitive control and the related deficits, comparative studies in human and nonhuman primates are crucial. Previous stop-signal tasks in humans and macaque monkeys have examined response execution (response time (RT) and accuracy in Go trials) and action inhibition (stop-signal reaction time (SSRT)). Even though marmosets are generally considered suitable translational animal models for research on social and cognitive deficits, their ability to inhibit behavior remains poorly characterized. We developed a marmoset stop-signal task, in which RT could be measured at millisecond resolution. All four marmosets performed many repeated Go trials with high accuracy (≥ 70%). Additionally, all marmosets successfully performed Stop trials. Using a performance-dependent tracking procedure, the accuracy in Stop trials was maintained around 50%, which enabled reliable SSRT estimates in marmosets for the first time. The mean SSRT values across sessions ranged between 677 and 1464 ms across the four marmosets. We also validated the suitability and practicality of this novel task for examining executive functions by testing the effects of a natural hormone, oxytocin, on response execution and action inhibition in marmosets. This marmoset model, for reliable (millisecond resolution) assessment of the balance between response execution and inhibition, will further facilitate studying the developmental alterations in inhibition ability and examining the effects of various contextual and environmental factors on marmosets' executive functions.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Marcello G. P. Rosa
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Farshad A. Mansouri
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
55
|
Su S, Xia LX. Neurostructural correlates of harm action/outcome aversion: The role of empathy. Neuroimage 2025; 305:120972. [PMID: 39672478 DOI: 10.1016/j.neuroimage.2024.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Harm aversion is essential for normal human functioning; however, the neuroanatomical mechanisms underlying harm aversion remain unclear. To explore this issue, we examined the brain structures associated with the two distinct dimensions of harm aversion (harm action/outcome aversion) and the potential mediating role of the four aspects of empathy: fantasy, perspective-taking, empathic concern, and personal distress. A sample of 214 healthy young adults underwent structural magnetic resonance imaging. Voxel-based morphometry was used to assess regional gray matter volume (rGMV) and regional gray matter density (rGMD). Whole-brain multiple regression analysis revealed significant correlations between harm action aversion and rGMV/rGMD in various brain regions, including the inferior frontal gyrus (IFG) and precuneus for both rGMV and rGMD, the cerebellum for rGMV, and the superior frontal gyrus for rGMD. The rGMV/rGMD in the IFG and the rGMD in the primary somatosensory cortex (S1) were correlated with harm outcome aversion. Utilizing 10-fold balanced cross-validation analysis, we confirmed the robustness of these significant associations between rGMV/rGMD in these brain regions and harm action/outcome aversion. Importantly, mediation analysis revealed that empathic concern mediated the relationship between rGMV/rGMD in the precuneus and harm action aversion. Additionally, empathic concern, personal distress, and total empathy mediated the relationship between rGMD in the S1 and harm outcome aversion. These findings enhance our understanding of the neural mechanism of harm aversion by integrating insights from the brain structure, harm aversion, and the personality hierarchy models while also extending the frontal asymmetry model of Emotion.
Collapse
Affiliation(s)
- Shu Su
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
56
|
Araújo A, Duarte IC, Sousa T, Meneses S, Pereira AT, Robbins T, Macedo A, Castelo-Branco M. "Actor-critic" dichotomous hyperactivation and hypoconnectivity in obsessive-compulsive disorder. Neuroimage Clin 2024; 45:103729. [PMID: 39787803 PMCID: PMC11762915 DOI: 10.1016/j.nicl.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Dysfunctional response inhibition, mediated by the striatum and its connections, is thought to underly the clinical manifestations of obsessive-compulsive disorder (OCD). However, the exact neural mechanisms remain controversial. In this study, we undertook a novel approach by positing that a) inhibition is a dynamic construct inherently susceptible to numerous failures, which require error-processing, and b) the actor-critic framework of reinforcement learning can integrate neural patterns of inhibition and error-processing in OCD with their behavioural correlates. We invited nineteen adults with OCD and 21 age-matched healthy controls to perform an fMRI-adjusted stop-signal task. Then, we extracted brain activation and connectivity values regarding distinct task phases in the "actor" and "critic" regions, here corresponding to the caudate's head and dorsal putamen, and midbrain's nuclei (ventral tegmental area and substantia nigra). During response preparation phases of the inhibitory process, individuals with OCD exhibited decreased functional connectivity between the "critic" structures and frontal regions involved in cognitive and executive control. Activity analysis revealed task-related hyperactivation in the midbrain alongside error-processing-specific hyperactivation in the striatum, which was correlated with excessive behavioural slowness, also found in the clinical group. Finally, we identified a remarkable opponency between activity in the ventral tegmental area and caudate leading to direct increases and indirect decreases in symptom severity. We propose a unique "actor-critic"-based domain- and timing-dependent neural profile in OCD, reflecting "harm-avoidant" styles for response suppression, and influencing symptom severity. The dichotomy of hypoconnectivity and hyperactivation in the "critic" along with the opponent relationship between the "actor" and the "critic" in determining symptom severity suggests the implication of neural adaptation mechanisms in OCD with potential relevance for neurobiologically-driven therapies.
Collapse
Affiliation(s)
- Ana Araújo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal; Department of Psychiatry, Local Health Unit of Coimbra, 3004-561 Coimbra, Portugal
| | - Isabel C Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Sofia Meneses
- Department of Psychology, Local Health Unit of Coimbra, 3004-561 Coimbra, Portugal
| | - Ana T Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Trevor Robbins
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal; Department of Psychiatry, Local Health Unit of Coimbra, 3004-561 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal.
| |
Collapse
|
57
|
Poptsi E, Moraitou D, Tsardoulias E, Symeonidis AL, Tsolaki M. R4Alz-R: a cutting-edge tool for spotting the very first and subtle signs of aging-related cognitive impairment with high accuracy. GeroScience 2024:10.1007/s11357-024-01495-4. [PMID: 39729240 DOI: 10.1007/s11357-024-01495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The accurate diagnosis of aging-related neurocognitive disorders as early as possible, even in a phase that is characterized by the absence of clinical symptoms, is nowadays the holy grail of the neurosciences. R4Alz-R is a novel cognitive tool designed to objectively detect the subtle cognitive changes that emerge as the very first result of the aging processes and could be developed and broadened in a continuum from healthy aging to subjective cognitive impairment (SCI) and mild cognitive impairment (MCI), before reaching some type of dementia. The goal of the present study was to examine whether the R4Alz-R battery has the potential to detect these subtle changes. The study sample comprised 184 people divided into (a) cognitively healthy young adults (HCya), (b) cognitively healthy older adults (HCoa), (c) people diagnosed with SCI, and (d) people diagnosed with MCI. The R4Alz-R comprises tests examining short-term memory storage, information processing, and updating of working memory, attention in different types of it, and main dimensions of executive functioning such as set-shifting, inhibitory control, and cognitive flexibility, as well as episodic memory. The flexibility and attention score showed an excellent potential to discriminate HCya from SCI (AUC 0.936, sensitivity 89.7%, specificity 88.4%). The executive functioning score almost excellently discriminated HCoa from SCI (AUC 0.898, sensitivity 87%, specificity 76.5%), while the fluid intelligence score had also an excellent potential to discriminate HCoa from MCI (AUC 0.953, sensitivity 85.7%, specificity 94.1%). The findings show that cognitive impairment in aging may start from the frontal lobe and prefrontal cortex, areas more closely related to cognitive control rather than memory. The lack of significant differences between HCya and HCoa proves that healthy older adults can keep their cognition at almost the same level as younger adults, a finding consistent with the new theoretical models regarding aging. The R4Alz-R battery is an innovative, free-of-demographic effect, valid, and reliable tool that can provide a highly accurate diagnosis of aging-related cognitive decline in its beginnings when it could still be possible to be reversed.
Collapse
Affiliation(s)
- Eleni Poptsi
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece.
- Greek Association of Alzheimer's Disease and Related Disorders (GAADRD), Petrou Sindika 13 Str, 54643, Thessaloniki, Greece.
| | - Despina Moraitou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece
| | - Emmanouil Tsardoulias
- School of Electrical and Computer Engineering, Faculty of Engineering , Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Andreas L Symeonidis
- School of Electrical and Computer Engineering, Faculty of Engineering , Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Magda Tsolaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece
- Greek Association of Alzheimer's Disease and Related Disorders (GAADRD), Petrou Sindika 13 Str, 54643, Thessaloniki, Greece
| |
Collapse
|
58
|
Salice S, Antonietti A, Colautti L. The effect of transcranial Direct Current Stimulation on the Iowa Gambling Task: a scoping review. Front Psychol 2024; 15:1454796. [PMID: 39744021 PMCID: PMC11688180 DOI: 10.3389/fpsyg.2024.1454796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Among the tasks employed to investigate decisional processes, the Iowa Gambling Task (IGT) appears to be the most effective since it allows for deepening the progressive learning process based on feedback on previous choices. Recently, the study of decision making through the IGT has been combined with the application of transcranial direct current stimulation (tDCS) to understand the cognitive mechanisms and the neural structures involved. However, to date no review regarding the effects of tDCS on decisional processes assessed through the IGT is available. This scoping review aims to provide a comprehensive exploration of the potential effects of tDCS in enhancing decisional processes, assessed with the IGT, through the evaluation of the complete range of target cases. Methods The existing literature was analyzed through the PRISMA approach. Results Results reported that tDCS can enhance performance in the IGT and highlighted a pivotal role of the dorsolateral prefrontal cortex and the orbitofrontal cortex in risky and ambiguous decisions. Discussion Thus, tDCS over the brain regions identified improves the decisional processes in healthy subjects and patients, confirming its potential to enhance decision making in everyday contexts and deepen the neural correlates. Suggestions for further studies are provided to delve into decisional mechanisms and how to better support them.
Collapse
Affiliation(s)
| | | | - Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
59
|
Eckert MA, Matthews LJ, Vaden KI, Dubno JR. Executive Function Associations With Audibility-Adjusted Speech Perception in Noise. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:4811-4828. [PMID: 39475684 DOI: 10.1044/2024_jslhr-24-00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
PURPOSE Speech recognition in noise is challenging for listeners and appears to require support from executive functions to focus attention on rapidly unfolding target speech, track misunderstanding, and sustain attention. The current study was designed to test the hypothesis that lower executive function abilities explain poorer speech recognition in noise, including among older participants with hearing loss who often exhibit diminished speech recognition in noise and cognitive abilities. METHOD A cross-sectional sample of 400 younger-to-older adult participants (19 to < 90 years of age) from the community-based Medical University of South CarolinaLongitudinal Cohort Study of Age-related Hearing Loss were administered tasks with executive control demands to assess individual variability in a card-sorting measure of set-shifting/performance monitoring, a dichotic listening measure of selective attention/working memory, sustained attention, and processing speed. Key word recognition in the high- and low-context speech perception-in-noise (SPIN) tests provided measures of speech recognition in noise. The SPIN scores were adjusted for audibility using the Articulation Index to characterize the impact of varied hearing sensitivity unrelated to reduced audibility on cognitive and speech recognition associations. RESULTS Set-shifting, dichotic listening, and processing speed each explained unique and significant variance in audibility-adjusted, low-context SPIN scores (ps < .001), including after controlling for age, pure-tone threshold average (PTA), sex, and education level. The dichotic listening and processing speed effect sizes were significantly diminished when controlling for PTA, indicating that participants with poorer hearing sensitivity were also likely to have lower executive function and lower audibility-adjusted speech recognition. CONCLUSIONS Poor set-shifting/performance monitoring, slow processing speed, and poor selective attention/working memory appeared to partially explain difficulties with speech recognition in noise after accounting for audibility. These results are consistent with the premise that distinct executive functions support speech recognition in noise.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY
| | - Lois J Matthews
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston
| | - Kenneth I Vaden
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston
| | - Judy R Dubno
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston
| |
Collapse
|
60
|
Osada T, Nakajima K, Shirokoshi T, Ogawa A, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. Multiple insular-prefrontal pathways underlie perception to execution during response inhibition in humans. Nat Commun 2024; 15:10380. [PMID: 39627197 PMCID: PMC11615282 DOI: 10.1038/s41467-024-54564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Inhibiting prepotent responses in the face of external stop signals requires complex information processing, from perceptual to control processing. However, the cerebral circuits underlying these processes remain elusive. In this study, we used neuroimaging and brain stimulation to investigate the interplay between human brain regions during response inhibition at the whole-brain level. Magnetic resonance imaging suggested a sequential four-step processing pathway: initiating from the primary visual cortex (V1), progressing to the dorsal anterior insula (daINS), then involving two essential regions in the inferior frontal cortex (IFC), namely the ventral posterior IFC (vpIFC) and anterior IFC (aIFC), and reaching the basal ganglia (BG)/primary motor cortex (M1). A combination of ultrasound stimulation and time-resolved magnetic stimulation elucidated the causal influence of daINS on vpIFC and the unidirectional dependence of aIFC on vpIFC. These results unveil asymmetric pathways in the insular-prefrontal cortex and outline the macroscopic cerebral circuits for response inhibition: V1→daINS→vpIFC/aIFC→BG/M1.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiko Shirokoshi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Sportology Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
61
|
Atkinson-Clement C, Alkhawashki M, Gatica M, Ross J, Kaiser M. Dynamic changes in human brain connectivity following ultrasound neuromodulation. Sci Rep 2024; 14:30025. [PMID: 39627315 PMCID: PMC11614892 DOI: 10.1038/s41598-024-81102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Non-invasive neuromodulation represents a major opportunity for brain interventions, and transcranial focused ultrasound (FUS) is one of the most promising approaches. However, some challenges prevent the community from fully understanding its outcomes. We aimed to address one of them and unravel the temporal dynamics of FUS effects in humans. Twenty-two healthy volunteers participated in the study. Eleven received FUS in the right inferior frontal cortex while the other 11 were stimulated in the right thalamus. Using a temporal dynamic approach, we compared resting-state fMRI seed-based functional connectivity obtained before and after FUS. We also assessed behavioural changes as measured with a task of reactive motor inhibition. Our findings reveal that the effects of FUS are predominantly time-constrained and spatially distributed in brain regions functionally connected with the directly stimulated area. In addition, mediation analysis highlighted that FUS applied in the right inferior cortex was associated with behavioural alterations which was directly explained by the applied acoustic pressure and the brain functional connectivity change we observed. Our study underscored that the biological effects of FUS are indicative of behavioural changes observed more than an hour following stimulation and are directly related to the applied acoustic pressure.
Collapse
Affiliation(s)
- Cyril Atkinson-Clement
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK.
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| | | | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
62
|
Wang C, Yi X, Li H, Ke N, Lei Z, Fu G, Lin XA. Memory detection with concurrent behavioral, autonomic, and neuroimaging measures in a mock crime. Psychophysiology 2024; 61:e14701. [PMID: 39392401 DOI: 10.1111/psyp.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Concealed information test (CIT) has been utilized for long to perform single measurements. The combination of multiple measures outperforms single measures because of the diverse cognitive processes they reflect and the reduction in random errors facilitated by multiple measures. To further explore the performance of the CIT with multiple measurements, 57 participants were recruited and randomly assigned into guilty and innocent groups. Subsequently, simultaneously recorded reaction time (RT), skin conductance responses (SCRs), heart rate (HR), and neuroimaging data were collected from functional near-infrared spectroscopy (fNIRS) to detect participants' concealed information in a standard CIT. The results demonstrated that all indicators including RT (area under the curve (AUC) = 0.87), SCRs (AUC = 0.79), HR (AUC = 0.78), and fNIRS (channel 8, AUC = 0.85) could differentiate guilty and innocent groups. Importantly, the use of multiple indicators achieved higher detection efficiency (AUC = 0.96) compared to the use of any single indicator. These results illustrate the effectiveness and feasibility of integrating multiple indicators for concealed information detection in CIT.
Collapse
Affiliation(s)
- Chongxiang Wang
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xingyu Yi
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Hongrui Li
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Ni Ke
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Zhili Lei
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Genyue Fu
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Allison Lin
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
63
|
Peng L, Xu L, Zhang Z, Wang Z, Chen J, Zhong X, Wang L, Xu R, Shao Y. Effects of total sleep deprivation on functional connectivity of the anterior cingulate cortex: Insights from resting-state fMRI in healthy adult males. Int J Psychophysiol 2024; 206:112460. [PMID: 39447841 DOI: 10.1016/j.ijpsycho.2024.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Inadequate sleep significantly impacts an individual's health by compromising inhibitory control and self-regulation abilities. This study employed resting-state functional magnetic resonance imaging (fMRI) to assess the functional connectivity between the anterior cingulate cortex (ACC) and the whole brain in 16 healthy adult males after 36 h of total sleep deprivation. Additionally, this study investigated alterations in individuals' inhibitory control functions and physiological mechanisms following sleep deprivation. The results showed a significant increase in functional connectivity between the ACC, the left angular gyrus, and the right hippocampus following 36 h of continuous sleep deprivation. Conversely, functional connectivity was notably decreased between the ACC and the right insular cortex, right paracingulate gyrus, and bilateral putamen. Furthermore, changes in ACC functional connectivity were significantly correlated with alterations in behavioral performance in the go/no-go task after sleep deprivation. This study contributes to understanding brain network mechanisms in the anterior cingulate gyrus after sleep deprivation. It clarifies the relationship between functional connectivity changes in the anterior cingulate gyrus and inhibitory control post-sleep deprivation.
Collapse
Affiliation(s)
- Lei Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zexuan Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Jie Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ruiping Xu
- Guangzhou Institute of Sports Science. No 299, Tianhe Road, Tianhe District, Guangzhou 510620, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
64
|
Liddell BJ, Das P, Malhi GS, Felmingham KL, Askovic M, Nickerson A, Aroche J, Coello M, Outhred T, Bryant RA. Torture Exposure Modulates Cognitive Control and Attention Neural Network Connectivity During a Go/NoGo Task. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1291-1300. [PMID: 39127424 DOI: 10.1016/j.bpsc.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Torture trauma is characterized by intentional uncontrollable acts, but the long-term effects of torture exposure on cognitive control brain mechanisms are unknown. METHODS A final sample of 33 torture survivors (TSs) and 44 non-TSs, all with a refugee background, completed a Go/NoGo response inhibition task during functional magnetic resonance imaging scanning. Data-driven independent component analysis identified active networks across the task and on Go, NoGo, and error of commission trials. Groups were compared on within-/between-network connectivity while controlling for demographic and psychological symptom covariates. Secondary analyses investigated whether network connectivity moderated the associations between torture exposure and severity on fear (e.g., re-experiencing) and dysphoria (e.g., anhedonia) posttraumatic stress disorder symptoms. RESULTS The TS group exhibited decreased connectivity (compared with the non-TS control group) within the posterior default mode network (specifically the left precuneus) and auditory-motor network (specifically the right superior temporal gyrus) and reduced connectivity between the dorsomedial frontal network and dorsal attention network across the Go/NoGo task. The TS group also showed more negative ventral attention network connectivity during NoGo (i.e., inhibition) trials. No behavioral effects were observed. Secondary analyses revealed that the association between torture exposure and elevated posttraumatic stress dysphoria (not fear) symptoms was moderated by reduced connectivity in the right superior temporal gyrus and between the dorsomedial frontal network and the dorsal attention network. CONCLUSIONS Response inhibition, attention, and motor networks appear to be less connected in TSs, which may be specifically linked to a posttraumatic stress dysphoria symptom profile. The findings suggest that targeting cognitive control processes may hold promise for alleviating posttraumatic symptoms among survivors of torture.
Collapse
Affiliation(s)
- Belinda J Liddell
- School of Psychological Science, University of Newcastle, Newcastle, New South Wales, Australia; School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Pritha Das
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia; Academic Department of Psychiatry and CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia; Department of Psychiatry, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Gin S Malhi
- Academic Department of Psychiatry and CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia; Department of Psychiatry, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Kim L Felmingham
- School of Psychological Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Mirjana Askovic
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors, Sydney, New South Wales, Australia
| | - Angela Nickerson
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jorge Aroche
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors, Sydney, New South Wales, Australia
| | - Mariano Coello
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors, Sydney, New South Wales, Australia
| | - Tim Outhred
- Academic Department of Psychiatry and CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia; Department of Psychiatry, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Bryant
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
65
|
Wang X, Talebi N, Zhou X, Hommel B, Beste C. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation. Neuroimage 2024; 302:120915. [PMID: 39489408 DOI: 10.1016/j.neuroimage.2024.120915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the neural mechanisms underlying metacontrol and conflict regulation is crucial for insights into cognitive flexibility and persistence. This study employed electroencephalography (EEG), EEG-beamforming and directed connectivity analyses to explore how varying metacontrol states influence conflict regulation at a neurophysiological level. Metacontrol states were manipulated by altering the frequency of congruent and incongruent trials across experimental blocks in a modified flanker task, and both behavioral and electrophysiological measures were analyzed. Behavioral data confirmed the experimental manipulation's efficacy, showing an increase in persistence bias and a reduction in flexibility bias during increased conflict regulation. Electrophysiologically, theta band activity paralleled the behavioral data, suggesting that theta oscillations reflect the mismatch between expected metacontrol bias and actual task demands. Alpha and beta band dynamics differed across experimental blocks, though these changes did not directly mirror behavioral effects. Post-response alpha and beta activity were more pronounced in persistence-biased states, indicating a neural reset mechanism preparing for future cognitive demands. By using a novel artificial neural networks method, directed connectivity analyses revealed enhanced inter-regional communication during persistence states, suggesting stronger top-down control and sensorimotor integration. Overall, theta band activity was closely tied to metacontrol processes, while alpha and beta bands played a role in resetting the neural system for upcoming tasks. These findings provide a deeper understanding of the neural substrates involved in metacontrol and conflict monitoring, emphasizing the distinct roles of different frequency bands in these cognitive processes.
Collapse
Affiliation(s)
- Xi Wang
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
66
|
Baraniuk JN, Thapaliya K, Inderyas M, Shan ZY, Barnden LR. Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome. Sci Rep 2024; 14:26796. [PMID: 39500939 PMCID: PMC11538523 DOI: 10.1038/s41598-024-75651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The Stroop task was used to investigate differences in cognitive function between Long COVID (LC), Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and healthy control subjects. METHODS Subjects viewed four color words or neutral (XXXX) stimuli with the same (congruent) or different color ink (incongruent). Cognitive conflict was inferred from response times for pairings of prestimuli and subsequent stimuli. Overall effects were assessed by univariate analysis with time courses determined for binned response times. RESULTS LC and ME/CFS had significantly longer response times than controls indicating cognitive dysfunction. Initial response times were ranked LC > ME > HC, and decreased according to power functions. At the end of the task (900s), times were ranked LC = ME > HC. Response times were significantly slower for stimuli following an incongruent prestimulus. Time series for Stroop effect, facilitation, interference, surprise index and practice power law parameters were generally similar in LC, ME/CFS and HC suggesting comparable patterns for recruitment of cognitive resources. The prestimulus data were analyzed and generated positive Stroop and interference effects that were distinct from stimulus effects. CONCLUSION LC and ME/CFS have global slowing of response times that cannot be overcome by practice suggesting impaired communications between network nodes during problem solving. Analysis of matched prestimulus - stimulus effects adds a new dimension for understanding cognitive conflict. BRIEF SUMMARY Cognitive dysfunction in Long COVID and ME/CFS was demonstrated using the Stroop task which found global slowing of response times and limitations of practice effects.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine, Georgetown University, Washington DC, USA.
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia.
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Maira Inderyas
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Leighton R Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
67
|
Jamous R, Ghorbani F, Mükschel M, Münchau A, Frings C, Beste C. Neurophysiological principles underlying predictive coding during dynamic perception-action integration. Neuroimage 2024; 301:120891. [PMID: 39419422 DOI: 10.1016/j.neuroimage.2024.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
A major concept in cognitive neuroscience is that brains are "prediction machines". Yet, conceptual frameworks on how perception and action become integrated still lack the concept of predictability and it is unclear how neural processes may implement predictive coding during dynamic perception-action integration. We show that distinct neurophysiological mechanisms of nonlinearly directed connectivities in the theta and alpha band between cortical structures underlie these processes. During the integration of perception and motor codes, especially theta band activity in the insular cortex and temporo-hippocampal structures is modulated by the predictability of upcoming information. Here, the insular cortex seems to guide processes. Conversely, the retrieval of such integrated perception-action codes during actions heavily relies on alpha band activity. Here, directed top-down influence of alpha band activity from inferior frontal structures on insular and temporo-hippocampal structures is key. This suggests that these top-down effects reflect attentional shielding of retrieval processes operating in the same neuroanatomical structures previously involved in the integration of perceptual and motor codes. Through neurophysiology, the present study connects predictive coding mechanisms with frameworks specifying the dynamic integration of perception and action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Moritz Mükschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
68
|
Nono AST, Anziano M, Mouthon M, Chabwine JN, Spierer L. The Role of Anatomic Connectivity in Inhibitory Control Revealed by Combining Connectome-based Lesion-symptom Mapping with Event-related Potentials. Brain Topogr 2024; 37:1033-1042. [PMID: 38858320 PMCID: PMC11408543 DOI: 10.1007/s10548-024-01057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Inhibitory control refers to the ability to suppress cognitive or motor processes. Current neurocognitive models indicate that this function mainly involves the anterior cingulate cortex and the inferior frontal cortex. However, how the communication between these areas influence inhibitory control performance and their functional response remains unknown. We addressed this question by injecting behavioral and electrophysiological markers of inhibitory control recorded during a Go/NoGo task as the 'symptoms' in a connectome-based lesion-symptom mapping approach in a sample of 96 first unilateral stroke patients. This approach enables us to identify the white matter tracts whose disruption by the lesions causally influences brain functional activity during inhibitory control. We found a central role of left frontotemporal and frontobasal intrahemispheric connections, as well as of the connections between the left temporoparietal and right temporal areas in inhibitory control performance. We also found that connections between the left temporal and right superior parietal areas modulate the conflict-related N2 event-related potential component and between the left temporal parietal area and right temporal and occipital areas for the inhibition P3 component. Our study supports the role of a distributed bilateral network in inhibitory control and reveals that combining lesion-symptom mapping approaches with functional indices of cognitive processes could shed new light on post-stroke functional reorganization. It may further help to refine the interpretation of classical electrophysiological markers of executive control in stroke patients.
Collapse
Affiliation(s)
- Alex S T Nono
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, PER 09, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Marco Anziano
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, PER 09, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, PER 09, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Joelle N Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, PER 09, Chemin du Musée 5, 1700, Fribourg, Switzerland
- Neurology Unit, Department of Internal Medicine and Specialties, Fribourg Hospital, Fribourg, Switzerland
| | - Lucas Spierer
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, PER 09, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
69
|
Mizrahi I, klein Selle N. Fast & furious: Rejecting the hypothesis that secondary psychopathy improves reaction time-based concealed information detection. PLoS One 2024; 19:e0311948. [PMID: 39405309 PMCID: PMC11478853 DOI: 10.1371/journal.pone.0311948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Deception, a complex aspect of human behavior, is inherently difficult to detect directly. A valid alternative involves memory detection, particularly through methods such as the Reaction-Time based Concealed Information Test (RT-CIT). The RT-CIT assesses whether an individual possesses specific knowledge by presenting various probe (familiar) items amidst irrelevant (unfamiliar) items. The task-required "unfamiliar" response to probes may induce a response conflict. Resolving this conflict, by inhibiting the automatic "familiar" response, takes time and slows probe RTs-a phenomenon known as the RT-CIT effect. Notably, secondary psychopathy is characterized by disinhibition and impulsivity, traits which may hinder the ability to effectively manage experienced conflict. Therefore, we hypothesized that secondary psychopathy would be associated with an elevated RT-CIT effect. To investigate this hypothesized relation, we conducted a pre-registered study (n = 86, student sample), employing a novel CIT paradigm that incorporates no-go trials to assess response inhibition capacity. Psychopathic traits were measured using the Levenson Self-Report Psychopathy (LSRP) scale, while the Barratt Impulsiveness Scale (BIS-11) assessed impulsivity. The novel CIT paradigm revealed impressive detection efficiency. However, contrary to our expectations, we observed no significant correlation between the RT-CIT effect and secondary psychopathic traits (BF01 = 6.98). This cautiously suggests that while secondary psychopathic tendencies do not improve RT-CIT validity, they also do not compromise it. Although future investigations should explore more diverse contexts and populations, this tentative finding is reassuring and underscores the robustness of the CIT paradigm.
Collapse
Affiliation(s)
- Imbar Mizrahi
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Nathalie klein Selle
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
70
|
Feizpour A, Buckley MJ, Mundinano IC, Rosa MGP, Mansouri FA. The role of frontopolar cortex in adjusting the balance between response execution and action inhibition in anthropoids. Prog Neurobiol 2024; 241:102671. [PMID: 39369837 DOI: 10.1016/j.pneurobio.2024.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Executive control of behaviour entails keeping a fine balance between response execution and action inhibition. The most anterior part of the prefrontal cortex (frontopolar cortex) is highly developed in anthropoids; however, no previous study has examined its essential (indispensable) role in regulating the interplay between action execution and inhibition. In this cross-species study, we examine the performance of humans and macaque monkeys in the context of a stop-signal task and then assess the consequence of selective and bilateral damage to frontopolar cortex on monkeys' behaviour. Humans and monkeys showed significant within-session practice-related adjustments in both response execution (increase in response time (RT) and decrease in response variabilities) and action inhibition (enhanced inhibition). Furthermore, both species expressed context-dependent (post-error and post-stop) behavioral adjustments. In post-lesion testing, frontopolar-damaged monkeys had a longer RT and lower percentage of timeout trials, compared to their pre-lesion performance. The practice-related changes in mean RT and in RT variability were significantly heightened in frontopolar-damaged monkeys. They also showed attenuated post-error, but exaggerated post-stop, behavioural adjustments. Importantly, frontopolar damage had no significant effects on monkeys' inhibition ability. Our findings indicate that frontopolar cortex plays a critical role in allocation of control to response execution, but not action inhibition.
Collapse
Affiliation(s)
- Azadeh Feizpour
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Inaki C Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
71
|
Riccardi N, Blackett DS, Broadhead A, den Ouden D, Rorden C, Fridriksson J, Bonilha L, Desai RH. A Rose by Any Other Name: Mapping Taxonomic and Thematic Naming Errors Poststroke. J Cogn Neurosci 2024; 36:2251-2267. [PMID: 39106171 PMCID: PMC11792165 DOI: 10.1162/jocn_a_02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Understanding the neurobiology of semantic knowledge is a major goal of cognitive neuroscience. Taxonomic and thematic semantic knowledge are represented differently within the brain's conceptual networks, but the specific neural mechanisms remain unclear. Some neurobiological models propose that the anterior temporal lobe is an important hub for taxonomic knowledge, whereas the TPJ is especially involved in the representation of thematic knowledge. However, recent studies have provided divergent evidence. In this context, we investigated the neural correlates of taxonomic and thematic confrontation naming errors in 79 people with aphasia. We used three complementary lesion-symptom mapping (LSM) methods to investigate how structure and function in both spared and impaired brain regions relate to taxonomic and thematic naming errors. Voxel-based LSM mapped brain damage, activation-based LSM mapped BOLD signal in surviving tissue, and network-based LSM mapped white matter subnetwork integrity to error type. Voxel- and network-based lesion symptom mapping provided converging evidence that damage/disruption of the left mid-to-anterior temporal lobe was associated with a greater proportion of thematic naming errors. Activation-based lesion symptom mapping revealed that higher BOLD signal in the left anterior temporal lobe during an in-house naming task was associated with a greater proportion of taxonomic errors on the Philadelphia Naming Test administered outside of the scanner. A lower BOLD signal in the bilateral angular gyrus, precuneus, and right inferior frontal cortex was associated with a greater proportion of taxonomic errors. These findings provide novel evidence that damage to the anterior temporal lobe is especially related to thematic naming errors.
Collapse
|
72
|
Mellick W, McTeague L, Hix S, Anton R, Prisciandaro JJ. Blunted reward-related activation to food scenes distinguishes individuals with alcohol use disorder in a pilot case-control fMRI pilot study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1866-1875. [PMID: 39312084 PMCID: PMC11492229 DOI: 10.1111/acer.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is thought to bias the neurocircuitry underlying reward processing and motivation to preferentially attend to conditioned alcohol cues over natural rewards. The present case-control pilot study evaluated this hypothesis using novel natural reward paradigms. METHODS Twenty-eight participants (AUD, n = 14, light drinkers, n = 14) were recruited-AUD participants reported 44.0% heavy drinking days (%HDD) and 4.67 drinks/day over the preceding 90 days. Functional magnetic resonance imaging (fMRI) data were acquired during the administration of three separate picture-viewing paradigms of alcohol cues, food scenes, and social reward, respectively. Independent samples t-tests were performed to compare groups' fMRI data and exploratory correlation analyses were performed to examine associations with clinical characteristics of AUD. RESULTS Food scenes elicited abnormally low reward-related activation, within the superior frontal gyrus and caudate bilaterally, among AUD participants. Lower activation to food scenes within the superior frontal gyrus was, in turn, associated with higher levels of past-month %HDD among AUD participants, specifically, along with craving and alcohol dependence severity when examined across the full sample. Contrasting reward types (e.g., alcohol cues vs. food scenes) did not reveal "preferential" activation to differentiate groups. CONCLUSIONS Heavy drinking appears associated with reduced responsivity to natural rewards, specifically food rather than social cues. Neural mechanisms underlying the high prevalence of malnutrition among individuals with AUD may involve some combination of blunted approach-related affect and reduced craving-related motivation to eat when food is present, resulting in limited engagement of cortico-striato-thalamic motor circuitry supporting food acquisition. However, given the preliminary nature of this pilot study, such formulations remain tentative until larger follow-up studies can be conducted. From a potential translational standpoint, the ability of promising therapeutics to demonstrate increased responsivity to natural rewards, specifically nutritive reward may serve as a valuable complementary efficacy indicator for future clinical neuroimaging trials in AUD.
Collapse
Affiliation(s)
- William Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lisa McTeague
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Sara Hix
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Anton
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James J. Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
73
|
Chen H, Zhang H, Li W, Zhang X, Xu Z, Wang Z, Jiang W, Liu N, Zhang N. Resting-state functional connectivity of goal-directed and habitual-learning systems: The efficacy of cognitive-behavioral therapy for obsessive-compulsive disorder. J Affect Disord 2024; 362:287-296. [PMID: 38944296 DOI: 10.1016/j.jad.2024.06.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND There is an imbalance between goal-directed and habitual-learning system in patients with obsessive-compulsive disorder (OCD). At present, the relationship between cognitive behavior therapy (CBT) as a first-line therapy and goal-directed and habitual-learning disorder is still unclear. We attempted to discuss the effect of CBT treatment in patients with OCD, using abnormalities in goal-directed and habitual-learning-related brain regions at baseline as predictive factors. METHODS A total of 71 subjects, including 35 OCD patients and 36 healthy controls, were recruited. The OCD patients underwent 8 weeks of CBT. These patients were divided into two groups based on treatment response (Nresponders = 18, Nnonresponders = 17). Further subgroup analysis was conducted based on disease duration (Nshort = 17, Nlong = 18) and age of onset (Nearly = 14, Nlate = 21). We collected resting-state ROI-ROI functional connectivity data and apply repeated-measures linear mixed-effects models to investigate the differences of different subgroups. RESULTS CBT led to symptom improvement in OCD patients, with varying degrees of effectiveness across subgroups. The orbitofrontal cortex (OFC) and insula, key regions for goal-directed behavior and habitual-learning, respectively, showed significant impacts on CBT efficacy in subgroups with different disease durations and ages of onset. CONCLUSION The findings suggest that the goal-directed system may influence the efficacy of CBT through goal selection, maintenance, and emotion regulation. Furthermore, we found that disease duration and age of onset may affect treatment outcomes by modulating functional connectivity between goal-directed and habitual-learning brain regions.
Collapse
Affiliation(s)
- Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huan Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangyue Li
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuedi Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhihan Xu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongqi Wang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjing Jiang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
74
|
Wu J, Ji Y, Qu H, Zuo S, Liang J, Su J, Wang Q, Yan G, Ding G. Transcranial magnetic stimulation of the right inferior frontal gyrus impairs bilinguals' performance in language-switching tasks. Cognition 2024; 254:105963. [PMID: 39340870 DOI: 10.1016/j.cognition.2024.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
It is widely accepted that bilinguals activate both languages simultaneously, even when intending to speak only one. A prevailing theory proposes that bilinguals inhibit the nontarget language to produce the target language, thought to be supported by evidence that the right inferior frontal gyrus (rIFG), a region typically associated with inhibition, is activated during language-switching tasks. However, it remains unclear whether the rIFG plays a causal or epiphenomenal role in this process. To explore the role of the rIFG, the present study employed transcranial magnetic stimulation (TMS) to modulate its neural activity and evaluate subsequent behavior in bilinguals. Specifically, twenty-nine Chinese-English bilinguals participated in the study and performed picture-naming tasks in single- and dual-language contexts after receiving sham stimulation (Sham), continuous theta burst stimulation (cTBS), or intermittent theta burst stimulation (iTBS) over the rIFG in three separate visits. Sham served as a control, with cTBS and iTBS intended to decrease and increase cortical excitability, respectively. We found that, compared to Sham, cTBS led to larger asymmetric switching costs and smaller asymmetric mixing costs, whereas iTBS resulted only in smaller asymmetric mixing costs. These findings suggest that cTBS targeting the rIFG likely impairs both local and global control. However, iTBS applied to the rIFG alone may not necessarily enhance language control mechanisms and could even hinder global control. Moreover, exploratory analyses found pronounced TMS-induced impairments in less balanced bilinguals, implying their potentially greater reliance on bilingual language control. Overall, this study is the first to suggest a causal role of the rIFG in language switching.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Yannan Ji
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Clinical College, Chengde Medical University, Chengde 067000, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Hongfu Qu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Shuyue Zuo
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Jinsong Liang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Juan Su
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Qiping Wang
- School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guoli Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
75
|
Dvorak M. Inhibitory control and academic achievement - a study of the relationship between Stroop Effect and university students' academic performance. BMC Psychol 2024; 12:498. [PMID: 39334493 PMCID: PMC11428297 DOI: 10.1186/s40359-024-01984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
While previous research has identified executive functions as predictors of academic performance in school children, similar studies conducted among adults show mixed results. One of the reasons given for executive functions having a limited effect on academic achievements in adulthood is that they are usually fully developed by that time. Since these executive functions are at their peak at that age, the individual differences in these as well as their influence on academic performance in adults are harder to trace. The paper describes a study conducted among 107 university students the goal of which was to find out whether there is any relationship between the adult students' inhibitory control values measured with the Stroop Test and their academic achievements. Although the results indicate a weak correlation between the Stroop Effect and the students' academic performance of low statistical significance, which seems to confirm the outcomes of the previous studies focusing on adults, the study reveals an unexpected statistically significant correlation between the students' grade averages and the number of their incorrect color identifications. This phenomenon appears to be worth pursuing in future research since it suggests the existence of another, relatively quickly measurable, variable possibly reflecting other predictors of academic performance in adults such as a degree of their manifested conscientiousness, their ability to concentrate on an assigned, relatively short, one-off task and their attitude to fulfilling this task. The Stroop Test, despite not being originally designed for this purpose, might thus be used as a simple tool suitable for providing information about these variables via the subject's number of color identification errors. Such information can subsequently inform the activities that educators may include in their curricula to foster conscientiousness and concentration in the students lacking these.
Collapse
|
76
|
Fan H, Li Q, Du Y, Yan Y, Ni R, Wei J, Zhao L, Yang X, Ma X. Relationship of prefrontal cortex activity with anhedonia and cognitive function in major depressive disorder: an fNIRS study. Front Psychiatry 2024; 15:1428425. [PMID: 39371911 PMCID: PMC11450226 DOI: 10.3389/fpsyt.2024.1428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is associated with deficits in cognitive function, thought to be related to underlying decreased hedonic experiences. Further research is needed to fully elucidate the role of functional brain activity in this relationship. In this study, we investigated the neurofunctional correlate of the interplay between cognitive function and hedonic experiences in medication-free MDD using functional near-infrared spectroscopy (fNIRS). Methods We examine differences of brain activation corresponding to the verbal fluency test (VFT) between MDD patients and healthy controls (HCs). Fifty-six MDD patients and 35 HCs underwent fMRI scanning while performing the VFT. In exploratory analyses, cognitive performance, as assessed by the Cambridge Neuropsychological Test Automated Battery (CANTAB), four dimensions of hedonic processing (desire, motivation, effort, and consummatory pleasure) measured by the Dimensional Anhedonia Rating Scale (DARS), and relative changes in oxygenated hemoglobin concentration during the VFT were compared across groups. Results Patients with MDD demonstrated impairments in sustained attention and working memory, accompanied by lower total and subscale scores on the DARS. Compared to healthy controls, MDD patients exhibited reduced activation in the prefrontal cortex (PFC) during the VFT task (t = 2.32 to 4.77, p < 0.001 to 0.02, FDR corrected). DARS motivation, desire, and total scores as well as sustained attention, were positively correlated with activation in the dorsolateral PFC and Broca's area (p < 0.05, FDR corrected). Conclusions These findings indicate that changes in prefrontal lobe oxygenated hemoglobin levels, a region implicated in hedonic motivation and cognitive function, may serve as potential biomarkers for interventions targeting individuals with MDD. Our results corroborate the clinical consensus that the prefrontal cortex is a primary target for non-invasive neuromodulatory treatments for depression.
Collapse
Affiliation(s)
- Huanhuan Fan
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Du
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Yushun Yan
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Zou Y, Yu T, Zhu L, Xu Q, Li Y, Chen J, Luo Q, Peng H. Altered dynamic functional connectivity of nucleus accumbens subregions in major depressive disorder: the interactive effect of childhood trauma and diagnosis. Soc Cogn Affect Neurosci 2024; 19:nsae053. [PMID: 39167467 PMCID: PMC11389612 DOI: 10.1093/scan/nsae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
Major depressive disorder (MDD) with childhood trauma represents a heterogeneous clinical subtype of depression. Previous research has observed alterations in the reward circuitry centered around the nucleus accumbens (NAc) in MDD patients. However, limited investigations have focused on aberrant functional connectivity (FC) within NAc subregions among MDD with childhood trauma. Thus, this study adopts analyses of both static FC (sFC) and dynamic FC (dFC) to examine neurobiological changes in MDD with childhood trauma. The bilateral nucleus accumbens shell (NAc-shell) and nucleus accumbens core (NAc-core) were selected as the seeds. Four participant groups were included: MDD with childhood trauma (n = 48), MDD without childhood trauma (n = 30), healthy controls (HCs) with childhood trauma (n = 57), and HCs without childhood trauma (n = 46). Our findings revealed both abnormal sFC and dFC between NAc-shell and NAc-core and regions including the middle occipital gyrus (MOG), anterior cingulate cortex, and inferior frontal gyrus in MDD with childhood trauma. Furthermore, a significant correlation was identified between the dFC of the left NAc-shell and the right MOG in relation to childhood trauma. Additionally, abnormal dFC moderated the link between childhood abuse and depression severity. These outcomes shed light on the neurobiological underpinnings of MDD with childhood trauma.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Tong Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| | - Liwen Zhu
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Qing Xu
- Department of Clinical Psychiatry, The Third Hospital of Longyan, Longyan, Fujian 364000, China
| | - Yuhong Li
- Department of Publicity and Health Education, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Juran Chen
- General Outpatient Clinic, The Zhongshan Torch Hi-tech Industrial Development Zone Community Health Service, Zhongshan 528437, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| |
Collapse
|
78
|
Dehghani-Arani F, Kazemi R, Hallajian AH, Sima S, Boutimaz S, Hedayati S, Koushamoghadam S, Safarifard R, Salehinejad MA. Metaanalysis of Repetitive Transcranial Magnetic Stimulation (rTMS) Efficacy for OCD Treatment: The Impact of Stimulation Parameters, Symptom Subtype and rTMS-Induced Electrical Field. J Clin Med 2024; 13:5358. [PMID: 39336846 PMCID: PMC11432318 DOI: 10.3390/jcm13185358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) has recently demonstrated significant potential in treating obsessive-compulsive disorder (OCD). However, its effectiveness depends on various parameters, including stimulation parameters, OCD subtypes and electrical fields (EFs) induced by rTMS in targeted brain regions that are less studied. Methods: Using the PRISMA approach, we examined 27 randomized control trials (RCTs) conducted from 1985 to 2024 using rTMS for the treatment of OCD and conducted several meta-analyses to investigate the role of rTMS parameters, including the EFs induced by each rTMS protocol, and OCD subtypes on treatment efficacy. Results: A significant, medium effect size was found, favoring active rTMS (gPPC = 0.59, p < 0.0001), which was larger for the obsession subscale. Both supplementary motor area (SMA) rTMS (gPPC = 0.82, p = 0.048) and bilateral dorsolateral prefrontal cortex (DLPFC) rTMS (gPPC = 1.14, p = 0.04) demonstrated large effect sizes, while the right DLPFC showed a significant moderate effect size for reducing OCD severity (gPPC = 0.63, p = 0.012). These protocols induced the largest EFs in dorsal cognitive, ventral cognitive and sensorimotor circuits. rTMS protocols targeting DLPFC produced the strongest electrical fields in cognitive circuits, while pre-supplementary motor area (pre-SMA) and orbitofrontal cortex (OFC) rTMS protocols induced larger fields in regions linked to emotional and affective processing in addition to cognitive circuits. The pre-SMA rTMS modulated more circuits involved in OCD pathophysiology-sensorimotor, cognitive, affective, and frontolimbic-with larger electrical fields than the other protocols. Conclusions: While rTMS shows moderate overall clinical efficacy, protocols targeting ventral and dorsal cognitive and sensorimotor circuits demonstrate the highest potential. The pre-SMA rTMS appears to induce electrical fields in more circuits relevant to OCD pathophysiology.
Collapse
Affiliation(s)
- Fateme Dehghani-Arani
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
| | - Reza Kazemi
- Faculty of Entrepreneurship, University of Tehran, Tehran 1738953355, Iran;
| | - Amir-Homayun Hallajian
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 Nijmegen, The Netherlands
| | - Sepehr Sima
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836613, Iran
| | - Samaneh Boutimaz
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
| | - Sepideh Hedayati
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Saba Koushamoghadam
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran 1445613111, Iran;
| | - Razieh Safarifard
- Faculty of Psychology and Educational Sciences, University of Tehran, Tehran 1417935840, Iran (S.B.)
| | - Mohammad Ali Salehinejad
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836613, Iran
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
| |
Collapse
|
79
|
Azriel O, Arad G, Tik N, Weiser M, Bloch M, Garber E, Lazarov A, Pine DS, Tavor I, Bar-Haim Y. Neural activation changes following attention bias modification treatment or a selective serotonin reuptake inhibitor for social anxiety disorder. Psychol Med 2024; 54:1-13. [PMID: 39252484 PMCID: PMC11496228 DOI: 10.1017/s0033291724001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Delineation of changes in neural function associated with novel and established treatments for social anxiety disorder (SAD) can advance treatment development. We examined such changes following selective serotonin reuptake inhibitor (SSRI) and attention bias modification (ABM) variant - gaze-contingent music reward therapy (GC-MRT), a first-line and an emerging treatments for SAD. METHODS Eighty-one patients with SAD were allocated to 12-week treatments of either SSRI or GC-MRT, or waitlist (ns = 22, 29, and 30, respectively). Baseline and post-treatment functional magnetic resonance imaging (fMRI) data were collected during a social-threat processing task, in which attention was directed toward and away from threat/neutral faces. RESULTS Patients who received GC-MRT or SSRI showed greater clinical improvement relative to patients in waitlist. Compared to waitlist patients, treated patients showed greater activation increase in the right inferior frontal gyrus and anterior cingulate cortex when instructed to attend toward social threats and away from neutral stimuli. An additional anterior cingulate cortex cluster differentiated between the two active groups. Activation in this region increased in ABM and decreased in SSRI. In the ABM group, symptom change was positively correlated with neural activation change in the dorsolateral prefrontal cortex. CONCLUSIONS Brain function measures show both shared and treatment-specific changes following ABM and SSRI treatments for SAD, highlighting the multiple pathways through which the two treatments might work. Treatment-specific neural responses suggest that patients with SAD who do not fully benefit from SSRI or ABM may potentially benefit from the alternative treatment, or from a combination of the two. TRIAL REGISTRATION ClinicalTrials.gov, Identifier: NCT03346239. https://clinicaltrials.gov/ct2/show/NCT03346239.
Collapse
Affiliation(s)
- Omer Azriel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gal Arad
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Niv Tik
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Weiser
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Psychiatry, Sheba Medical Center, Tel Aviv, Israel
| | - Miki Bloch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eddie Garber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amit Lazarov
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel S. Pine
- Section on Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
80
|
Herkströter F, Zahedi A, Standke I, Dannlowski U, Lencer R, Schubotz RI, Trempler I. Gray matter matters: Cognitive stability and flexibility in schizophrenia spectrum disorder. Psychophysiology 2024; 61:e14596. [PMID: 38691383 DOI: 10.1111/psyp.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Cognitive dysfunction constitutes a core characteristic of schizophrenia spectrum disorders (SZ). Specifically, deficits in updating generative models (i.e., cognitive flexibility) and shielding against distractions (i.e., cognitive stability) are considered critical contributors to cognitive impairment in these patients. Here, we examined the structural integrity of frontostriatal networks and their associations with reduced cognitive stability and flexibility in SZ patients. In a sample of 21 patients diagnosed with SZ and 22 healthy controls, we measured gray matter volume (GMV) using structural MRI. Further, cognitive stability and flexibility were assessed using a switch-drift paradigm, quantifying the successful ignoring of distracters and detection of rule switches. Compared to controls, patients showed significantly smaller GMV in the whole brain and three predefined regions of interest: the medial prefrontal cortex (mPFC), inferior frontal gyrus (IFG), and caudate nucleus (CN). Notably, GMV in these areas positively correlated with correct rule-switch detection but not with ignoring rule-compatible drifts. Further, the volumetric differences between SZ patients and controls were statistically explainable by considering the behavioral performance in the switch-drift task. Our results indicate that morphological abnormalities in frontostriatal networks are associated with deficient flexibility in SZ patients and highlight the necessity of minimizing neurodevelopmental and progressive brain atrophy in this population.
Collapse
Affiliation(s)
- Florentine Herkströter
- Department of Neurology, Niels-Stensen-Kliniken, Marienhospital Osnabrück-Standort Natruper Holz, Osnabrueck, Germany
| | - Anoushiravan Zahedi
- Institute of Psychology, University of Muenster, Muenster, Germany
- Otto Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Isabel Standke
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Udo Dannlowski
- Institute of Psychology, University of Muenster, Muenster, Germany
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany
| | - Ricarda I Schubotz
- Institute of Psychology, University of Muenster, Muenster, Germany
- Otto Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Ima Trempler
- Institute of Psychology, University of Muenster, Muenster, Germany
- Otto Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| |
Collapse
|
81
|
Happer JP, Beaton LE, Wagner LC, Hodgkinson CA, Goldman D, Marinkovic K. Neural indices of heritable impulsivity: Impact of the COMT Val158Met polymorphism on frontal beta power during early motor preparation. Biol Psychol 2024; 191:108826. [PMID: 38862067 PMCID: PMC11853962 DOI: 10.1016/j.biopsycho.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Studies of COMT Val158Met suggest that the neural circuitry subserving inhibitory control may be modulated by this functional polymorphism altering cortical dopamine availability, thus giving rise to heritable differences in behaviors. Using an anatomically-constrained magnetoencephalography method and stratifying the sample by COMT genotype, from a larger sample of 153 subjects, we examined the spatial and temporal dynamics of beta oscillations during motor execution and inhibition in 21 healthy Met158/Met158 (high dopamine) or 21 Val158/Val158 (low dopamine) genotype individuals during a Go/NoGo paradigm. While task performance was unaffected, Met158 homozygotes demonstrated an overall increase in beta power across regions essential for inhibitory control during early motor preparation (∼100 ms latency), suggestive of a global motor "pause" on behavior. This increase was especially evident on Go trials with slow response speed and was absent during inhibition failures. Such a pause could underlie the tendency of Met158 allele carriers to be more cautious and inhibited. In contrast, Val158 homozygotes exhibited a beta drop during early motor preparation, indicative of high response readiness. This decrease was associated with measures of behavioral disinhibition and consistent with greater extraversion and impulsivity observed in Val homozygotes. These results provide mechanistic insight into genetically-determined interindividual differences of inhibitory control with higher cortical dopamine associated with momentary response hesitation, and lower dopamine leading to motor impulsivity.
Collapse
Affiliation(s)
- Joseph P Happer
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Bethesda, MD, USA
| | - Ksenija Marinkovic
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Radiology, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
82
|
Novak L, Malinakova K, Trnka R, Mikoska P, Sverak T, Kiiski H, Tavel P, van Dijk JP. Neural bases of social deficits in ADHD: A systematic review. Does the Theory of Mind matter? Brain Res Bull 2024; 215:111011. [PMID: 38906229 DOI: 10.1016/j.brainresbull.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION The Attention Deficit Hyperactivity Disorder (ADHD) causes serious interpersonal problems from childhood to adulthood, one of them being problematic social functioning. This phenomenon in ADHD should be associated with impairments in the Theory of Mind (ToM). Therefore, understanding the neural correlates of the ToM could be crucial for helping individuals with ADHD with their social functioning. Thus, we aimed to review published literature concerning neuroanatomical and functional correlates of ToM deficits in children and adolescents with ADHD. METHODS We reviewed studies published between 1970 and 2023. In accordance with PRISMA guidelines, after data from three databases were collected, two authors (LN and PM) independently screened all relevant records (n=638) and consequently, both authors did the data extraction. The quality of the included studies (n=5) was measured by a modified version of The Newcastle-Ottawa Scale and by measures specific for our study. This systematic review was registered on PROSPERO (CRD42020139847). RESULTS Results indicated that impairments in performing of the ToM tasks were negatively associated with the grey matter volume in the bilateral amygdala and hippocampus in both, ADHD and control group. In EEG studies, a significantly greater electrophysiological activity during ToM tasks was observed in the, frontal, temporal, parietal and occipital lobes in participants with ADHD as compared to healthy subjects. CONCLUSION More research is needed to explore the ToM deficits in children with ADHD. Future research might focus on the neural circuits associated with attention and inhibition, which deficits seems to contribute to the ToM deficits in children and adolescents with ADHD.
Collapse
Affiliation(s)
- Lukas Novak
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic; Department of Community and Occupational Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Klara Malinakova
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Radek Trnka
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic; Prague College of Psychosocial Studies, Prague, Czech Republic
| | - Petr Mikoska
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomas Sverak
- Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hanni Kiiski
- Trinity Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
| | - Peter Tavel
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jitse P van Dijk
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic; Department of Community and Occupational Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Graduate School Kosice Institute for Society and Health, P.J. Safarik University in Kosice, Kosice, Slovak Republic
| |
Collapse
|
83
|
Qiao Y, Song X, Yan J, Pan W, Chia C, Zhao D, Niu CM, Xie Q, Jin H. Neurological activation during verbal fluency task and resting-state functional connectivity abnormalities in obsessive-compulsive disorder: a functional near-infrared spectroscopy study. Front Psychiatry 2024; 15:1416810. [PMID: 39279815 PMCID: PMC11392768 DOI: 10.3389/fpsyt.2024.1416810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Objective This study aims to investigate the activation of frontotemporal functional brain areas in patients with Obsessive-Compulsive Disorder (OCD) during a Verbal Fluency Task (VFT), and to compare their brain functional connectivity in a resting state with that of healthy controls. The goal is to deepen our understanding of the neuropathological mechanisms underlying OCD. Methods 32 patients with OCD and 32 controls matched for age, gender, handedness, and years of education participated in this study, they were divided into OCD group and healthy comtrol group. We conducted VFT task tests and 10-minute resting state tests on both groups by using functional Near-Infrared Spectroscopy (fNIRS). The VFT was utilized to assess the activation (beta values) and the integral and centroid values of the frontal and bilateral temporal lobes, including brain areas BA9 and 46 (dorsolateral prefrontal cortex), BA10 (frontal pole), BA45 (inferior frontal gyrus), BA21 (middle temporal gyrus), and BA22 (superior temporal gyrus). We evaluated the functional connectivity levels of these areas during the resting state. Differences in these measures between OCD patients and healthy controls were analyzed using two-sample independent t-tests and non-parametric Mann-Whitney U tests. Results During VFT, OCD had smaller integral values(z=5.371, p<0.001; t=4.720, p<0.001), and larger centroid values(t=-2.281, p=0.026; z=-2.182, p=0.029) compared to healthy controls, along with a reduced number of activated channels detected by fNIRS. Additionally, activation values (β) in various functional brain areas, including BA9, BA46, BA10, BA45, BA21, and BA22, were significantly lower in the OCD group (all p< 0.01). In the resting state, notable disparities in functional connectivity were observed between the inferior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC) in the OCD group, in comparison to the control group. Specifically, there was a significant increase in connectivity between the left IFG and right DLPFC, suggesting the presence of altered connectivity patterns in these areas. Conclusions The study highlights significant disparities in neural activation and functional connectivity between OCD patients and healthy controls during VFT. Specifically, reduced activation was noted in the frontal and bilateral temporal lobes of OCD patients, alongside alterations in resting-state functional connectivity between the IFG and DLPFC. These findings contribute to our understanding of the neurobiological underpinnings of OCD and may guide future therapeutic strategies.
Collapse
Affiliation(s)
- Yongjun Qiao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Pan
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chinhsuan Chia
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Jin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
84
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, feeling and regulating: investigating the association of focal brain damage with voluntary respiratory and motor control. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230251. [PMID: 39005040 PMCID: PMC11528364 DOI: 10.1098/rstb.2023.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 07/16/2024] Open
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire, and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia and left medial temporal lobe showed reduced performance relative to individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60 bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnoea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- Henrik Bischoff
- Department of Psychology, University of Stockholm, 10691 Stockholm, Sweden
- Department of Psychology, Carl-von-Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christopher Kovach
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukbhinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Joel Bruss
- Departments of Pediatrics, Neurology, and Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Tranel
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK 74119, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
85
|
Zhu J, Zhou XM, Constantinidis C, Salinas E, Stanford TR. Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity. iScience 2024; 27:110488. [PMID: 39156644 PMCID: PMC11326912 DOI: 10.1016/j.isci.2024.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The ability to suppress inappropriate actions and respond rapidly to appropriate ones matures late in life, after puberty. We investigated the development of this capability in monkeys trained to look away from a lone, bright stimulus (antisaccade task). We evaluated behavioral performance and recorded neural activity in the prefrontal cortex both before and after the transition from puberty to adulthood. Compared to when young, adult monkeys processed the stimulus more rapidly, resisted more effectively the involuntary urge to look at it, and adhered to the task rule more consistently. The spatially selective visuomotor neurons in the prefrontal cortex provided neural correlates of these behavioral changes indicative of a faster transition from stimulus-driven (exogenous) to goal-driven (endogenous) control within the time course of each trial. The results reveal parallel signatures of cognitive maturation in behavior and prefrontal activity that are consistent with improvements in attentional allocation after adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Terrence R. Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
86
|
Wang Y, Di M, Li Y, Liu P, Zhao J, Wang Y. Two fundamentally different mechanisms by which unconscious information impairs behavioral performance: Evidence from fMRI and computational modeling. Neuroimage 2024; 297:120719. [PMID: 38971485 DOI: 10.1016/j.neuroimage.2024.120719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
It is increasingly clear that unconscious information impairs the performance of the corresponding action when the instruction to act is delayed. However, whether this impairment occurs at the response level or at the perceptual level remains controversial. This study used fMRI and a computational model with a pre-post design to address this elusive issue. The fMRI results showed that when the unconscious information containing strong stimulus-response associations was irrelevant to subsequent stimuli, the precuneus in the parietal lobe, which is thought to be involved in sensorimotor processing, was activated. In contrast, when the unconscious information was relevant to subsequent stimuli, regardless of the strength of the stimulus-response associations, some regions in the occipital and temporal cortices, which are thought to be involved in visual perceptual processing, were activated. In addition, the percent signal change in the regions of interest associated with motor inhibition was modulated by compatibility in the irrelevant but not in the relevant stimuli conditions. Modeling of behavioral data further supported that the irrelevant and relevant stimuli conditions involved fundamentally different mechanisms. Our finding reconciles the debate about the mechanism by which unconscious information impairs action performance and has important implications for understanding of unconscious cognition.
Collapse
Affiliation(s)
- Yongchun Wang
- School of Psychology, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi'an, 710062, China
| | - Meilin Di
- Student Mental Health Education Center, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ya Li
- School of Psychology, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi'an, 710062, China
| | - Peng Liu
- School of Public Management, Northwest University, Xi'an, 710127, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi'an, 710062, China
| | - Yonghui Wang
- School of Psychology, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi'an, 710062, China.
| |
Collapse
|
87
|
Sookprao P, Benjasupawan K, Phangwiwat T, Chatnuntawech I, Lertladaluck K, Gutchess A, Chunharas C, Itthipuripat S. Conflicting Sensory Information Sharpens the Neural Representations of Early Selective Visuospatial Attention. J Neurosci 2024; 44:e2012232024. [PMID: 38955488 PMCID: PMC11326869 DOI: 10.1523/jneurosci.2012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Adaptive behaviors require the ability to resolve conflicting information caused by the processing of incompatible sensory inputs. Prominent theories of attention have posited that early selective attention helps mitigate cognitive interference caused by conflicting sensory information by facilitating the processing of task-relevant sensory inputs and filtering out behaviorally irrelevant information. Surprisingly, many recent studies that investigated the role of early selective attention on conflict mitigation have failed to provide positive evidence. Here, we examined changes in the selectivity of early visuospatial attention in male and female human subjects performing an attention-cueing Eriksen flanker task, where they discriminated the shape of a visual target surrounded by congruent or incongruent distractors. We used the inverted encoding model to reconstruct spatial representations of visual selective attention from the topographical patterns of amplitude modulations in alpha band oscillations in scalp EEG (∼8-12 Hz). We found that the fidelity of the alpha-based spatial reconstruction was significantly higher in the incongruent compared with the congruent condition. Importantly, these conflict-related modulations in the reconstruction fidelity occurred at a much earlier time window than those of the lateralized posterior event-related potentials associated with target selection and distractor suppression processes, as well as conflict-related modulations in the frontocentral negative-going wave and midline-frontal theta oscillations (∼3-7 Hz), thought to track executive control functions. Taken together, our data suggest that conflict resolution is supported by the cascade of neural processes underlying early selective visuospatial attention and frontal executive functions that unfold over time.
Collapse
Affiliation(s)
- Panchalee Sookprao
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- SCG Digital Office, Bangkok 10800, Thailand
| | - Kanyarat Benjasupawan
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center (BX), Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10600, Thailand
- Computer Engineering Department, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Kanda Lertladaluck
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Angela Gutchess
- Department of Psychology, Neuroscience Program, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Chaipat Chunharas
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center (BX), Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10600, Thailand
| |
Collapse
|
88
|
Taghvaei M, Jones CK, Luna LP, Gujar SK, Sair HI. Asymmetry of the Frontal Aslant Tract Depends on Handedness. AJNR Am J Neuroradiol 2024; 45:1090-1097. [PMID: 38964863 PMCID: PMC11383403 DOI: 10.3174/ajnr.a8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND PURPOSE The human brain displays structural and functional disparities between its hemispheres, with such asymmetry extending to the frontal aslant tract. This plays a role in a variety of cognitive functions, including speech production, language processing, and executive functions. However, the factors influencing the laterality of the frontal aslant tract remain incompletely understood. Handedness is hypothesized to impact frontal aslant tract laterality, given its involvement in both language and motor control. In this study, we aimed to investigate the relationship between handedness and frontal aslant tract lateralization, providing insight into this aspect of brain organization. MATERIALS AND METHODS The Automated Tractography Pipeline was used to generate the frontal aslant tract for both right and left hemispheres in a cohort of 720 subjects sourced from the publicly available Human Connectome Project in Aging database. Subsequently, macrostructural and microstructural parameters of the right and left frontal aslant tract were extracted for each individual in the study population. The Edinburgh Handedness Inventory scores were used for the classification of handedness, and a comparative analysis across various handedness groups was performed. RESULTS An age-related decline in both macrostructural parameters and microstructural integrity was noted within the studied population. The frontal aslant tract demonstrated a greater volume and larger diameter in male subjects compared with female participants. Additionally, a left-side laterality of the frontal aslant tract was observed within the general population. In the right-handed group, the volume (P < .001), length (P < .001), and diameter (P = .004) of the left frontal aslant tract were found to be higher than those of the right frontal aslant tract. Conversely, in the left-handed group, the volume (P = .040) and diameter (P = .032) of the left frontal aslant tract were lower than those of the right frontal aslant tract. Furthermore, in the right-handed group, the volume and diameter of the frontal aslant tract showed left-sided lateralization, while in the left-handed group, a right-sided lateralization was evident. CONCLUSIONS The laterality of the frontal aslant tract appears to differ with handedness. This finding highlights the complex interaction between brain lateralization and handedness, emphasizing the importance of considering handedness as a factor in evaluating brain structure and function.
Collapse
Affiliation(s)
- Mohammad Taghvaei
- From the Department of Neurology (M.T.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Craig K Jones
- Department of Computer Science (C.K.J.), The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Malone Center for Engineering in Healthcare (C.K.J., H.I.S.), The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Licia P Luna
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sachin K Gujar
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haris I Sair
- The Malone Center for Engineering in Healthcare (C.K.J., H.I.S.), The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Russell. H. Morgan Department of Radiology and Radiological Science (C.K.J., L.P.L., S.K.G., H.I.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
89
|
Ter Horst J, Boillot M, Cohen MX, Englitz B. Decreased Beta Power and OFC-STN Phase Synchronization during Reactive Stopping in Freely Behaving Rats. J Neurosci 2024; 44:e0463242024. [PMID: 38866485 PMCID: PMC11308328 DOI: 10.1523/jneurosci.0463-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
During natural behavior, an action often needs to be suddenly stopped in response to an unexpected sensory input-referred to as reactive stopping. Reactive stopping has been mostly investigated in humans, which led to hypotheses about the involvement of different brain structures, in particular the hyperdirect pathway. Here, we directly investigate the contribution and interaction of two key regions of the hyperdirect pathway, the orbitofrontal cortex (OFC) and subthalamic nucleus (STN), using dual-area, multielectrode recordings in male rats performing a stop-signal task. In this task, rats have to initiate movement to a go-signal, and occasionally stop their movement to the go-signal side after a stop-signal, presented at various stop-signal delays. Both the OFC and STN show near-simultaneous field potential reductions in the beta frequency range (12-30 Hz) compared with the period preceding the go-signal and the movement period. These transient reductions (∼200 ms) only happen during reactive stopping, which is when the stop-signal was received after action initiation, and are well timed after stop-signal onset and before the estimated time of stopping. Phase synchronization analysis also showed a transient attenuation of synchronization between the OFC and STN in the beta range during reactive stopping. The present results provide the first direct quantification of local neural oscillatory activity in the OFC and STN and interareal synchronization specifically timed during reactive stopping.
Collapse
Affiliation(s)
- Jordi Ter Horst
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Morgane Boillot
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Michael X Cohen
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Bernhard Englitz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
90
|
Feurer C, Jimmy J, Uribe M, Shankman SA, Langenecker SA, Craske MG, Ajilore O, Phan KL, Klumpp H. Brain activity during reappraisal and associations with psychotherapy response in social anxiety and major depression: a randomized trial. Psychol Med 2024; 54:3025-3035. [PMID: 38775085 DOI: 10.1017/s0033291724001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) is an effective treatment for patients with social anxiety disorder (SAD) or major depressive disorder (MDD), yet there is variability in clinical improvement. Though prior research suggests pre-treatment engagement of brain regions supporting cognitive reappraisal (e.g. dorsolateral prefrontal cortex [dlPFC]) foretells CBT response in SAD, it remains unknown if this extends to MDD or is specific to CBT. The current study examined associations between pre-treatment neural activity during reappraisal and clinical improvement in patients with SAD or MDD following a trial of CBT or supportive therapy (ST), a common-factors comparator arm. METHODS Participants were 75 treatment-seeking patients with SAD (n = 34) or MDD (n = 41) randomized to CBT (n = 40) or ST (n = 35). Before randomization, patients completed a cognitive reappraisal task during functional magnetic resonance imaging. Additionally, patients completed clinician-administered symptom measures and a self-report cognitive reappraisal measure before treatment and every 2 weeks throughout treatment. RESULTS Results indicated that pre-treatment neural activity during reappraisal differentially predicted CBT and ST response. Specifically, greater trajectories of symptom improvement throughout treatment were associated with less ventrolateral prefrontal cortex (vlPFC) activity for CBT patients, but more vlPFC activity for ST patients. Also, less baseline dlPFC activity corresponded with greater trajectories of self-reported reappraisal improvement, regardless of treatment arm. CONCLUSIONS If replicated, findings suggest individual differences in brain response during reappraisal may be transdiagnostically associated with treatment-dependent improvement in symptom severity, but improvement in subjective reappraisal following psychotherapy, more broadly.
Collapse
Affiliation(s)
- Cope Feurer
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jagan Jimmy
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Melissa Uribe
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Scott A Langenecker
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Michelle G Craske
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, Los Angeles, CA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
91
|
Scott DN, Mukherjee A, Nassar MR, Halassa MM. Thalamocortical architectures for flexible cognition and efficient learning. Trends Cogn Sci 2024; 28:739-756. [PMID: 38886139 PMCID: PMC11305962 DOI: 10.1016/j.tics.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The brain exhibits a remarkable ability to learn and execute context-appropriate behaviors. How it achieves such flexibility, without sacrificing learning efficiency, is an important open question. Neuroscience, psychology, and engineering suggest that reusing and repurposing computations are part of the answer. Here, we review evidence that thalamocortical architectures may have evolved to facilitate these objectives of flexibility and efficiency by coordinating distributed computations. Recent work suggests that distributed prefrontal cortical networks compute with flexible codes, and that the mediodorsal thalamus provides regularization to promote efficient reuse. Thalamocortical interactions resemble hierarchical Bayesian computations, and their network implementation can be related to existing gating, synchronization, and hub theories of thalamic function. By reviewing recent findings and providing a novel synthesis, we highlight key research horizons integrating computation, cognition, and systems neuroscience.
Collapse
Affiliation(s)
- Daniel N Scott
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
92
|
Narmashiri A. Effects of stimulus onset asynchrony on cognitive control in healthy adults. PLoS One 2024; 19:e0306609. [PMID: 39018299 PMCID: PMC11253978 DOI: 10.1371/journal.pone.0306609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024] Open
Abstract
The efficiency of cognitive control in healthy adults can be influenced by various factors, including the stimulus onset asynchrony (SOA) effect and strategy training. To address these issues, our study aims to investigate the impact of SOA on single-mode cognitive control using the Go/No-Go task, as well as the manifestation of proactive control within dual mechanisms of cognitive control through the AX-CPT task. In single-mode cognitive control, extending SOA led to significantly enhanced reaction times (RTs) during Go trials, suggesting improved task performance with increased preparation time. Moreover, the analysis revealed consistently higher accuracy rates in No-Go trials than to Go trials across all SOA levels, indicating robust inhibition processes unaffected by SOA variations. In the dual mechanisms of cognitive control, significant variations in RT and accuracy were observed among different trial types. Notably, participants exhibited superior performance in detecting targets during BY trials and shorter RTs in BX trials, indicative of efficient processing of target stimuli. Conversely, prolonged RTs in AY trials suggest proactive control strategies aimed at maintaining task-relevant information and inhibiting irrelevant responses. Overall, these findings highlight the effect of SOA on single-mode cognitive control and the emergence of proactive control within dual mechanisms of cognitive control in healthy adults.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- Institute for Research in Fundamental Sciences (IPM), School of Cognitive Sciences, Tehran, Iran
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
93
|
Lunkova E, Chen JK, Saluja RS, Ptito A. Assessment of Oculomotor Functions as a Biomarker in Mild Traumatic Brain Injury. Neurotrauma Rep 2024; 5:628-639. [PMID: 39036432 PMCID: PMC11257115 DOI: 10.1089/neur.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mild traumatic brain injury (mTBI), or concussion, is a major public health problem, and ambiguity still exists regarding its diagnosis. While functional magnetic resonance imaging (fMRI) has been identified as a helpful screening tool for concussion, its limited accessibility in clinical or field settings necessitates a more efficient alternative. Oculomotor function deficit is an often-reported pathology in mTBI. Due to the neuroanatomical overlap between eye-movement circuitry and mTBI pathophysiology, visual deficits are expected. In this study, we investigate the possibility of using an oculomotor assessment tool for finding biomarkers in concussion. We used fMRI with tasks evaluating oculomotor functions: smooth pursuit (SP), saccades, anti-saccades, and optokinetic nystagmus (OKN). Before the scanning, the testing with a system of virtual reality goggles with integrated eye- and head-tracking was used where subjects performed the same tasks as those used in fMRI. Twenty-nine concussed symptomatic adults (CSA) within 1-month postconcussion and 29 age- and sex-matched healthy controls (HCS) were tested to examine blood oxygen level-dependent (BOLD) fMRI alterations associated with performances in oculomotor function after mTBI and evaluate the efficacy of the oculomotor assessment in detecting oculomotor and gaze deficits following mTBI. Comparing CSA with HCS, significant differences were observed in anti-saccades and OKN performance. CSA group exhibited elevated %BOLD signal change on each task compared with HCS: in the superior frontal gyrus during the smooth pursuit, inferior frontal gyrus during the saccades, putamen and dorsolateral prefrontal cortex (DLPFC) during the anti-saccades, and lingual gyrus and IFG during the OKN. Key findings include the following: (1) oculomotor deficits in concussed subjects compared with controls, (2) abnormal activation patterns in areas related to the regulation and control of oculomotor movements, suggesting concussion-induced disruptions, and (3) the potential of oculomotor assessment as a promising approach for mTBI biomarkers, with anti-saccades and OKN identified as the most sensitive tasks.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Jen-Kai Chen
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Rajeet Singh Saluja
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
- McGill University Health Centre Research Institute, Montreal, Canada
| | - Alain Ptito
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
- McGill University Health Centre Research Institute, Montreal, Canada
- Montreal Neurological Institute, Montreal, Canada
| |
Collapse
|
94
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
95
|
Ouerchefani R, Ouerchefani N, Ben Rejeb MR, Le Gall D. Exploring behavioural and cognitive dysexecutive syndrome in patients with focal prefrontal cortex damage. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:443-463. [PMID: 35244518 DOI: 10.1080/23279095.2022.2036152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study's objectives were to characterize the frequency and profile of behavioral and cognitive dysexecutive syndromes in patients with focal prefrontal cortex damage and how these syndromes overlap. We also examined the contribution of the prefrontal brain regions to these syndromes. Therefore, thirty patients with prefrontal cortex damage and thirty control subjects were compared on their performances using the GREFEX battery assessing the dysexecutive syndromes. The results showed that combined behavioral and cognitive dysexecutive syndrome was observed in 53.33%, while pure cognitive dysexecutive syndrome was observed in 20% and behavioral in 26.67%. Also, almost all behavioral and cognitive dysexecutive disorders discriminated frontal patients from controls. Moreover, correlations and regression analyses between task scores in both domains of dysexecutive syndromes showed that the spectrum of behavioral disorders was differentially associated with cognitive impairment of initiation, inhibition, generation, deduction, coordination, flexibility and the planning process. Furthermore, the patterns of cognitive and behavioral dysexecutive syndrome were both predictors of impairment in daily living activities and loss of autonomy. Finally, frontal regions contributing to different dysexecutive syndromes assessed by MRI voxel lesion symptom analysis indicate several overlapping regions centered on the ventromedial and dorsomedial prefrontal cortex for both domains of dysexecutive syndrome. This study concludes that damage to the frontal structures may lead to a diverse set of changes in both cognitive and behavioral domains which both contribute to loss of autonomy. The association of the ventromedial and dorsomedial prefrontal regions to both domains of dysexecutive syndrome suggests a higher integrative role of these regions in processing cognition and behavior.
Collapse
Affiliation(s)
- Riadh Ouerchefani
- High Institute of Human Sciences, Department of Psychology, University of Tunis El Manar, Tunis, Tunisia
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| | | | - Mohamed Riadh Ben Rejeb
- Faculty of Human and Social Science of Tunisia, Department of Psychology, University of Tunis I, Tunis, Tunisia
| | - Didier Le Gall
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| |
Collapse
|
96
|
Borairi S, Ozdemir B, Jenkins J, Shah PS, Kingdom J, Ganea P. A follow up investigation of placental pathology, responsive parenting, and preschool children's executive functioning and language development. Child Neuropsychol 2024; 30:684-701. [PMID: 37811813 DOI: 10.1080/09297049.2023.2264535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Despite documented effects linking underlying placental diseases and neurological impairments in children, little is known about the long-term effects of placental pathology on children's neurocognitive outcomes. In addition, maternal responsivity, known to positively influence early postnatal cognitive development, may act to protect children from putative adverse effects of placental pathology. The current study is a follow up of medically healthy, term born, preschool age children, born with placental pathology. A sample of 118 children (45 comparison children with normal placental findings, 73 born with placental pathology) were followed when children were 3-4 years old. In comparison to children born to mothers with normal placentas, placental pathology was associated with poorer performance in the executive function involving cognitive flexibility, but not inhibitory control or receptive language. Maternal responsivity was observed to be marginally protective on the impact of placental pathology risk on cognitive flexibility, but this was not seen for either inhibitory control or receptive language.
Collapse
Affiliation(s)
- Sahar Borairi
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Begum Ozdemir
- Department of Psychology, Maltepe University, Maltepe, Turkey
| | - Jennifer Jenkins
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Prakesh S Shah
- Department of Pediatrics, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - John Kingdom
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Patricia Ganea
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| |
Collapse
|
97
|
Brown T, Kim K, Gehring WJ, Lustig C, Bohnen NI. Sensitivity to and Control of Distraction: Distractor-Entrained Oscillation and Frontoparietal EEG Gamma Synchronization. Brain Sci 2024; 14:609. [PMID: 38928609 PMCID: PMC11202030 DOI: 10.3390/brainsci14060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
While recent advancements have been made towards a better understanding of the involvement of the prefrontal cortex (PFC) in the context of cognitive control, the exact mechanism is still not fully understood. Successful behavior requires the correct detection of goal-relevant cues and resisting irrelevant distractions. Frontal parietal networks have been implicated as important for maintaining cognitive control in the face of distraction. The present study investigated the role of gamma-band power in distraction resistance and frontoparietal networks, as its increase is linked to cholinergic activity. We examined changes in gamma activity and their relationship to frontoparietal top-down modulation for distractor challenges and to bottom-up distractor processing. Healthy young adults were tested using a modified version of the distractor condition sustained attention task (dSAT) while wearing an EEG. The modified distractor was designed so that oscillatory activities could be entrained to it, and the strength of entrainment was used to assess the degree of distraction. Increased top-down control during the distractor challenge increased gamma power in the left parietal regions rather than the right prefrontal regions predicted from rodent studies. Specifically, left parietal gamma power increased in response to distraction where the amount of this increase was negatively correlated with the neural activity reflecting bottom-up distractor processing in the visual area. Variability in gamma power in right prefrontal regions was associated with increased response time variability during distraction. This may suggest that the right prefrontal region may contribute to the signaling needed for top-down control rather than its implementation.
Collapse
Affiliation(s)
- Taylor Brown
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - William J. Gehring
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - Cindy Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
98
|
Miller AB, Jenness JL, Elton AL, Pelletier-Baldelli A, Patel K, Bonar A, Martin S, Dichter G, Giletta M, Slavich GM, Rudolph KD, Hastings P, Nock M, Prinstein MJ, Sheridan MA. Neural Markers of Emotion Reactivity and Regulation Before and After a Targeted Social Rejection: Differences Among Girls With and Without Suicidal Ideation and Behavior Histories. Biol Psychiatry 2024; 95:1100-1109. [PMID: 37918460 PMCID: PMC11063123 DOI: 10.1016/j.biopsych.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Suicidal thoughts and behaviors (STBs) are common among adolescent girls and increase risk for suicide death. Emotion regulation difficulties are linked with STBs, particularly in response to targeted social rejection. However, neural correlates of this link have not been investigated and may identify novel targets for interventions. Here, we examined neural correlates of emotion regulation before and after an experimentally delivered targeted social rejection in adolescent girls with STBs and girls without STBs (i.e., control participants). METHODS Girls (N = 138; age range, 9-15 years; mean [SD] age = 11.6 [1.79] years) completed a functional neuroimaging emotion regulation task. In the middle of the task, participants were socially rejected by an unfamiliar confederate whom the participants had elected to meet. Participants also completed a multimethod STB assessment. RESULTS Before rejection, girls with a history of STBs, compared with control participants, showed greater activation in the right superior frontal gyrus when passively viewing negative stimuli, and girls with suicidal behavior (SB) versus those without SB showed less activation in the right frontal pole during emotion regulation attempts. Following the rejection, girls with STBs, compared with control participants, showed greater activation in the right inferior frontal gyrus during emotion regulation. CONCLUSIONS Before social rejection, girls with SB versus without SB may not activate brain regions implicated in emotion regulation, suggesting a vulnerability to poor regulation at their baseline emotional state. After social rejection, girls with any history of STBs showed altered activation in a brain region strongly associated with inhibition and emotion regulation success, possibly reflecting increased effort at inhibiting emotional responses during regulation following stress exposure.
Collapse
Affiliation(s)
- Adam Bryant Miller
- Mental Health Risk and Resilience Research Program, RTI International, Research Triangle Park, North Carolina; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Jessica L Jenness
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Amanda L Elton
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | | | - Kinjal Patel
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrienne Bonar
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sophia Martin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gabriel Dichter
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matteo Giletta
- Department of Developmental, Personality, and Social Psychology, Gent University, Gent, Belgium
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, California
| | - Karen D Rudolph
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois
| | - Paul Hastings
- Department of Psychology, University of California Davis, Davis, California
| | - Matthew Nock
- Department of Psychology, Harvard University, Boston, Massachusetts
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
99
|
Phillips MR, Byrne J, Gibson EC, Gilbert C, Ford L, Marsh G, Chow J, Robinson GA. The brief executive language screen: sensitivity and specificity in acute to early sub-acute stroke. Top Stroke Rehabil 2024:1-13. [PMID: 38833512 DOI: 10.1080/10749357.2024.2356412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Propositional language and underlying executive functions can be impaired post-stroke and affect communication and quality of life. Current stroke screening tools are largely tailored to patients with aphasia, being either non-verbal or focussed on core language skills such as naming and repetition. The Brief Executive Language Screening Test (BELS) is a newly developed cognitive screening tool that assesses memory, oral apraxia, core language, as well as propositional language and associated executive functions that can be impacted and overlooked in stroke patients without aphasia. This study examines BELS sensitivity and specificity, and performance in acute to early sub-acute stroke relative to controls. METHOD Cross-sectional BELS data from 88 acute left and right hemisphere stroke patients (within 7 weeks of stroke) and 116 age-matched healthy controls were compared using independent samples t-tests. ROC Curve Analysis was performed to determine a cutoff score for the BELS. RESULTS Left and right stroke patients were reduced on all propositional language subtests, and executive function subtests of inhibition, strategy, and selection. Differences were also observed for Oral Apraxia, Naming, and Memory. By contrast, Word Comprehension and Repetition, and Sentence Completion Initiation (after corrections applied) did not differ between groups. A total BELS score of 79.25/100 was highly sensitive (.89) and specific (.89) when classifying stroke patients and healthy controls. CONCLUSION The BELS is brief, sensitive, suitable for bedside administration, and can aid in detection and rehabilitation of subtle executive language impairments. This in turn will help improve relationships and quality of life post-stroke.
Collapse
Affiliation(s)
- Mia R Phillips
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia
| | - Jessica Byrne
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| | - Emily C Gibson
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| | - Casey Gilbert
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| | - Lucy Ford
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| | - Georgia Marsh
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| | - Jessica Chow
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| | - Gail A Robinson
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia
- Neuropsychology Research Unit, School of Psychology, the University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
100
|
Rouse MA, Binney RJ, Patterson K, Rowe JB, Lambon Ralph MA. A neuroanatomical and cognitive model of impaired social behaviour in frontotemporal dementia. Brain 2024; 147:1953-1966. [PMID: 38334506 PMCID: PMC11146431 DOI: 10.1093/brain/awae040] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0SZ, UK
| | | |
Collapse
|