51
|
Assous M, Tepper JM. Cortical and thalamic inputs exert cell type-specific feedforward inhibition on striatal GABAergic interneurons. J Neurosci Res 2019; 97:1491-1502. [PMID: 31102306 PMCID: PMC6801038 DOI: 10.1002/jnr.24444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
The classical view of striatal GABAergic interneuron function has been that they operate as largely independent, parallel, feedforward inhibitory elements providing inhibitory inputs to spiny projection neurons (SPNs). Much recent evidence has shown that the extrinsic innervation of striatal interneurons is not indiscriminate but rather very specific, and that striatal interneurons are themselves interconnected in a cell type-specific manner. This suggests that the ultimate effect of extrinsic inputs on striatal neuronal activity depends critically on synaptic interactions within interneuronal circuitry. Here, we compared the cortical and thalamic input to two recently described subtypes of striatal GABAergic interneurons, tyrosine hydroxylase-expressing interneurons (THINs), and spontaneously active bursty interneurons (SABIs) using transgenic TH-Cre and Htr3a-Cre mice of both sexes. Our results show that both THINs and SABIs receive strong excitatory input from the motor cortex and the thalamic parafascicular nucleus. Cortical optogenetic stimulation also evokes disynaptic inhibitory GABAergic responses in THINs but not in SABIs. In contrast, optogenetic stimulation of the parafascicular nucleus induces disynaptic inhibitory responses in both interneuron populations. However, the short-term plasticity of these disynaptic inhibitory responses is different suggesting the involvement of different intrastriatal microcircuits. Altogether, our results point to highly specific interneuronal circuits that are selectively engaged by different excitatory inputs.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| | - James M. Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| |
Collapse
|
52
|
Lee K, Masmanidis SC. Aberrant features of in vivo striatal dynamics in Parkinson's disease. J Neurosci Res 2019; 97:1678-1688. [PMID: 31502290 PMCID: PMC6801089 DOI: 10.1002/jnr.24519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
The striatum plays an important role in learning, selecting, and executing actions. As a major input hub of the basal ganglia, it receives and processes a diverse array of signals related to sensory, motor, and cognitive information. Aberrant neural activity in this area is implicated in a wide variety of neurological and psychiatric disorders. It is therefore important to understand the hallmarks of disrupted striatal signal processing. This review surveys literature examining how in vivo striatal microcircuit dynamics are impacted in animal models of one of the most widely studied movement disorders, Parkinson's disease. The review identifies four major features of aberrant striatal dynamics: altered relative levels of direct and indirect pathway activity, impaired information processing by projection neurons, altered information processing by interneurons, and increased synchrony.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| | - Sotiris C. Masmanidis
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| |
Collapse
|
53
|
Kronbauer M, Metz VG, Roversi K, Milanesi LH, Rubert Rossato D, da Silva Barcelos RC, Burger ME. Influence of magnesium supplementation and L-type calcium channel blocker on haloperidol-induced movement disturbances. Behav Brain Res 2019; 374:112119. [PMID: 31374223 DOI: 10.1016/j.bbr.2019.112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/10/2019] [Accepted: 07/28/2019] [Indexed: 11/17/2022]
Abstract
Haloperidol (Hal) is an antipsychotic related to movement disorders. Magnesium (Mg) showed benefits on orofacial dyskinesia (OD), suggesting its involvement with N-methyl-D-aspartate receptors (NMDAR) since it acts blocking calcium channels. Comparisons between nifedipine (NIF; a calcium channel blocker) and Mg were performed to establish the Mg mechanism. Male rats concomitantly received Hal and Mg or NIF for 28 days, and OD behaviors were weekly assessed. Both Mg and NIF decreased Hal-induced OD. Hal increased Ca2+-ATPase activity in the striatum, and Mg reversed it. In the cortex, both Mg and NIF decreased such activity. Dopaminergic and glutamatergic immunoreactivity were modified by Hal and treatments: i) in the cortex: Hal reduced D1R and D2R, increasing NMDAR immunoreactivity. Mg and NIF reversed this Hal influence on D1R and NMDAR, while only Mg reversed Hal effects on D2R levels; ii) in the striatum: Hal decreased D2R and increased NMDAR while Mg and NIF decreased D1R and reversed the Hal-induced decreasing D2R levels. Only Mg reversed the Hal-induced increasing NMDAR levels; iii) in the substantia nigra (SN): while Hal increased D1R, D2R, and NMDAR, both Mg and NIF reversed this influence on D2R, but only Mg reversed the Hal-influence on D1R levels. Only NIF reversed the Hal effects on NMDAR immunoreactivity. These findings allow us to propose that Mg may be useful to minimize Hal-induced movement disturbances. Mg molecular mechanism seems to be involved with a calcium channel blocker because the NIF group showed less expressive effects than the Mg group.
Collapse
Affiliation(s)
- Maikel Kronbauer
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Vinicia Garzela Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Karine Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Laura H Milanesi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | - Marilise E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil.
| |
Collapse
|
54
|
Fricchione G, Beach S. Cingulate-basal ganglia-thalamo-cortical aspects of catatonia and implications for treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:223-252. [PMID: 31731912 DOI: 10.1016/b978-0-444-64196-0.00012-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The catatonic syndrome is an example of a multifactorial neurobehavioral disorder that causes much morbidity and mortality but also has the potential to unlock the mystery of how motivation and movement interact to produce behavior. In this chapter, an attempt is made to understand better the catatonic syndrome through the lens of neurobiology and neuropathophysiology updated by recent studies in molecular biology, genomics, inflammasomics, neuroimaging, neural network theory, and neuropsychopathology. This will result in a neurostructural model for the catatonic syndrome that centers on paralimbic regions including the anterior and midcingulate cortices, as they interface with striatal and thalamic nodes in the salience decision-making network. Examination of neurologic disorders like the abulic syndrome, which includes in its extreme catatonic form, akinetic mutism, will identify the cingulate cortex and paralimbic neighbors as regions of interest. This exploration has the potential to unlock mysteries of the brain cascade from motivation to movement and to clarify catatonia therapeutics. Such a synthesis may also help us discern meaning inherent in this complex neurobehavioral syndrome.
Collapse
Affiliation(s)
- Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Scott Beach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
55
|
Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019; 20:1199-1223. [PMID: 31686592 DOI: 10.2217/pgs-2019-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyskinesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The observed associations of specific gene variants with the prevalence and severity of a disorder can also be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic terminals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding is that genetic variants which would be expected to increase the neostriatal dopamine concentration are not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamatergic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia, but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to oxidative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate between neostriatal matrix and striosomal compartments when studying the mechanism of TD and between orofacial and limb-truncal components in epidemiological studies.
Collapse
Affiliation(s)
- Anton Jm Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA Halsteren, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,Dept. of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 4, 634014 Tomsk, Russian Federation.,School of Non-Destructive Testing & Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.,Central Research Laboratory, Siberian State Medical University, Moscowski Trakt, 2, 634050 Tomsk, Russian Federation
| |
Collapse
|
56
|
Benthall KN, Ong SL, Bateup HS. Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1. Cell Rep 2019; 23:3197-3208. [PMID: 29898392 PMCID: PMC6089242 DOI: 10.1016/j.celrep.2018.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023] Open
Abstract
mTORC1 is a central signaling hub that integrates intra- and extracellular signals to regulate a variety of cellular metabolic processes. Mutations in regulators of mTORC1 lead to neurodevelopmental disorders associated with autism, which is characterized by repetitive, inflexible behaviors. These behaviors may result from alterations in striatal circuits that control motor learning and habit formation. However, the consequences of mTORC1 dysregulation on striatal neuron function are largely unknown. To investigate this, we deleted the mTORC1 negative regulator Tsc1 from identified striatonigral and striatopallidal neurons and examined how cell-autonomous upregulation of mTORC1 activity affects their morphology and physiology. We find that loss of Tsc1 increases the excitability of striatonigral, but not striatopallidal, neurons and selectively enhances corticostriatal synaptic transmission. These findings highlight the critical role of mTORC1 in regulating striatal activity in a cell type- and input-specific manner, with implications for striatonigral pathway dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- Katelyn N Benthall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stacie L Ong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
57
|
Bonsi P, Ponterio G, Vanni V, Tassone A, Sciamanna G, Migliarini S, Martella G, Meringolo M, Dehay B, Doudnikoff E, Zachariou V, Goodchild RE, Mercuri NB, D'Amelio M, Pasqualetti M, Bezard E, Pisani A. RGS9-2 rescues dopamine D2 receptor levels and signaling in DYT1 dystonia mouse models. EMBO Mol Med 2019; 11:emmm.201809283. [PMID: 30552094 PMCID: PMC6328939 DOI: 10.15252/emmm.201809283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine D2 receptor signaling is central for striatal function and movement, while abnormal activity is associated with neurological disorders including the severe early-onset DYT1 dystonia. Nevertheless, the mechanisms that regulate D2 receptor signaling in health and disease remain poorly understood. Here, we identify a reduced D2 receptor binding, paralleled by an abrupt reduction in receptor protein level, in the striatum of juvenile Dyt1 mice. This occurs through increased lysosomal degradation, controlled by competition between β-arrestin 2 and D2 receptor binding proteins. Accordingly, we found lower levels of striatal RGS9-2 and spinophilin. Further, we show that genetic depletion of RGS9-2 mimics the D2 receptor loss of DYT1 dystonia striatum, whereas RGS9-2 overexpression rescues both receptor levels and electrophysiological responses in Dyt1 striatal neurons. This work uncovers the molecular mechanism underlying D2 receptor downregulation in Dyt1 mice and in turn explains why dopaminergic drugs lack efficacy in DYT1 patients despite significant evidence for striatal D2 receptor dysfunction. Our data also open up novel avenues for disease-modifying therapeutics to this incurable neurological disorder.
Collapse
Affiliation(s)
- Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Evelyne Doudnikoff
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Venetia Zachariou
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rose E Goodchild
- Department of Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Nicola B Mercuri
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Marcello D'Amelio
- Laboratory Molecular Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy.,Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.,Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy .,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| |
Collapse
|
58
|
Miyamoto Y, Nagayoshi I, Nishi A, Fukuda T. Three divisions of the mouse caudal striatum differ in the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons, and composition of cholinergic and GABAergic interneurons. Brain Struct Funct 2019; 224:2703-2716. [PMID: 31375982 PMCID: PMC6778543 DOI: 10.1007/s00429-019-01928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
The greater part of the striatum is composed of striosomes and matrix compartments, but we recently demonstrated the presence of a region that has a distinct structural organization in the ventral half of the mouse caudal striatum (Miyamoto et al. in Brain Struct Funct 223:4275-4291, 2018). This region, termed the tri-laminar part based upon its differential immunoreactivities for substance P and enkephalin, consists of medial, intermediate, and lateral divisions. In this study, we quantitatively analyzed the distributions of both projection neurons and interneurons in each division using immunohistochemistry. Two types of projection neurons expressing either the dopamine D1 receptor (D1R) or D2 receptor (D2R) showed complementary distributions throughout the tri-laminar part, but the proportions significantly differed among the three divisions. The proportion of D1R-expressing neurons in the medial, intermediate, and lateral divisions was 88.6 ± 8.2% (651 cells from 3 mice), 14.7 ± 3.8% (1025 cells), and 49.3 ± 4.5% (873 cells), respectively. The intermediate division was further characterized by poor innervation of tyrosine hydroxylase immunoreactive axons. The numerical density of choline acetyltransferase immunoreactive neurons differed among the three divisions following the order from the medial to lateral divisions. In contrast, PV-positive somata were distributed throughout all three divisions at a constant density. Two types of GABAergic interneurons labeled for nitric oxide synthase and calretinin showed the highest cell density in the medial division. The present results characterize the three divisions of the mouse caudal striatum as distinct structures, which will facilitate studies of novel functional loops in the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Issei Nagayoshi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
59
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
60
|
Dopaminergic modulation of striatal function and Parkinson's disease. J Neural Transm (Vienna) 2019; 126:411-422. [PMID: 30937538 DOI: 10.1007/s00702-019-01997-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023]
Abstract
The striatum is richly innervated by mesencephalic dopaminergic neurons that modulate a diverse array of cellular and synaptic functions that control goal-directed actions and habits. The loss of this innervation has long been thought to be the principal cause of the cardinal motor symptoms of Parkinson's disease (PD). Moreover, chronic, pharmacological overstimulation of striatal dopamine (DA) receptors is generally viewed as the trigger for levodopa-induced dyskinesia (LID) in late-stage PD patients. Here, we discuss recent advances in our understanding of the relationship between the striatum and DA, particularly as it relates to PD and LID. First, it has become clear that chronic perturbations of DA levels in PD and LID bring about cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity. Second, perturbations in DA signaling also bring about non-homeostatic aberrations in synaptic plasticity that contribute to disease symptoms. Third, it has become evident that striatal interneurons are major determinants of network activity and behavior in PD and LID. Finally, recent work examining the activity of SPNs in freely moving animals has revealed that the pathophysiology induced by altered DA signaling is not limited to imbalance in the average spiking in direct and indirect pathways, but involves more nuanced disruptions of neuronal ensemble activity.
Collapse
|
61
|
Hsu Y, Chang Y, Liu Y, Wang K, Chen H, Lee D, Yang S, Tsai C, Lien C, Chern Y. Enhanced Na
+
‐K
+
‐2Cl
‐
cotransporter 1 underlies motor dysfunction in huntington's disease. Mov Disord 2019; 34:845-857. [DOI: 10.1002/mds.27651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yi‐Ting Hsu
- PhD Program for Translational MedicineChina Medical University and Academia Sinica Taipei Taiwan
- Department of NeurologyChina Medical University Hospital Taichung Taiwan
| | - Ya‐Gin Chang
- Institute of NeuroscienceNational Yang‐Ming University Taipei Taiwan
- Taiwan International Graduate Program in Interdisciplinary NeuroscienceNational Yang‐Ming University and Academia Sinica Taipei Taiwan
| | - Yu‐Chao Liu
- Institute of NeuroscienceNational Yang‐Ming University Taipei Taiwan
| | - Kai‐Yi Wang
- Institute of NeuroscienceNational Yang‐Ming University Taipei Taiwan
| | - Hui‐Mei Chen
- Institute of Biomedical SciencesAcademia Sinica Taipei Taiwan
| | - Ding‐Jin Lee
- PhD Program for Translational MedicineChina Medical University and Academia Sinica Taipei Taiwan
| | - Sung‐Sen Yang
- Division of Nephrology, Department of Medicine, Tri‐Service General HospitalNational Defense Medical Center Taipei Taiwan
| | - Chon‐Haw Tsai
- PhD Program for Translational MedicineChina Medical University and Academia Sinica Taipei Taiwan
- Department of NeurologyChina Medical University Hospital Taichung Taiwan
| | - Cheng‐Chang Lien
- Institute of NeuroscienceNational Yang‐Ming University Taipei Taiwan
- Brain Research CenterNational Yang‐Ming University Taipei Taiwan
| | - Yijuang Chern
- PhD Program for Translational MedicineChina Medical University and Academia Sinica Taipei Taiwan
- Institute of NeuroscienceNational Yang‐Ming University Taipei Taiwan
- Institute of Biomedical SciencesAcademia Sinica Taipei Taiwan
| |
Collapse
|
62
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
63
|
Zheng X, Huang Z, Zhu Y, Liu B, Chen Z, Chen T, Jia L, Li Y, Lei W. Increase in Glutamatergic Terminals in the Striatum Following Dopamine Depletion in a Rat Model of Parkinson's Disease. Neurochem Res 2019; 44:1079-1089. [PMID: 30715657 DOI: 10.1007/s11064-019-02739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Dopaminergic neuron degeneration is known to give rise to dendrite injury and spine loss of striatal neurons, however, changes of intrastriatal glutamatergic terminals and their synapses after 6-hydroxydopamine (6OHDA)-induced dopamine (DA)-depletion remains controversial. To confirm the effect of striatal DA-depletion on the morphology and protein levels of corticostriatal and thalamostriatal glutamatergic terminals and synapses, immunohistochemistry, immuno-electron microscope (EM), western blotting techniques were performed on Parkinson's disease rat models in this study. The experimental results of this study showed that: (1) 6OHDA-induced DA-depletion resulted in a remarkable increase of Vesicular glutamate transporter 1 (VGlut1) + and Vesicular glutamate transporter 2 (VGlut2)+ terminal densities at both the light microscope (LM) and EM levels, and VGlut1+ and VGlut2+ terminal sizes were shown to be enlarged by immuno-EM; (2) Striatal DA-depletion resulted in a decrease in both the total and axospinous terminal fractions of VGlut1+ terminals, but the axodendritic terminal fraction was not significantly different from the control group. However, total, axospinous and axodendritic terminal fractions for VGlut2+ terminals declined significantly after striatal DA-depletion. (3) Western blotting data showed that striatal DA-depletion up-regulated the expression levels of the VGlut1 and VGlut2 proteins. These results suggest that 6OHDA-induced DA-depletion affects corticostriatal and thalamostriatal glutamatergic synaptic inputs, which are involved in the pathological process of striatal neuron injury induced by DA-depletion.
Collapse
Affiliation(s)
- Xuefeng Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaofeng Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Medicine, College of Medicine, Jishou University, Jishou, China
| | - Bingbing Liu
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
64
|
Inhibition of Nigrostriatal Dopamine Release by Striatal GABA A and GABA B Receptors. J Neurosci 2018; 39:1058-1065. [PMID: 30541909 PMCID: PMC6363932 DOI: 10.1523/jneurosci.2028-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Nigrostriatal dopamine (DA) is critical to action selection and learning. Axonal DA release is locally influenced by striatal neurotransmitters. Striatal neurons are principally GABAergic projection neurons and interneurons, and a small minority of other neurons are cholinergic interneurons (ChIs). ChIs strongly gate striatal DA release via nicotinic receptors (nAChRs) identified on DA axons. Striatal GABA is thought to modulate DA, but GABA receptors have not been documented conclusively on DA axons. However, ChIs express GABA receptors and are therefore candidates for potential mediators of GABA regulation of DA. We addressed whether striatal GABA and its receptors can modulate DA release directly, independently from ChI regulation, by detecting DA in striatal slices from male mice using fast-scan cyclic voltammetry in the absence of nAChR activation. DA release evoked by single electrical pulses in the presence of the nAChR antagonist dihydro-β-erythroidine was reduced by GABA or agonists of GABAA or GABAB receptors, with effects prevented by selective GABA receptor antagonists. GABA agonists slightly modified the frequency sensitivity of DA release during short stimulus trains. GABA agonists also suppressed DA release evoked by optogenetic stimulation of DA axons. Furthermore, antagonists of GABAA and GABAB receptors together, or GABAB receptors alone, significantly enhanced DA release evoked by either optogenetic or electrical stimuli. These results indicate that striatal GABA can inhibit DA release through GABAA and GABAB receptors and that these actions are not mediated by cholinergic circuits. Furthermore, these data reveal that there is a tonic inhibition of DA release by striatal GABA operating through predominantly GABAB receptors.SIGNIFICANCE STATEMENT The principal inhibitory transmitter in the mammalian striatum, GABA, is thought to modulate striatal dopamine (DA) release, but definitive evidence for GABA receptors on DA axons is lacking. Striatal cholinergic interneurons regulate DA release via axonal nicotinic receptors (nAChRs) and also express GABA receptors, but they have not been eliminated as potentially critical mediators of DA regulation by GABA. Here, we found that GABAA and GABAB receptors inhibit DA release without requiring cholinergic interneurons. Furthermore, ambient levels of GABA inhibited DA release predominantly through GABAB receptors. These findings provide further support for direct inhibition of DA release by GABA receptors and reveal that striatal GABA operates a tonic inhibition on DA output that could critically influence striatal output.
Collapse
|
65
|
MMP-1 overexpression selectively alters inhibition in D1 spiny projection neurons in the mouse nucleus accumbens core. Sci Rep 2018; 8:16230. [PMID: 30385861 PMCID: PMC6212422 DOI: 10.1038/s41598-018-34551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Protease activated receptor-1 (PAR-1) and its ligand, matrix metalloproteinase-1 (MMP-1), are altered in several neurodegenerative diseases. PAR-1/MMP-1 signaling impacts neuronal activity in various brain regions, but their role in regulating synaptic physiology in the ventral striatum, which is implicated in motor function, is unknown. The ventral striatum contains two populations of GABAergic spiny projection neurons, D1 and D2 SPNs, which differ with respect to both synaptic inputs and projection targets. To evaluate the role of MMP-1/PAR-1 signaling in the regulation of ventral striatal synaptic function, we performed whole-cell recordings (WCR) from D1 and D2 SPNs in control mice, mice that overexpress MMP-1 (MMP-1OE), and MMP-1OE mice lacking PAR-1 (MMP-1OE/PAR-1KO). WCRs from MMP1-OE mice revealed an increase in spontaneous inhibitory post-synaptic current (sIPSC), miniature IPSC, and miniature excitatory PSC frequency in D1 SPNs but not D2 SPNs. This alteration may be partially PAR-1 dependent, as it was not present in MMP-1OE/PAR-1KO mice. Morphological reconstruction of D1 SPNs revealed increased dendritic complexity in the MMP-1OE, but not MMP-1OE/PAR-1KO mice. Moreover, MMP-1OE mice exhibited blunted locomotor responses to amphetamine, a phenotype also observed in MMP-1OE/PAR-1KO mice. Our data suggest PAR-1 dependent and independent MMP-1 signaling may lead to alterations in striatal neuronal function.
Collapse
|
66
|
Plotkin JL, Goldberg JA. Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders. Neuroscientist 2018; 25:359-379. [PMID: 30379121 PMCID: PMC6529282 DOI: 10.1177/1073858418807887] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basal ganglia are an intricately connected assembly of subcortical nuclei, forming the core of an adaptive network connecting cortical and thalamic circuits. For nearly three decades, researchers and medical practitioners have conceptualized how the basal ganglia circuit works, and how its pathology underlies motor disorders such as Parkinson's and Huntington's diseases, using what is often referred to as the "box-and-arrow model": a circuit diagram showing the broad strokes of basal ganglia connectivity and the pathological increases and decreases in the weights of specific connections that occur in disease. While this model still has great utility and has led to groundbreaking strategies to treat motor disorders, our evolving knowledge of basal ganglia function has made it clear that this classic model has several shortcomings that severely limit its predictive and descriptive abilities. In this review, we will focus on the striatum, the main input nucleus of the basal ganglia. We describe recent advances in our understanding of the rich microcircuitry and plastic capabilities of the striatum, factors not captured by the original box-and-arrow model, and provide examples of how such advances inform our current understanding of the circuit pathologies underlying motor disorders.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Joshua A Goldberg
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
67
|
Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct Funct 2018; 223:4211-4226. [PMID: 30187194 PMCID: PMC6267273 DOI: 10.1007/s00429-018-1746-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
Abstract
Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-mediated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive.
Collapse
|
68
|
Fino E, Vandecasteele M, Perez S, Saudou F, Venance L. Region-specific and state-dependent action of striatal GABAergic interneurons. Nat Commun 2018; 9:3339. [PMID: 30131490 PMCID: PMC6104028 DOI: 10.1038/s41467-018-05847-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Striatum processes a wide range of functions including goal-directed behavior and habit formation, respectively encoded by the dorsomedial striatum (DMS) and dorsolateral striatum (DLS). GABAergic feedforward inhibition is known to control the integration of cortical information by striatal projection neurons (SPNs). Here we questioned whether this control is specific between distinct striatal functional territories. Using opto-activation and opto-inhibition of identified GABAergic interneurons, we found that different circuits are engaged in DLS and DMS, both ex vivo and in vivo: while parvalbumin interneurons efficiently control SPNs in DLS, somatostatin interneurons control SPNs in DMS. Moreover, both parvalbumin and somatostatin interneurons use a dual hyperpolarizing/depolarizing effect to control cortical input integration depending on SPN activity state: GABAergic interneurons potently inhibit spiking SPNs while in resting SPNs, they favor cortical activity summation via a depolarizing effect. Our findings establish that striatal GABAergic interneurons exert efficient territory-specific and state-dependent control of SPN activity and functional output.
Collapse
Affiliation(s)
- Elodie Fino
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France. .,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France. .,INSERM U1216, Grenoble, 38000, France. .,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, 38000, France.
| | - Marie Vandecasteele
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France.,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France.,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France
| | - Frédéric Saudou
- INSERM U1216, Grenoble, 38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, 38000, France.,CHU Grenoble Alpes, Grenoble, 38000, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, Paris, 75005, France.,Université Pierre et Marie Curie, ED 158, Paris Sciences et Lettres, Paris, 75005, France
| |
Collapse
|
69
|
Neureither F, Ziegler K, Pitzer C, Frings S, Möhrlen F. Impaired Motor Coordination and Learning in Mice Lacking Anoctamin 2 Calcium-Gated Chloride Channels. THE CEREBELLUM 2018; 16:929-937. [PMID: 28536821 PMCID: PMC5717130 DOI: 10.1007/s12311-017-0867-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurons communicate through excitatory and inhibitory synapses. Both lines of communication are adjustable and allow the fine tuning of signal exchange required for learning processes in neural networks. Several distinct modes of plasticity modulate glutamatergic and GABAergic synapses in Purkinje cells of the cerebellar cortex to promote motor control and learning. In the present paper, we present evidence for a role of short-term ionic plasticity in the cerebellar circuit activity. This type of plasticity results from altered chloride driving forces at the synapses that molecular layer interneurons form on Purkinje cell dendrites. Previous studies have provided evidence for transiently diminished chloride gradients at these GABAergic synapses following climbing fiber activity. Electrical stimulation of climbing fibers in acute slices caused a decline of inhibitory postsynaptic currents recorded from Purkinje cells. Dendritic calcium-gated chloride channels of the type anoctamin 2 (ANO2) were proposed to mediate this short-term modulation of inhibition, but the significance of this process for motor control has not been established yet. Here, we report results of behavioral studies obtained from Ano2−/− mice, a mouse line that was previously shown to lack this particular mode of ionic plasticity. The animals display motor coordination deficits that constitute a condition of mild ataxia. Moreover, motor learning is severely impaired in Ano2−/− mice, suggesting cerebellar dysfunction. This reduced motor performance of Ano2−/− mice highlights the significance of inhibitory control for cerebellar function and introduces calcium-dependent short-term ionic plasticity as an efficient control mechanism for neural inhibition.
Collapse
Affiliation(s)
- Franziska Neureither
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Katharina Ziegler
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Heidelberg University, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| |
Collapse
|
70
|
Capetian P, Stanslowsky N, Bernhardi E, Grütz K, Domingo A, Brüggemann N, Naujock M, Seibler P, Klein C, Wegner F. Altered glutamate response and calcium dynamics in iPSC-derived striatal neurons from XDP patients. Exp Neurol 2018; 308:47-58. [PMID: 29944858 DOI: 10.1016/j.expneurol.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/26/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder endemic to Panay Island (Philippines). Patients present with generalizing dystonia and parkinsonism. Genetic changes surrounding the TAF1 (TATA-box binding protein associated factor 1) gene have been associated with XDP inducing a degeneration of striatal spiny projection neurons. There is little knowledge about the pathophysiology of this disorder. Our objective was to generate and analyze an in-vitro model of XDP based on striatal neurons differentiated from induced pluripotent stem cells (iPSC). We generated iPSC from patient and healthy control fibroblasts (3 affected, 3 controls), followed by directed differentiation of the cultures towards striatal neurons. Cells underwent characterization of immunophenotype as well as neuronal function, glutamate receptor properties and calcium dynamics by whole-cell patch-clamp recordings and calcium imaging. Furthermore, we evaluated expression levels of AMPA receptor subunits and voltage-gated calcium channels by quantitative real-time PCR. We observed no differences in basic electrophysiological properties. Application of the AMPA antagonist NBQX led to a more pronounced reduction of postsynaptic currents in XDP neurons. There was a higher expression of AMPA receptor subunits in patient-derived neurons. Basal calcium levels were lower in neurons derived from XDP patients and cells with spontaneous calcium transients were more frequent. Our data suggest altered glutamate response and calcium dynamics in striatal XDP neurons.
Collapse
Affiliation(s)
- P Capetian
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University of Lübeck, Germany.
| | - N Stanslowsky
- Department of Neurology, Hannover Medical School, Germany
| | - E Bernhardi
- Institute of Neurogenetics, University of Lübeck, Germany
| | - K Grütz
- Institute of Neurogenetics, University of Lübeck, Germany
| | - A Domingo
- Institute of Neurogenetics, University of Lübeck, Germany
| | - N Brüggemann
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University of Lübeck, Germany
| | - M Naujock
- Department of Neurology, Hannover Medical School, Germany
| | - P Seibler
- Institute of Neurogenetics, University of Lübeck, Germany
| | - C Klein
- Institute of Neurogenetics, University of Lübeck, Germany.
| | - F Wegner
- Department of Neurology, Hannover Medical School, Germany
| |
Collapse
|
71
|
Cheng Y, Wang X, Wei X, Xie X, Melo S, Miranda RC, Wang J. Prenatal Exposure to Alcohol Induces Functional and Structural Plasticity in Dopamine D1 Receptor-Expressing Neurons of the Dorsomedial Striatum. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13806. [PMID: 29870053 PMCID: PMC6281858 DOI: 10.1111/acer.13806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is a leading cause of hyperactivity in children. Excitation of dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the dorsomedial striatum (DMS), a brain region that controls voluntary behavior, is known to induce hyperactivity in mice. We therefore hypothesized that PAE-linked hyperactivity was due to persistently altered glutamatergic activity in DMS D1-MSNs. METHODS Female Ai14 tdTomato reporter mice were given access to alcohol in an intermittent access, 2-bottle choice paradigm before pregnancy, and following mating with male D1-Cre mice, through the pregnancy period, and until postnatal day (P) 10. Locomotor activity was tested in juvenile (P21) and adult (P133) offspring, and alcohol-conditioned place preference (CPP) was measured in adult offspring. Glutamatergic activity in DMS D1-MSNs of adult PAE and control mice was measured by slice electrophysiology, followed by measurements of dendritic morphology. RESULTS Our voluntary maternal alcohol consumption model resulted in increased locomotor activity in juvenile PAE mice, and this hyperactivity was maintained into adulthood. Furthermore, PAE resulted in a higher alcohol-induced CPP in adult offspring. Glutamatergic activity onto DMS D1-MSNs was also enhanced by PAE. Finally, PAE increased dendritic complexity in DMS D1-MSNs in adult offspring. CONCLUSIONS Our model of PAE does result in persistent hyperactivity in offspring. In adult PAE offspring, hyperactivity is accompanied by potentiated glutamatergic strength and afferent connectivity in DMS D1-MSNs, an outcome that is also consistent with the observed increase in alcohol preference in PAE offspring. Consequently, a PAE-sensitive circuit, centered within the D1-MSN, may be linked to behavioral outcomes of PAE.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Xiaoyan Wei
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Sebastian Melo
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| |
Collapse
|
72
|
Zheng X, Wu J, Zhu Y, Chen S, Chen Z, Chen T, Huang Z, Wei J, Li Y, Lei W. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model. Neurochem Int 2018; 118:14-22. [PMID: 29674121 DOI: 10.1016/j.neuint.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
Abstract
Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion.
Collapse
Affiliation(s)
- Xuefeng Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Periodical Center of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yaofeng Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Medicine, College of Medicine, Jishou University, Jishou 416000, China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayou Wei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanmei Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
73
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
74
|
Neuronal activity pattern defects in the striatum in awake mouse model of Parkinson’s disease. Behav Brain Res 2018; 341:135-145. [DOI: 10.1016/j.bbr.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022]
|
75
|
Assous M, Tepper JM. Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci 2018; 49:593-603. [PMID: 29480942 DOI: 10.1111/ejn.13881] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/24/2023]
Abstract
The striatum constitutes the main input structure of the basal ganglia and receives two major excitatory glutamatergic inputs, from the cortex and the thalamus. Excitatory cortico- and thalamostriatal connections innervate the principal neurons of the striatum, the spiny projection neurons (SPNs), which constitute the main cellular input as well as the only output of the striatum. In addition, corticostriatal and thalamostriatal inputs also innervate striatal interneurons. Some of these inputs have been very well studied, for example the thalamic innervation of cholinergic interneurons and the cortical innervation of striatal fast-spiking interneurons, but inputs to most other GABAergic interneurons remain largely unstudied, due in part to the relatively recent identification and characterization of many of these interneurons. In this review, we will discuss and reconcile some older as well as more recent data on the extrinsic excitatory inputs to striatal interneurons. We propose that the traditional feed-forward inhibitory model of the cortical input to the fast-spiking interneuron then inhibiting the SPN, often assumed to be the prototype of the main functional organization of striatal interneurons, is incomplete. We provide evidence that the extrinsic innervation of striatal interneurons is not uniform but shows great cell-type specificity. In addition, we will review data showing that striatal interneurons are themselves interconnected in a highly cell-type-specific manner. These data suggest that the impact of the extrinsic inputs on striatal activity critically depends on synaptic interactions within interneuronal circuitry.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
76
|
Garret M, Du Z, Chazalon M, Cho YH, Baufreton J. Alteration of GABAergic neurotransmission in Huntington's disease. CNS Neurosci Ther 2018; 24:292-300. [PMID: 29464851 DOI: 10.1111/cns.12826] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hereditary Huntington's disease (HD) is characterized by cell dysfunction and death in the brain, leading to progressive cognitive, psychiatric, and motor impairments. Despite molecular and cellular descriptions of the effects of the HD mutation, no effective pharmacological treatment is yet available. In addition to well-established alterations of glutamatergic and dopaminergic neurotransmitter systems, it is becoming clear that the GABAergic systems are also impaired in HD. GABA is the major inhibitory neurotransmitter in the brain, and GABAergic neurotransmission has been postulated to be modified in many neurological and psychiatric diseases. In addition, GABAergic neurotransmission is the target of many drugs that are in wide clinical use. Here, we summarize data demonstrating the occurrence of alterations of GABAergic markers in the brain of HD carriers as well as in rodent models of the disease. In particular, we pinpoint HD-related changes in the expression of GABAA receptors (GABAA Rs). On the basis that a novel GABA pharmacology of GABAA Rs established with more selective drugs is emerging, we argue that clinical treatments acting specifically on GABAergic neurotransmission may be an appropriate strategy for improving symptoms linked to the HD mutation.
Collapse
Affiliation(s)
- Maurice Garret
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Zhuowei Du
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Marine Chazalon
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Jérôme Baufreton
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| |
Collapse
|
77
|
Salpietro V, Perez-Dueñas B, Nakashima K, San Antonio-Arce V, Manole A, Efthymiou S, Vandrovcova J, Bettencourt C, Mencacci NE, Klein C, Kelly MP, Davies CH, Kimura H, Macaya A, Houlden H. A homozygous loss-of-function mutation in PDE2A associated to early-onset hereditary chorea. Mov Disord 2018; 33:482-488. [PMID: 29392776 PMCID: PMC5873427 DOI: 10.1002/mds.27286] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 12/04/2017] [Indexed: 01/05/2023] Open
Abstract
Background: We investigated a family that presented with an infantile‐onset chorea‐predominant movement disorder, negative for NKX2‐1, ADCY5, and PDE10A mutations. Methods: Phenotypic characterization and trio whole‐exome sequencing was carried out in the family. Results: We identified a homozygous mutation affecting the GAF‐B domain of the 3’,5’‐cyclic nucleotide phosphodiesterase PDE2A gene (c.1439A>G; p.Asp480Gly) as the candidate novel genetic cause of chorea in the proband. PDE2A hydrolyzes cyclic adenosine/guanosine monophosphate and is highly expressed in striatal medium spiny neurons. We functionally characterized the p.Asp480Gly mutation and found that it severely decreases the enzymatic activity of PDE2A. In addition, we showed equivalent expression in human and mouse striatum of PDE2A and its homolog gene, PDE10A. Conclusions: We identified a loss‐of‐function homozygous mutation in PDE2A associated to early‐onset chorea. Our findings possibly strengthen the role of cyclic adenosine monophosphate and cyclic guanosine monophosphate metabolism in striatal medium spiny neurons as a crucial pathophysiological mechanism in hyperkinetic movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, University College of London, London, United Kingdom
| | - Belen Perez-Dueñas
- Department of Pediatric Neurology, Hospital Universitari Sant Joan de Déu, Barcelona, Spain
| | - Kosuke Nakashima
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Victoria San Antonio-Arce
- Unit of Epilepsy, Sleep and Neurophysiology, Hospital Universitari Sant Joan de Déu, Barcelona, Spain
| | - Andreea Manole
- Department of Molecular Neuroscience, University College of London, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, University College of London, London, United Kingdom
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, University College of London, London, United Kingdom
| | - Conceicao Bettencourt
- Department of Molecular Neuroscience, University College of London, London, United Kingdom
| | - Niccolò E Mencacci
- Department of Molecular Neuroscience, University College of London, London, United Kingdom.,Center for Genetic Medicine, Feinberg school of medicine, Northwestern University, Chicago, Illinois, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Michy P Kelly
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Ceri H Davies
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Alfons Macaya
- Department of Pediatric Neurology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Henry Houlden
- Department of Molecular Neuroscience, University College of London, London, United Kingdom
| |
Collapse
|
78
|
Jayasinghe VR, Flores-Barrera E, West AR, Tseng KY. Frequency-Dependent Corticostriatal Disinhibition Resulting from Chronic Dopamine Depletion: Role of Local Striatal cGMP and GABA-AR Signaling. Cereb Cortex 2018; 27:625-634. [PMID: 26508335 DOI: 10.1093/cercor/bhv241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The onset of motor deficits in parkinsonism is thought to result from dopamine (DA) loss-induced corticostriatal disruption and the development of excessive cortico-basal ganglia synchronization. To gain insights into the mechanisms underlying such corticostriatal dysfunction, we conducted local field potential (LFP) recordings in rats and measured how striatal manipulations of DA, cyclic guanosine monophosphate (cGMP), and gamma-aminobutyric acid- A receptor (GABA-AR) signaling impact corticostriatal transmission at specific oscillatory frequencies. Results indicate that the degree of 6-hydroxydopamine-induced DA lesion and subsequent changes in striatal DA, cGMP, and GABA-AR signaling contribute to impair LFP suppression such that the DA-depleted striatum becomes more permissive to cortically driven oscillations at 10-20 Hz, and to a lesser extent, at 40 Hz. Notably, the corticostriatal dysfunction at 40 Hz emerged only when the degree of chronic DA lesion surpassed 90%, which coincides with the appearance of severe forelimb stepping deficits. Collectively, these results indicate that several mechanisms contribute to suppress LFP within the 10-20 Hz range, yet a critical level of striatal GABAergic activity is required for sustaining corticostriatal inhibition at 40 Hz. Both the degree and chronicity of DA lesion are major contributing factors to the severity of motor and striatal GABAergic deficits that could only be reversed by strengthening local GABA-AR function.
Collapse
Affiliation(s)
| | | | - Anthony R West
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular and Molecular Pharmacology
| |
Collapse
|
79
|
Emmanouilidou E, Vekrellis K. Exocytosis and Spreading of Normal and Aberrant α-Synuclein. Brain Pathol 2018; 26:398-403. [PMID: 26940375 DOI: 10.1111/bpa.12373] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 01/06/2023] Open
Abstract
It is now established that α-synuclein can be physiologically secreted to the extracellular space. In this sense, mechanisms that govern the secretion of the protein may be of importance in the initiation and progress of synucleinopathies. It is possible that increased secretion may aid the formation of toxic seeds extracellularly. Alternatively, reduced presence of extracellular α-synuclein due to impaired secretion may increase the intracellular load and trigger intracellular seeding. Once outside, α-synuclein can exert various paracrine actions on neighboring cells again by mechanisms that have not been fully elucidated. It has been demonstrated that, when applied extracellularly, α-synuclein species can induce multiple neurotoxic and inflammatory responses, and aid the transmission of pathology between neurons. Still, the exact mechanism(s) by which secreted α-synuclein affects the homeostasis of other neurons is still not well understood. A portion of α-synuclein has been shown to be associated with the surface and lumen of exosomes which can transfer it to the surrounding cells, and potentially trigger seeding. Interestingly, increased exosome release has been linked to pathological situations of lysosomal dysfunction as observed in Parkinson's disease (PD). However, the possibility that the observed α-synuclein pathology spread is attributable to the passive diffusion of the initial injected α-synuclein strains cannot be excluded. Importantly, most of the studies that have so far addressed the role of extracellular α-synuclein have not employed naturally secreted forms of the protein. It is plausible that deregulation in the normal processing of secreted α-synuclein may aid the formation of "toxic" species and as such it may also be a causative risk factor for PD. In this capacity, elucidation of the underlying mechanisms that regulate the protein-levels of extracellular α-synuclein becomes essential. Such mechanisms could involve its proteolytic clearance from the extracellular milieu.
Collapse
Affiliation(s)
- Evangelia Emmanouilidou
- Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Vekrellis
- Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
80
|
Narayanan DL, Deshpande D, Das Bhowmik A, Varma DR, Dalal A. Familial choreoathetosis due to novel heterozygous mutation inPDE10A. Am J Med Genet A 2017; 176:146-150. [DOI: 10.1002/ajmg.a.38507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Dhanya L. Narayanan
- Department of Medical Genetics; Nizam's Institute of Medical Sciences; Hyderabad Telangana India
| | - Dipti Deshpande
- Diagnostics Division; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
- Graduate Studies; Manipal University; Manipal Karnataka India
| | - Aneek Das Bhowmik
- Diagnostics Division; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
| | | | - Ashwin Dalal
- Diagnostics Division; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
| |
Collapse
|
81
|
Guo J, Otis JM, Higginbotham H, Monckton C, Cheng J, Asokan A, Mykytyn K, Caspary T, Stuber GD, Anton ES. Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Dev Cell 2017; 42:286-300.e4. [PMID: 28787594 DOI: 10.1016/j.devcel.2017.07.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/18/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
Appropriate growth and synaptic integration of GABAergic inhibitory interneurons are essential for functional neural circuits in the brain. Here, we demonstrate that disruption of primary cilia function following the selective loss of ciliary GTPase Arl13b in interneurons impairs interneuronal morphology and synaptic connectivity, leading to altered excitatory/inhibitory activity balance. The altered morphology and connectivity of cilia mutant interneurons and the functional deficits are rescued by either chemogenetic activation of ciliary G-protein-coupled receptor (GPCR) signaling or the selective induction of Sstr3, a ciliary GPCR, in Arl13b-deficient cilia. Our results thus define a specific requirement for primary cilia-mediated GPCR signaling in interneuronal connectivity and inhibitory circuit formation.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - James M Otis
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Holden Higginbotham
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chase Monckton
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - JrGang Cheng
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravind Asokan
- Department of Genetics and Gene Therapy Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, Neuroscience Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Garret D Stuber
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
82
|
Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural Netw 2017; 95:72-90. [PMID: 28910740 DOI: 10.1016/j.neunet.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/23/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
Striatal oscillations in the low-gamma frequency range have been consistently recorded in a number of experimental studies. However, whether these rhythms are locally generated in the striatum circuit, which is mainly composed of GABAergic neurons, remains an open question. GABAergic medium spiny projection neurons represent the great majority of striatal neurons, but they fire at very low rates. GABAergic fast-spiking interneurons typically show firing rates that are approximately 10 times higher than those of principal neurons, but they are a very small minority of the total neuronal population. In this study, based on physiological constraints we developed a computational network model of these neurons and dissected the oscillations. Simulations showed that the population of medium spiny projection neurons, and not the GABAergic fast-spiking interneurons, determines the frequency range of the oscillations. D2-type dopamine receptor-expressing neurons dominate the generation of low-gamma rhythms. Feedforward inputs from GABAergic fast-spiking interneurons promote the oscillations by strengthening the inhibitory interactions between medium spiny projection neurons. The promotion effect is independent of the degree of synchronization in the fast-spiking interneuron population but affected by the strength of their feedforward inputs to medium spiny projection neurons. Our results provide a theoretical explanation for how firing properties and connections of the three types of GABAergic neurons, which are susceptible to on-going behaviors, experience, and dopamine disruptions, sculpt striatal oscillations.
Collapse
|
83
|
Tewari A, Fremont R, Khodakhah K. It's not just the basal ganglia: Cerebellum as a target for dystonia therapeutics. Mov Disord 2017; 32:1537-1545. [PMID: 28843013 DOI: 10.1002/mds.27123] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023] Open
Abstract
Dystonia is a common movement disorder that devastates the lives of many patients, but the etiology of this disorder remains poorly understood. Dystonia has traditionally been considered a disorder of the basal ganglia. However, growing evidence suggests that the cerebellum may be involved in certain types of dystonia, raising several questions. Can different types of dystonia be classified as either a basal ganglia disorder or a cerebellar disorder? Is dystonia a network disorder that involves the cerebellum and basal ganglia? If dystonia is a network disorder, how can we target treatments to alleviate symptoms in patients? A recent study by Chen et al, using the pharmacological mouse model of rapid-onset dystonia parkinsonism, has provided some insight into these important questions. They showed that the cerebellum can directly modulate basal ganglia activity through a short latency cerebello-thalamo-basal ganglia pathway. Further, this article and others have provided evidence that in some cases, aberrant cerebello-basal ganglia communication can be involved in dystonia. In this review we examine the evidence for the involvement of the cerebellum and cerebello-basal ganglia interactions in dystonia. We conclude that there is ample evidence to suggest that the cerebellum plays a role in some dystonias, including the early-onset primary torsion dystonia DYT1 and that further studies examining the role of this brain region and its interaction with the basal ganglia in dystonia are warranted. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rachel Fremont
- Columbia University Medical Center, Department of Psychiatry, New York, New York, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
84
|
Kharkwal G, Brami-Cherrier K, Lizardi-Ortiz JE, Nelson AB, Ramos M, Del Barrio D, Sulzer D, Kreitzer AC, Borrelli E. Parkinsonism Driven by Antipsychotics Originates from Dopaminergic Control of Striatal Cholinergic Interneurons. Neuron 2017; 91:67-78. [PMID: 27387649 DOI: 10.1016/j.neuron.2016.06.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/11/2016] [Accepted: 05/10/2016] [Indexed: 02/03/2023]
Abstract
Typical antipsychotics can cause disabling side effects. Specifically, antagonism of D2R signaling by the typical antipsychotic haloperidol induces parkinsonism in humans and catalepsy in rodents. Striatal dopamine D2 receptors (D2R) are major regulators of motor activity through their signaling on striatal projection neurons and interneurons. We show that D2R signaling on cholinergic interneurons contributes to an in vitro pause in firing of these otherwise tonically active neurons and to the striatal dopamine/acetylcholine balance. The selective ablation of D2R from cholinergic neurons allows discrimination between the motor-reducing and cataleptic effects of antipsychotics. The cataleptic effect of antipsychotics is triggered by blockade of D2R on cholinergic interneurons and the consequent increase of acetylcholine signaling on striatal projection neurons. These studies illuminate the critical role of D2R-mediated signaling in regulating the activity of striatal cholinergic interneurons and the mechanisms of typical antipsychotic side effects.
Collapse
Affiliation(s)
- Geetika Kharkwal
- Department of Microbiology & Molecular Genetics, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Karen Brami-Cherrier
- Department of Microbiology & Molecular Genetics, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - José E Lizardi-Ortiz
- Departments of Neurology and Pharmacology, Columbia University, New York, NY 10032, USA
| | - Alexandra B Nelson
- The Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maria Ramos
- Department of Microbiology & Molecular Genetics, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Daniel Del Barrio
- Department of Microbiology & Molecular Genetics, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - David Sulzer
- Departments of Neurology and Pharmacology, Columbia University, New York, NY 10032, USA
| | | | - Emiliana Borrelli
- Department of Microbiology & Molecular Genetics, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
85
|
Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc Natl Acad Sci U S A 2017; 114:E7612-E7621. [PMID: 28827326 DOI: 10.1073/pnas.1704893114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Striatal spiny projection neurons (SPNs) receive convergent excitatory synaptic inputs from the cortex and thalamus. Activation of spatially clustered and temporally synchronized excitatory inputs at the distal dendrites could trigger plateau potentials in SPNs. Such supralinear synaptic integration is crucial for dendritic computation. However, how plateau potentials interact with subsequent excitatory and inhibitory synaptic inputs remains unknown. By combining computational simulation, two-photon imaging, optogenetics, and dual-color uncaging of glutamate and GABA, we demonstrate that plateau potentials can broaden the spatiotemporal window for integrating excitatory inputs and promote spiking. The temporal window of spiking can be delicately controlled by GABAergic inhibition in a cell-type-specific manner. This subtle inhibitory control of plateau potential depends on the location and kinetics of the GABAergic inputs and is achieved by the balance between relief and reestablishment of NMDA receptor Mg2+ block. These findings represent a mechanism for controlling spatiotemporal synaptic integration in SPNs.
Collapse
|
86
|
Ben-Ari Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci 2017; 40:536-554. [PMID: 28818303 DOI: 10.1016/j.tins.2017.07.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
In physiological conditions, adult neurons have low intracellular Cl- [(Cl-)I] levels underlying the γ-aminobutyric acid (GABA)ergic inhibitory drive. In contrast, neurons have high (Cl-)I levels and excitatory GABA actions in a wide range of pathological conditions including spinal cord lesions, chronic pain, brain trauma, cerebrovascular infarcts, autism, Rett and Down syndrome, various types of epilepsies, and other genetic or environmental insults. The diuretic highly specific NKCC1 chloride importer antagonist bumetanide (PubChem CID: 2461) efficiently restores low (Cl-)I levels and attenuates many disorders in experimental conditions and in some clinical trials. Here, I review the mechanisms of action, therapeutic effects, promises, and pitfalls of bumetanide.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- New INMED, Aix-Marseille University, Campus Scientifique de Luminy, Marseilles, France.
| |
Collapse
|
87
|
Shivkumar S, Muralidharan V, Chakravarthy VS. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks. Front Neural Circuits 2017; 11:45. [PMID: 28680395 PMCID: PMC5478699 DOI: 10.3389/fncir.2017.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks.
Collapse
Affiliation(s)
- Sabyasachi Shivkumar
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennai, India
| | - Vignesh Muralidharan
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennai, India
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennai, India
| |
Collapse
|
88
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
89
|
Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M. Differential Alteration in Expression of Striatal GABA AR Subunits in Mouse Models of Huntington's Disease. Front Mol Neurosci 2017; 10:198. [PMID: 28676743 PMCID: PMC5476702 DOI: 10.3389/fnmol.2017.00198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of α1, α3 and α5 GABAAR subunits was increased while the expression of δ was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the α1 subunit increased expression. From immunohistochemical analyses, we also found that α1 subunit expression is increased in medium-sized spiny projection neurons (MSN) and decreased in parvalbumin (PV)-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, α2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target for early therapeutic treatment.
Collapse
Affiliation(s)
- Zhuowei Du
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Margot Tertrais
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Thierry Leste-Lasserre
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, U862, Physiopathologie de la Plasticité NeuronaleBordeaux, France.,Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, University of BordeauxBordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Frédérique Masmejean
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Christophe Halgand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Yoon H Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| | - Maurice Garret
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of BordeauxBordeaux, France.,Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287Bordeaux, France
| |
Collapse
|
90
|
Nora GJ, Harun R, Fine DF, Hutchison D, Grobart AC, Stezoski JP, Munoz MJ, Kochanek PM, Leak RK, Drabek T, Wagner AK. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment. J Neurochem 2017; 142:305-322. [PMID: 28445595 DOI: 10.1111/jnc.14058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/21/2023]
Abstract
Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (Vmax ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str Vmax in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions.
Collapse
Affiliation(s)
- Gerald J Nora
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rashed Harun
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David F Fine
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Hutchison
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Adam C Grobart
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason P Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
91
|
Budzillo A, Duffy A, Miller KE, Fairhall AL, Perkel DJ. Dopaminergic modulation of basal ganglia output through coupled excitation-inhibition. Proc Natl Acad Sci U S A 2017; 114:5713-5718. [PMID: 28507134 PMCID: PMC5465888 DOI: 10.1073/pnas.1611146114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning and maintenance of skilled movements require exploration of motor space and selection of appropriate actions. Vocal learning and social context-dependent plasticity in songbirds depend on a basal ganglia circuit, which actively generates vocal variability. Dopamine in the basal ganglia reduces trial-to-trial neural variability when the bird engages in courtship song. Here, we present evidence for a unique, tonically active, excitatory interneuron in the songbird basal ganglia that makes strong synaptic connections onto output pallidal neurons, often linked in time with inhibitory events. Dopamine receptor activity modulates the coupling of these excitatory and inhibitory events in vitro, which results in a dynamic change in the synchrony of a modeled population of basal ganglia output neurons receiving excitatory and inhibitory inputs. The excitatory interneuron thus serves as one biophysical mechanism for the introduction or modulation of neural variability in this circuit.
Collapse
Affiliation(s)
- Agata Budzillo
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195
| | - Alison Duffy
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Kimberly E Miller
- Department of Otolaryngology, University of Washington, Seattle, WA 98195
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, WA 98195
- Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA 98195
| | - David J Perkel
- Department of Otolaryngology, University of Washington, Seattle, WA 98195;
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| |
Collapse
|
92
|
Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum. Neuropharmacology 2017; 121:261-277. [PMID: 28408325 DOI: 10.1016/j.neuropharm.2017.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 11/20/2022]
Abstract
Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how STDP evolves during development. We previously showed that GABAergic signaling governs STDP polarity and thus operates as a Hebbian/anti-Hebbian switch in the striatum. Although GABAergic networks are subject to important developmental maturation, it remains unclear whether STDP is developmentally shaped by GABAergic signaling. Here, we investigated whether STDP rules are developmentally regulated at corticostriatal synapses in the dorsolateral striatum. We found that striatal STDP displays unidirectional plasticity (Hebbian tLTD) in young rats (P7-10) whereas STDP is bidirectional and anti-Hebbian in juvenile (P20-25) and adult (P60-90) rats. We also provide evidence that the appearance of tonic (extrasynaptic) GABAergic signaling from the juvenile stage is a crucial factor in shaping STDP rules during development, establishing bidirectional anti-Hebbian STDP in the adult striatum. Thus, developmental maturation of GABAergic signaling tightly drives the polarity of striatal plasticity.
Collapse
|
93
|
Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, Hausdorff JM, Toni I, Helmich RC. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 2017; 140:1384-1398. [DOI: 10.1093/brain/awx042] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Freek Nieuwhof
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Miriam F Reelick
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Inbal Maidan
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| |
Collapse
|
94
|
Fazio P, Schain M, Mrzljak L, Amini N, Nag S, Al-Tawil N, Fitzer-Attas CJ, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D 2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with 18F-MNI-659 and 11C-raclopride with correction for partial volume effect. Neuroimage 2017; 152:330-339. [PMID: 28254508 DOI: 10.1016/j.neuroimage.2017.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D2/3 receptors (D2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand 18F-MNI-659 and D2/3 R radioligand 11C-raclopride were used. The outcome measure was the binding potential (BPND) estimated with the two-tissue compartment model (18F-MNI-659) and the simplified reference tissue model (11C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the striatum. Moreover as result of the analysis, in the striatum for both the molecular targets, we observed a gender effect with higher BPND the female group.
Collapse
Affiliation(s)
- Patrik Fazio
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Martin Schain
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | | | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Andrea Varrone
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| |
Collapse
|
95
|
Sawyer KN, Callaway CW, Wagner AK. Life After Death: Surviving Cardiac Arrest—an Overview of Epidemiology, Best Acute Care Practices, and Considerations for Rehabilitation Care. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2017. [DOI: 10.1007/s40141-017-0148-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
96
|
Wu JJ, Chen S, Ouyang LS, Jia Y, Liu BB, Mu SH, Ma YX, Wang WP, Wei JY, Li YL, Chen Z, Lei WL. Cortical regulation of striatal projection neurons and interneurons in a Parkinson's disease rat model. Neural Regen Res 2017; 11:1969-1975. [PMID: 28197194 PMCID: PMC5270436 DOI: 10.4103/1673-5374.197140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Jia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Periodical Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Si Ouyang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yu Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bing-Bing Liu
- Department of Anesthesiology, Guangdong No. 2 Provincial People's Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, Guangdong Province, China
| | - Shu-Hua Mu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Ping Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-You Wei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - You-Lan Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wan-Long Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
97
|
Petryszyn S, Parent A, Parent M. The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions. J Neural Transm (Vienna) 2017; 125:279-290. [PMID: 28168621 DOI: 10.1007/s00702-017-1687-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
This paper reviews the major organizational features of calretinin interneurons in the dorsal striatum of rodents and primates, with some insights on the state of these neurons in Parkinson's disease and Huntington's chorea. The rat striatum harbors medium-sized calretinin-immunoreactive (CR+) interneurons, whereas the mouse striatum is pervaded by medium-sized CR+ interneurons together with numerous small and highly immunoreactive CR+ cells. The CR interneuronal network is even more elaborated in monkey and human striatum where, in addition to the small- and medium-sized CR+ interneurons, a set of large CR+ interneurons occurs. The majority of these giant CR+ interneurons, which are unique to the primate striatum, also display immunoreactivity for choline acetyltransferase (ChAT), a faithful marker of cholinergic neurons. The expression of CR and/or ChAT by the large striatal interneurons appears to be seriously compromised in Parkinson's disease and Huntington's chorea. The species differences noted above have to be considered to better understand the role of CR interneurons in striatal organization in both normal and pathological conditions.
Collapse
Affiliation(s)
- S Petryszyn
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada
| | - A Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada.
| |
Collapse
|
98
|
Bode C, Richter F, Spröte C, Brigadski T, Bauer A, Fietz S, Fritschy JM, Richter A. Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol 2017; 287:44-53. [PMID: 27780732 DOI: 10.1016/j.expneurol.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
GABAergic disinhibition has been suggested to play a critical role in the pathophysiology of several basal ganglia disorders, including dystonia, a common movement disorder. Previous studies have shown a deficit of striatal GABAergic interneurons (IN) in the dtsz mutant hamster, one of the few phenotypic animal models of dystonia. However, mechanisms underlying this deficit are largely unknown. In the present study, we investigated the migration and maturation of striatal IN during postnatal development (18days of age) and at age of highest severity of dystonia (33days of age) in this hamster model. In line with previous findings, the density of GAD67-positive IN and the level of parvalbumin mRNA, a marker for fast spiking GABAergic IN, were lower in the dtsz mutant than in control hamsters. However, an unaltered density of Nkx2.1 labeled cells and Nkx2.1 mRNA level suggested that the migration of GABAergic IN into the striatum was not retarded. Therefore, different factors that indicate maturation of GABAergic IN were determined. While mRNA of the KCC2 cation/chloride transporters and the cytosolic carboanhydrase VII, used as markers for the so called GABA switch, as well as BDNF were unaltered, we found a reduced number of IN expressing the alpha1 subunit of the GABAA-receptor (37.5%) in dtsz hamsters at an age of 33days, but not after spontaneous remission of dystonia at an age of 90days. Since IN shift expression from alpha2 to alpha1 subunits during postnatal maturation, this result together with a decreased parvalbumin mRNA expression suggest a delayed maturation of striatal GABAergic IN in this animal model, which might underlie abnormal neuronal activity and striatal plasticity.
Collapse
Affiliation(s)
- Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| | - Christine Spröte
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Tanja Brigadski
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Center of Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
99
|
Ferrario CR, Labouèbe G, Liu S, Nieh EH, Routh VH, Xu S, O'Connor EC. Homeostasis Meets Motivation in the Battle to Control Food Intake. J Neurosci 2016; 36:11469-11481. [PMID: 27911750 PMCID: PMC5125214 DOI: 10.1523/jneurosci.2338-16.2016] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 01/09/2023] Open
Abstract
Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity.
Collapse
Affiliation(s)
- Carrie R Ferrario
- University of Michigan Medical School, Department of Pharmacology, Ann Arbor, Michigan 48109-5632
| | - Gwenaël Labouèbe
- University of Lausanne, Center for Integrative Genomics, Lausanne, CH1015, Switzerland
| | - Shuai Liu
- University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Edward H Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - Shengjin Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, and
| | - Eoin C O'Connor
- University of Geneva, Department of Basic Neuroscience, Geneva, CH1211, Switzerland
| |
Collapse
|
100
|
Kronbauer M, Metz VG, Roversi K, Dias VT, de David Antoniazzi CT, da Silva Barcelos RC, Burger ME. Influence of magnesium supplementation on movement side effects related to typical antipsychotic treatment in rats. Behav Brain Res 2016; 320:400-411. [PMID: 27816557 DOI: 10.1016/j.bbr.2016.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Chronic use of typical antipsychotic haloperidolis related to movement disturbances such as parkinsonism, akathisia and tardive dyskinesia which have been related to excitotoxicity in extrapyramidal brain areas, requiring their prevention and treatment. In the current study we evaluated the influence of the magnesium on prevention (for 28days before-), reversion (for 12days after-) and concomitant supplementation on haloperidol-induced movement disorders in rats. Sub-chronic haloperidol was related to orofacial dyskinesia (OD) and catalepsy development, increased generation of reactive species (RS) and levels of protein carbonyl (PC) in cortex, striatum and substantia nigra (SN) in all experimental protocols. When provided preventatively, Mg reduced the increase of OD and catalepsy time 14 and 7days after haloperidol administration, respectively. When supplemented after haloperidol-induced OD establishment, Mg reversed this behavior after 12days, while catalepsy was reversed after 6days of Mg supplementation.When Mg was concomitantly supplemented with haloperidol administration, OD and catalepsy were prevented. Moreover, Mg supplementation was able to prevent the RS generation in both cortex and SN, reducing PC levels in all brain areas evaluated. When supplemented after haloperidol, Mg reversed RS generation in cortex and striatum, decreasing PC levels in SN and striatum.The co-administration of haloperidol and Mg supplementation prevented RS generation in cortex, striatum and SN, and PC levels in the SN.These outcomes indicate that Mg supplementation may be a useful alternative to prevent movement disturbances resulting of classic antipsychotic pharmacotherapy as haloperidol.
Collapse
Affiliation(s)
- Maikel Kronbauer
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Karine Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Veronica Tironi Dias
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | - Marilise E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, UFSM, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil.
| |
Collapse
|