51
|
Puricelli C, Rolla R, Gigliotti L, Boggio E, Beltrami E, Dianzani U, Keller R. The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front Psychiatry 2021; 12:755171. [PMID: 35185631 PMCID: PMC8850385 DOI: 10.3389/fpsyt.2021.755171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The interest elicited by the large microbial population colonizing the human gut has ancient origins and has gone through a long evolution during history. However, it is only in the last decades that the introduction of high-throughput technologies has allowed to broaden this research field and to disentangle the numerous implications that gut microbiota has in health and disease. This comprehensive ecosystem, constituted mainly by bacteria but also by fungi, parasites, and viruses, is proven to be involved in several physiological and pathological processes that transcend the intestinal homeostasis and are deeply intertwined with apparently unrelated body systems, such as the immune and the nervous ones. In this regard, a novel speculation is the relationship between the intestinal microbial flora and the pathogenesis of some neurological and neurodevelopmental disorders, including the clinical entities defined under the umbrella term of autism spectrum disorders. The bidirectional interplay has led researchers to coin the term gut-brain-immune system axis, subverting the theory of the brain as an immune-privileged site and underscoring the importance of this reciprocal influence already from fetal life and especially during the pre- and post-natal neurodevelopmental process. This revolutionary theory has also unveiled the possibility to modify the gut microbiota as a way to treat and even to prevent different kinds of pathologies. In this sense, some attempts have been made, ranging from probiotic administration to fecal microbiota transplantation, with promising results that need further elaboration. This state-of-art report will describe the main aspects regarding the human gut microbiome and its specific role in the pathogenesis of autism and its related disorders, with a final discussion on the therapeutic and preventive strategies aiming at creating a healthy intestinal microbial environment, as well as their safety and ethical implications.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eleonora Beltrami
- Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberto Keller
- Mental Health Department, Adult Autism Center, ASL Città di Torino, Turin, Italy
| |
Collapse
|
52
|
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:605958. [PMID: 33384693 PMCID: PMC7770133 DOI: 10.3389/fimmu.2020.605958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
53
|
Hu Y, Pei W, Hu Y, Li P, Sun C, Du J, Zhang Y, Miao F, Zhang A, Shen Y, Zhang J. MiR34a Regulates Neuronal MHC Class I Molecules and Promotes Primary Hippocampal Neuron Dendritic Growth and Branching. Front Cell Neurosci 2020; 14:573208. [PMID: 33192317 PMCID: PMC7655649 DOI: 10.3389/fncel.2020.573208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
In the immune system, Major Histocompatibility Complex class I (MHC-I) molecules are located on the surface of most nucleated cells in vertebrates where they mediate immune responses. Accumulating evidence indicates that MHC-I molecules are also expressed in the central nervous system (CNS) where they play important roles that are significantly different from their immune functions. Classical MHC-I molecules are temporally and spatially expressed in the developing and adult CNS, where they participate in the synaptic formation, remodeling and plasticity. Therefore, clarifying the regulation of MHC-I expression is necessary to develop an accurate understanding of its function in the CNS. Here, we show that microRNA 34a (miR34a), a brain enriched noncoding RNA, is temporally expressed in developing hippocampal neurons, and its expression is significantly increased after MHC-I protein abundance is decreased in the hippocampus. Computational algorithms identify putative miR34a target sites in the 3′UTR of MHC-I mRNA, and here we demonstrate direct targeting of miR34a to MHC-I mRNA using a dual-luciferase reporter assay system. MiR34a targeting can decrease constitutive MHC-I expression in both Neuro-2a neuroblastoma cells and primary hippocampal neurons. Finally, miR34a mediated reduction of MHC-I results in increased dendritic growth and branching in cultured hippocampal neurons. Taken together, our findings identify miR34a as a novel regulator of MHC-I for shaping neural morphology in developing hippocampal neurons.
Collapse
Affiliation(s)
- Yue Hu
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Wenqin Pei
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Hu
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ping Li
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Chen Sun
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jiawei Du
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
54
|
Wang J, Hu W, Feng Z, Feng M. BDNF-overexpressing human umbilical cord mesenchymal stem cell-derived motor neurons improve motor function and prolong survival in amyotrophic lateral sclerosis mice. Neurol Res 2020; 43:199-209. [PMID: 33076784 DOI: 10.1080/01616412.2020.1834775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the beneficial effect of brain-derived neurotrophic factor (BDNF) -overexpressing human umbilical cord mesenchymal stem cell (hUC-MSC)-derived motor neurons in the human Cu, Zn-superoxide dismutase1 (hSOD1)G93A amyotrophic lateral sclerosis (ALS) mice. METHODS The BDNF gene was transfected into hUC-MSC-derived motor neurons by the lentivirus-mediated method. hSOD1G93A mice were assigned to the ALS, ALS/MN, and ALS/MN-BDNF groups, and intrathecally administrated phosphate-buffered saline (PBS), motor neurons, or motor neurons overexpressing BDNF, respectively. The control group included non-transgenic wild-type littermates administrated PBS. One month after transplantation, the motor function of the mice was assessed by the rotarod test, and the lumbar enlargements were then isolated to detect the expression of hSOD1 and BDNF by western blotting, and the expression of choline acetyltransferase (ChAT), homeobox protein 9 (HB9), major histocompatibility complex I (MHCI) and microtubule-associated protein-2 (MAP-2) by immunofluorescence assay. RESULTS After transplantation, mice in the ALS/MN-BDNF and ALS/MN groups both exhibited longer latency to fall and longer survival than those in the ALS group (P < 0.01 vs. P < 0.05), and the improvement was more significant in the former than in the latter. However, cell transplantation did not delay disease onset. In the lumbar enlargements of the ALS/MN-BDNF and ALS/MN groups, the expression of hSOD1 was slightly reduced without statistical significance (P > 0.05), but the expression of BDNF, ChAT and HB9, and the co-expression of MHCI and MAP-2 were significantly greater than in the ALS group (P < 0.01), with the differences also being more prominent in the former group than in the latter. CONCLUSIONS Transplantation of BDNF-overexpressing hUC-MSC-derived motor neurons can improve motor performance and prolong the survival of hSOD1G93A mice. Combining stem cell-derived motor neurons with BDNF might provide a new therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University , Nanjing, China.,Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing, China
| | - Weiwei Hu
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Zehua Feng
- School of Stomatology, Nanjing Medical University , Nanjing, China
| | - Meijiang Feng
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University , Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University , Nanjing, China
| |
Collapse
|
55
|
Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway. Brain Sci 2020; 10:brainsci10090631. [PMID: 32932826 PMCID: PMC7563403 DOI: 10.3390/brainsci10090631] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Autism Spectrum Disorder (ASD) etiopathogenesis is still unclear and no effective preventive and treatment measures have been identified. Research has focused on the potential role of neuroinflammation and the Kynurenine pathway; here we review the nature of these interactions. Pre-natal or neonatal infections would induce microglial activation, with secondary consequences on behavior, cognition and neurotransmitter networks. Peripherally, higher levels of pro-inflammatory cytokines and anti-brain antibodies have been identified. Increased frequency of autoimmune diseases, allergies, and recurring infections have been demonstrated both in autistic patients and in their relatives. Genetic studies have also identified some important polymorphisms in chromosome loci related to the human leukocyte antigen (HLA) system. The persistence of immune-inflammatory deregulation would lead to mitochondrial dysfunction and oxidative stress, creating a self-sustaining cytotoxic loop. Chronic inflammation activates the Kynurenine pathway with an increase in neurotoxic metabolites and excitotoxicity, causing long-term changes in the glutamatergic system, trophic support and synaptic function. Furthermore, overactivation of the Kynurenine branch induces depletion of melatonin and serotonin, worsening ASD symptoms. Thus, in genetically predisposed subjects, aberrant neurodevelopment may derive from a complex interplay between inflammatory processes, mitochondrial dysfunction, oxidative stress and Kynurenine pathway overexpression. To validate this hypothesis a new translational research approach is necessary.
Collapse
|
56
|
Wang ZX, Wan Q, Xing A. HLA in Alzheimer's Disease: Genetic Association and Possible Pathogenic Roles. Neuromolecular Med 2020; 22:464-473. [PMID: 32894413 DOI: 10.1007/s12017-020-08612-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is commonly considered as the most prominent dementing disorder globally and is characterized by the deposition of misfolded amyloid-β (Aβ) peptide and the aggregation of neurofibrillary tangles. Immunological disturbances and neuroinflammation, which result from abnormal immunological reactivations, are believed to be the primary stimulating factors triggering AD-like neuropathy. It has been suggested by multiple previous studies that a bunch of AD key influencing factors might be attributed to genes encoding human leukocyte antigen (HLA), whose variety is an essential part of human adaptive immunity. A wide range of activities involved in immune responses may be determined by HLA genes, including inflammation mediated by the immune response, T-cell transendothelial migration, infection, brain development and plasticity in AD pathogenesis, and so on. The goal of this article is to review the recent epidemiological findings of HLA (mainly HLA class I and II) associated with AD and investigate to what extent the genetic variations of HLA were clinically significant as pathogenic factors for AD. Depending on the degree of contribution of HLA in AD pathogenesis, targeted research towards HLA may propel AD therapeutic strategies into a new era of development.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Neurosurgery, Qingdao University, Qingdao, 266071, China.
- Department of Pathophysiology, Qingdao University, Qingdao, 266071, China.
| | - Ang Xing
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
57
|
Comer AL, Carrier M, Tremblay MÈ, Cruz-Martín A. The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front Cell Neurosci 2020; 14:274. [PMID: 33061891 PMCID: PMC7518314 DOI: 10.3389/fncel.2020.00274] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a disorder with a heterogeneous etiology involving complex interplay between genetic and environmental risk factors. The immune system is now known to play vital roles in nervous system function and pathology through regulating neuronal and glial development, synaptic plasticity, and behavior. In this regard, the immune system is positioned as a common link between the seemingly diverse genetic and environmental risk factors for schizophrenia. Synthesizing information about how the immune-brain axis is affected by multiple factors and how these factors might interact in schizophrenia is necessary to better understand the pathogenesis of this disease. Such knowledge will aid in the development of more translatable animal models that may lead to effective therapeutic interventions. Here, we provide an overview of the genetic risk factors for schizophrenia that modulate immune function. We also explore environmental factors for schizophrenia including exposure to pollution, gut dysbiosis, maternal immune activation and early-life stress, and how the consequences of these risk factors are linked to microglial function and dysfunction. We also propose that morphological and signaling deficits of the blood-brain barrier, as observed in some individuals with schizophrenia, can act as a gateway between peripheral and central nervous system inflammation, thus affecting microglia in their essential functions. Finally, we describe the diverse roles that microglia play in response to neuroinflammation and their impact on brain development and homeostasis, as well as schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ashley L. Comer
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Alberto Cruz-Martín
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States
| |
Collapse
|
58
|
Jang Y, Kim TJ, Moon J, Yang TW, Kim KT, Park BS, Lim JA, Jun JS, Lee ST, Jung KH, Park KI, Jung KY, Chu K, Lee SK. HLAs associated with perampanel-induced psychiatric adverse effects in a Korean population. Sci Rep 2020; 10:13667. [PMID: 32788606 PMCID: PMC7423598 DOI: 10.1038/s41598-020-70601-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Perampanel (PER) is a new-generation antiepileptic drug that has an occasional but significant shortcoming, psychiatric adverse effects (PAEs). Recently, antiepileptic drug-related adverse reactions, such as skin rash and even PAEs, have been discovered to be correlated with certain human leukocyte antigen (HLA) types. Thus, we aimed to analyze specific HLA alleles as risk factors for PER-PAEs. We prospectively enrolled 17 patients with epilepsy who were prescribed PER between May 2016 and Jul 2018 at Seoul National University Hospital and developed PAEs while taking PER. Their HLA types were analyzed compared to those of 19 patients in the PAE-tolerant group and the general Korean population. In silico docking was performed with two different computational programs, AutoDock Vina and SwissDock, to theoretically evaluate the binding affinity of PER in the grooves of the specific HLA alleles. The HLA-DQB1*06:01, DRB1*08:03, and B*54:01 alleles were significantly associated with the patients who developed PER-PAEs compared with the general Korean population (odds ratio [OR] 3.94, p = 0.008, OR 9.24, p = 0.037, and OR 3.25, p = 0.041, respectively). As a haplotype, the combination of the three alleles was significantly more frequent in the PER-PAE group than in both the PER-tolerant group and the general Korean population. DQB1*06:01 and B*54:01 also demonstrated higher docking scores with PER than other alleles. This is the first study to analyze the association of PER-PAEs with specific HLA genotypes. Our results suggest that an HLA-associated genetic predisposition and a possible immunological mechanism are involved in the occurrence of PER-PAEs.
Collapse
Affiliation(s)
- Yoonhyuk Jang
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jangsup Moon
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, South Korea
| | - Tae-Won Yang
- Department of Neurology, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, South Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Byeong-Su Park
- Department of Neurology, Ulsan University Hospital, Ulsan, South Korea
| | - Jung-Ah Lim
- Department of Neurology, Chamjoeun Hospital, Gwangju, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Soon-Tae Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Keun-Hwa Jung
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Kyung-Il Park
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Ki-Young Jung
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Kon Chu
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.
| | - Sang Kun Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.
| |
Collapse
|
59
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
60
|
The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020; 107:234-256. [PMID: 32553197 DOI: 10.1016/j.neuron.2020.06.002] [Citation(s) in RCA: 994] [Impact Index Per Article: 198.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Depression represents the number one cause of disability worldwide and is often fatal. Inflammatory processes have been implicated in the pathophysiology of depression. It is now well established that dysregulation of both the innate and adaptive immune systems occur in depressed patients and hinder favorable prognosis, including antidepressant responses. In this review, we describe how the immune system regulates mood and the potential causes of the dysregulated inflammatory responses in depressed patients. However, the proportion of never-treated major depressive disorder (MDD) patients who exhibit inflammation remains to be clarified, as the heterogeneity in inflammation findings may stem in part from examining MDD patients with varied interventions. Inflammation is likely a critical disease modifier, promoting susceptibility to depression. Controlling inflammation might provide an overall therapeutic benefit, regardless of whether it is secondary to early life trauma, a more acute stress response, microbiome alterations, a genetic diathesis, or a combination of these and other factors.
Collapse
|
61
|
Moseman EA, Blanchard AC, Nayak D, McGavern DB. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol 2020; 5:eabb1817. [PMID: 32503876 PMCID: PMC7416530 DOI: 10.1126/sciimmunol.abb1817] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The neuroepithelium is a nasal barrier surface populated by olfactory sensory neurons that detect odorants in the airway and convey this information directly to the brain via axon fibers. This barrier surface is especially vulnerable to infection, yet respiratory infections rarely cause fatal encephalitis, suggesting a highly evolved immunological defense. Here, using a mouse model, we sought to understand the mechanism by which innate and adaptive immune cells thwart neuroinvasion by vesicular stomatitis virus (VSV), a potentially lethal virus that uses olfactory sensory neurons to enter the brain after nasal infection. Fate-mapping studies demonstrated that infected central nervous system (CNS) neurons were cleared noncytolytically, yet specific deletion of major histocompatibility complex class I (MHC I) from these neurons unexpectedly had no effect on viral control. Intravital imaging studies of calcium signaling in virus-specific CD8+ T cells revealed instead that brain-resident microglia were the relevant source of viral peptide-MHC I complexes. Microglia were not infected by the virus but were found to cross-present antigen after acquisition from adjacent neurons. Microglia depletion interfered with T cell calcium signaling and antiviral control in the brain after nasal infection. Collectively, these data demonstrate that microglia provide a front-line defense against a neuroinvasive nasal infection by cross-presenting antigen to antiviral T cells that noncytolytically cleanse neurons. Disruptions in this innate defense likely render the brain susceptible to neurotropic viruses like VSV that attempt to enter the CNS via the nose.
Collapse
Affiliation(s)
- E Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Alexa C Blanchard
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
62
|
Pourhaghighi R, Ash PEA, Phanse S, Goebels F, Hu LZM, Chen S, Zhang Y, Wierbowski SD, Boudeau S, Moutaoufik MT, Malty RH, Malolepsza E, Tsafou K, Nathan A, Cromar G, Guo H, Abdullatif AA, Apicco DJ, Becker LA, Gitler AD, Pulst SM, Youssef A, Hekman R, Havugimana PC, White CA, Blum BC, Ratti A, Bryant CD, Parkinson J, Lage K, Babu M, Yu H, Bader GD, Wolozin B, Emili A. BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst 2020; 10:333-350.e14. [PMID: 32325033 PMCID: PMC7938770 DOI: 10.1016/j.cels.2020.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
Collapse
Affiliation(s)
- Reza Pourhaghighi
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Regina, Regina, SK, Canada; Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Florian Goebels
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lucas Z M Hu
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Siwei Chen
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yingying Zhang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Shayne D Wierbowski
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | - Ramy H Malty
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Edyta Malolepsza
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Kalliopi Tsafou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Aparna Nathan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Graham Cromar
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Hongbo Guo
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ali Al Abdullatif
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Daniel J Apicco
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Ahmed Youssef
- Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA
| | - Carl A White
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS, Milan, Italy
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Gary D Bader
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Program in Neuroscience, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
63
|
Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, Yao YL, Chen JQ, Lv LB, Zheng P, Wu DD, Zhang GJ, Yao YG. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zool Res 2019; 40:506-521. [PMID: 31418539 PMCID: PMC6822927 DOI: 10.24272/j.issn.2095-8137.2019.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 01/11/2023] Open
Abstract
Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled genome is essential for understanding the genetic features and biology of this animal. In this study, we used long-read single-molecule sequencing and high-throughput chromosome conformation capture (Hi-C) technology to obtain a high-qualitychromosome-scale scaffolding of the Chinese tree shrew genome. The new reference genome (KIZ version 2: TS_2.0) resolved problems in presently available tree shrew genomes and enabled accurate identification of large and complex repeat regions, gene structures, and species-specific genomic structural variants. In addition, by sequencing the genomes of six Chinese tree shrew individuals, we produced a comprehensive map of 12.8 M single nucleotide polymorphisms and confirmed that the major histocompatibility complex (MHC) loci and immunoglobulin gene family exhibited high nucleotide diversity in the tree shrew genome. We updated the tree shrew genome database (TreeshrewDB v2.0: http://www.treeshrewdb.org) to include the genome annotation information and genetic variations. The new high-quality reference genome of the Chinese tree shrew and the updated TreeshrewDB will facilitate the use of this animal in many different fields of research.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Mao-Sen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Jin-Yan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Dan-Dan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Tian-Le Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Jia-Qi Chen
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Long-Bao Lv
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ping Zheng
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Guo-Jie Zhang
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
64
|
Cherry JA, Baum MJ. Sex differences in main olfactory system pathways involved in psychosexual function. GENES BRAIN AND BEHAVIOR 2019; 19:e12618. [PMID: 31634411 DOI: 10.1111/gbb.12618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex-specific olfactory signals ("pheromones") that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal-accessory olfactory system) in mate recognition and sexual arousal, with male-specific as well as female-specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, "copulin"), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.
Collapse
Affiliation(s)
- James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Michael J Baum
- Department of Biology, Boston University, Boston, Massachusetts
| |
Collapse
|
65
|
Rabenstein M, Unverricht-Yeboah M, Keuters MH, Pikhovych A, Hucklenbroich J, Vay SU, Blaschke S, Ladwig A, Walter HL, Beiderbeck M, Fink GR, Schroeter M, Kriehuber R, Rueger MA. Transcranial Current Stimulation Alters the Expression of Immune-Mediating Genes. Front Cell Neurosci 2019; 13:461. [PMID: 31708742 PMCID: PMC6824260 DOI: 10.3389/fncel.2019.00461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Despite its extensive use in clinical studies, the molecular mechanisms underlying the effects of transcranial direct current stimulation (tDCS) remain to be elucidated. We previously described subacute effects of tDCS on immune- and stem cells in the rat brain. To investigate the more immediate effects of tDCS regulating those cellular responses, we treated rats with a single session of either anodal or cathodal tDCS, and analyzed the gene expression by microarray; sham-stimulated rats served as control. Anodal tDCS increased expression of several genes coding for the major histocompatibility complex I (MHC I), while cathodal tDCS increased the expression of the immunoregulatory protein osteopontin (OPN). We confirmed the effects of gene upregulation by immunohistochemistry at the protein level. Thus, our data show a novel mechanism for the actions of tDCS on immune- and inflammatory processes, providing a target for future therapeutic studies.
Collapse
Affiliation(s)
- Monika Rabenstein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Marcus Unverricht-Yeboah
- Radiation Biology Unit, Department of Safety and Radiation Protection, Research Centre Jülich, Jülich, Germany
| | - Meike Hedwig Keuters
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anton Pikhovych
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Joerg Hucklenbroich
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Sabine Ulrike Vay
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Stefan Blaschke
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Anne Ladwig
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | | | - Gereon Rudolf Fink
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Ralf Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Research Centre Jülich, Jülich, Germany
| | - Maria Adele Rueger
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
66
|
Juvodden HT, Viken MK, Nordstrand SEH, Viste R, Westlye LT, Thorsby PM, Lie BA, Knudsen-Heier S. HLA and sleep parameter associations in post-H1N1 narcolepsy type 1 patients and first-degree relatives. Sleep 2019; 43:5586722. [DOI: 10.1093/sleep/zsz239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Study Objectives
To explore HLA (human leukocyte antigen) in post-H1N1 narcolepsy type 1 patients (NT1), first-degree relatives and healthy controls, and assess HLA associations with clinical and sleep parameters in patients and first-degree relatives.
Methods
Ninety post-H1N1 NT1 patients and 202 of their first-degree relatives were HLA-genotyped (next generation sequencing) and phenotyped (semistructured interviews, Stanford Sleep Questionnaire, polysomnography, and multiple sleep latency test). HLA allele distributions were compared between DQB1*06:02-heterozygous individuals (77 patients, 59 parents, 1230 controls). A subsample (74 patients, 114 relatives) was investigated for associations between HLA-loci and continuous sleep variables using logistic regression. Identified candidate HLA-loci were explored for HLA allele associations with hypnagogic hallucinations and sleep paralysis in 90 patients, and patient allele findings were checked for similar associations in 202 relatives.
Results
DQB1*06:02 heterozygous post-H1N1 NT1 patients (84.4% H1N1-vaccinated) showed several significant HLA associations similar to those reported previously in samples of mainly sporadic NT1, i.e. DQB1*03:01, DRB1*04:01, DRB1*04:02, DRB1*04:07, DRB1*11:04, A*25:01, B*35:03, and B*51:01, and novel associations, i.e. B*14:02, C*01:02, and C*07:01. Parents HLA alleles did not deviate significantly from controls. The HLA-C locus was associated with sleep parameters in patients and relatives. In patients C*02:02 seems to be associated with protective effects against sleep paralysis and hypnagogic hallucinations.
Conclusions
Our findings of similar risk/protective HLA-alleles in post-H1N1 as in previous studies of mainly sporadic narcolepsy support similar disease mechanisms. We also report novel allelic associations. Associations between HLA-C and sleep parameters were seen independent of NT1 diagnosis, supporting involvement of HLA-C in sleep subphenotypes.
Collapse
Affiliation(s)
- Hilde T Juvodden
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Ullevål, Norway, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Marte K Viken
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Norway
| | - Sebjørg E H Nordstrand
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Ullevål, Norway, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Rannveig Viste
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Ullevål, Norway, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Norway
- Department of Psychology, University of Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Aker, Norway Norway
| | - Benedicte A Lie
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Norway
| | - Stine Knudsen-Heier
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Ullevål, Norway, Norway
| |
Collapse
|
67
|
Morimoto K, Nakajima K. Role of the Immune System in the Development of the Central Nervous System. Front Neurosci 2019; 13:916. [PMID: 31551681 PMCID: PMC6735264 DOI: 10.3389/fnins.2019.00916] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
The central nervous system (CNS) and the immune system are both intricate and highly organized systems that regulate the entire body, with both sharing certain common features in developmental mechanisms and operational modes. It is known that innate immunity-related molecules, such as cytokines, toll-like receptors, the complement family, and acquired immunity-related molecules, such as the major histocompatibility complex and antibody receptors, are also expressed in the brain and play important roles in brain development. Moreover, although the brain has previously been regarded as an immune-privileged site, it is known to contain lymphatic vessels. Not only microglia but also lymphocytes regulate cognition and play a vital role in the formation of neuronal circuits. This review provides an overview of the function of immune cells and immune molecules in the CNS, with particular emphasis on their effect on neural developmental processes.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
68
|
Bennett FC, Molofsky AV. The immune system and psychiatric disease: a basic science perspective. Clin Exp Immunol 2019; 197:294-307. [PMID: 31125426 PMCID: PMC6693968 DOI: 10.1111/cei.13334] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Mental illness exerts a major burden on human health, yet evidence-based treatments are rudimentary due to a limited understanding of the underlying pathologies. Clinical studies point to roles for the immune system in psychiatric diseases, while basic science has revealed that the brain has an active and multi-cellular resident immune system that interacts with peripheral immunity and impacts behavior. In this perspective, we highlight evidence of immune involvement in human psychiatric disease and review data from animal models that link immune signaling to neuronal function and behavior. We propose a conceptual framework for linking advances in basic neuroimmunology to their potential relevance for psychiatric diseases, based on the subtypes of immune responses defined in peripheral tissues. Our goal is to identify novel areas of focus for future basic and translational studies that may reveal the potential of the immune system for diagnosing and treating mental illnesses.
Collapse
Affiliation(s)
- F. C. Bennett
- Department of Psychiatry, Perelman School of MedicineUniversity of Pennsylvania, The Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - A. V. Molofsky
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoSan FranciscoCAUSA
| |
Collapse
|
69
|
Cartarozzi LP, Perez M, Kirchhoff F, Oliveira ALRD. Role of MHC-I Expression on Spinal Motoneuron Survival and Glial Reactions Following Ventral Root Crush in Mice. Cells 2019; 8:E483. [PMID: 31117227 PMCID: PMC6563038 DOI: 10.3390/cells8050483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
Lesions to the CNS/PNS interface are especially severe, leading to elevated neuronal degeneration. In the present work, we establish the ventral root crush model for mice, and demonstrate the potential of such an approach, by analyzing injury evoked motoneuron loss, changes of synaptic coverage and concomitant glial responses in β2-microglobulin knockout mice (β2m KO). Young adult (8-12 weeks old) C57BL/6J (WT) and β2m KO mice were submitted to a L4-L6 ventral roots crush. Neuronal survival revealed a time-dependent motoneuron-like cell loss, both in WT and β2m KO mice. Along with neuronal loss, astrogliosis increased in WT mice, which was not observed in β2m KO mice. Microglial responses were more pronounced during the acute phase after lesion and decreased over time, in WT and KO mice. At 7 days after lesion β2m KO mice showed stronger Iba-1+ cell reaction. The synaptic inputs were reduced over time, but in β2m KO, the synaptic loss was more prominent between 7 and 28 days after lesion. Taken together, the results herein demonstrate that ventral root crushing in mice provides robust data regarding neuronal loss and glial reaction. The retrograde reactions after injury were altered in the absence of functional MHC-I surface expression.
Collapse
Affiliation(s)
- Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas-UNICAMP, Cidade Universitaria "Zeferino Vaz, Rua Monteiro Lobato, 255, 13083-970 Campinas, SP, Brazil.
| | - Matheus Perez
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-907 Ribeirão Preto, SP, Brazil.
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany.
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas-UNICAMP, Cidade Universitaria "Zeferino Vaz, Rua Monteiro Lobato, 255, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
70
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
71
|
Piazza FV, Segabinazi E, de Meireles ALF, Mega F, Spindler CDF, Augustin OA, Salvalaggio GDS, Achaval M, Kruse MS, Coirini H, Marcuzzo S. Severe Uncontrolled Maternal Hyperglycemia Induces Microsomia and Neurodevelopment Delay Accompanied by Apoptosis, Cellular Survival, and Neuroinflammatory Deregulation in Rat Offspring Hippocampus. Cell Mol Neurobiol 2019; 39:401-414. [PMID: 30739252 DOI: 10.1007/s10571-019-00658-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Maternal diabetes constitutes an unfavorable intrauterine environment for offspring development. Although it is known that diabetes can cause brain alterations and increased risk for neurologic disorders, the relationship between neuroimmune activation, brain changes, and neurodevelopment deficits in the offspring remains unclear. In order to elucidate the short- and long-term biological basis of the developmental outcomes caused by the severe uncontrolled maternal hyperglycemia, we studied apoptosis, neurogenesis, and neuroinflammation pathways in the hippocampus of neonates and young rats born to diabetic dams. Diabetes was induced on gestational day 5 by an injection of streptozotocin. Evaluations of milestones, body growth, and inhibitory avoidance were performed to monitor the offspring development and behavior. Hippocampal modifications were studied through cellular survival by BrdU in the dentate gyrus, expression of apoptosis-regulatory proteins (procaspase 3, caspase 3, and Bcl-2), BDNF, and neuroinflammatory modulation by interleukins, MHC-I, MHC-II, Iba-1, and GFAP proteins. Severe maternal diabetes caused microsomia and neurodevelopmental delay in pups and decrease of Bcl-2, procaspase 3, and caspase 3 in the hippocampus. Moreover, in a later stage of development, it was found an increase of TNF-α and a decrease of procaspase 3, caspase 3, MHC-I, IL-1β, and BDNF in the hippocampus, as well as impairment in cellular survival in the dentate gyrus. This study showed significant short- and long-term commitments on the development, apoptosis, cell survival, and neuroinflammation in the offspring hippocampus induced by severe uncontrolled maternal hyperglycemia. The data reinforce the need for treatment of maternal hyperglycemic states during pregnancy and breast-feeding.
Collapse
Affiliation(s)
- Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil.
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil.
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - André Luís Ferreira de Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Filipe Mega
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Christiano de Figueiredo Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Otávio Américo Augustin
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Gabriela Dos Santos Salvalaggio
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Maria Sol Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 5to Piso, C1121ABG, Buenos Aires, Argentina
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre, RS, CEP 90050-170, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, sala 142, Porto Alegre, RS, CEP 90050-170, Brazil
| |
Collapse
|
72
|
Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2019; 8:rsob.180138. [PMID: 30185603 PMCID: PMC6170506 DOI: 10.1098/rsob.180138] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction in CNS disorders is the outcome of perturbations in physiological synapse structure and function, and can be either the cause or the consequence in specific pathologies. Accumulating data in the field of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia and bipolar disorder, point to a neurodevelopmental origin of these pathologies. Due to a relatively early onset of behavioural and cognitive symptoms, it is generally acknowledged that mental illness initiates at the synapse level. On the other hand, synaptic dysfunction has been considered as an endpoint incident in neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's, mainly due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has recently been challenged, particularly since the discovery of cell reprogramming technologies and the generation of induced pluripotent stem cells from patient somatic cells. The creation of 'disease-in-a-dish' models for multiple CNS pathologies has revealed unexpected commonalities in the molecular and cellular mechanisms operating in both developmental and degenerative conditions, most of which meet at the synapse level. In this review we discuss synaptic dysfunction in prototype neurodevelopmental and neurodegenerative diseases, emphasizing overlapping features of synaptopathy that have been suggested by studies using induced pluripotent stem-cell-based systems. These valuable disease models have highlighted a potential neurodevelopmental component in classical neurodegenerative diseases that is worth pursuing and investigating further. Moving from demonstration of correlation to understanding mechanistic causality forms the basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Ourania Zygogianni
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
73
|
Todd EV, Liu H, Lamm MS, Thomas JT, Rutherford K, Thompson KC, Godwin JR, Gemmell NJ. Female Mimicry by Sneaker Males Has a Transcriptomic Signature in Both the Brain and the Gonad in a Sex-Changing Fish. Mol Biol Evol 2019; 35:225-241. [PMID: 29136184 DOI: 10.1093/molbev/msx293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phenotypic plasticity represents an elegant adaptive response of individuals to a change in their environment. Bluehead wrasses (Thalassoma bifasciatum) exhibit astonishing sexual plasticity, including female-to-male sex change and discrete male morphs that differ strikingly in behavior, morphology, and gonadal investment. Using RNA-seq transcriptome profiling, we examined the genes and physiological pathways underlying flexible behavioral and gonadal differences among female, dominant (bourgeois) male, and female-mimic (sneaker) male blueheads. For the first time in any organism, we find that female mimicry by sneaker males has a transcriptional signature in both the brain and the gonad. Sneaker males shared striking similarity in neural gene expression with females, supporting the idea that males with alternative reproductive phenotypes have "female-like brains." Sneaker males also overexpressed neuroplasticity genes, suggesting that their opportunistic reproductive strategy requires a heightened capacity for neuroplasticity. Bourgeois males overexpressed genes associated with socio-sexual behaviors (e.g., isotocin), but also neuroprotective genes and biomarkers of oxidative stress and aging, indicating a hitherto unexplored cost to these males of attaining the reproductively privileged position at the top of the social hierarchy. Our novel comparison of testicular transcriptomes in a fish with male sexual polymorphism associates greater gonadal investment by sneaker males with overexpression of genes involved in cell proliferation and sperm quality control. We propose that morphological female-mimicry by sneaker male teleosts entails pervasive downregulation of androgenesis genes, consistent with low androgen production in males lacking well-developed secondary sexual characters.
Collapse
Affiliation(s)
- Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Jodi T Thomas
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kelly C Thompson
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - John R Godwin
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
74
|
Cytotoxic CD8 + T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci U S A 2019; 116:2312-2317. [PMID: 30674678 PMCID: PMC6369778 DOI: 10.1073/pnas.1815961116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD8+ T lymphocytes, which are typically devoted to eliminate malignant and infected cells, have been described in the central nervous system (CNS) of patients and mice with amyotrophic lateral sclerosis (ALS). However, their role in ALS pathogenesis has yet to be unraveled. Here, we show that ablation of CD8+ T cells in ALS mice increased the number of surviving motoneurons. CD8+ T cells expressing the ALS-causing superoxide dismutase-1 mutant protein recognize and selectively kill motoneurons in vitro. To exert their cytotoxic function, mutant CD8+ T cells required presentation of the antigen-MHC-I complex at the surface of the motoneurons. Analysis of T cell receptor diversity supports the evidence that self-reactive CD8+ T lymphocytes infiltrate the CNS of ALS mice to exert cytotoxic function. Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4+ T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8+ T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8+ T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8+ T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1)G93A mutant decreased spinal motoneuron loss. Using motoneuron-CD8+ T cell coculture systems, we found that mutant SOD1-expressing CD8+ T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron and SOD1G93A CD8+ T cells. Activated mutant SOD1 CD8+ T cells produce interferon-γ, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8+ T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS.
Collapse
|
75
|
Kelly DL, Li X, Kilday C, Feldman S, Clark S, Liu F, Buchanan RW, Tonelli LH. Increased circulating regulatory T cells in medicated people with schizophrenia. Psychiatry Res 2018; 269:517-523. [PMID: 30195746 PMCID: PMC6207456 DOI: 10.1016/j.psychres.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023]
Abstract
Immunological abnormalities are increasingly reported in people with schizophrenia, but no clear functional biomarkers associated with genetic correlates of the disease have been found. Regulatory T cells (Tregs) are key immunoregulatory cells involved in the control of inflammatory processes and their functions are directly related to the human leucocyte antigen (HLA) gene, which has been implicated in schizophrenia genetic studies. However, there is a lack of studies reporting Treg status in people with schizophrenia. In the current study, the proportion of circulating Tregs was examined using flow cytometry in 26 medicated participants with schizophrenia and 17 healthy controls. Psychiatric symptoms and cognitive function were evaluated using the Scale for the Assessment of Negative Symptoms, the Brief Psychiatric Rating Scale, and the MATRICS Consensus Cognitive Battery. The proportion of Tregs was found to be significantly greater in the schizophrenia group compared to healthy controls. No differences were observed in total lymphocyte counts or CD3+ and CD4+ T cells, confirming a specific effect for Tregs. Elevated Tregs in schizophrenia correlated with fewer negative symptoms, a core domain of the illness. These results suggest that Tregs may contribute to improved negative symptoms in schizophrenia, possibly by counteracting on-going inflammatory processes.
Collapse
Affiliation(s)
- Deanna L Kelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA
| | - Catherine Kilday
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Feldman
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA
| | - Fang Liu
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA.
| |
Collapse
|
76
|
Sampaio GSA, Oliveira KRHM, Kauffmann N, do Nascimento JLM, Souza GS, Gomes BD, de Lima SMA, Silveira LCL, Rocha FAF, Herculano AM. Methylmercury alters the number and topography of NO-synthase positive neurons in embryonic retina: Protective effect of alpha-tocopherol. Toxicol In Vitro 2018; 53:89-98. [PMID: 30075186 DOI: 10.1016/j.tiv.2018.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Vertebrate retina has been shown to be an important target for mercury toxicity and very studies have shown the effect of mercury on the retinal ontogenesis. The nitrergic system plays an important role in the retinal development. The current work studied the effects of methylmercury (MeHg) exposure on the NO-synthase positive neurons (NADPH-diaphorase neurons or NADPH-d+) of the chick retinal ganglion cell layer at embryonic E15 and postnatal P1 days. Retinal flat mounts were stained for NADPH-diaphorase histochemistry and mosaic properties of NADPH-d + were studied by plotting isodensity maps and employing density recovery profile technique. It was also evaluated the protective effect of alpha-tocopherol treatment on retinal tissues exposed to MeHg. MeHg exposure decreased the density of NADPH-d + neurons and altered cell mosaic properties at E15 but had very little or no effect at P1 retinas. Alpha-tocopherol has a protective effect against MeHg exposure at E15. MeHg alterations and alpha-tocopherol protective effect in embryonic retinas were demonstrated to be at work in experimental conditions. MeHg effect in the early phases of visual system development in natural conditions might use the nitrergic pathway and supplementary diet could have a protective effect. At later stages, this mechanism seems to be naturally protected.
Collapse
Affiliation(s)
- Gabriela S A Sampaio
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Nayara Kauffmann
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - José Luiz M do Nascimento
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil; Universidade Ceuma, São Luís, Maranhão, Brazil
| | - Givago S Souza
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil; Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Bruno D Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Luiz Carlos L Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil; Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil; Universidade Ceuma, São Luís, Maranhão, Brazil
| | | | - Anderson M Herculano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
77
|
Association between Y-Maze Acquisition Learning and Major Histocompatibility Complex Class II Polymorphisms in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6381932. [PMID: 30112411 PMCID: PMC6077659 DOI: 10.1155/2018/6381932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022]
Abstract
Objective To explore the association between the acquisition process in the Y-maze and H-2 class II polymorphisms in mice. Methods Mice were trained for 5 consecutive days in the Y-maze. The value of the slope of the latent period was considered an indication for the acquisition process. A slope < 0 indicated learning during the training and a slope > 0 indicated no learning. The H-2 polymorphism was determined with PCR amplification, and the correlation between the alleles and the acquisition process was analyzed. Results The overall percentage of mice that learned was 46.1%. The percentage of mice that had learned with MudoEb5 (37.9%) was significantly lower than that of mice without MudoEb5 (61.1%; P < 0.05). The percentage of mice that had learned with MudoEb7 (26.1%) was significantly lower than that of mice without MudoEb7 (51.9%; P < 0.05). Conclusions The major histocompatibility complex (MHC) and other alleles may be involved in the acquisition process. There may be a biological basis for learning in mice.
Collapse
|
78
|
Kassa RM, Bonafede R, Boschi F, Malatesta M, Mariotti R. The role of mutated SOD1 gene in synaptic stripping and MHC class I expression following nerve axotomy in ALS murine model. Eur J Histochem 2018; 62:2904. [PMID: 29943955 PMCID: PMC5966710 DOI: 10.4081/ejh.2018.2904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/02/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motoneuron death. Several cellular pathways have been described to be involved in ALS pathogenesis; however, the involvement of presynaptic stripping and the related MHC class I molecules in mutant SOD1 motoneurons remains to be clarified. To this purpose, we here investigated, for the first time, the motoneurons behavior, di per se and after facial axonal injury, in terms of synaptic stripping and MHC class I expression in wild-type (Wt) mice and in a murine model of ALS, the SOD1(G93A) mice, at the presymptomatic and symptomatic stage of the disease. Concerning Wt animals, we found a reduction in synaptophysin immunoreactivity and an increase of MHC class I molecules in facial motoneurons after axotomy. In uninjured motoneurons of SOD1(G93A) mice, an altered presynaptic framework was evident, and this phenomenon increased during the disease course. The alteration in the presynaptic input is related to excitatory fibers. Moreover, after injury, a further decrease of excitatory input was not associated to an upregulation of MHC class I molecules in motoneuron soma. This study demonstrates, for the first time, that the presence of mutated SOD1 protein affects the MHC class I molecules expression, altering the presynaptic input in motoneurons. Nevertheless, a positive MHC class I immunolabeling was evident in glial cells around facial injured motoneurons, underlying an involvement of these cells in synaptic stripping. This study contributes to better understand the involvement of the mutated SOD1 protein in the vulnerability of motoneurons after damage.
Collapse
|
79
|
Abstract
Dynamic modification of synaptic connectivity in response to sensory experience is a vital step in the refinement of brain circuits as they are established during development and modified during learning. In addition to the well-established role for new spine growth and stabilization in the experience-dependent plasticity of neural circuits, dendritic spine elimination has been linked to improvements in learning, and dysregulation of spine elimination has been associated with intellectual disability and behavioral impairment. Proper brain function requires a tightly regulated balance between spine formation and spine elimination. Although most studies have focused on the mechanisms of spine formation, considerable progress has been made recently in delineating the neural activity patterns and downstream molecular mechanisms that drive dendritic spine elimination. Here, we review the current state of knowledge concerning the signaling pathways that drive dendritic spine shrinkage and elimination in the cerebral cortex and we discuss their implication in neuropsychiatric and neurodegenerative disease.
Collapse
Affiliation(s)
- Ivar S Stein
- 1 Center for Neuroscience, University of California, Davis, CA, USA
| | - Karen Zito
- 1 Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
80
|
|
81
|
Gao R, Li G, Yang R, Yuan H, Zhang S. Hippocampal β2‑microglobulin mediates sepsis‑induced cognitive impairment. Mol Med Rep 2018; 17:7813-7820. [PMID: 29620245 DOI: 10.3892/mmr.2018.8858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/25/2018] [Indexed: 11/06/2022] Open
Abstract
Acute brain dysfunction is a frequent complication in sepsis patients and is associated with long‑term neurocognitive consequences and increased mortality, yet the underlying mechanism remains unclear. Emerging evidence has suggested that β2‑microglobulin [a component of major histocompatibility complex (MHC) class I molecules] is involved in cognitive dysfunction in various neurological diseases. Therefore, the present study tested the hypothesis that β2‑microglobulin in the brain also mediates sepsis‑induced cognitive impairment. In the present study, wild‑type and antigen processing 1 (Tap1)‑deficient mice (Tap1‑/‑) were subjected to cecal ligation and puncture (CLP). Survival rate, cognitive function, and biochemical analysis were performed at the indicated time points. The data revealed that CLP induced anxiety‑like behavior and impaired hippocampal‑dependent contextual memory in wild‑type mice, which was accompanied by hippocampal microglial activation, increased level of interleukin‑1β, and decreased concentrations of brain derived neurotrophic factor and postsynaptic density protein 95. Notably, it was demonstrated that Tap1‑/‑ mice with reduced cell surface expression of MHC I protected mice from anxiety‑like behavior and impaired hippocampal‑dependent contextual memory and reversed most of these biochemical parameters following sepsis development. In summary, the results of the present study suggest that β2‑microglobulin negatively regulates cognitive impairment in an animal model of sepsis induced by CLP.
Collapse
Affiliation(s)
- Rong Gao
- Department of Emergency and Intensive Care Medicine, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China
| | - Guomin Li
- Department of Anesthesiology and Intensive Care, Jintan Hospital, Jiangsu University, Jintan, Changzhou 213200, P.R. China
| | - Runhua Yang
- Department of Emergency and Intensive Care Medicine, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China
| | - Hongmei Yuan
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Shaogang Zhang
- Department of Anesthesiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China
| |
Collapse
|
82
|
Lucchese G, Stahl B. Peptide Sharing Between Viruses and DLX Proteins: A Potential Cross-Reactivity Pathway to Neuropsychiatric Disorders. Front Neurosci 2018; 12:150. [PMID: 29618965 PMCID: PMC5871705 DOI: 10.3389/fnins.2018.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The present study seeks to determine potential associations between viral infections and neuropsychiatric diseases. To address this issue, we investigated the peptide commonalities between viruses that have been related to psychiatric and neurological disorders—such as rubella, human immunodeficiency virus, and herpesviruses—and human distal-less homeobox (DLX) proteins expressed in developing brain—namely, DLX1, DLX2, DLX5, and DLX6. Peptide matching analyses revealed a high degree of pentapeptide sharing. From an immunological perspective, this overlap is relevant because pentapeptides are endowed with immunogenicity and antigenicity—that is, they are immune determinants. Moreover, infection-induced immune cross-reactions might have functional, spatial, and temporal implications related to the functions and expression patterns of DLX1 and DLX5 in the fetal and adult human brain. In sum, our data support the hypothesis that viral infections may be linked to neuropsychiatric diseases through autoimmune cross-reactions caused by molecular mimicry between viral proteins and brain-specific DLX self-antigens.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Brain Language Laboratory, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
83
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
84
|
Sobue A, Ito N, Nagai T, Shan W, Hada K, Nakajima A, Murakami Y, Mouri A, Yamamoto Y, Nabeshima T, Saito K, Yamada K. Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia 2018; 66:1034-1052. [PMID: 29380419 DOI: 10.1002/glia.23299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
In the central nervous system, major histocompatibility complex class I (MHCI) molecules are mainly expressed in neurons, and neuronal MHCI have roles in synapse elimination and plasticity. However, the pathophysiological significance of astroglial MHCI remains unclear. We herein demonstrate that MHCI expression is up-regulated in astrocytes in the medial prefrontal cortex (mPFC) following systemic immune activation by an intraperitoneal injection of polyinosinic-polycytidylic acid (polyI:C) or hydrodynamic interferon (IFN)-γ gene delivery in male C57/BL6J mice. In cultured astrocytes, MHCI/H-2D largely co-localized with exosomes. To investigate the role of astroglial MHCI, H-2D, or sH-2D was expressed in the mPFC of male C57/BL6J mice using an adeno-associated virus vector under the control of a glial fibrillary acidic protein promoter. The expression of astroglial MHCI in the mPFC impaired sociability and recognition memory in mice. Regarding neuropathological changes, MHCI expression in astrocytes significantly activated microglial cells, decreased parvalbumin-positive cell numbers, and reduced dendritic spine density in the mPFC. A treatment with GW4869 that impairs exosome synthesis ameliorated these behavioral and neuropathological changes. These results suggest that the overexpression of MHCI in astrocytes affects microglial proliferation as well as neuronal numbers and spine densities, thereby leading to social and cognitive deficits in mice, possibly via exosomes created by astrocytes.
Collapse
Affiliation(s)
- Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| | - Yuki Murakami
- Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Yasuko Yamamoto
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control Prevention, Fujita Health University, Graduate School of Health Sciences, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan.,Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Japan
| |
Collapse
|
85
|
Liberman AC, Trias E, da Silva Chagas L, Trindade P, Dos Santos Pereira M, Refojo D, Hedin-Pereira C, Serfaty CA. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 2018; 25:246-270. [PMID: 30517945 DOI: 10.1159/000494761] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross talk seems to be crucial for normal brain function, development, and recovery. However, under certain conditions neuroinflammatory interactions between brain cells and neuroimmune cells influence disease outcome and brain pathology. Microglial cells express a range of functional states with dynamically pleomorphic profiles from a surveilling status of synaptic transmission to an active player in major events of development such as synaptic elimination, regeneration, and repair. Also, inflammation mediates a series of neurotoxic roles in neuropsychiatric conditions and neurodegenerative diseases. The present review discusses data on the involvement of neuroinflammatory conditions that alter neuroimmune interactions in four different pathologies. In the first section of this review, we discuss the ability of the early developing brain to respond to a focal lesion with a rapid compensatory plasticity of intact axons and the role of microglial activation and proinflammatory cytokines in brain repair. In the second section, we present data of neuroinflammation and neurodegenerative disorders and discuss the role of reactive astrocytes in motor neuron toxicity and the progression of amyotrophic lateral sclerosis. In the third section, we discuss major depressive disorders as the consequence of dysfunctional interactions between neural and immune signals that result in increased peripheral immune responses and increase proinflammatory cytokines. In the last section, we discuss autism spectrum disorders and altered brain circuitries that emerge from abnormal long-term responses of innate inflammatory cytokines and microglial phenotypic dysfunctions.
Collapse
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina,
| | - Emiliano Trias
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Pablo Trindade
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| | - Marissol Dos Santos Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Cecilia Hedin-Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- VPPCB, Fiocruz, Rio de Janeiro, Brazil
| | - Claudio A Serfaty
- Neuroscience Program, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
86
|
Clarkson BDS, Patel MS, LaFrance-Corey RG, Howe CL. Retrograde interferon-gamma signaling induces major histocompatibility class I expression in human-induced pluripotent stem cell-derived neurons. Ann Clin Transl Neurol 2017; 5:172-185. [PMID: 29468178 PMCID: PMC5817842 DOI: 10.1002/acn3.516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Objective Injury-associated axon-intrinsic signals are thought to underlie pathogenesis and progression in many neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). Retrograde interferon gamma (IFN γ) signals are known to induce expression of major histocompatibility class I (MHC I) genes in murine axons, thereby increasing the susceptibility of these axons to attack by antigen-specific CD8+ T cells. We sought to determine whether the same is true in human neurons. Methods A novel microisolation chamber design was used to physically isolate and manipulate axons from human skin fibroblast-derived induced pluripotent stem cell (iPSC)-derived neuron-enriched neural aggregates. Fluorescent retrobeads were used to assess the fraction of neurons with projections to the distal chamber. Axons were treated with IFN γ for 72 h and expression of MHC class I and antigen presentation genes were evaluated by RT-PCR and immunofluorescence. Results Human iPSC-derived neural stem cells maintained as 3D aggregate cultures in the cell body chamber of polymer microisolation chambers extended dense axonal projections into the fluidically isolated distal chamber. Treatment of these axons with IFN γ resulted in upregulation of MHC class I and antigen processing genes in the neuron cell bodies. IFN γ-induced MHC class I molecules were also anterogradely transported into the distal axon. Interpretation These results provide conclusive evidence that human axons are competent to express MHC class I molecules, suggesting that inflammatory factors enriched in demyelinated lesions may render axons vulnerable to attack by autoreactive CD8+ T cells in patients with MS. Future work will be aimed at identifying pathogenic anti-axonal T cells in these patients.
Collapse
Affiliation(s)
| | - Misha S Patel
- Department of Neurology Mayo Clinic Rochester Minnesota
| | | | - Charles L Howe
- Department of Neurology Mayo Clinic Rochester Minnesota.,Department of Neuroscience Mayo Clinic Rochester Minnesota.,Department of Immunology Mayo Clinic Rochester Minnesota.,Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic Rochester Minnesota
| |
Collapse
|
87
|
Pascual M, Montesinos J, Guerri C. Role of the innate immune system in the neuropathological consequences induced by adolescent binge drinking. J Neurosci Res 2017; 96:765-780. [PMID: 29214654 DOI: 10.1002/jnr.24203] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Adolescence is a critical stage of brain maturation in which important plastic and dynamic processes take place in different brain regions, leading to development of the adult brain. Ethanol drinking in adolescence disrupts brain plasticity and causes structural and functional changes in immature brain areas (prefrontal cortex, limbic system) that result in cognitive and behavioral deficits. These changes, along with secretion of sexual and stress-related hormones in adolescence, may impact self-control, decision making, and risk-taking behaviors that contribute to anxiety and initiation of alcohol consumption. New data support the participation of the neuroimmune system in the effects of ethanol on the developing and adult brain. This article reviews the potential pathological bases that underlie the effects of alcohol on the adolescent brain, such as the contribution of genetic background, the perturbation of epigenetic programming, and the influence of the neuroimmune response. Special emphasis is given to the actions of ethanol in the innate immune receptor toll-like receptor 4 (TLR4), since recent studies have demonstrated that by activating the inflammatory TLR4/NFκB signaling response in glial cells, binge drinking of ethanol triggers the release of cytokines/chemokines and free radicals, which exacerbate the immune response that causes neuroinflammation/neural damage as well as short- and long-term neurophysiological, cognitive, and behavioral dysfunction. Finally, potential treatments that target the neuroimmune response to treat the neuropathological and behavioral consequences of adolescent alcohol abuse are discussed.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, Valencia, Spain
| | - Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, Valencia, Spain
| |
Collapse
|
88
|
The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18112298. [PMID: 29104236 PMCID: PMC5713268 DOI: 10.3390/ijms18112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles.
Collapse
|
89
|
Takeda K, Nakamura A. Regulation of immune and neural function via leukocyte Ig-like receptors. J Biochem 2017; 162:73-80. [PMID: 28898976 DOI: 10.1093/jb/mvx036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Leukocyte Ig-like receptors (LILRs)/Ig-like transcripts (ILTs) are expressed on innate and adaptive immune cells and maintain immune homeostasis. LILRs consist of activating and inhibitory-type receptors that regulate adequate cellular functions. LILRs were firstly identified as MHC class I receptors, therefore expression and/or polymorphisms of LILRs are reported to associate with autoimmune disorders and transplant rejection; however, recent accumulating evidences have revealed that LILRs recognize with diverse ligands including bacteria and virus. In addition, inhibitory LILRB2 (ILT4) and murine relative paired Ig-like receptor (PIR)-B are expressed on neuron and is involved in the dysregulation of central nervous system via interaction with neuronal ligands including amyloid β-protein. In this review, we summarize recent discoveries on the functions of inhibitory MHC class I receptors, and discuss their regulatory roles in immune responses and neural functions.
Collapse
Affiliation(s)
- Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
90
|
Müller V, de Boer RJ, Bonhoeffer S, Szathmáry E. An evolutionary perspective on the systems of adaptive immunity. Biol Rev Camb Philos Soc 2017; 93:505-528. [PMID: 28745003 DOI: 10.1111/brv.12355] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
Abstract
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of vertebrate immunity, arguing that its origin involved a 'difficult' (i.e. low-probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates.
Collapse
Affiliation(s)
- Viktor Müller
- Parmenides Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| | - Rob J de Boer
- Theoretical Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| |
Collapse
|
91
|
Zhang J, Chen L, Gu YD. Changes in Expressions of Major Histocompatibility Complex Class I, Paired-Immunoglobulin-Like Receptor B, and Cluster of Differentiation 3ζ in Motor Cortical Representations of the Brachial Plexus After Avulsion in Rats. World Neurosurg 2017; 106:211-218. [PMID: 28669876 DOI: 10.1016/j.wneu.2017.06.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Major histocompatibility complex class I (MHCI), paired-immunoglobulin-like receptor B (PirB), and cluster of differentiation 3ζ (CD3ζ) negatively regulate neuronal plasticity in developing and adult brains. The aim of this study was to evaluate expressive changes of these factors in motor cortical representations of the brachial plexus (MCRBP) after total brachial plexus root avulsion (tBPRA). METHODS A total of 45 rats were randomly and equally divided into 3 groups for evaluating mRNA and protein expression levels of MHCI, PirB, and CD3ζ: 7 days, 3 months, and control. In the 7-day and 3-month groups, expressions were examined at 7 days and 3 months, respectively, after left tBPRA. In the control group, the brachial plexus was uninjured. Three rats from each group were used for examining expressions of MHCI, PirB, and CD3ζ proteins by immunofluorescence labeling, 6 rats for quantification of MHCI, PirB, and CD3ζ mRNAs by real-time quantitative polymerase chain reaction, and the remaining 6 animals for quantification of MHCI, PirB, and CD3ζ proteins by Western blotting. RESULTS In the original MCRBP, mRNA and protein expression levels of MHCI, PirB, and CD3ζ were down-regulated 7 days postinjury compared with control (P < 0.01). Interestingly, mRNA and protein expression levels of these factors were up-regulated at 3 months compared with 7 days (P < 0.01), excepting PirB protein, whose expression was not increasing (P > 0.05). Recovery of protein expressions were initiated from near the border region of the original MCRBP. CONCLUSIONS MHCI, PirB, and CD3ζ may participate in motor cortical reorganization after tBPRA.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Yu-Dong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
92
|
Ukai H, Kawahara A, Hirayama K, Case MJ, Aino S, Miyabe M, Wakita K, Oogi R, Kasayuki M, Kawashima S, Sugimoto S, Chikamatsu K, Nitta N, Koga T, Shigemoto R, Takai T, Ito I. PirB regulates asymmetries in hippocampal circuitry. PLoS One 2017; 12:e0179377. [PMID: 28594961 PMCID: PMC5464656 DOI: 10.1371/journal.pone.0179377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.
Collapse
Affiliation(s)
- Hikari Ukai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Aiko Kawahara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keiko Hirayama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Matthew Julian Case
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shotaro Aino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Miyabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ken Wakita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryohei Oogi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Michiyo Kasayuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shihomi Kawashima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shunichi Sugimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kanako Chikamatsu
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Noritaka Nitta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Tsuneyuki Koga
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Ito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
93
|
Facial Nerve Recovery in KbDb and C1q Knockout Mice: A Role for Histocompatibility Complex 1. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 4:e1186. [PMID: 28293529 PMCID: PMC5222674 DOI: 10.1097/gox.0000000000001186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the mechanisms in nerve damage can lead to better outcomes for neuronal rehabilitation. The purpose of our study was to assess the effect of major histocompatibility complex I deficiency and inhibition of the classical complement pathway (C1q) on functional recovery and cell survival in the facial motor nucleus (FMN) after crush injury in adult and juvenile mice. METHODS A prospective blinded analysis of functional recovery and cell survival in the FMN after a unilateral facial nerve crush injury in juvenile and adult mice was undertaken between wild-type, C1q knockout (C1q-/-), and KbDb knockout (KbDb-/-) groups. Whisker function was quantified to assess functional recovery. Neuron counts were performed to determine neuron survival in the FMN after recovery. RESULTS After facial nerve injury, all adult wild-type mice fully recovered. Juvenile mice recovered incompletely corresponding to a greater neuron loss in the FMN of juveniles compared with adults. The C1q-/- juvenile and adult groups did not differ from wild type. The KbDb-/- adults demonstrated 50% recovery of whisker movement and decreased cell survival in FMN. The KbDb-/- juvenile group did not demonstrate any difference from control group. CONCLUSION Histocompatibility complex I plays a role for neuroprotection and enhanced facial nerve recovery in adult mice. Inhibition of the classical complement pathway alone does not affect functional recovery or neuronal survival. The alternative and mannose binding pathways pose alternative means for activating the final components of the pathway that may lead to acute nerve damage.
Collapse
|
94
|
Huseby Kelcher AM, Atanga PA, Gamez JD, Cumba Garcia LM, Teclaw SJ, Pavelko KD, Macura SI, Johnson AJ. Brain atrophy in picornavirus-infected FVB mice is dependent on the H-2D b class I molecule. FASEB J 2017; 31:2267-2275. [PMID: 28188174 DOI: 10.1096/fj.201601055r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/23/2017] [Indexed: 01/09/2023]
Abstract
Brain atrophy is a common feature of numerous neurologic diseases in which the role of neuroinflammation remains ill-defined. In this study, we evaluated the contribution of major histocompatibility complex class I molecules to brain atrophy in Theiler's murine encephalomyelitis virus (TMEV)-infected transgenic FVB mice that express the Db class I molecule. FVB/Db and wild-type FVB mice were evaluated for changes in neuroinflammation, virus clearance, neuropathology, and development of brain atrophy via T2-weighted MRI and subsequent 3-dimensional volumetric analysis. Significant brain atrophy and hippocampal neuronal loss were observed in TMEV-infected FVB/Db mice, but not in wild-type FVB mice. Brain atrophy was observed at 1 mo postinfection and persisted through the 4-mo observation period. Of importance, virus-infected FVB/Db mice elicited a strong CD8 T-cell response toward the immunodominant Db-restricted TMEV-derived peptide, VP2121-130, and cleared TMEV from the CNS. In addition, immunofluorescence revealed CD8 T cells near virus-infected neurons; therefore, we hypothesize that class I restricted CD8 T-cell responses promote development of brain atrophy. This model provides an opportunity to analyze the contribution of immune cells to brain atrophy in a system where persistent virus infection and demyelination are not factors in long-term neuropathology.-Huseby Kelcher, A. M., Atanga, P. A., Gamez, J. D., Cumba Garcia, L. M., Teclaw, S. J., Pavelko, K. D., Macura, S. I., Johnson. A. J. Brain atrophy in picornavirus-infected FVB mice is dependent on the H-2Db class I molecule.
Collapse
Affiliation(s)
- April M Huseby Kelcher
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pascal A Atanga
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey D Gamez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Luz M Cumba Garcia
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Slobodan I Macura
- Nuclear Magnetic Resonance Core Facility, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA; .,Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
95
|
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; 20:145-155. [PMID: 28092661 PMCID: PMC6960010 DOI: 10.1038/nn.4476] [Citation(s) in RCA: 1203] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 01/16/2023]
Abstract
The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut-brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimer's disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota-gut-brain communication during health and neurological disease.
Collapse
|
96
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
97
|
Abstract
Epidemiological studies and mouse models suggest that maternal immune activation, induced clinically through prenatal exposure to one of several infectious diseases, is a risk factor in the development of schizophrenia. This is supported by the strong genetic association established by genome wide association studies (GWAS) between the human leukocyte antigen (HLA) locus and schizophrenia. HLA proteins (also known in mice as the major histocompatibility complex; MHC) are mediators of the T-lymphocyte responses, and genetic variability is well-established as a risk factor for autoimmune diseases and susceptibility to infectious diseases. Taken together, the findings strongly suggest that schizophrenia risk in a subgroup of patients is caused by an infectious disease, and/or an autoimmune phenomenon. However, this view may be overly simplistic. First, MHC proteins have a non-immune effect on synaptogenesis by modulating synaptic pruning by microglia and other mechanisms, suggesting that genetic variability could be compromising this physiological process. Second, some GWAS signals in the HLA locus map near non-HLA genes, such as the histone gene cluster. On the other hand, recent GWAS data show association signals near B-lymphocyte enhancers, which lend support for an infectious disease etiology. Thus, although the genetic findings implicating the HLA locus are very robust, how genetic variability in this region leads to schizophrenia remains to be elucidated.
Collapse
Affiliation(s)
- Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| |
Collapse
|
98
|
Chronic Binge Alcohol Administration Dysregulates Hippocampal Genes Involved in Immunity and Neurogenesis in Simian Immunodeficiency Virus-Infected Macaques. Biomolecules 2016; 6:biom6040043. [PMID: 27834864 PMCID: PMC5197953 DOI: 10.3390/biom6040043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023] Open
Abstract
Alcohol use disorders (AUD) exacerbate neurocognitive dysfunction in Human Immunodeficiency Virus (HIV+) patients. We have shown that chronic binge alcohol (CBA) administration (13–14 g EtOH/kg/wk) prior to and during simian immunodeficiency virus (SIV) infection in rhesus macaques unmasks learning deficits in operant learning and memory tasks. The underlying mechanisms of neurocognitive alterations due to alcohol and SIV are not known. This exploratory study examined the CBA-induced differential expression of hippocampal genes in SIV-infected (CBA/SIV+; n = 2) macaques in contrast to those of sucrose administered, SIV-infected (SUC/SIV+; n = 2) macaques. Transcriptomes of hippocampal samples dissected from brains obtained at necropsy (16 months post-SIV inoculation) were analyzed to determine differentially expressed genes. MetaCore from Thomson Reuters revealed enrichment of genes involved in inflammation, immune responses, and neurodevelopment. Functional relevance of these alterations was examined in vitro by exposing murine neural progenitor cells (NPCs) to ethanol (EtOH) and HIV trans-activator of transcription (Tat) protein. EtOH impaired NPC differentiation as indicated by decreased βIII tubulin expression. These findings suggest a role for neuroinflammation and neurogenesis in CBA/SIV neuropathogenesis and warrant further investigation of their potential contribution to CBA-mediated neurobehavioral deficits.
Collapse
|
99
|
Leboyer M, Berk M, Yolken RH, Tamouza R, Kupfer D, Groc L. Immuno-psychiatry: an agenda for clinical practice and innovative research. BMC Med 2016; 14:173. [PMID: 27788673 PMCID: PMC5084344 DOI: 10.1186/s12916-016-0712-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The diagnostic scheme for psychiatric disorders is currently based purely on descriptive nomenclature given that biomarkers subtypes and clearly defined causal mechanisms are lacking for the vast majority of disorders. The emerging field of "immuno-psychiatry" has the potential to widen the exploration of a mechanism-based nosology, possibly leading to the discovery of more effective personalised treatment strategies. DISCUSSION Disturbances in immuno-inflammatory and related systems have been implicated in the aetiology, pathophysiology, phenomenology and comorbidity of several psychiatric disorders, including major mood disorders and schizophrenia. A fundamental challenge in their clinical management is to identify bio-signatures that might indicate risk, state, trait, prognosis or theragnosis. Here, we provide the rationale for a clinical and research agenda to refine future clinical practice and conceptual views, and to delineate pathways toward innovative treatment discovery. CONCLUSION The development of bio-signatures will allow clinicians to tailor interventions to the abovementioned biomarker subtypes - a major translational goal for research in this field.
Collapse
Affiliation(s)
- Marion Leboyer
- Psychiatry Department, University Paris-Est-Créteil, Mondor hospital, AP-HP, DHU PePSY, Translational Psychiatry laboratory, INSERM U955, Paris, France. .,Fondation FondaMental, Creteil, France. .,University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre (Barwon Health), School of Medicine, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Orygen, National Centre of Excellence for Youth Mental Health, Parkville, VIC, Australia.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ryad Tamouza
- Fondation FondaMental, Creteil, France.,INSERM, U1160, Hôpital Saint Louis, Paris, F75010, France.,Laboratoire Jean Dausset, LabexTransplantex, Hôpital Saint Louis, Paris, F75010, France
| | - David Kupfer
- Departments of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laurent Groc
- Fondation FondaMental, Creteil, France. .,University of Bordeaux, UMR 5297, 33000, Bordeaux, France. .,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33077, Bordeaux, France.
| |
Collapse
|
100
|
Cheng N, Khanbabaei M, Murari K, Rho JM. Disruption of visual circuit formation and refinement in a mouse model of autism. Autism Res 2016; 10:212-223. [PMID: 27529416 PMCID: PMC5324550 DOI: 10.1002/aur.1687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/30/2016] [Indexed: 12/21/2022]
Abstract
Aberrant connectivity is believed to contribute to the pathophysiology of autism spectrum disorder (ASD). Recent neuroimaging studies have increasingly identified such impairments in patients with ASD, including alterations in sensory systems. However, the cellular substrates and molecular underpinnings of disrupted connectivity remain poorly understood. Utilizing eye‐specific segregation in the dorsal lateral geniculate nucleus (dLGN) as a model system, we investigated the formation and refinement of precise patterning of synaptic connections in the BTBR T + tf/J (BTBR) mouse model of ASD. We found that at the neonatal stage, the shape of the dLGN occupied by retinal afferents was altered in the BTBR group compared to C57BL/6J (B6) animals. Notably, the degree of overlap between the ipsi‐ and contralateral afferents was significantly greater in the BTBR mice. Moreover, these abnormalities continued into mature stage in the BTBR animals, suggesting persistent deficits rather than delayed maturation of axonal refinement. Together, these results indicate disrupted connectivity at the synaptic patterning level in the BTBR mice, suggesting that in general, altered neural circuitry may contribute to autistic behaviours seen in this animal model. In addition, these data are consistent with the notion that lower‐level, primary processing mechanisms contribute to altered visual perception in ASD. Autism Res2017, 10: 212–223. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Collapse
Affiliation(s)
- Ning Cheng
- Developmental Neurosciences Research Program, Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maryam Khanbabaei
- Developmental Neurosciences Research Program, Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kartikeya Murari
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|