51
|
Jensen PD, Nielsen AH, Simonsen CW, Baandrup UT, Jensen SE, Bøgsted M, Magnusdottir SO, Jensen ABH, Kjaergaard B. In vivo calibration of the T2* cardiovascular magnetic resonance method at 1.5 T for estimation of cardiac iron in a minipig model of transfusional iron overload. J Cardiovasc Magn Reson 2021; 23:27. [PMID: 33691716 PMCID: PMC7948337 DOI: 10.1186/s12968-021-00715-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/26/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Non-invasive estimation of the cardiac iron concentration (CIC) by T2* cardiovascular magnetic resonance (CMR) has been validated repeatedly and is in widespread clinical use. However, calibration data are limited, and mostly from post-mortem studies. In the present study, we performed an in vivo calibration in a dextran-iron loaded minipig model. METHODS R2* (= 1/T2*) was assessed in vivo by 1.5 T CMR in the cardiac septum. Chemical CIC was assessed by inductively coupled plasma-optical emission spectroscopy in endomyocardial catheter biopsies (EMBs) from cardiac septum taken during follow up of 11 minipigs on dextran-iron loading, and also in full-wall biopsies from cardiac septum, taken post-mortem in another 16 minipigs, after completed iron loading. RESULTS A strong correlation could be demonstrated between chemical CIC in 55 EMBs and parallel cardiac T2* (Spearman rank correlation coefficient 0.72, P < 0.001). Regression analysis led to [CIC] = (R2* - 17.16)/41.12 for the calibration equation with CIC in mg/g dry weight and R2* in Hz. An even stronger correlation was found, when chemical CIC was measured by full-wall biopsies from cardiac septum, taken immediately after euthanasia, in connection with the last CMR session after finished iron loading (Spearman rank correlation coefficient 0.95 (P < 0.001). Regression analysis led to the calibration equation [CIC] = (R2* - 17.2)/31.8. CONCLUSIONS Calibration of cardiac T2* by EMBs is possible in the minipig model but is less accurate than by full-wall biopsies. Likely explanations are sampling error, variable content of non-iron containing tissue and smaller biopsies, when using catheter biopsies. The results further validate the CMR T2* technique for estimation of cardiac iron in conditions with iron overload and add to the limited calibration data published earlier.
Collapse
Affiliation(s)
- Peter Diedrich Jensen
- Department of Hematology, Aalborg University Hospital, PO box 365, 9100, Aalborg, Denmark.
| | | | | | - Ulrik Thorngren Baandrup
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Aalborg University Hospital, Aalborg, Denmark
| | | | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital, PO box 365, 9100, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Benedict Kjaergaard
- Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
52
|
Vidal JD, Colman K, Bhaskaran M, de Rijk E, Fegley D, Halpern W, Jacob B, Kandori H, Manickam B, McKeag S, Parker GA, Regan KS, Sefing B, Thibodeau M, Vemireddi V, Werner J, Zalewska A. Scientific and Regulatory Policy Committee Best Practices: Documentation of Sexual Maturity by Microscopic Evaluation in Nonclinical Safety Studies. Toxicol Pathol 2021; 49:977-989. [PMID: 33661059 DOI: 10.1177/0192623321990631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sexual maturity status of animals in nonclinical safety studies can have a significant impact on the microscopic assessment of the reproductive system, the interpretation of potential test article-related findings, and ultimately the assessment of potential risk to humans. However, the assessment and documentation of sexual maturity for animals in nonclinical safety studies is not conducted in a consistent manner across the pharmaceutical and chemical industries. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology convened an international working group of pathologists and nonclinical safety scientists with expertise in the reproductive system, pathology nomenclature, and Standard for Exchange of Nonclinical Data requirements. This article describes the best practices for documentation of the light microscopic assessment of sexual maturity in males and females for both rodent and nonrodent nonclinical safety studies. In addition, a review of the microscopic features of the immature, peripubertal, and mature male and female reproductive system and general considerations for study types and reporting are provided to aid the study pathologist tasked with documentation of sexual maturity.
Collapse
Affiliation(s)
| | - Karyn Colman
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | | | - Eveline de Rijk
- 26135Charles River Laboratories, Hertogenbosch, the Netherlands
| | | | | | - Binod Jacob
- 331129Merck & Co, Inc, West Point, Pennsylvania, PA, USA
| | - Hitoshi Kandori
- 561471Axcelead Drug Discovery Partners, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Carneiro MW, Brancato L, Wylleman B, van Zwol E, Conings L, Vueghs P, Gorbaslieva I, Van den Bossche J, Rudenko O, Janicot M, Bogers JP. Safety evaluation of long-term temperature controlled whole-body thermal treatment in female Aachen minipig. Int J Hyperthermia 2021; 38:165-175. [PMID: 33576280 DOI: 10.1080/02656736.2021.1876256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: Thermal treatment (TT), defined as treatment using supra-physiological body temperatures (39-45 C), somewhat resembles fever in terms of temperature range, one of the first natural barriers for the body to fight exposure to external pathogens. Methods: Whole-body thermal treatment (WBTT) consists of heating up the complete body to a temperature range of 39 to 45 C. Despite the recognized therapeutic potential of hyperthermia, the broad clinical use of WBTT has been limited by safety issues related to medical devices and procedures used to achieve WBTT, in particular adequate control of the body temperature. To circumvent this, a sophisticated medical device was developed, allowing long-term temperature controlled WBTT (41.5 C for up to 8 h). Technical feasibility and tolerability of the WBTT procedure (including complete anesthesia) were tested using female Aachen minipig. Optical fiber temperature sensors inserted in multiple organs were used and demonstrated consistent monitoring and control of different organs temperature over an extended period of time. Results: Clinical evaluation of the animals before, during and after treatment revealed minor clinical parameter changes, but all of them were clinically acceptable. These changes were limited and reversible, and the animals remained healthy throughout the whole procedure and follow-up. In addition, histopathological analysis of selected key organs showed no thermal treatment-related changes. Conclusion: It was concluded that WBTT (41.5 C for up to 8 h) was well tolerated and safe in female Aachen minipigs. Altogether, data supports the safe clinical use of the WBTT medical device and protocol, enabling its implementation into human patients suffering from life-threatening diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John-Paul Bogers
- ElmediX NV, Mechelen, Belgium.,Laboratory for Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
54
|
Gong T, Wang W, Xu H, Yang Y, Chen X, Meng L, Xu Y, Li Z, Wan S, Mu Q. Longitudinal Expression of Testicular TAS1R3 from Prepuberty to Sexual Maturity in Congjiang Xiang Pigs. Animals (Basel) 2021; 11:ani11020437. [PMID: 33567555 PMCID: PMC7916009 DOI: 10.3390/ani11020437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, is widely expressed from the tongue to the testis, and testis expression is associated with male sterility. In Congjiang Xiang pigs, T1R3 is expressed in elongating/elongated spermatids and Leydig cells in a stage-dependent manner during postnatal development and the spermatogenic cycle. T1R3 may contribute to regulation of spermatid differentiation and Leydig cell function, and may therefore help limit the incidence of various male reproductive pathologies. Abstract Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
- Correspondence: ; Tel.: +86-0851-88298005
| | - Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Lijie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Ziqing Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Sufang Wan
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Qi Mu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| |
Collapse
|
55
|
Petnehazy O, Donko T, Ellis R, Csoka A, Czeibert K, Baksa G, Zucker E, Repa K, Takacs A, Repa I, Moizs M. Creating a cross-sectional, CT and MR atlas of the Pannon minipig. Anat Histol Embryol 2021; 50:562-571. [PMID: 33529429 DOI: 10.1111/ahe.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/20/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this study was to create a detailed cross-sectional anatomical reference atlas of the Pannon minipig by correlating good resolution CT and MR images with high quality cross-sectional anatomical images. According to the authors knowledge, no detailed anatomical atlas is available for the minipig. MATERIAL AND METHOD An adult female minipig was utilized for this purpose. The animal was placed in a PVC half tube, and CT generated images of 0.6 mm slice thickness and MR images of 1.41 mm slice thickness were obtained. The images covered the whole body from the most rostral portion of the snout to the tip of the tail. The CT and MR scans were aligned with frozen anatomical sections prepared with an anatomical band saw from the same animal and significant structures were identified and labelled. The terminology employed has been referenced from the Nomina Anatomica Veterinaria 6th edition-2017. FINDINGS AND CONCLUSIONS The resulting atlas consists of 109 anatomical slices and the corresponding 109 CT and 109 MR scans (altogether 327 images) and the nomenclature list for each image. Although this publication contains limited images of the resulted atlas, it is a reference source for anatomy education and clinical sciences. We are of the opinion that more comprehensive and especially online available interactive atlases should be prepared using similar methodology.
Collapse
Affiliation(s)
- Ors Petnehazy
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Tamas Donko
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Rosie Ellis
- The Veterinary Referral & Emergency Centre, Godstone, England
| | - Adam Csoka
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Kalman Czeibert
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gabor Baksa
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medical Sciences, Budapest, Hungary
| | - Eric Zucker
- Veterinary Medicine Program, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Krisztina Repa
- Radiation Oncology, Research and Teaching Center, Moritz Kaposi General Hospital Dr. József Baka Diagnostic, Kaposvar, Hungary.,Moritz Kaposi General Hospital, Kaposvar, Hungary
| | | | - Imre Repa
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Radiation Oncology, Research and Teaching Center, Moritz Kaposi General Hospital Dr. József Baka Diagnostic, Kaposvar, Hungary
| | | |
Collapse
|
56
|
Shin SK, Kaiser EE, West FD. Alcohol Induced Brain and Liver Damage: Advantages of a Porcine Alcohol Use Disorder Model. Front Physiol 2021; 11:592950. [PMID: 33488396 PMCID: PMC7818780 DOI: 10.3389/fphys.2020.592950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Alcohol is one of the most commonly abused intoxicants with 1 in 6 adults at risk for alcohol use disorder (AUD) in the United States. As such, animal models have been extensively investigated with rodent AUD models being the most widely studied. However, inherent anatomical and physiological differences between rodents and humans pose a number of limitations in studying the complex nature of human AUD. For example, rodents differ from humans in that rodents metabolize alcohol rapidly and do not innately demonstrate voluntary alcohol consumption. Comparatively, pigs exhibit similar patterns observed in human AUD including voluntary alcohol consumption and intoxication behaviors, which are instrumental in establishing a more representative AUD model that could in turn delineate the risk factors involved in the development of this disorder. Pigs and humans also share anatomical similarities in the two major target organs of alcohol- the brain and liver. Pigs possess gyrencephalic brains with comparable cerebral white matter volumes to humans, thus enabling more representative evaluations of susceptibility and neural tissue damage in response to AUD. Furthermore, similarities in the liver result in a comparable rate of alcohol elimination as humans, thus enabling a more accurate extrapolation of dosage and intoxication level to humans. A porcine model of AUD possesses great translational potential that can significantly advance our current understanding of the complex development and continuance of AUD in humans.
Collapse
Affiliation(s)
- Soo K Shin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| |
Collapse
|
57
|
Allais L, Brisebard E, Ravas N, Briffaux JP, Pallardy M. Skin immune cell characterization in juvenile and adult Göttingen Minipigs. Regul Toxicol Pharmacol 2021; 120:104861. [PMID: 33417970 DOI: 10.1016/j.yrtph.2021.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022]
Abstract
The skin hosts a sophisticated immune system involving responses from both innate and adaptive immune cell populations. Swine skin is close to human skin by its structure, composition and function. In addition, the minipig is considered the model of choice in toxicology studies for drugs applied by the dermal route and developed for both the adult and paediatric indications. However, knowledge on the skin immune system in minipigs, particularly in Göttingen Minipigs, is still limited. The objective of our work was first to characterize the main skin immune populations (Langerhans cells, dermal dendritic cells, macrophages and T lymphocytes) in Göttingen Minipigs. In parallel, we compared the skin immune populations from healthy and immunocompromised piglets following oral treatment with cyclosporin A (CsA) at 10 mg/kg/day. We also explored other pathological conditions using a contact dermatitis model in minipigs challenged with a sensitizer, 2,4-dinitrochlorobenzene (DNCB). Langerhans cells and dermal MHCIIlowCD163+ cells were increased one month after oral treatment with CsA at 10 mg/kg/day. The contact dermatitis model in Göttingen Minipigs challenged by DNCB suggested migration of Langerhans cells and dermal dendritic cells as well as T cell recruitment into the skin. These data bring new information in skin immunotoxicology in Göttingen Minipigs and could contribute to a better understanding of the effects of new therapeutic drugs on the developing immune system.
Collapse
Affiliation(s)
| | | | | | | | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, 92290, Châtenay-Malabry, France
| |
Collapse
|
58
|
Henze LJ, Koehl NJ, Bennett-Lenane H, Holm R, Grimm M, Schneider F, Weitschies W, Koziolek M, Griffin BT. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. Eur J Pharm Sci 2021; 156:105627. [PMID: 33122007 DOI: 10.1016/j.ejps.2020.105627] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 01/27/2023]
Abstract
Within preclinical research, the pig has become an important model in regulatory toxicology and pharmacokinetics, to assess oral dosage forms and to compare different formulation strategies. In addition, there are emerging application of the pig model to asses clinical dosing conditions in the fasted and fed state. In this study, the gastrointestinal transit conditions in male landrace pigs were studied with a telemetric motility capsule under fasted and postprandial conditions. The whole gut transit time (WGTT) was determined by administering a SmartPill® capsule to four landrace pigs, under both fasted and fed state conditions in a cross-over study design. Overall, this study found that small intestinal transit in landrace pigs ranged from 2.3 - 4.0 h, and was broadly similar to reported human estimates and was not affected by the intake conditions. Gastric emptying was highly variable and prolonged in landrace pigs ranging from 20 - 233 h and up to 264 h in one specific case. Under dynamic conditions pigs have a low gastric pH comparable to humans, however a high variability under fasted conditions could be observed. The comparison of the data from this study with a recent similar study in beagle dogs revealed major differences between gastric maximum pressures observed in landrace pigs and dogs. In the porcine stomach maximum pressures of up to 402 mbar were observed, which are comparable to reported human data. Intestinal maximum pressures in landrace pigs were in the same range as in humans. Overall, the study provides new insights of gastrointestinal conditions in landrace pigs, which can lead to more accurate interpretation of in vivo results obtained of pharmacokinetic studies in preclinical models. While small intestinal transit conditions, GI pH and pressures were similar to humans, the prolonged gastric emptying observed in pigs need to be considered in assessing the suitability of the pig model for assessing in vivo performance of large non-disintegrated oral drug products.
Collapse
Affiliation(s)
- Laura J Henze
- School of Pharmacy, University College Cork; Cork, Ireland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork; Cork, Ireland
| | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | - Felix Schneider
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | | |
Collapse
|
59
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
60
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
61
|
Bischoff NS, de Kok TM, Sijm DT, van Breda SG, Briedé JJ, Castenmiller JJ, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, van Loveren H. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. Int J Mol Sci 2020; 22:ijms22010207. [PMID: 33379217 PMCID: PMC7795714 DOI: 10.3390/ijms22010207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Correspondence:
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Dick T.H.M. Sijm
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacqueline J.M. Castenmiller
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Antoon Opperhuizen
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonóma de México, Mexico City 54090, Mexico;
| | - Hubert Dirven
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| | - David Gott
- Food Standard Agency, London SW1H9EX, UK;
| | - Eric Houdeau
- French National Research Institute for Agriculture, Food and Environment (INRAE), 75338 Paris, France;
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Morten Poulsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Henk van Loveren
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| |
Collapse
|
62
|
Prior H, Haworth R, Labram B, Roberts R, Wolfreys A, Sewell F. Justification for species selection for pharmaceutical toxicity studies. Toxicol Res (Camb) 2020; 9:758-770. [PMID: 33442468 PMCID: PMC7786171 DOI: 10.1093/toxres/tfaa081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Toxicity studies using mammalian species are generally required to provide safety data to support clinical development and licencing registration for potential new pharmaceuticals. International regulatory guidelines outline recommendations for the order (rodent and/or non-rodent) and number of species, retaining flexibility for development of a diverse range of drug modalities in a manner relevant for each specific new medicine. Selection of the appropriate toxicology species involves consideration of scientific, ethical and practical factors, with individual companies likely having different perspectives and preferences regarding weighting of various aspects dependent upon molecule characteristics and previous experience of specific targets or molecule classes. This article summarizes presentations from a symposium at the 2019 Annual Congress of the British Toxicology Society on the topic of species selection for pharmaceutical toxicity studies. This symposium included an overview of results from a National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) and Association of British Pharmaceutical Industry (ABPI) international collaboration that reviewed the use of one or two species in regulatory toxicology studies and justification for the species selected within each programme. Perspectives from two pharmaceutical companies described their processes for species selection for evaluation of biologics, and justification for selection of the minipig as a toxicological species for small molecules. This article summarizes discussions on the scientific justification and other considerations taken into account to ensure the most appropriate animal species are used for toxicity studies to meet regulatory requirements and to provide the most value for informing project decisions.
Collapse
Affiliation(s)
- Helen Prior
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 215 Euston Rd, London, NW1 2BE, UK
| | | | - Briony Labram
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 215 Euston Rd, London, NW1 2BE, UK
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK
| | | | - Fiona Sewell
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 215 Euston Rd, London, NW1 2BE, UK
| |
Collapse
|
63
|
Shin SK, Sneed SE, Nennig SE, Cheek SR, Kinder HA, Solomon MG, Schank JR, West FD. An Adolescent Porcine Model of Voluntary Alcohol Consumption Exhibits Binge Drinking and Motor Deficits in a Two Bottle Choice Test. Alcohol Alcohol 2020; 56:266-274. [PMID: 33123726 DOI: 10.1093/alcalc/agaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS Alcohol is the most commonly abused substance leading to significant economic and medical burdens. Pigs are an attractive model for studying alcohol abuse disorder due to the comparable alcohol metabolism and consumption behavior, which are in stark contrast to rodent models. This study investigates the usage of a porcine model for voluntary binge drinking (BD) and a detailed analysis of gait changes due to motor function deficits during alcohol intoxication. METHODS Adolescent pigs were trained to drink increasing concentration (0-8%) of alcohol mixed in a 0.2% saccharin solution for 1 h in a two bottle choice test for 2 weeks. The training period was followed by a 3-week alcohol testing period, where animals were given free access to 8% alcohol in 0.2% saccharin solution and 0.2% saccharin water solution. Blood alcohol levels were tested and gait analysis was performed pre-alcohol consumption, last day of training, and Day 5 of each testing period. RESULTS Pigs voluntarily consumed alcohol to intoxication at all timepoints with blood alcohol concentration (BAL) ≥80 mg/dl. Spatiotemporal gait parameters including velocity, cadence, cycle time, swing time, stance time, step time, and stride length were perturbed as a result of intoxication. The stratification of the gait data based on BAL revealed that the gait parameters were affected in a dose-dependent manner. CONCLUSION This novel adolescent BD porcine model with inherent anatomical and physiological similarities to humans display similar consumption and intoxication behavior that is likely to yield results that are translatable to human patients.
Collapse
Affiliation(s)
- Soo K Shin
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, 425 River Road, Athens, GA, 30602, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, 425 River Road, Athens, GA, 30602, USA
| | - Sadie E Nennig
- Department of Physiology and Pharmacy, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| | - Savannah R Cheek
- Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| | - Matthew G Solomon
- Department of Physiology and Pharmacy, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacy, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, 250 W. Green Street, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, 425 River Road, Athens, GA, 30602, USA.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, 310 East Campus Road, Athens, GA, 30602, USA
| |
Collapse
|
64
|
Development of a histopathology scoring system for the pulmonary complications of organophosphorus insecticide poisoning in a pig model. PLoS One 2020; 15:e0240563. [PMID: 33052985 PMCID: PMC7556475 DOI: 10.1371/journal.pone.0240563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Organophosphorus (OP) insecticide self-poisoning causes over 100,000 global deaths annually. Around a third of patients are intubated and up to half of these can die. Post-mortem analysis of OP poisoned patients’ lungs reveals consolidation, edema and hemorrhage, suggesting that direct or indirect lung damage may contribute to mortality. The lung injury caused by these formulated agricultural preparations is poorly characterised in humans, and a valid histopathology scoring system is needed in a relevant animal model to further investigate the disease and potential treatments. We conducted two pilot studies in anesthetized minipigs, which are commonly used for toxicological studies. In the first, pigs were given 2.5 mL/kg of either OP (n = 4) or saline (n = 2) by gavage and compared with positive controls (iv oleic acid n = 2). The second study simulated ingestion followed by gastric content aspiration: mixtures of OP (n = 3) or saline (n = 2) (0.63–0.71mL/kg) were placed in the stomach, and then small volumes of the gastric content were placed in the lung. At post-mortem examination, lungs were removed and inflation-fixed with 10% neutral buffered formalin. Samples (n = 62) were taken from cranial and caudal regions of both lungs. Two experienced lung histopathologists separately scored these samples using 8 proposed features of damage and their scores related (Kendall rank order). Two elements had small and inconsistent scores. When these were removed, the correlation increased from 0.74 to 0.78. Eight months later, a subset of samples (n = 35) was re-scored using the modified system by one of the previous histopathologists, with a correlation of 0.88. We have developed a reproducible pulmonary histopathology scoring system for OP poisoning in pigs which will assist future toxicological research and improve understanding and treatment of human OP poisoning.
Collapse
|
65
|
Vrolyk V, Desmarais MJ, Lambert D, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Göttingen Minipigs and Domestic Pigs: A Histomorphological and Immunohistochemical Study. Vet Pathol 2020; 57:889-914. [PMID: 33021158 DOI: 10.1177/0300985820954551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigs are considered one of the relevant animal models for ocular research as they share several histological and anatomical similarities with the human eye. With the increasing interest in juvenile animal models, this study aimed to describe the postnatal development of ocular structures in 16 Göttingen minipigs and 25 F2 domestic pigs, between birth and 6 months of age, using histopathology and immunohistochemistry against Ki-67, caspase-3, calbindin, glial fibrillary acidic protein, rhodopsin, and synaptophysin. All ocular structures in both pig breeds were incompletely developed at birth and for variable periods postnatally. Noteworthy histological features of immaturity included vascularization in the corneal stroma in neonatal Göttingen minipigs, increased cellularity in different substructures, remnants of the hyaloid vasculature, short and poorly ramified ciliary body processes, and a poorly developed cone inner segment. Increased cellular proliferation, highlighted by abundant Ki-67 immunolabeling, was observed in almost all developing structures of the pig eye for variable periods postnatally. Apoptosis, highlighted with caspase-3 immunolabeling, was observed in the retinal inner nuclear layer at birth and in the regressing hyaloid vasculature remnants. Immunohistochemistry against rhodopsin, synaptophysin, and calbindin demonstrated the short size of the developing photoreceptors and the immature cone inner segment morphology. Calbindin labeling revealed significant differences in the amount of positively labeled cone nuclei between the retinal area centralis and the non-area centralis regions. The elongation of Müller cell processes in the developing retina was shown with glial fibrillary acidic protein. In both pig breeds, the eyes reached histomorphological and immunohistochemical maturity at 6 months of age.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | | | - Daniel Lambert
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Julius Haruna
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
66
|
Alex A, Chaney EJ, Žurauskas M, Criley JM, Spillman DR, Hutchison PB, Li J, Marjanovic M, Frey S, Arp Z, Boppart SA. In vivo characterization of minipig skin as a model for dermatological research using multiphoton microscopy. Exp Dermatol 2020; 29:953-960. [PMID: 33311854 PMCID: PMC7725480 DOI: 10.1111/exd.14152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Minipig skin is one of the most widely used non-rodent animal skin models for dermatological research. A thorough characterization of minipig skin is essential for gaining deeper understanding of its structural and functional similarities with human skin. In this study, three-dimensional (3-D) in vivo images of minipig skin was obtained non-invasively using a multimodal optical imaging system capable of acquiring two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy (FLIM) images simultaneously. The images of the structural features of different layers of the minipig skin were qualitatively and quantitatively compared with those of human skin. Label-free imaging of skin was possible due to the endogenous fluorescence and optical properties of various components in the skin such as keratin, nicotinamide adenine dinucleotide phosphate (NAD(P)H), melanin, elastin, and collagen. This study demonstrates the capability of optical biopsy techniques, such as TPEF and FLIM, for in vivo non-invasive characterization of cellular and functional features of minipig skin, and the optical image-based similarities of this commonly utilized model of human skin. These optical imaging techniques have the potential to become promising tools in dermatological research for developing a better understanding of animal skin models, and for aiding in translational pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Aneesh Alex
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- GSK, Collegeville, PA, USA
| | - Eric J. Chaney
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mantas Žurauskas
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer M. Criley
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Darold R. Spillman
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phaedra B. Hutchison
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Li
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Stephen A. Boppart
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
67
|
Short B. Selected Aspects of Ocular Toxicity Studies With a Focus on High-Quality Pathology Reports: A Pathology/Toxicology Consultant's Perspective. Toxicol Pathol 2020; 49:673-699. [PMID: 32815474 DOI: 10.1177/0192623320946712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ocular toxicity studies are the bedrock of nonclinical ocular drug and drug-device development, and there has been an evolution in experience, technologies, and challenges to address that ensures safe clinical trials and marketing authorization. The expectations of a well-designed ocular toxicity study and the generation of a coherent, integrative ocular toxicology report and subreports are high, and this article provides a pathology/toxicology consultant's perspective on achieving that goal. The first objective is to cover selected aspects of study designs for ocular toxicity studies including considerations for contract research organization selection, minipig species selection, unilateral versus bilateral dosing, and in-life parameters based on fit-for-purpose study objectives. The main objective is a focus on a high-quality ocular pathology report that includes ocular histology procedures to meet regulatory expectations and a report narrative and tables that correlate microscopic findings with key ophthalmic findings and presents a clear interpretation of test article-, vehicle-, and procedure-related ocular and extraocular findings with identification of adversity and a pathology peer review. The last objective covers considerations for a high-quality ophthalmology report, which in concert with a high-quality pathology report, will pave the way for a best quality toxicology report for an ocular toxicity study.
Collapse
Affiliation(s)
- Brian Short
- Brian Short Consulting, LLC, Laguna Beach, CA, USA
| |
Collapse
|
68
|
Sakib S, Uchida A, Valenzuela-Leon P, Yu Y, Valli-Pulaski H, Orwig K, Ungrin M, Dobrinski I. Formation of organotypic testicular organoids in microwell culture†. Biol Reprod 2020; 100:1648-1660. [PMID: 30927418 DOI: 10.1093/biolre/ioz053] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/29/2019] [Indexed: 01/15/2023] Open
Abstract
Three-dimensional (3D) organoids can serve as an in vitro platform to study cell-cell interactions, tissue development, and toxicology. Development of organoids with tissue architecture similar to testis in vivo has remained a challenge. Here, we present a microwell aggregation approach to establish multicellular 3D testicular organoids from pig, mouse, macaque, and human. The organoids consist of germ cells, Sertoli cells, Leydig cells, and peritubular myoid cells forming a distinct seminiferous epithelium and interstitial compartment separated by a basement membrane. Sertoli cells in the organoids express tight junction proteins claudin 11 and occludin. Germ cells in organoids showed an attenuated response to retinoic acid compared to germ cells in 2D culture indicating that the tissue architecture of the organoid modulates response to retinoic acid similar to in vivo. Germ cells maintaining physiological cell-cell interactions in organoids also had lower levels of autophagy indicating lower levels of cellular stress. When organoids were treated with mono(2-ethylhexyl) phthalate (MEHP), levels of germ cell autophagy increased in a dose-dependent manner, indicating the utility of the organoids for toxicity screening. Ablation of primary cilia on testicular somatic cells inhibited the formation of organoids demonstrating an application to screen for factors affecting testicular morphogenesis. Organoids can be generated from cryopreserved testis cells and preserved by vitrification. Taken together, the testicular organoid system recapitulates the 3D organization of the mammalian testis and provides an in vitro platform for studying germ cell function, testicular development, and drug toxicity in a cellular context representative of the testis in vivo.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aya Uchida
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada
| | - Paula Valenzuela-Leon
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada
| | - Yang Yu
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kyle Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
69
|
Extent and rate of oral drug absorption in minipigs: Comparison with mice, rats and humans. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
70
|
Piñeiro SA, Cerniglia CE. Antimicrobial drug residues in animal-derived foods: Potential impact on the human intestinal microbiome. J Vet Pharmacol Ther 2020; 44:215-222. [PMID: 32710465 DOI: 10.1111/jvp.12892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
The use of veterinary drugs in food-producing animals may result in the presence of low levels of drug residues in these edible, animal-derived foods, with potential dietary exposure to humans. Since therapeutic doses of antibiotics have been shown to affect bacterial populations in the gastrointestinal tract microbiome and can also promote the emergence of antibiotic-resistant bacteria, there is concern that animal drugs at residue level concentrations could also perturb the intestinal microbiome composition and modify the antimicrobial resistance profile of the human intestinal microbiota. This review provides updated information on the VICH GL#36(R2), on evaluating the safety of veterinary drug residues in animal-derived foods and their effects on the human intestinal microbiome; discusses critical research knowledge gaps and challenges in evaluating the impact of drug residues in animal-derived foods on the human intestinal microbiome; and analyzes integrated basic and applied research approaches, currently being conducted at FDA, on studies that specifically address key regulatory science questions. Moreover, this review aims to emphasize future research needs on scientific methodology and provides general recommendations on drug inactivation, bioavailability, and antimicrobial resistance, to improve the safety evaluation and risk assessment of antimicrobial residues and their impact on the gastrointestinal microbiota, with the goal of ensuring food safety.
Collapse
Affiliation(s)
- Silvia Aurora Piñeiro
- Division of Human Food Safety, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Carl Edward Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
71
|
Postnatal differentiation and regional histological variations in the ductus epididymidis of the Congjiang Xiang pig. Tissue Cell 2020; 67:101411. [PMID: 32835944 DOI: 10.1016/j.tice.2020.101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The Congjiang Xiang pig is a rare Chinese miniature breed whose epididymal histologic features through the postnatal development are poorly understood. To clarify the histomorphological differences between each region of epididymis during postnatal development, 24 male Congjiang Xiang pigs aged from neonatal (15 d), peri-puberty (30 d), puberty (60 d) to adult (180 d) stages, were examined. Postnatal differentiation of the different regions (I-V) of the epididymis started from birth and continued until maturity that showed regional variations. Developmental progression was disto-proximal. At the neonatal stage, Wolffian duct differentiation starts in the distal region, then ascends to the middle region which forms regions V, IV and III, respectively. A simple lined cuboidal in the epidydimal epithelial, which gradually differentiated into a pseudostratified columnar with stereocilia from neonatal to post-pubertal. After puberty cell rearrangement occurred in the epithelium, differentiation accelerated, and spermatozoon seen in the lumen, especially the lumen of region II. In region III, both halo and apical cells were frequently observed. At the post-pubertal stage, clear cells were frequently observed in Region IV-V, and the epididymal duct was markedly increased in size and fully packed with spermatozoa. The information presented in this study will be helpful for future evaluations of Congjiang Xiang pig fertility. After puberty cell rearrangement occurred in the epithelium, differentiation accelerated, and spermatozoon seen in the lumen, especially the lumen of region II. In region III, both halo and apical cells were frequently observed. At the post-pubertal stage, clear cells were frequently observed in Region IV-V, and the epididymal duct was markedly increased in size and fully packed with spermatozoa. The information presented in this study will be helpful for future evaluations of Congjiang Xiang pig fertility.
Collapse
|
72
|
Hamada T, Watanabe Y, Iida K, Sano N, Amano N. Microminipig: A suitable animal model to estimate oral absorption of sustained-release formulation in humans. Int J Pharm 2020; 584:119457. [PMID: 32464228 DOI: 10.1016/j.ijpharm.2020.119457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
We investigated the gastrointestinal absorption characteristics of oral sustained-release formulations in microminipigs, dogs, and monkeys in order to clarify the similarities in absorption properties between these animals and humans. Time profiles of oral absorption of nifedipine and valproic acid were calculated from the plasma concentration-time profiles of the drugs by a deconvolution method. The curves for both drugs in microminipigs were close to or slightly higher than those in humans, whereas those in monkeys were lower. Furthermore, the plasma concentration-time profiles of the drugs were subjected to non-compartmental analysis. The fractions of a dose absorbed into the portal vein (FaFg) in microminipigs ranged from 50 to 100% of the human values, whereas those in monkeys were less than half the human values. In addition, the other absorption-related parameters for the sustained-release formulation in microminipigs, as well as monkeys, were comparable to those in humans. In conclusion, the oral absorption properties of microminipigs and humans were similar regarding the sustained-release formulations. Therefore, microminipig is a suitable animal model to estimate the oral absorption of sustained-release formulations in humans.
Collapse
Affiliation(s)
- Teruki Hamada
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yukiko Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koichi Iida
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Noriyasu Sano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
73
|
Supersaturated Lipid-Based Formulations to Enhance the Oral Bioavailability of Venetoclax. Pharmaceutics 2020; 12:pharmaceutics12060564. [PMID: 32570753 PMCID: PMC7355533 DOI: 10.3390/pharmaceutics12060564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing numbers of beyond Rule-of-Five drugs are emerging from discovery pipelines, generating a need for bio-enabling formulation approaches, such as lipid-based formulations (LBF), to ensure maximal in vivo exposure. However, many drug candidates display insufficient lipid solubility, leading to dose-loading limitations in LBFs. The aim of this study was to explore the potential of supersaturated LBFs (sLBF) for the beyond Rule-of-Five drug venetoclax. Temperature-induced sLBFs of venetoclax were obtained in olive oil, Captex® 1000, Peceol® and Capmul MCM®, respectively. A Peceol®-based sLBF displayed the highest drug loading and was therefore evaluated further. In vitro lipolysis demonstrated that the Peceol®-based sLBF was able to generate higher venetoclax concentrations in the aqueous phase compared to a Peceol®-based suspension and an aqueous suspension. A subsequent bioavailability study in pigs demonstrated for sLBF a 3.8-fold and 2.1-fold higher bioavailability compared to the drug powder and Peceol®-based suspension, respectively. In conclusion, sLBF is a promising bio-enabling formulation approach to enhance in vivo exposure of beyond Rule-of-Five drugs, such as venetoclax. The in vitro lipolysis results correctly predicted a higher exposure of the sLBF in vivo. The findings of this study are of particular relevance to pre-clinical drug development, where maximum exposure is required.
Collapse
|
74
|
Baek KW, Dard M, Zeilhofer HF, Cattin PC, Juergens P. Comparing the Bone Healing After Cold Ablation Robot-Guided Er:YAG Laser Osteotomy and Piezoelectric Osteotomy-A Pilot Study in a Minipig Mandible. Lasers Surg Med 2020; 53:291-299. [PMID: 32529785 DOI: 10.1002/lsm.23281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE To take major advantage of erbium-doped yttrium aluminium garnet (Er:YAG) lasers in osteotomy-like freedom of cutting geometries and high accuracy-the integration and miniaturization of the robot, laser, and navigation technology was tried and applied to minipigs. The investigators hypothesized laser osteotomy would render acceptable bone healing based on the intraoperative findings and postoperative cut surface analysis. STUDY DESIGN/MATERIALS AND METHODS We designed and implemented a comparative bone-cutting surgery in the minipig mandible with a cold ablation robot-guided Er:YAG laser osteotome (CARLO) and a piezoelectric (PZE) osteotome. The sample was composed of different patterns of defects in the mandibles of six grown-up female Goettingen minipigs. The predictor variable was Er:YAG osteotomy and PZE osteotomy. The outcome variable was the cut surface characteristics and bone healing at 4 and 8 weeks postoperatively. Descriptive and qualitative comparison was executed. RESULTS The sample was composed of four kinds of bone defects on both sides of the mandibles of six minipigs. We observed more bleeding during the operation, open-cut surfaces, and a faster healing pattern with the laser osteotomy. There was a possible association between the intraoperative findings, postoperative cut surface analysis, and the bone healing pattern. CONCLUSIONS The results of this study suggest that characteristic open-cut surfaces could explain favorable bone healing after laser osteotomy. Future studies will focus on the quantification of the early healing characteristics after laser osteotomy, its diverse application, and the safety feature. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Kyung-Won Baek
- Department of Biomedical Engineering, Hightech Research Center of Cranio-Maxillofacial Surgery (HFZ), University of Basel, Gewerbestrasse 14-16, Allschwil, 4123, Switzerland
| | - Michel Dard
- Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York.,Institut Straumann AG, Peter Merian-Weg 12, Basel, 4002, Switzerland
| | - Hans-Florian Zeilhofer
- Department of Biomedical Engineering, Hightech Research Center of Cranio-Maxillofacial Surgery (HFZ), University of Basel, Gewerbestrasse 14-16, Allschwil, 4123, Switzerland
| | - Philippe C Cattin
- Department of Biomedical Engineering, Center for Medical Image Analysis & Navigation, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Philipp Juergens
- Department of Cranio-Maxillofacial Surgery, University Hospital of Basel, Spitalstrasse 21, Basel, 4031, Switzerland.,MKG-Chirurgie Arabellapark Praxis für Mund-, Kiefer- und Gesichtschirurgie, Arabellastr. 17, München, 81925, Germany
| |
Collapse
|
75
|
Smits A, Annaert P, Van Cruchten S, Allegaert K. A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision During Therapeutic Hypothermia in Neonates. Front Pharmacol 2020; 11:587. [PMID: 32477113 PMCID: PMC7237643 DOI: 10.3389/fphar.2020.00587] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic hypothermia (TH) is standard treatment for neonates (≥36 weeks) with perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy. TH reduces mortality and neurodevelopmental disability due to reduced metabolic rate and decreased neuronal apoptosis. Since both hypothermia and PA influence physiology, they are expected to alter pharmacokinetics (PK). Tools for personalized dosing in this setting are lacking. A neonatal hypothermia physiology-based PK (PBPK) framework would enable precision dosing in the clinic. In this literature review, the stepwise approach, benefits and challenges to develop such a PBPK framework are covered. It hereby contributes to explore the impact of non-maturational PK covariates. First, the current evidence as well as knowledge gaps on the impact of PA and TH on drug absorption, distribution, metabolism and excretion in neonates is summarized. While reduced renal drug elimination is well-documented in neonates with PA undergoing hypothermia, knowledge of the impact on drug metabolism is limited. Second, a multidisciplinary approach to develop a neonatal hypothermia PBPK framework is presented. Insights on the effect of hypothermia on hepatic drug elimination can partly be generated from in vitro (human/animal) profiling of hepatic drug metabolizing enzymes and transporters. Also, endogenous biomarkers may be evaluated as surrogate for metabolic activity. To distinguish the impact of PA versus hypothermia on drug metabolism, in vivo neonatal animal data are needed. The conventional pig is a well-established model for PA and the neonatal Göttingen minipig should be further explored for PA under hypothermia conditions, as it is the most commonly used pig strain in nonclinical drug development. Finally, a strategy is proposed for establishing and fine-tuning compound-specific PBPK models for this application. Besides improvement of clinical exposure predictions of drugs used during hypothermia, the developed PBPK models can be applied in drug development. Add-on pharmacotherapies to further improve outcome in neonates undergoing hypothermia are under investigation, all in need for dosing guidance. Furthermore, the hypothermia PBPK framework can be used to develop temperature-driven PBPK models for other populations or indications. The applicability of the proposed workflow and the challenges in the development of the PBPK framework are illustrated for midazolam as model drug.
Collapse
Affiliation(s)
- Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
76
|
Abstract
The pig is an omnivorous, monogastric species with many advantages to serve as an animal model for human diseases. There are very high similarities to humans in anatomy and functions of the immune system, e g., the presence of tonsils, which are absent in rodents. The porcine immune system resembles man for more than 80% of analyzed parameters in contrast to the mouse with only about 10%. The pig can easily be bred, and there are less emotional problems to use them as experimental animals than dogs or monkeys. Indwelling cannulas in a vein or lymphatic vessel enable repetitive stress-free sampling. Meanwhile, there are many markers available to characterize immune cells. Lymphoid organs, their function, and their role in lymphocyte kinetics (proliferation and migration) are reviewed. For long-term experiments, minipigs (e.g., Göttingen minipig) are available. Pigs can be kept under gnotobiotic (germfree) conditions for some time after birth to study the effects of microbiota. The effects of probiotics can be tested on the gut immune system. The lung has been used for extracorporeal preservation and immune engineering. After genetic modifications are established, the pig is the best animal model for future xenotransplantation to reduce the problem of organ shortage for organ transplantation. Autotransplantation of particles of lymphnodes regenerates in the subcutaneous tissue. This is a model to treat secondary lymphedema patients. There are pigs with cystic fibrosis and severe combined immune deficiency available.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Immunomorphology, Centre of Anatomy, Medical School Hannover, Hanover, Germany.
| |
Collapse
|
77
|
Rasmussen MK. Porcine cytochrome P450 3A: current status on expression and regulation. Arch Toxicol 2020; 94:1899-1914. [PMID: 32172306 DOI: 10.1007/s00204-020-02710-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome P450s (CYPs) constitute a family of enzymes maintaining vital functions in the body and are mostly recognized for their significant role in detoxification. Of the CYP subfamilies, CYP3A, is one of the most active in the clearance of drugs and other xenobiotics. During the last decades, much focus has been on exploring different models for human CYP3A regulation, expression and activity. In that respect, the growing knowledge of the porcine CYP3As is of great interest. Although many aspects of porcine CYP3A regulation and activity are still unknown, the current literature provides a basic understanding of the porcine CYP3As that can be used e.g., when translating results from studies done in the porcine model into human settings. In this review, the current knowledge about porcine CYP3A expression, regulation, activity and metabolic significance are highlighted. Future research needs are also identified.
Collapse
|
78
|
Giulbudagian M, Schreiver I, Singh AV, Laux P, Luch A. Safety of tattoos and permanent make-up: a regulatory view. Arch Toxicol 2020; 94:357-369. [DOI: 10.1007/s00204-020-02655-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
AbstractThe continuous increase in the popularity of tattoos and permanent make-up (PMU) has led to substantial changes in their societal perception. Besides a better understanding of pathological conditions associated with the injection of highly diverse substances into subepidermal layers of the skin, their regulation has occupied regulatory bodies around the globe. In that sense, current regulatory progress in the European Union is an exemplary initiative for improving the safety of tattooing. On one hand, the compilation of market surveillance data has provided knowledge on hazardous substances present in tattoo inks. On the other hand, clinical data gathered from patients enabled correlation of adverse reactions with certain substances. Nevertheless, the assessment of risks remains a challenge due to knowledge gaps on the biokinetics of highly complex inks and their degradation products. This review article examines the strategies for regulating substances in tattoo inks and PMU in light of their potential future restriction in the frame of the REACH regulation. Substance categories are discussed in terms of their risk assessment and proposed concentration limits.
Collapse
|
79
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
80
|
Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96:370-382. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide a rapid assessment of the doses received by individuals using high-throughput technologies. There is also a great interest in developing new biomarkers of dose exposure, which could be used in large molecular epidemiological studies in order to correlate estimated doses received and health effects. The goal of this review was to summarize current literature focused on biological dosimetry, namely radiation-responsive biomarkers.Methods: The studies involved in this review were thoroughly selected according to the determined criteria and PRISMA guidelines.Results: We described briefly recent advances in radiation genomics and metabolomics, giving particular emphasis to proteomic analysis. The majority of studies were performed on animal models (rats, mice, and non-human primates). They have provided much beneficial information, but the most relevant tests have been done on human (oncological) patients. By inspecting the radiaiton biodosimetry literate of the last 10 years, we identified a panel of candidate markers for each -omic approach involved.Conslusions: We reviewed different methodological approaches and various biological materials, which can be exploited for dose-effect prediction. The protein biomarkers from human plasma are ideal for this specific purpose. From a plethora of candidate markers, FDXR is a very promising transcriptomic candidate, and importantly this biomarker was also confirmed by some studies at protein level in humans.
Collapse
Affiliation(s)
- Gabriela Kultova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alena Myslivcova-Fucikova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
81
|
Miyazawa D, Ohara N, Yamada K, Yasui Y, Kitamori K, Saito Y, Usumi K, Nagata T, Nonogaki T, Hashimoto Y, Miyashiro Y, Homma S, Okuyama H. Dietary soybean oil, canola oil and partially-hydrogenated soybean oil affect testicular tissue and steroid hormone levels differently in the miniature pig. Food Chem Toxicol 2020; 135:110927. [DOI: 10.1016/j.fct.2019.110927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/28/2022]
|
82
|
Lac D, Hermsmeier M, Chen X, Yam N, Yamamoto A, Huang S, Sawant T, Chan KF, Nagavarapu U. Topical minocycline formulations: Evaluation and comparison of dermal uptake efficacy. Int J Pharm X 2019; 1:100009. [PMID: 31517274 PMCID: PMC6733297 DOI: 10.1016/j.ijpx.2019.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
Acne vulgaris is a clinically distinct skin condition with evidence suggesting that inflammation plays a critical role in the pathogenesis of this disorder. Treatment of severe inflammatory acne often involves the use of oral antibiotics, sometimes in combination with topical products. Oral antibiotics often result in systemic side effects and the risks of antibiotic resistance, but no commercial topical minocycline is currently available. We have developed a unique, stable, hydrophilic topical gel formulation with fully solubilized minocycline (MNC-H). Minocycline delivered in our hydrophilic gel remained more stable in situ, resulting in less degradation product (4-epiminocycline) than a lipophilic formulation (MNC-L). The hydrophilic nature of our formulation enabled 2-3 fold increase in delivery into the skin ex vivo compared to a lipophilic counterpart, mostly seen in the epidermis and pilosebaceous units. The lipophilic formulation also appeared to be more occlusive, resulting in higher sebum production in minipigs, which may exacerbate acne vulgaris. As our results indicate, a 1, 2% minocycline hydrophilic gel may deliver sufficient drug (>15 μg/g) to potentially demonstrate clinical efficacy. These findings suggest that topical hydrophilic minocycline gel may provide a novel tool for topical acne therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Usha Nagavarapu
- BioPharmX, Inc., 115 Nicholson Lane, San Jose, CA 95134, USA
| |
Collapse
|
83
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
84
|
Hey A, Hill M, Calonder C, DeLise AM, Grossi AB, Pique C, Marsden E. "Simulect" as a model compound for assessing placental transfer of monoclonal antibodies in minipigs. Reprod Toxicol 2019; 91:142-146. [PMID: 31698003 DOI: 10.1016/j.reprotox.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to directly test and measure in vivo, if placental transfer of monoclonal antibodies takes place in pregnant Göttingen Minipigs to assess their suitability for reproductive assessment of therapeutic monoclonal antibodies. Simulect®, an approved anti CD25 (anti IL-2 receptor alpha) chimeric monoclonal IgG1 antibody, was used as a model monoclonal antibody. Maternal systemic exposure and potential placental transfer of Simulect® to fetuses were investigated following 4 weekly bolus intravenous administration of 5.0 mg/kg from gestation day (GD) 79 or 80 (e.g GD 79, 86, 93 and 100) and with terminal Caesarean section on GD 108 or GD 109 respectively. Results clearly showed exposure in maternal animals, detectable compound in the amniotic fluid from one out of 9 maternal animals, but no exposure in fetuses confirming absence of placental transfer of the selected model antibody Simulect® in minipigs. The absence of Simulect® in the fetuses further supports that the presence of Simulect® in the amniotic fluid in one maternal animal was likely due to contamination with maternal blood during sampling. The demonstrated absence of fetal exposure clearly indicates that, the minipig is not a suitable species for conduct of reproductive toxicity studies with monoclonal antibodies.
Collapse
Affiliation(s)
- Adam Hey
- Novartis Pharma AG, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
85
|
Viuff BM, Straarup EM, Nowak J, Morgills L, Skydsgaard M, Sjögren I, Wulff BS, Christoffersen BØ. Lipid Embolism in Obese Göttingen Minipigs. Toxicol Pathol 2019; 48:379-392. [DOI: 10.1177/0192623319880464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pigs are used as a model of human obesity, both for metabolic characterization and for evaluation of pharmacological interventions. Over a period of 7 years, acute death or clinical signs requiring immediate euthanasia were observed in 12 obese Göttingen minipigs (GMs) included in different pharmacological studies. The GM were fed ad libitum on normal chow-diet and the unscheduled deaths occurred in animals treated with drug candidates as well as in untreated animals. The most prominent clinical signs requiring euthanasia included varying degrees of respiratory distress; and on histopathological examination, thickening of the alveolar septa due to vacuolation was observed throughout the lung in 10 of the 12 animals. Furthermore, vacuolation in glomeruli of the kidney was detected in 9 of the 10 animals. Oil red O staining of cryosections demonstrated that the vacuoles both in lung and kidney contained lipid, and immunohistochemistry with anti-von Willebrand factor and transmission electron microscopy revealed that the lipid was localized in the lumen of blood vessels establishing the occurrence of fatal pulmonary lipid embolism. Additionally, lipogranulomatous inflammation in the abdominal adipose tissue was observed in all the GMs with lipid emboli.
Collapse
Affiliation(s)
| | | | - Jette Nowak
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Line Morgills
- CitoxLAB Denmark (A Charles River Company), Lille Skensved, Denmark
| | | | | | | | | |
Collapse
|
86
|
Lindsay CD, Timperley CM. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum Exp Toxicol 2019; 39:14-36. [PMID: 31578097 DOI: 10.1177/0960327119877460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.
Collapse
Affiliation(s)
- C D Lindsay
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| | - C M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| |
Collapse
|
87
|
Zhang L, wang X, Chen C, Wang W, Yang K, Shen D, Wang S, gao B, Guo Y, Mao J, song C. Development of retrotransposons insertion polymorphic markers and application in the genetic variation evaluation of Chinese Bama miniature pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retrotransposons are genetic elements that can amplify themselves in a genome and are abundant in many eukaryotic organisms. In this study, we established some new short interspersed nuclear elements (SINE) and endogenous retroviruses (ERV) retrotransposons insertion polymorphism (RTIP) markers based on BLAT alignment tool strategy, and followed by PCR evaluation. We investigated the genetic variations among four subpopulations of Chinese Bama miniature pigs (BM), including BM in national conservation farm (BM-cov), BM inbreeding population (BM-inb) and BM closed Herd (BM-clo) in Guangxi University, and BM in the Experimental pig farm of Yangzhou University (BM-yzu). Genetic distance, polymorphism information content (PIC) and heterozygosity (He) of these markers in four of BM subpopulations were measured. Twelve SINE and twenty-eight ERV polymorphic molecular markers were identified in the four subpopulations. The BM-cov pigs represented the highest He and PIC, which indicated that BM-cov pigs maintain relatively highly genetic diversity. BM-inb pigs represented the lowest He and PIC indicating less variation and a high degree of inbreeding. Microsatellites polymorphism in four BM populations also well supported the results of these RTIP markers. In summary, retrotransposons insertion polymorphic markers could be a useful tool for population genetic variation analysis. Current SINE and ERV variation data may also provide a reference guide for the conservation and utilization of the BM miniature pig resource.
Collapse
|
88
|
Negro Silva LF, Li C, de Seadi Pereira PJB, Tan W, Dubuc-Mageau M, Sanfacon A, Forster R, Tavcar R, Makin A, Authier S. Biochemical and Electroretinographic Characterization of the Minipig Eye in the Context of Drug Safety Investigations. Int J Toxicol 2019; 38:415-422. [PMID: 31470746 DOI: 10.1177/1091581819867929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Minipigs are an emerging nonrodent alternative for ocular toxicology owing to anatomical similarities in the minipig eyes when compared to humans. Ocular structures and components from Göttingen minipigs were characterized and compared to species commonly used in toxicology. Ocular reference data from Göttingen minipig including intraocular pressure, vitreous electrolyte and thiol concentration, and electroretinography (ERG) data are essential to model characterization and data interpretation during drug safety assessments. Intravitreal positive control agents including gentamicin, indocyanine green, and glycine were used to demonstrate ERG alterations caused by retinal cell toxicity, light transmission obstruction, or neurotransmission interferences, respectively. Electrolyte concentrations of the aqueous and vitreous humors from Göttingen minipigs were similar to other species including humans. The reference data presented herein supports the use of the Göttingen minipig as an alternate nonrodent species in ocular toxicology.
Collapse
Affiliation(s)
| | - Christian Li
- Citoxlab North America, a Charles River Company, Laval, Quebec, Canada
| | | | - Wendy Tan
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Michelle Dubuc-Mageau
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Audrey Sanfacon
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Roy Forster
- Citoxlab France, a Charles River Company, Evreux, France
| | - Robert Tavcar
- Citoxlab North America, a Charles River Company, Laval, Quebec, Canada
| | - Andy Makin
- Citoxlab Denmark, a Charles River Company, Ejby, Denmark
| | - Simon Authier
- Citoxlab North America, a Charles River Company, Laval, Quebec, Canada.,Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
89
|
Paradis FH, Downey AM, Beaudry F, Pinêtre C, Ellemann-Laursen S, Makin A, Hill K, Singh P, Hargitai J, Forster R, Tavcar R, Authier S. Interspecies Comparison of Control Data From Embryo-Fetal Development Studies in Sprague-Dawley Rats, New Zealand White Rabbits, and Göttingen Minipigs. Int J Toxicol 2019; 38:476-486. [PMID: 31470750 DOI: 10.1177/1091581819867249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Species-dependent differences in relative incidence of spontaneous variations and malformations should be considered in the assessment of the translational value of reproductive and developmental safety assessments. The objective of this evaluation was to compare litter parameters and the frequency of external, visceral, and skeletal malformations and variations across species in the Sprague-Dawley rat, New Zealand White rabbit, and Göttingen minipig and to determine whether notable differences exist. Pregnant female rats (n = 824), rabbits (n = 540), and minipigs (n = 70) from vehicle control groups were included in the analysis, equating to 10,749 rat, 5,073 rabbit, and 378 pig fetuses collected at term by cesarean delivery. Preimplantation loss was more frequent than postimplantation loss in the rat and rabbit, whereas the opposite was observed in the minipig. Several external and visceral malformations and variations such as domed head, bent tail, abdominal edema, and anal atresia were observed in all 3 species. Visceral malformations of the heart and major blood vessels were remarkably more frequent in the minipig and rabbit, respectively; ventricular and atrium septum defects were observed in 1.9% and 2.1%, respectively, for the minipig fetuses, whereas they were observed in equal or less than 0.02% among the rat and rabbit fetuses evaluated in this study. Understanding species-dependent differences in spontaneous variations and malformations can be useful for the interpretation of embryo-fetal development study results. The current analysis identified relevant differences between commonly used species in reproductive toxicology with potential implications for data assessment.
Collapse
Affiliation(s)
| | | | | | | | | | - Andy Makin
- Citoxlab-Charles River Company, Ejby, Denmark
| | | | | | | | - Roy Forster
- Citoxlab-Charles River Company, Evreux, France
| | | | | |
Collapse
|
90
|
Poupin N, Tremblay-Franco M, Amiel A, Canlet C, Rémond D, Debrauwer L, Dardevet D, Thiele I, Aurich MK, Jourdan F, Savary-Auzeloux I, Polakof S. Arterio-venous metabolomics exploration reveals major changes across liver and intestine in the obese Yucatan minipig. Sci Rep 2019; 9:12527. [PMID: 31467335 PMCID: PMC6715693 DOI: 10.1038/s41598-019-48997-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Blood circulation mainly aims at distributing the nutrients required for tissue metabolism and collecting safely the by-products of all tissues to be further metabolized or eliminated. The simultaneous study of arterial (A) and venous (V) specific metabolites therefore has appeared to be a more relevant approach to understand and study the metabolism of a given organ. We propose to implement this approach by applying a metabolomics (NMR) strategy on paired AV blood across the intestine and liver on high fat/high sugar (HFHS)-fed minipigs. Our objective was to unravel kinetically and sequentially the metabolic adaptations to early obesity/insulin resistance onset specifically on these two tissues. After two months of HFHS feeding our study of AV ratios of the metabolome highlighted three major features. First, the hepatic metabolism switched from carbohydrate to lipid utilization. Second, the energy demand of the intestine increased, resulting in an enhanced uptake of glutamine, glutamate, and the recruitment of novel energy substrates (choline and creatine). Third, the uptake of methionine and threonine was considered to be driven by an increased intestine turnover to cope with the new high-density diet. Finally, the unique combination of experimental data and modelling predictions suggested that HFHS feeding was associated with changes in tryptophan metabolism and fatty acid β-oxidation, which may play an important role in lipid hepatic accumulation and insulin sensitivity.
Collapse
Affiliation(s)
- Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Aurélien Amiel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Didier Rémond
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Dominique Dardevet
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg.,School of Medicine, National University of Ireland, University Road, Galway, Ireland.,Discipline of Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
| | - Maike K Aurich
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Savary-Auzeloux
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Sergio Polakof
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France.
| |
Collapse
|
91
|
Margiotta-Casaluci L, Owen SF, Rand-Weaver M, Winter MJ. Testing the Translational Power of the Zebrafish: An Interspecies Analysis of Responses to Cardiovascular Drugs. Front Pharmacol 2019; 10:893. [PMID: 31474857 PMCID: PMC6707810 DOI: 10.3389/fphar.2019.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
The zebrafish is rapidly emerging as a promising alternative in vivo model for the detection of drug-induced cardiovascular effects. Despite its increasing popularity, the ability of this model to inform the drug development process is often limited by the uncertainties around the quantitative relevance of zebrafish responses compared with nonclinical mammalian species and ultimately humans. In this test of concept study, we provide a comparative quantitative analysis of the in vivo cardiovascular responses of zebrafish, rat, dog, and human to three model compounds (propranolol, losartan, and captopril), which act as modulators of two key systems (beta-adrenergic and renin–angiotensin systems) involved in the regulation of cardiovascular functions. We used in vivo imaging techniques to generate novel experimental data of drug-mediated cardiovascular effects in zebrafish larvae. These data were combined with a database of interspecies mammalian responses (i.e., heart rate, blood flow, vessel diameter, and stroke volume) extracted from the literature to perform a meta-analysis of effect size and direction across multiple species. In spite of the high heterogeneity of study design parameters, our analysis highlighted that zebrafish and human responses were largely comparable in >80% of drug/endpoint combinations. However, it also revealed a high intraspecies variability, which, in some cases, prevented a conclusive interpretation of the drug-induced effect. Despite the shortcomings of our study, the meta-analysis approach, combined with a suitable data visualization strategy, enabled us to observe patterns of response that would likely remain undetected with more traditional methods of qualitative comparative analysis. We propose that expanding this approach to larger datasets encompassing multiple drugs and modes of action would enable a rigorous and systematic assessment of the applicability domain of the zebrafish from both a mechanistic and phenotypic standpoint. This will increase the confidence in its application for the early detection of adverse drug reactions in any major organ system.
Collapse
Affiliation(s)
| | - Stewart F Owen
- Global Safety, Health & Environment, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Mariann Rand-Weaver
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Matthew J Winter
- School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
92
|
Rasmussen MK, Scavenius C, Gerbal-Chaloin S, Enghild J. Sex dictates the constitutive expression of hepatic cytochrome P450 isoforms in Göttingen minipigs. Toxicol Lett 2019; 314:181-186. [PMID: 31404594 DOI: 10.1016/j.toxlet.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
The cytochrome P450 enzyme (CYP) family includes key enzymes for the metabolism of drugs and xenobiotics. Several animal models have been used to determine the metabolite profile of specific drugs. Among these are porcine microsomes prepared from Göttingen minipigs. However, CYP expression profile in microsomes from this pig breed is unknown. In the present study, we determined the mRNA and protein profiles of a comprehensive selection of CYPs in microsomes prepared from male and female Göttingen minipigs. Using RT-PCR, western blotting and mass spectroscopy, we found that the expression levels of CYP1A, CYP2A and CYP2E1 were significantly higher in females than males. Moreover, some of the transcription factors controlling CYP transcription also showed a sex-dependent expression pattern. Conversely, expression of CYP2B, CYP2D and CYP3A was comparable between sexes. The overall CYP expression distribution showed high similarity with what previously been reported in humans. In conclusion, our results suggest that Göttingen minipigs are a reliable model for studying CYPs.
Collapse
Affiliation(s)
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | - Jan Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| |
Collapse
|
93
|
Schulze-Tanzil G, Silawal S, Hoyer M. Anatomical feature of knee joint in Aachen minipig as a novel miniature pig line for experimental research in orthopaedics. Ann Anat 2019; 227:151411. [PMID: 31394168 DOI: 10.1016/j.aanat.2019.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/08/2019] [Accepted: 07/11/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The pig is a commonly used large animal model, since pigs share anatomical and physiological similarities with humans. In contrast to other experimental pig lines the Aachen minipig, as a robust novel minipig does not require housing with any barrier. To estimate transferability of results to human conditions, pig lines should be thoroughly characterized. PURPOSE Therefore, we analyzed the anatomical pecularities of the knee joint of the novel "Aachen minipig" line raised for experimental conditions. METHODS Eight knee joints of four adult Aachen minipigs were dissected measuring the dimensions of typical landmarks using a digital caliper. Hybrid pig and human knee joints served as controls. Cartilage of the Aachen minipig (trochlear groove, femoral condyles, menisci) were assessed histologically. RESULTS The Aachen minipig shared its knee joint anatomy with the hybrid pig. In comparison to humans, peculiarities of the pig were demonstrated in the Aachen minipig: the lateral meniscus and the lateral tibial joint surface were significantly longer than the medial counterparts. The fibular head was covered by fibrocartilage and completely integrated into the lateral lower joint surface. The cartilage at the joint areas usually used for cartilage repair studies was in average 0.66±0.04mm thick. The porcine anterior cruciate ligament (ACL) attached with two bundles at the anterior tibial plateau separated from each other by the lateral anterior meniscotibial ligament. Aachen minipig articular and meniscal cartilage presented the typical histoarchitecture. CONCLUSIONS The Aachen minipig reflects porcine anatomical peculiarities, which should be considered, especially for meniscus and ACL reconstruction.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof. Ernst Nathan Str. 1, Nuremberg, 90419, Germany.
| | - Sandeep Silawal
- Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof. Ernst Nathan Str. 1, Nuremberg, 90419, Germany
| | - Mariann Hoyer
- amedes MVZ für Laboratoriumsdiagnostik und Mikrobiologie Halle/Leipzig GmbH, 06112 Halle, Germany
| |
Collapse
|
94
|
Park KM, Kim KJ, Jin M, Han Y, So KH, Hyun SH. The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1844-1853. [PMID: 31480175 PMCID: PMC6819676 DOI: 10.5713/ajas.19.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. METHODS We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (Pre-SF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). RESULTS Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). CONCLUSION The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.
Collapse
Affiliation(s)
- Kyu-Mi Park
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyu-Jun Kim
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Minghui Jin
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Yongquan Han
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyoung-Ha So
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
95
|
Kangawa A, Nishimura T, Nishimura T, Otake M, Enya S, Yoshida T, Shibata M. Spontaneous Age-Related Histopathological Changes in Microminipigs. Toxicol Pathol 2019; 47:817-832. [PMID: 31337280 DOI: 10.1177/0192623319861350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microminipigs have become an attractive animal model for toxicology and pharmacology studies and for human disease models, owing to their manageable size. Although there are numerous reports of spontaneous age-related lesions in mice, rats, dogs, and monkeys, those in minipigs are scarce. In the present study, spontaneous age-related histopathological changes were investigated using 37 microminipigs (20 males and 17 females) that were 6 months to 10 years of age. Abnormal deposits of materials were evident in several animals from 6 years of age, and these deposits included amyloid in the renal medulla, thyroid gland, and adrenal gland, hyaline droplets in glomeruli, and fibrillar inclusions in neurons. Arterial sclerosing changes (intimal thickening, intimal proliferation, and medial mineralization) and proliferative lesions (hyperplasia of hepatocytes, follicular cells, Leydig cells, and uterine endometrial glands) were present at 4 years of age and beyond. Renal adenoma, uterine leiomyoma, and Leydig cell tumor were observed in several microminipigs. Moreover, glomerulosclerosis, renal interstitial fibrosis, thymic involution, and adrenocortical cell vacuolation were common in aging microminipigs. Since knowledge of age-related changes is helpful for pathologists, the basic information obtained in this study will be a useful reference for all future toxicity evaluations in microminipigs.
Collapse
Affiliation(s)
- Akihisa Kangawa
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| | | | | | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| | - Satoko Enya
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masatoshi Shibata
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| |
Collapse
|
96
|
Leonhäuser D, Kranz J, Leidolf R, Arndt P, Schwantes U, Geyer J, Grosse JO. Expression of components of the urothelial cholinergic system in bladder and cultivated primary urothelial cells of the pig. BMC Urol 2019; 19:62. [PMID: 31288793 PMCID: PMC6617688 DOI: 10.1186/s12894-019-0495-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine urinary bladders are widely used for uro-pharmacological examinations due to their resemblance to the human organ. However, characterisations of the porcine urothelium at the molecular level are scarce up to now. As it has become clear over the last years that this tissue plays an important role in the signaling-pathways of the bladder, we examined whether the transporter and receptor pattern (with focus on the transmitter acetylcholine) is comparable to the human urothelium. With regard to in vitro studies, we also investigated if there is a difference between the native tissue and cultivated primary urothelial cells in culture. METHODS Urothelium from German Landrace and Göttingen Minipig bladders was collected. One part of the German Landrace tissue was used for cultivation, and different passages of the urothelial cells were collected. The actual mRNA expression of different transporters and receptors was examined via quantitative real-time PCR. These included the vesicular acetylcholine transporter (VAChT), the choline acetyl transferase (ChAT), organic cation transporters 1-3 (OCT1-3), organic anion transporting polypeptide 1A2 (OATP1A2), P-glycoprotein (ABCB1), the carnitine acetyl-transferase (CarAT), as well as the muscarinic receptors 1-5 (M1-5). RESULTS There is a strong qualitative resemblance between the human and the porcine urothelium with regard to the investigated cholinergic receptors, enzymes and transporters. CarAT, OCT1-3, OATP1A2 and ABCB1 could be detected in the urothelium of both pig races. Moreover, all 5 M-receptors were prominent with an emphasis on M2 and M3. VAChT and ChAT could not be detected at all. Cultures of the derived urothelial cells showed decreased expression of all targets apart from ABCB1 and CarAT. CONCLUSIONS Based on the expression pattern of receptors, transporters and enzymes of the cholinergic system, the porcine urinary bladder can be regarded as a good model for pharmacological studies. However, cultivation of primary urothelial cells resulted in a significant drop in mRNA expression of the targets. Therefore, it can be concluded that the intact porcine urothelium, or the whole pig bladder, may be appropriate models for studies with anticholinergic drugs, whereas cultivated urothelial cells have some limitation due to significant changes in the expression levels of relevant targets.
Collapse
Affiliation(s)
- Dorothea Leonhäuser
- Department of Urology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jasmin Kranz
- Institute of Pharmacology and Toxicology, Biomedical Research Center BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Biomedical Research Center BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Patrick Arndt
- Department of Urology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Biomedical Research Center BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim O Grosse
- Department of Urology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
97
|
Jones K, Harding J, Makin A, Singh P, Jacobsen B, Mikkelsen LF. Perspectives From the 12th Annual Minipig Research Forum: Early Inclusion of the Minipig in Safety Assessment Species Selection Should be the Standard Approach. Toxicol Pathol 2019; 47:891-895. [PMID: 31280706 DOI: 10.1177/0192623319861940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade, the minipig has been established as a species which can be used in biomedical research, including drug development safety assessment. There are no mandatory regulatory guidelines regarding species selection strategy for safety assessment; hence, choice is at the discretion of companies responsible for drug development. A survey of member companies by IQ DruSafe (2016) highlighted inconsistent and low use of the minipig. At the 12th Annual Minipig Research Forum in 2018, presentations and a workshop examined current practices and considered if the minipig could be utilized more from earliest drug development stages. Despite the agreed utility of scientific data and validity of the minipig, especially for small molecules, each company has its own approach in nonrodent species selection, without consistent rationale. The overall objective should be to ensure the most appropriate species is selected and is scientifically based, with the minipig systematically included from early screening stages.
Collapse
Affiliation(s)
| | - Joanna Harding
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Andy Makin
- CiToxLAB Scantox, Lille Skensved, Denmark
| | | | - Björn Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
98
|
Postol E, Sá-Rocha LC, Sampaio RO, Demarchi LMMF, Alencar RE, Abduch MCD, Kalil J, Guilherme L. Group A Streptococcus Adsorbed Vaccine: Repeated Intramuscular Dose Toxicity Test in Minipigs. Sci Rep 2019; 9:9733. [PMID: 31278336 PMCID: PMC6611820 DOI: 10.1038/s41598-019-46244-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes infection continues to be a worldwide public health problem causing various diseases in humans and plays an important role in the pathogenesis of rheumatic fever and rheumatic heart disease. We developed a vaccine candidate to prevent S. pyogenes infections, identified as StreptInCor, that presented promising results in mouse models. A certified and independent laboratory conducted two repeated intramuscular dose toxicity tests (28 days, four weekly injections). The first test, composed of four experimental groups treated with 0 (vehicle), 50, 100 or 200 µg/500 µL StreptInCor, did not show significant alterations in clinical, hematological, biochemical or anatomopathological parameters related to the administration of StreptInCor. In addition to the parameters mentioned above, we evaluated the cardiac function and valves of animals by echocardiography before and after administration of 200 µg/500 µL StreptInCor versus placebo. We did not observe any changes related to StreptInCor administration, including changes in cardiac function and valves in animals, after receiving the highest dose of this vaccine candidate. The results obtained in the two repeated intramuscular dose toxicity tests showed that this vaccine formulation did not induce harmful effects to the tissues and organs studied, indicating that the candidate vaccine is well tolerated in minipigs.
Collapse
Affiliation(s)
- Edilberto Postol
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Luiz C Sá-Rocha
- Neuroimmunology Laboratory School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Roney O Sampaio
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lea M M F Demarchi
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel E Alencar
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Maria C D Abduch
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
- Clinical Immunology and Allergy Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
99
|
Millecam J, van Bergen T, Devreese M, Schauvliege S, Martens A, Chiers K, Croubels S, Antonissen G. Gastrostomy tube placement via a laparotomic procedure in growing conventional piglets to perform multi-dose preclinical paediatric drug studies. Lab Anim 2019; 54:261-271. [PMID: 31242071 DOI: 10.1177/0023677219857106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of juvenile conventional pigs as a preclinical animal model to perform pharmacokinetic (PK), pharmacodynamic (PD) and safety studies for the paediatric population is increasing. Repetitive oral administration of drugs to juvenile pigs is however challenging. A representative method which can be used from birth till adulthood is necessary. The current study presents the placement and use of a gastrostomy button in pigs with a weight ranging from 2.4 to 161 kg. The surgical placement was performed via a laparotomic procedure on, each time, 12 pigs (six male, six female) of 1 week, 4 weeks, 8 weeks and 6-7 months old. For every age category, eight pigs were part of a PK study with a non-steroidal anti-inflammatory drug (NSAID) and four pigs served as a control group. No severe complications were observed during surgery. The button remained functional for 10 days in 40 out of 48 pigs. No significant differences in body temperature or white blood cell count were observed during the trial. Three control pigs showed signs of inflammation indicating a NSAID might be warranted. Autopsy revealed minimal signs of major inflammation in the abdominal cavity or the stomach. A limited number of pigs showed mucosal inflammation, ulcers or abscesses in the stomach or around the fistula. These results indicate that the laparotomic placement of a gastrostomy button might be considered safe and easy in growing pigs to perform repetitive oral dosing preclinical studies. However, the method is not advised in pigs weighing more than 100 kg.
Collapse
Affiliation(s)
- Joske Millecam
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Belgium
| | - Thomas van Bergen
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Belgium
| | - Stijn Schauvliege
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Belgium
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Belgium.,Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Belgium
| |
Collapse
|
100
|
Characterization of Porcine Hepatic and Intestinal Drug Metabolizing CYP450: Comparison with Human Orthologues from A Quantitative, Activity and Selectivity Perspective. Sci Rep 2019; 9:9233. [PMID: 31239454 PMCID: PMC6592956 DOI: 10.1038/s41598-019-45212-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, the pig has gained attention as a potential model for human drug metabolism. Cytochrome P450 enzymes (CYP450), a superfamily of biotransformation enzymes, are pivotal in drug metabolism. Porcine CYP450 has been demonstrated to convert typical substrates of human CYP450. Nevertheless, knowledge and insight into porcine CYP450 quantity and substrate selectivity is scant, especially regarding intestinal CYP450. The current study aimed to map the quantities of hepatic and intestinal CYP450 in the conventional pig by using a proteomic approach. Moreover, the selectivity of the six most common used probe substrates (phenacetin, coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) for drug metabolizing enzyme subfamilies (CYP1A, CYP2A, CYP3A, CYP2C, CYP2D and CYP2E respectively), was investigated. Hepatic relative quantities were 4% (CYP1A), 31% (CYP2A), 14% (CYP3A), 10% (CYP2C), 28% (CYP2D) and 13% (CYP2E), whereas for the intestine only duodenal CYP450 could be determined with 88% for CYP3A and 12% for CYP2C. Furthermore, the results indicate that coumarin (CYP2A), midazolam (CYP3A), tolbutamide (CYP2C), and dextromethorphan (CYP2D) are as selective for porcine as for human CYP450. However, phenacetin (CYP1A2) and chlorzoxazone (CYP2E1) are less selective for the specific enzyme, despite similarities in selectivity towards the different enzymes involved compared to humans.
Collapse
|