51
|
Moeini M, Lu X, Avti PK, Damseh R, Bélanger S, Picard F, Boas D, Kakkar A, Lesage F. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci Rep 2018; 8:8219. [PMID: 29844478 PMCID: PMC5974237 DOI: 10.1038/s41598-018-26543-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022] Open
Abstract
Despite the possible role of impaired cerebral tissue oxygenation in age-related cognition decline, much is still unknown about the changes in brain tissue pO2 with age. Using a detailed investigation of the age-related changes in cerebral tissue oxygenation in the barrel cortex of healthy, awake aged mice, we demonstrate decreased arteriolar and tissue pO2 with age. These changes are exacerbated after middle-age. We further uncovered evidence of the presence of hypoxic micro-pockets in the cortex of awake old mice. Our data suggests that from young to middle-age, a well-regulated capillary oxygen supply maintains the oxygen availability in cerebral tissue, despite decreased tissue pO2 next to arterioles. After middle-age, due to decreased hematocrit, reduced capillary density and higher capillary transit time heterogeneity, the capillary network fails to compensate for larger decreases in arterial pO2. The substantial decrease in brain tissue pO2, and the presence of hypoxic micro-pockets after middle-age are of significant importance, as these factors may be related to cognitive decline in elderly people.
Collapse
Affiliation(s)
- Mohammad Moeini
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Xuecong Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Pramod K Avti
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rafat Damseh
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Samuel Bélanger
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Frédéric Picard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ), Québec, QC, Canada
| | - David Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Biomedical Engineering Department, College of Engineering, Boston University, Boston, MA, USA
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada. .,Research Center of Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
52
|
Catchlove SJ, Macpherson H, Hughes ME, Chen Y, Parrish TB, Pipingas A. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging. PLoS One 2018; 13:e0197055. [PMID: 29787609 PMCID: PMC5963791 DOI: 10.1371/journal.pone.0197055] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 04/25/2018] [Indexed: 11/26/2022] Open
Abstract
Background Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Method Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Results Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Conclusion Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.
Collapse
Affiliation(s)
- Sarah J. Catchlove
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn Victoria, Australia
- * E-mail:
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Matthew E. Hughes
- Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
- Australian National Imaging Facility, University of Queensland, St Lucia Queensland, Australia
| | - Yufen Chen
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Todd B. Parrish
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn Victoria, Australia
| |
Collapse
|
53
|
Joris PJ, Mensink RP, Adam TC, Liu TT. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients 2018; 10:nu10050530. [PMID: 29693564 PMCID: PMC5986410 DOI: 10.3390/nu10050530] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Improving cerebrovascular function may be a key mechanism whereby a healthy lifestyle, of which a healthy diet combined with increased physical activity levels is a cornerstone, protects against cognitive impairments. In this respect, effects on cerebral blood flow (CBF)—a sensitive physiological marker of cerebrovascular function—are of major interest. This review summarizes the impact of specific dietary determinants and physical exercise on CBF in adults and discusses the relation between these effects with potential changes in cognitive function. A limited number of randomized controlled trials have already demonstrated the beneficial effects of an acute intake of nitrate and polyphenols on CBF, but evidence for a relationship between these effects as well as improvements in cognitive functioning is limited. Moreover, long-term trans-resveratrol supplementation has been shown to increase CBF in populations at increased risk of accelerated cognitive decline. Long-term supplementation of n-3 long-chain polyunsaturated fatty acids may also increase CBF, but related effects on cognitive performance have not yet been found. Significant decreases in cerebral perfusion were observed by commonly consumed amounts of caffeine, while alcohol intake was shown to increase CBF in a dose-dependent way. However, the long-term effects are not clear. Finally, long-term exercise training may be a promising approach to improve CBF, as increases in perfusion may contribute to the beneficial effects on cognitive functioning observed following increased physical activity levels.
Collapse
Affiliation(s)
- Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Thomas T Liu
- Center for Functional Magnetic Resonance Imaging (MRI), University of California San Diego, La Jolla, CA 92093-0677, USA.
| |
Collapse
|
54
|
Wang X, Wei W, Yuan F, Li S, Lin J, Zhang J. Regional cerebral blood flow in natives at high altitude: An arterial spin labeled MRI study. J Magn Reson Imaging 2018; 48:708-717. [PMID: 29493838 DOI: 10.1002/jmri.25996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is known that a neurologic sequence occurs at high altitudes (HA); hence, cerebral blood flow (CBF) might vary by altitude. PURPOSE To use arterial spin labeled (ASL) MRI to evaluate absolute CBF differences between subjects who live at HA and lowlands. STUDY TYPE Cohort prospective trial. POPULATION In all, 64 HA Tibetans, 19 lowland Tibetans, and 25 lowland Han subjects. FIELD STRENGTH/SEQUENCE CBF was measured with the pulsed ASL sequence at 3T. ASSESSMENT CBF was correlated with abode altitude in HA Tibetans; CBF differences among HA Tibetans, lowland Tibetans, and lowland Han subjects was assessed. STATISTICAL TESTS Pearson correlation assessed the correlation. Independent t-tests analyzed group differences. RESULTS In HA Tibetans, CBF decreased with altitude in the bilateral anterior and posterior cingulate gyri, fusiform gyrus, cerebellar tonsil and cortices, and thalamus as well as left middle and inferior temporal gyri and right insula (P < 0.05); HA Tibetans (vs. lowland Tibetans) had lower CBF in the left hemisphere (precuneus, anterior cingulate gyrus, fusiform gyrus, and lingual gyrus) and right hemisphere (superior parietal lobule, precuneus, posterior cingulate gyrus, and cerebellar tonsil), while they had higher CBF in the left inferior parietal lobule, lentiform nucleus, and inferior frontal gyrus (P < 0.05). The overlapping regions, in which CBF in HA Tibetans correlated with altitude and decreased (vs. lowland Tibetans), were selected for region of interest analysis, and the results showed lower CBF in HA Tibetans than lowland Han subjects (P < 0.05). DATA CONCLUSION HA adaptation in Tibetans is associated with a decrease of regional CBF. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenping Wei
- MRI Center, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
| | - Shanhua Li
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
55
|
Zhang Y, Xu K, Kerwin T, LaManna JC, Puchowicz M. Impact of Aging on Metabolic Changes in the Ketotic Rat Brain: Glucose, Oxidative and 4-HNE Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:21-25. [DOI: 10.1007/978-3-319-91287-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
56
|
Parikh I, Guo J, Chuang KH, Zhong Y, Rempe RG, Hoffman JD, Armstrong R, Bauer B, Hartz AMS, Lin AL. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY) 2017; 8:2814-2826. [PMID: 27829242 PMCID: PMC5191872 DOI: 10.18632/aging.101094] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023]
Abstract
Neurovascular integrity plays an important role in protecting cognitive and mental health in aging. Lifestyle interventions that sustain neurovascular integrity may thus be critical on preserving brain functions in aging and reducing the risk for age-related neurodegenerative disorders. Here we show that caloric restriction (CR) had an early effect on neurovascular enhancements, and played a critical role in preserving vascular, cognitive and mental health in aging. In particular, we found that CR significantly enhanced cerebral blood flow (CBF) and blood-brain barrier function in young mice at 5-6 months of age. The neurovascular enhancements were associated with reduced mammalian target of rapamycin expression, elevated endothelial nitric oxide synthase signaling, and increased ketone bodies utilization. With age, CR decelerated the rate of decline in CBF. The preserved CBF in hippocampus and frontal cortex were highly correlated with preserved memory and learning, and reduced anxiety, of the aging mice treated with CR (18-20 months of age). Our results suggest that dietary intervention started in the early stage (e.g., young adults) may benefit cognitive and mental reserve in aging. Understanding nutritional effects on neurovascular functions may have profound implications in human brain aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishita Parikh
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Janet Guo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Kai-Hsiang Chuang
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Ralf G Rempe
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jared D Hoffman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Rachel Armstrong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.,Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
57
|
Kong XM, Xu SX, Sun Y, Wang KY, Wang C, Zhang J, Xia JX, Zhang L, Tan BJ, Xie XH. Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: An exploratory study. Psychiatry Res Neuroimaging 2017; 264:13-21. [PMID: 28412557 DOI: 10.1016/j.pscychresns.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective and rapid treatment for severe major depressive disorder (MDD) in elderly patients. The mechanism of ECT is unclear, and studies on ECT in elderly MDD patients by resting-state functional magnetic resonance imaging are rare. Thirteen elderly MDD patients were scanned before and after ECT using a 3.0T MRI scanner. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) were processed to compare resting-state function before and after treatment. Depression and anxiety symptoms of all patients abated after ECT. Decreased ReHo values in the bilateral superior frontal gyrus (SFG) were observed after ECT, and the values of right SFG significantly correlated with an altered Hamilton depression rating scale score. Increased ALFF values in the left middle frontal gyrus, right middle frontal gyrus, orbital part, and decreased ALFF values in the left midcingulate area, left precentral gyrus, right SFG/middle frontal gyrus after ECT were also observed. These results support the hypothesis that ECT may affect the regional resting state brain function in geriatric MDD patients.
Collapse
Affiliation(s)
- Xiao-Ming Kong
- Department of psychiatry, Anhui Mental Health Center, Hefei, China
| | - Shu-Xian Xu
- Department of psychiatry, Huizhou 2nd Municipal Hospital, Huizhou, China; Department of psychiatry, Anhui Medical University, Hefei, China
| | - Yan Sun
- Department of endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke-Yong Wang
- Department of psychiatry, Anhui Mental Health Center, Hefei, China.
| | - Chen Wang
- Department of psychiatry, Anhui Mental Health Center, Hefei, China; Department of psychiatry, Anhui Medical University, Hefei, China
| | - Ji Zhang
- Department of magnetic resonance imaging, Hefei 2nd Municipal Hospital, Hefei, China
| | - Jin-Xiang Xia
- Department of magnetic resonance imaging, Hefei 2nd Municipal Hospital, Hefei, China
| | - Li Zhang
- Department of psychiatry, Anhui Mental Health Center, Hefei, China
| | - Bo-Jian Tan
- Department of psychiatry, Huizhou 2nd Municipal Hospital, Huizhou, China
| | - Xin-Hui Xie
- Department of psychiatry, Anhui Mental Health Center, Hefei, China; Department of psychiatry, Huizhou 2nd Municipal Hospital, Huizhou, China; Department of psychiatry, Anhui Medical University, Hefei, China.
| |
Collapse
|
58
|
Kim HW, Oh M, Oh JS, Oh SJ, Lee SJ, Chung SJ, Kim JS. Striatofrontal Deafferentiation in MSA-P: Evaluation with [18F]FDG Brain PET. PLoS One 2017; 12:e0169928. [PMID: 28085923 PMCID: PMC5234778 DOI: 10.1371/journal.pone.0169928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although cognitive impairment is not a consistent feature of multiple system atrophy (MSA), increasing evidence suggests that cognitive impairment is common in MSA with predominant parkinsonism (MSA-P). It is assumed that the cognitive impairment in MSA-P is caused by the striatal dysfunction and disruption of striatofrontal connections. The aim of this study was to evaluate the relationship between regional glucose metabolism in the frontal cortex and striatum in patients with MSA-P using [18F]FDG brain PET. Methods Twenty-nine patients with MSA-P and 28 healthy controls underwent [18F]FDG brain PET scan. The [18F]FDG brain PET images were semiquantitatively analyzed on the basis of a template in standard space. The regional glucose metabolism of the cerebral cortex and striatum were compared between MSA-P and healthy control groups. The correlations between age, symptom duration, H&Y stage, UPDRS III score, MMSE score, and glucose metabolism in the cerebellum and striatum to glucose metabolism in the frontal cortex were evaluated by multivariate analysis. Results The glucose metabolism in the frontal cortex and striatum in MSA-P patients were significantly lower than those in healthy controls. Glucose metabolism in the striatum was the most powerful determinant of glucose metabolism in the frontal cortex in MSA-P. Only age and glucose metabolism in the cerebellum were independent variables affecting the glucose metabolism in the frontal cortex in healthy controls. Conclusion The decrease in frontal glucose metabolism in MSA-P is related to the decrease in striatal glucose metabolism. This result provided evidence of striatofrontal deafferentiation in patients with MSA-P.
Collapse
Affiliation(s)
- Hae Won Kim
- Department of Nuclear Medicine, Keimyung University, School of Medicine, Daegu, Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungsu S. Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
59
|
Chang CH, Lee KY, Shim YH. Normal aging: definition and physiologic changes. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2017. [DOI: 10.5124/jkma.2017.60.5.358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chul Ho Chang
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki-Young Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yon Hee Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
60
|
Hassamal S, Jolles P, Pandurangi A. Reversal of cerebral glucose hypometabolism on positron emission tomography with electroconvulsive therapy in an elderly patient with a psychotic episode. Psychogeriatrics 2016; 16:376-381. [PMID: 26756319 DOI: 10.1111/psyg.12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
AB, a 74-year-old Caucasian woman, was admitted for acute onset of psychosis, anxiety, and cognitive impairment. Pharmacotherapy was unsuccessful and the patient was referred for electroconvulsive therapy (ECT). Pre-ECT, 18 F-fluorodeoxyglucose-positron emission tomography (PET)/computed tomography showed extensive frontal, parietal, and temporal cortical hypometabolism suggestive of a neurodegenerative disease. After eight ECT sessions, the psychotic and anxiety symptoms as well as the cognitive impairment resolved. The rapid improvement in symptoms was more suggestive of a psychotic episode rather than dementia. Two days after the ECT course, 18 F-fluorodeoxyglucose-PET/computed tomography showed improvements in cerebral cortical hypometabolism, especially in the left parietal cortex, left temporal/occipital cortex. and bifrontal regions. At a follow-up visit 2 months after the ECT course, the psychotic episode was still in remission, and 18 F-fluorodeoxyglucose-PET/computed tomography continued to show improved cerebral cortical hypometabolism in these areas. This case illustrated the effect of ECT in reversing cerebral glucose hypometabolism on PET. The improvement in cerebral glucose hypometabolism may represent the neurophysiological mechanism of ECT in the treatment of a psychotic episode. Improved cerebral glucose hypometabolism was present 2 months post-ECT, which suggests that ECT caused sustained functional neural changes.
Collapse
Affiliation(s)
- Sameer Hassamal
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.,Department of Addiction Psychiatry, UCLA-Kern, Bakersfield, CA, USA
| | - Paul Jolles
- Department of Nuclear Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ananda Pandurangi
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
61
|
Determination of the Input Function at the Entry of the Tissue of Interest and Its Impact on PET Kinetic Modeling Parameters. Mol Imaging Biol 2016; 17:748-56. [PMID: 26395903 DOI: 10.1007/s11307-015-0895-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantitative positron emission tomography (PET) imaging is employed with several measurement protocols all relying on the a priori determination of the input function (IF). The standard technique to determine IF is by blood sampling. However, a unique IF determined in a subject for a given PET study, either defined by sampling or in the images, and commonly utilized for all analyzed tissues in that study equally at rest and during interventions, is expected to provoke biases in the rate constants and in tissue blood volume. The determination of a specific IF at the site of the tissue to be analyzed enhances PET accuracy and renders PET imaging less invasive.
Collapse
|
62
|
Chen PY, Chiou JM, Yang YF, Chen YT, Hsieh HL, Chang YL, Tseng WYI. Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions: A Resting-State Functional MRI Study Using Functional Data Analysis. PLoS One 2016; 11:e0162028. [PMID: 27658309 PMCID: PMC5033468 DOI: 10.1371/journal.pone.0162028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Brain aging is a complex and heterogeneous process characterized by the selective loss and preservation of brain functions. This study examines the normal aging effects on the cerebral cortex by characterizing changes in functional connectivity using resting-state fMRI data. Previous resting-state fMRI studies on normal aging have examined specific networks of the brain, whereas few studies have examined cortical-cortical connectivities across the entire brain. To characterize the effects of normal aging on the cerebral cortex, we proposed the Pearson functional product-moment correlation coefficient for measuring functional connectivity, which has advantages over the traditional correlation coefficient. The distinct patterns of changes in functional connectivity within and among the four cerebral lobes clarified the effects of normal aging on cortical function. Besides, the advantages of the proposed approach over other methods considered were demonstrated through simulation comparisons. The results showed heterogeneous changes in functional connectivity in normal aging. Specifically, the elderly group exhibited enhanced inter-lobe connectivity between the frontal lobe and the other lobes. Inter-lobe connectivity decreased between the temporal and parietal lobes. The results support the frontal aging hypothesis proposed in behavioral and structural MRI studies. In conclusion, functional correlation analysis enables differentiation of changes in functional connectivities and characterizes the heterogeneous aging effects in different cortical regions.
Collapse
Affiliation(s)
- Pin-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeng-Min Chiou
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Fang Yang
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Chen
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Long Hsieh
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wen-Yih I. Tseng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
63
|
Yang D, Cabral D, Gaspard EN, Lipton RB, Rundek T, Derby CA. Cerebral Hemodynamics in the Elderly: A Transcranial Doppler Study in the Einstein Aging Study Cohort. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:1907-14. [PMID: 27417737 PMCID: PMC5500193 DOI: 10.7863/ultra.15.10040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 05/19/2023]
Abstract
OBJECTIVES We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. METHODS We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. RESULTS Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. CONCLUSIONS We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Dixon Yang
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida USA
| | - Digna Cabral
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida USA
| | - Emmanuel N Gaspard
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York USA
| | - Richard B Lipton
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York USA, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida USA
| | - Carol A Derby
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York USA, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York USA
| |
Collapse
|
64
|
Tarantini S, Tucsek Z, Valcarcel-Ares MN, Toth P, Gautam T, Giles CB, Ballabh P, Wei JY, Wren JD, Ashpole NM, Sonntag WE, Ungvari Z, Csiszar A. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:273-289. [PMID: 27613724 PMCID: PMC5061685 DOI: 10.1007/s11357-016-9931-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center- New York Medical College, Valhalla, NY, USA
| | - Jeanne Y Wei
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Science, 4301 West Markham Street, No. 748, Little Rock, AR, 72205, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Pecs, Pecs, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
65
|
Anazodo UC, Shoemaker JK, Suskin N, Ssali T, Wang DJJ, St Lawrence KS. Impaired Cerebrovascular Function in Coronary Artery Disease Patients and Recovery Following Cardiac Rehabilitation. Front Aging Neurosci 2016; 7:224. [PMID: 26779011 PMCID: PMC4700211 DOI: 10.3389/fnagi.2015.00224] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023] Open
Abstract
Coronary artery disease (CAD) poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to hypercapnia in 34 CAD patients and 21 age-matched controls. Gray matter volume (GMV) images were acquired and used as a confounding variable to separate changes in structure from function. Compared to healthy controls, CAD patients demonstrated reduced CBF in the superior frontal, anterior cingulate (AC), insular, pre- and post-central gyri, middle temporal, and superior temporal regions. Subsequent analysis of these regions demonstrated decreased CVR in the AC, insula, post-central and superior frontal regions. Except in the superior frontal and precentral regions, regional reductions in CBF and CVR were identified in brain areas where no detectable reductions in GMV were observed, demonstrating that these vascular changes were independent of brain atrophy. Because aerobic fitness training can improve brain function, potential changes in regional CBF were investigated in the CAD patients after completion of a 6-months exercise-based cardiac rehabilitation program. Increased CBF was observed in the bilateral AC, as well as recovery of CBF in the dorsal aspect of the right AC, where the magnitude of increased CBF was roughly equal to the reduction in CBF at baseline compared to controls. These exercise-related improvements in CBF in the AC is intriguing given the role of this area in cognitive processing and regulation of cardiovascular autonomic control.
Collapse
Affiliation(s)
- Udunna C Anazodo
- Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, Western University, LondonON, Canada; Laboratory for Brain and Heart Health, School of Kinesiology, Western University, LondonON, Canada
| | - J K Shoemaker
- Department of Medical Biophysics, Western University, LondonON, Canada; Laboratory for Brain and Heart Health, School of Kinesiology, Western University, LondonON, Canada
| | - Neville Suskin
- London Health Sciences Cardiology Rehabilitation Program, London ON, Canada
| | - Tracy Ssali
- Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, Western University, LondonON, Canada
| | - Danny J J Wang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA, USA
| | - Keith S St Lawrence
- Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, Western University, LondonON, Canada
| |
Collapse
|
66
|
Won JS, Annamalai B, Choi S, Singh I, Singh AK. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion. Brain Res 2015; 1624:359-369. [PMID: 26271717 DOI: 10.1016/j.brainres.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology, Medical University of South Carolina, USA
| | | | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, USA
| | - Avtar K Singh
- Department of Pathology, Medical University of South Carolina, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
67
|
Tamura M, Nemoto K, Kawaguchi A, Kato M, Arai T, Kakuma T, Mizukami K, Matsuda H, Soya H, Asada T. Long-term mild-intensity exercise regimen preserves prefrontal cortical volume against aging. Int J Geriatr Psychiatry 2015; 30:686-94. [PMID: 25353992 DOI: 10.1002/gps.4205] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/05/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVES It has been suggested that exercise improves cognitive function and increases cerebral volume even in older people. However, the relation between cognitive function and brain volume is unclear. We evaluated the longitudinal change of cognitive function and gray matter volume due to mild-intensity exercise over 2 years, and the residual effects 6 months post-exercise. METHODS Subjects were 110 healthy older individuals over 65 years old in Tone town, Ibaraki prefecture. Seventy-five participants were voluntarily enrolled in the exercise group. A mild-intensity calisthenics regimen, which consisted of home-based and club-based programs for as long as 2 years, was employed as the intervention for the exercise group. RESULTS The exercise group showed significant improvement in attentional shift over the course of the observation period including a 6-month follow-up. Neuroimaging analysis revealed the significant preservation of bilateral prefrontal volume in the exercise group with small-volume corrections, although this effect faded after intervention. Furthermore, the longitudinal changes in attentional shift and memory were positively correlated with the prefrontal volumetric changes. CONCLUSION Our results suggest that mild-intensity exercise could prevent prefrontal volume reduction due to aging and impede cognitive decline.
Collapse
Affiliation(s)
- Masashi Tamura
- Department of Neuropsychiatry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Ibaraki Prefectural Medical Center of Psychiatry, Kasama, Ibaraki, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Kawaguchi
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Morimasa Kato
- Department of Health and Nutrition, Yonezawa Women's Junior College of Yamagata Prefecture, Yonezawa, Yamagata, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Katsuyoshi Mizukami
- Graduate School of Comprehensive Human Sciences, Faculty of Health and Sports Sciences, University of Tsukuba, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Image Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Asada
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
68
|
Seymour RS, Angove SE, Snelling EP, Cassey P. Scaling of cerebral blood perfusion in primates and marsupials. ACTA ACUST UNITED AC 2015; 218:2631-40. [PMID: 26113137 DOI: 10.1242/jeb.124826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates.
Collapse
Affiliation(s)
- Roger S Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sophie E Angove
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Edward P Snelling
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Phillip Cassey
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
69
|
Wright SN, Hong LE, Winkler AM, Chiappelli J, Nugent K, Muellerklein F, Du X, Rowland LM, Wang DJJ, Kochunov P. Perfusion shift from white to gray matter may account for processing speed deficits in schizophrenia. Hum Brain Mapp 2015; 36:3793-804. [PMID: 26108347 DOI: 10.1002/hbm.22878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 05/23/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
Reduced speed of cerebral information processing is a cognitive deficit associated with schizophrenia. Normal information processing speed (PS) requires intact white matter (WM) physiology to support information transfer. In a cohort of 107 subjects (47/60 patients/controls), we demonstrate that PS deficits in schizophrenia patients are explained by reduced WM integrity, which is measured using diffusion tensor imaging, mediated by the mismatch in WM/gray matter blood perfusion, and measured using arterial spin labeling. Our findings are specific to PS, and testing this hypothesis for patient-control differences in working memory produces no explanation. We demonstrate that PS deficits in schizophrenia can be explained by neurophysiological alterations in cerebral WM. Whether the disproportionately low WM integrity in schizophrenia is due to illness or secondary due to this disorder deserves further examination.
Collapse
Affiliation(s)
- Susan N Wright
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anderson M Winkler
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, United Kingdom
| | - Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Katie Nugent
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Florian Muellerklein
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xioming Du
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Psychology, University of Maryland, Baltimore County, Maryland
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physics, University of Maryland, Baltimore County, Maryland
| |
Collapse
|
70
|
|
71
|
Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin 2015; 9:129-40. [PMID: 24772054 DOI: 10.1016/j.cpet.2013.10.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brain 18F-fluorodeoxyglucose (18F-FDG) PET allows the in vivo study of cerebral glucose metabolism, reflecting neuronal and synaptic activity. 18F-FDG-PET has been extensively used to detect metabolic alterations in several neurologic diseases compared with normal aging. However, healthy subjects have variants of 18F-FDG distribution, especially as associated with aging. This article focuses on 18F-FDG-PET findings in so-called normal brain aging, and in particular on metabolic differences occurring with aging and as a function of people’s gender. The effect of different substances, medications, and therapy procedures are discussed, as well as common artifacts.
Collapse
|
72
|
Lin AL, Zhang W, Gao X, Watts L. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiol Aging 2015; 36:2296-2303. [PMID: 25896951 PMCID: PMC4457572 DOI: 10.1016/j.neurobiolaging.2015.03.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/10/2015] [Accepted: 03/19/2015] [Indexed: 12/23/2022]
Abstract
Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.
Collapse
Affiliation(s)
- Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| | - Wei Zhang
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaoli Gao
- Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lora Watts
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
73
|
Anazodo UC, Thiessen JD, Ssali T, Mandel J, Günther M, Butler J, Pavlosky W, Prato FS, Thompson RT, St Lawrence KS. Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front Neurosci 2015; 8:434. [PMID: 25601825 PMCID: PMC4283546 DOI: 10.3389/fnins.2014.00434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate a potential approach for improved attenuation correction (AC) of PET in simultaneous PET and MRI brain imaging, a straightforward approach that adds bone information missing on Dixon AC was explored. METHODS Bone information derived from individual T1-weighted MRI data using segmentation tools in SPM8, were added to the standard Dixon AC map. Percent relative difference between PET reconstructed with Dixon+bone and with Dixon AC maps were compared across brain regions of 13 oncology patients. The clinical potential of the improved Dixon AC was investigated by comparing relative perfusion (rCBF) measured with arterial spin labeling to relative glucose uptake (rPETdxbone) measured simultaneously with (18)F-flurodexoyglucose in several regions across the brain. RESULTS A gradual increase in PET signal from center to the edge of the brain was observed in PET reconstructed with Dixon+bone. A 5-20% reduction in regional PET signals were observed in data corrected with standard Dixon AC maps. These regional underestimations of PET were either reduced or removed when Dixon+bone AC was applied. The mean relative correlation coefficient between rCBF and rPETdxbone was r = 0.53 (p < 0.001). Marked regional variations in rCBF-to-rPET correlation were observed, with the highest associations in the caudate and cingulate and the lowest in limbic structures. All findings were well matched to observations from previous studies conducted with PET data reconstructed with computed tomography derived AC maps. CONCLUSION Adding bone information derived from T1-weighted MRI to Dixon AC maps can improve underestimation of PET activity in hybrid PET-MRI neuroimaging.
Collapse
Affiliation(s)
- Udunna C Anazodo
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Jonathan D Thiessen
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Tracy Ssali
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Jonathan Mandel
- Diagnostic Imaging, St. Joseph's Health Care London, ON, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS Bremen, Germany
| | - John Butler
- Lawson Health Research Institute London, ON, Canada
| | | | - Frank S Prato
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - R Terry Thompson
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Keith S St Lawrence
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| |
Collapse
|
74
|
Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury. Brain Imaging Behav 2014; 7:307-15. [PMID: 23636971 DOI: 10.1007/s11682-013-9231-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.
Collapse
|
75
|
Konishi K, Etchamendy N, Roy S, Marighetto A, Rajah N, Bohbot VD. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus 2014; 23:1005-14. [PMID: 23929534 DOI: 10.1002/hipo.22181] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022]
Abstract
The neuroimaging literature has shown consistent decreases in functional magnetic resonance imaging (fMRI) activity in the hippocampus of healthy older adults engaged in a navigation task. However, navigation in a virtual maze relies on spatial or response strategies known to depend on the hippocampus and caudate nucleus, respectively. Therefore, since the proportion of people using spatial strategies decreases with normal aging, we hypothesized that it was responsible for the observed decreases in fMRI activity in the hippocampus reported in the literature. The aim of this study was to examine the effects of aging on the hippocampus and caudate nucleus during navigation while taking into account individual navigational strategies. Young (N = 23) and older adults (N = 29) were tested using fMRI on the Concurrent Spatial Discrimination Learning Task, a radial task that dissociates between spatial and response strategies (in Stage 2) after participants reached criteria (in Stage 1). Success on Stage 2 requires that participants have encoded the spatial relationship between the target object and environmental landmarks, that is, the spatial strategy. While older adults required more trials, all participants reached criterion. fMRI results showed that, as a group, young adults had significant activity in the hippocampus as opposed to older adults who instead had significant activity in the caudate nucleus. Importantly, individual differences showed that the older participants who used a spatial strategy to solve the task had significant activity in the hippocampus. These findings suggest that the aging process involves a shift from using the hippocampus toward the caudate nucleus during navigation but that activity in the hippocampus is sustained in a subset of healthy older adults engaged in spatial strategies.
Collapse
Affiliation(s)
- Kyoko Konishi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
76
|
On the time course of attentional focusing in older adults. PSYCHOLOGICAL RESEARCH 2013; 79:28-41. [DOI: 10.1007/s00426-013-0528-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
77
|
Cha YHK, Jog MA, Kim YC, Chakrapani S, Kraman SM, Wang DJJ. Regional correlation between resting state FDG PET and pCASL perfusion MRI. J Cereb Blood Flow Metab 2013; 33:1909-14. [PMID: 23963370 PMCID: PMC3851899 DOI: 10.1038/jcbfm.2013.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 06/05/2013] [Accepted: 07/15/2013] [Indexed: 11/08/2022]
Abstract
To determine how arterial spin labeling (ASL) measured perfusion relates to baseline metabolism, we compared resting state cerebral perfusion using pseudo-continuous ASL and cerebral glucose metabolism using (18)F-FDG PET in 20 normal volunteers. Greater regional metabolism relative to perfusion was observed in the putamen, orbitofrontal and temporal lobes, whereas perfusion was relatively higher in the hippocampus and insula. In a region of interest analysis limited to gray matter, the overall mean correlation between perfusion and metabolism across voxels was r=0.43 with considerable regional variability. Cross-voxel correlations between relative perfusion and metabolism in mean ASL and PET images of all 20 subjects were the highest in the striatum (caudate: r=0.78; putamen: r=0.81), and the lowest in medial temporal structures (amygdala: r=0.087; hippocampus: r=-0.26). Correlations between mean relative perfusion and metabolism across 20 subjects were the highest in the striatum (caudate: r=0.76; putamen: r=0.58), temporal lobe (r=0.59), and frontal lobe (r=0.52), but very poor in all other structures (r<0.3), particularly in caudal structures such as the hippocampus (r=-0.0026), amygdala (r=0.18), and insula (r=0.14). Although there was good overall correlation between perfusion and glucose metabolism, regional variability should be considered when using either ASL or (18)F-FDG PET as surrogate markers for neural activity.
Collapse
Affiliation(s)
- Yoon-Hee K Cha
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Mayank A Jog
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
- Laboratory of Functional MRI Technology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, USA
| | - Yoon-Chung Kim
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
- Laboratory of Functional MRI Technology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, USA
| | - Shruthi Chakrapani
- Semel/Resnick Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Stephen M Kraman
- University of California Los Angeles (Undergraduate Economics), Los Angeles, California, USA
| | - Danny JJ Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
- Laboratory of Functional MRI Technology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
78
|
Abstract
Neurophysiologically, central apnea is due to a temporary failure in the pontomedullary pacemaker generating breathing rhythm. As a polysomnographic finding, central apneas occur in many pathophysiological conditions. Depending on the cause or mechanism, central apneas may not be clinically significant, for example, those that occur normally at sleep onset. In contrast, central apneas occur in a number of disorders and result in pathophysiological consequences. Central apneas occur commonly in high-altitude sojourn, disrupt sleep, and cause desaturation. Central sleep apnea also occurs in number of disorders across all age groups and both genders. Common causes of central sleep apnea in adults are congestive heart failure and chronic use of opioids to treat pain. Under such circumstances, diagnosis and treatment of central sleep apnea may improve quality of life, morbidity, and perhaps mortality. The mechanisms of central sleep apnea have been best studied in congestive heart failure and hypoxic conditions when there is increased CO2 sensitivity below eupnea resulting in lowering eupneic PCO2 below apneic threshold causing cessation of breathing until the PCO2 rises above the apneic threshold when breathing resumes. In many other disorders, the mechanism of central sleep apnea (CSA) remains to be investigated.
Collapse
Affiliation(s)
- S Javaheri
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | |
Collapse
|
79
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
80
|
Wierenga CE, Clark LR, Dev SI, Shin DD, Jurick SM, Rissman RA, Liu TT, Bondi MW. Interaction of age and APOE genotype on cerebral blood flow at rest. J Alzheimers Dis 2013; 34:921-35. [PMID: 23302659 DOI: 10.3233/jad-121897] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the impact of APOE genotype on cerebral blood flow (CBF) in older and younger adults. Forty cognitively normal older adults (16 ε4 carriers, 24 non-ε4 carriers) and 30 younger adults (15 ε4 carriers, 15 non-ε4 carriers) completed a resting-state whole-brain pulsed arterial spin labeling magnetic resonance scan. Main effects of aging were demonstrated wherein older adults had decreased gray matter CBF corrected for partial volume effects compared to younger adults in widespread brain regions. Main effects of APOE genotype were also observed wherein ε4 carriers displayed greater CBF in the left lingual gyrus and precuneus than non-carriers. An interaction between age and APOE genotype in the left anterior cingulate cortex (ACC) was characterized by reduced CBF in older ε4 carriers and increased CBF in young ε4 carriers. Increased CBF in the left ACC resulting from the interaction of age group and APOE genotype was positively correlated with executive functioning in young ε4 adults (r = 0.61, p = 0.04). Results demonstrate APOE genotype differentially impacts cerebrovascular function across the lifespan and may modify the relationship between CBF and cognition. Findings may partially support suggestions that the gene exerts antagonistic pleiotropic effects.
Collapse
Affiliation(s)
- Christina E Wierenga
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Calcinaghi N, Wyss MT, Jolivet R, Singh A, Keller AL, Winnik S, Fritschy JM, Buck A, Matter CM, Weber B. Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke 2013; 44:1957-64. [PMID: 23735955 DOI: 10.1161/strokeaha.111.000185] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Arterial hypertension is an important risk factor for cerebrovascular diseases, such as transient ischemic attacks or stroke, and represents a major global health issue. The effects of hypertension on cerebral blood flow, particularly at the microvascular level, remain unknown. METHODS Using the spontaneously hypertensive rat (SHR) model, we examined cortical hemodynamic responses on whisker stimulation applying a multimodal imaging approach (multiwavelength spectroscopy, laser speckle imaging, and 2-photon microscopy). We assessed the effects of hypertension in 10-, 20-, and 40-week-old male SHRs and age-matched male Wistar Kyoto rats (CTRL) on hemodynamic responses, histology, and biochemical parameters. In 40-week-old animals, losartan or verapamil was administered for 10 weeks to test the reversibility of hypertension-induced impairments. RESULTS Increased arterial blood pressure was associated with a progressive impairment in functional hyperemia in 20- and 40-week-old SHRs; baseline capillary red blood cell velocity was increased in 40-week-old SHRs compared with age-matched CTRLs. Antihypertensive treatment reduced baseline capillary cerebral blood flow almost to CTRL values, whereas functional hyperemic signals did not improve after 10 weeks of drug therapy. Structural analyses of the microvascular network revealed no differences between normo- and hypertensive animals, whereas expression analyses of cerebral lysates showed signs of increased oxidative stress and signs of impaired endothelial homeostasis upon early hypertension. CONCLUSIONS Impaired neurovascular coupling in the SHR evolves upon sustained hypertension. Antihypertensive monotherapy using verapamil or losartan is not sufficient to abolish this functional impairment. These deficits in neurovascular coupling in response to sustained hypertension might contribute to accelerate progression of neurodegenerative diseases in chronic hypertension.
Collapse
Affiliation(s)
- Novella Calcinaghi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Ungvari Z, Tucsek Z, Sosnowska D, Toth P, Gautam T, Podlutsky A, Csiszar A, Losonczy G, Valcarcel-Ares MN, Sonntag WE, Csiszar A. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol A Biol Sci Med Sci 2012; 68:877-91. [PMID: 23239824 DOI: 10.1093/gerona/gls242] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012; 2012:367516. [PMID: 23243502 PMCID: PMC3518077 DOI: 10.1155/2012/367516] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Heart disease is the major leading cause of death and disability in the world. Mainly affecting the elderly population, heart disease and its main outcome, cardiovascular disease, have become an important risk factor in the development of cognitive decline and Alzheimer's disease (AD). This paper examines the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular deficits in the development of cognitive impairment preceding AD. The evidence indicates a strong association between AD and cardiovascular risk factors, including ApoE(4), atrial fibrillation, thrombotic events, hypertension, hypotension, heart failure, high serum markers of inflammation, coronary artery disease, low cardiac index, and valvular pathology. In elderly people whose cerebral perfusion is already diminished by their advanced age, additional reduction of cerebral blood flow stemming from abnormalities in the heart-brain vascular loop ostensibly increases the probability of developing AD. Evidence also suggests that a neuronal energy crisis brought on by relentless brain hypoperfusion may be responsible for protein synthesis abnormalities that later result in the classic neurodegenerative lesions involving the formation of amyloid-beta plaques and neurofibrillary tangles. Insight into how cardiovascular risk factors can induce progressive cognitive impairment offers an enhanced understanding of the multifactorial pathophysiology characterizing AD and ways at preventing or managing the cardiovascular precursors of this dementia.
Collapse
|
84
|
Hampson M, Tokoglu F, Shen X, Scheinost D, Papademetris X, Constable RT. Intrinsic brain connectivity related to age in young and middle aged adults. PLoS One 2012; 7:e44067. [PMID: 22984460 PMCID: PMC3439483 DOI: 10.1371/journal.pone.0044067] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 07/31/2012] [Indexed: 11/18/2022] Open
Abstract
Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with known changes in cognitive function and emotional processing during mature aging. The results support and extend previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a priori region of interest definitions, provides an important new tool in brain science.
Collapse
Affiliation(s)
- Michelle Hampson
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
86
|
Bonnéry C, Leclerc PO, Desjardins M, Hoge R, Bherer L, Pouliot P, Lesage F. Changes in diffusion path length with old age in diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056002. [PMID: 22612125 DOI: 10.1117/1.jbo.17.5.056002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.
Collapse
Affiliation(s)
- Clément Bonnéry
- Ecole Polytechnique, Department of Electrical Engineering, C.P. 6079, Succursale Centre-ville, Montréal, Quebec, H3C 3A7, Canada
| | | | | | | | | | | | | |
Collapse
|
87
|
Kim SY, Chung YK, Kim BS, Lee SJ, Yoon JK, An YS. Resting cerebral glucose metabolism and perfusion patterns in women with posttraumatic stress disorder related to sexual assault. Psychiatry Res 2012; 201:214-7. [PMID: 22464826 DOI: 10.1016/j.pscychresns.2011.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/28/2011] [Accepted: 08/18/2011] [Indexed: 11/16/2022]
Abstract
In the literature, numerous trials using neuroimaging techniques have investigated brain function in patients with post-traumatic stress disorder (PTSD). However, the contrasting results showed that improvements, including in the study design, were required to reach consistent and convincing conclusions. This study evaluated the functional neuroimaging pattern of resting cerebral blood flow and glucose metabolism in patients with PTSD related to sexual assault. Twelve patients were enrolled for both brain single photon emission computed tomography (SPECT) and (18)F-fluorodeoxyglucose positron emission tomography (PET) investigations. All data were analyzed with statistical parametric mapping 2 (SPM2). The PTSD patients showed significant relative decreases in perfusion in the left hippocampus and in the basal ganglia compared with the control group. The PTSD group also had significantly lower cerebral glucosemetabolic activity in the left hippocampus and the superior temporal and precentral gyri than in the control group. These specific patterns of perfusion and glucose metabolism may be closely related to various neurophysiologic symptoms of PTSD.
Collapse
Affiliation(s)
- Shin-Young Kim
- Department of Psychiatry and Behavioural Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
88
|
Artegiani B, Calegari F. Age-related cognitive decline: can neural stem cells help us? Aging (Albany NY) 2012; 4:176-86. [PMID: 22466406 PMCID: PMC3348478 DOI: 10.18632/aging.100446] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
Several studies suggest that an increase in adult neurogenesis has beneficial effects on emotional behavior and cognitive performance including learning and memory. The observation that aging has a negative effect on the proliferation of neural stem cells has prompted several laboratories to investigate new systems to artificially increase neurogenesis in senescent animals as a means to compensate for age-related cognitive decline. In this review we will discuss the systemic, cellular, and molecular changes induced by aging and affecting the neurogenic niche at the level of neural stem cell proliferation, their fate change, neuronal survival, and subsequent integration in the neuronal circuitry. Particular attention will be given to those manipulations that increase neurogenesis in the aged brain as a potential avenue towards therapy.
Collapse
Affiliation(s)
- Benedetta Artegiani
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | | |
Collapse
|
89
|
Karbowski J. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. PLoS One 2011; 6:e26709. [PMID: 22053202 PMCID: PMC3203885 DOI: 10.1371/journal.pone.0026709] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/02/2011] [Indexed: 11/18/2022] Open
Abstract
Brain is one of the most energy demanding organs in mammals, and its total metabolic rate scales with brain volume raised to a power of around 5/6. This value is significantly higher than the more common exponent 3/4 relating whole body resting metabolism with body mass and several other physiological variables in animals and plants. This article investigates the reasons for brain allometric distinction on a level of its microvessels. Based on collected empirical data it is found that regional cerebral blood flow CBF across gray matter scales with cortical volume as , brain capillary diameter increases as , and density of capillary length decreases as . It is predicted that velocity of capillary blood is almost invariant (), capillary transit time scales as , capillary length increases as , and capillary number as , where is typically a small correction for medium and large brains, due to blood viscosity dependence on capillary radius. It is shown that the amount of capillary length and blood flow per cortical neuron are essentially conserved across mammals. These results indicate that geometry and dynamics of global neuro-vascular coupling have a proportionate character. Moreover, cerebral metabolic, hemodynamic, and microvascular variables scale with allometric exponents that are simple multiples of 1/6, rather than 1/4, which suggests that brain metabolism is more similar to the metabolism of aerobic than resting body. Relation of these findings to brain functional imaging studies involving the link between cerebral metabolism and blood flow is also discussed.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
90
|
Fedrigo O, Pfefferle AD, Babbitt CC, Haygood R, Wall CE, Wray GA. A potential role for glucose transporters in the evolution of human brain size. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:315-26. [PMID: 21986508 DOI: 10.1159/000329852] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/05/2011] [Indexed: 12/12/2022]
Abstract
Differences in cognitive abilities and the relatively large brain are among the most striking differences between humans and their closest primate relatives. The energy trade-off hypothesis predicts that a major shift in energy allocation among tissues occurred during human origins in order to support the remarkable expansion of a metabolically expensive brain. However, the molecular basis of this adaptive scenario is unknown. Two glucose transporters (SLC2A1 and SLC2A4) are promising candidates and present intriguing mutations in humans, resulting, respectively, in microcephaly and disruptions in whole-body glucose homeostasis. We compared SLC2A1 and SLC2A4 expression between humans, chimpanzees and macaques, and found compensatory and biologically significant expression changes on the human lineage within cerebral cortex and skeletal muscle, consistent with mediating an energy trade-off. We also show that these two genes are likely to have undergone adaptation and participated in the development and maintenance of a larger brain in the human lineage by modulating brain and skeletal muscle energy allocation. We found that these two genes show human-specific signatures of positive selection on known regulatory elements within their 5'-untranslated region, suggesting an adaptation of their regulation during human origins. This study represents the first case where adaptive, functional and genetic lines of evidence implicate specific genes in the evolution of human brain size.
Collapse
|
91
|
|
92
|
Rasmussen JM, Lakatos A, van Erp TGM, Kruggel F, Keator DB, Fallon JT, Macciardi F, Potkin SG. Empirical derivation of the reference region for computing diagnostic sensitive ¹⁸fluorodeoxyglucose ratios in Alzheimer's disease based on the ADNI sample. Biochim Biophys Acta Mol Basis Dis 2011; 1822:457-66. [PMID: 21958592 DOI: 10.1016/j.bbadis.2011.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/23/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022]
Abstract
Careful selection of the reference region for non-quantitative positron emission tomography (PET) analyses is critically important for Region of Interest (ROI) data analyses. We introduce an empirical method of deriving the most suitable reference region for computing neurodegeneration sensitive (18)fluorodeoxyglucose (FDG) PET ratios based on the dataset collected by the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Candidate reference regions are selected based on a heat map of the difference in coefficients of variation (COVs) of FDG ratios over time for each of the Automatic Anatomical Labeling (AAL) atlas regions normalized by all other AAL regions. Visual inspection of the heat map suggests that the portion of the cerebellum and vermis superior to the horizontal fissure is the most sensitive reference region. Analyses of FDG ratio data show increases in significance on the order of ten-fold when using the superior portion of the cerebellum as compared with the traditionally used full cerebellum. The approach to reference region selection in this paper can be generalized to other radiopharmaceuticals and radioligands as well as to other disorders where brain changes over time are hypothesized and longitudinal data is available. Based on the empirical evidence presented in this study, we demonstrate the usefulness of the COV heat map method and conclude that intensity normalization based on the superior portion of the cerebellum may be most sensitive to measuring change when performing longitudinal analyses of FDG-PET ratios as well as group comparisons in Alzheimer's disease. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Lewitus E, Sherwood CC, Hof PR. Cellular signatures in the primary visual cortex of phylogeny and placentation. Brain Struct Funct 2011; 217:531-47. [PMID: 21863312 DOI: 10.1007/s00429-011-0338-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 07/20/2011] [Indexed: 12/20/2022]
Abstract
The long-held view that brain size can be used as an index of general functional capacity across mammals is in conflict with increasing evidence for phyletic differences in cellular organization. Furthermore, it is poorly understood how the internal cellular organization of the brain covaries with overall brain size variation. Using design-based stereology, we quantified glial cell and neuronal densities in the primary visual cortex of 71 mammalian species (spanning 11 orders) to test how those cellular densities are influenced by phylogeny, behavior, environment, and anatomy. We further tested cellular densities against mode of placentation to determine whether a relationship may exist. We provide evidence for cellular signatures of phylogenetic divergence from the mammalian trend in primates and carnivores, as well as considerably divergent scaling patterns between the primate suborders, Strepsirrhini and Haplorrhini, that likely originated at the anthropoid stem. Finally, we show that cellular densities in the mammalian cortex relate to the variability of maternal resources to the fetus in a species.
Collapse
Affiliation(s)
- Eric Lewitus
- Department of Anthropology, University College London, London, WC1H 0BW, UK.
| | | | | |
Collapse
|
94
|
Wang X, Michaelis ML, Michaelis EK. Functional genomics of brain aging and Alzheimer's disease: focus on selective neuronal vulnerability. Curr Genomics 2011; 11:618-33. [PMID: 21629439 PMCID: PMC3078686 DOI: 10.2174/138920210793360943] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 01/02/2023] Open
Abstract
Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer’s disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Genomic data generated using both human brain tissue and brains from animal models of aging and AD were analyzed in this review. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center and Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66047, USA
| | | | | |
Collapse
|
95
|
Dubeau S, Desjardins M, Pouliot P, Beaumont E, Gaudreau P, Ferland G, Lesage F. Biophysical model estimation of neurovascular parameters in a rat model of healthy aging. Neuroimage 2011; 57:1480-91. [PMID: 21549843 DOI: 10.1016/j.neuroimage.2011.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/27/2022] Open
Abstract
Neuronal, vascular and metabolic factors result in a deterioration of the cerebral hemodynamic response with age. The interpretation of neuroimaging studies in the context of aging is rendered difficult due to the challenge in untangling the composite effect of these modifications. In this work we integrate multimodal optical imaging in biophysical models to investigate vascular and metabolic changes occurring in aging. Multispectral intrinsic optical imaging of an animal model of healthy aging, the LOU/c rat, is used in combination with somatosensory stimulation to study the modifications of the hemodynamic response with increasing age. Results are fitted with three macroscopic biophysical models to extract parameters, providing a phenomenological description of vascular and metabolic changes. Our results show that 1) biophysical parameters are estimable from multimodal data and 2) parameter estimates in this population change with aging.
Collapse
Affiliation(s)
- S Dubeau
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
96
|
Dubeau S, Ferland G, Gaudreau P, Beaumont E, Lesage F. Cerebrovascular hemodynamic correlates of aging in the Lou/c rat: a model of healthy aging. Neuroimage 2011; 56:1892-901. [PMID: 21497659 DOI: 10.1016/j.neuroimage.2011.03.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 11/18/2022] Open
Abstract
The LOU/c rat is an inbred strain considered a model of healthy aging. It exhibits a longer free disease lifespan and a low adiposity throughout life. While this animal model has been shown to maintain eating behavior and neuroendocrine, metabolic and cognitive functions with age, no study has yet investigated vascular correlates in this model of healthy aging. In the present work, multispectral optical imaging was used to investigate the hemodynamic response in the somatosensory cortex of LOU/c rats following forepaw stimulation in three age groups, 4, 24 and 40months. Results indicate reduced hemodynamic responses in the contralateral somatosensory cortex between young (4months) and older groups following stimulation. This decrease was associated with an increase in the spatial extent of activation. The ipsilateral response did not change with aging leading to decreased laterality. Estimations of the relative change in the local cerebral metabolic rate of oxygen during stimulation based on multimodal data showed no significant change with age. The exponent describing the relation between blood volume and blood flow changes, Grubb's parameter, did display a significant change with age which may suggest vessel compliance modifications. This work finds its relevance in recent findings underlying the importance of vascular changes with aging and its impact on neurodegenerative disease.
Collapse
Affiliation(s)
- S Dubeau
- Electrical Engineering Department, Ecole Polytechnique Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
97
|
Pan Y. Enhancing brain functions in senior dogs: a new nutritional approach. Top Companion Anim Med 2011; 26:10-6. [PMID: 21435621 DOI: 10.1053/j.tcam.2011.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022]
Abstract
Aging induces many morphological and metabolic changes in the brain, which may eventually lead to cognitive impairment and dementia called cognitive dysfunction syndrome in senior dogs. Cognitive impairment and dementia can adversely affect the quality of life in both dogs and their owners. Progress has been made over the past years to understand how aging affects brain and its functions in humans and animals including dogs. Existing data indicate that aging-induced changes in the brain are gradual and irreversible. Therefore, it is too late to effectively manage dogs with cognitive impairment and cognitive dysfunction syndrome. The best option to manage brain aging successfully is to reduce or prevent aging-induced changes in the brain by correcting early metabolic changes and eliminating risk factors associated with brain aging and dementia. This article reviews behavioral, morphological, and metabolic changes in the brain induced by aging and discusses a novel nutritional solution for the aging-induced metabolic changes in the brain.
Collapse
Affiliation(s)
- Yuanlong Pan
- Nestlé Purina Research, St. Louis, MO 63164, USA.
| |
Collapse
|
98
|
Orsi L, D'Agata F, Caroppo P, Franco A, Caglio MM, Avidano F, Manzone C, Mortara P. Neuropsychological picture of 33 spinocerebellar ataxia cases. J Clin Exp Neuropsychol 2011; 33:315-25. [DOI: 10.1080/13803395.2010.518139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Orsi
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- c Neurological Clinic II, AOU San Giovanni Battista , Turin, Italy
- e Center for Spinocerebellar Ataxia Diseases, AOU San Giovanni Battista , Turin, Italy
| | - Federico D'Agata
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
- g Department of Psychology , University of Turin , Turin, Italy
| | - Paola Caroppo
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- b Neurological Clinic I, AOU San Giovanni Battista , Turin, Italy
- e Center for Spinocerebellar Ataxia Diseases, AOU San Giovanni Battista , Turin, Italy
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| | - Alessandra Franco
- c Neurological Clinic II, AOU San Giovanni Battista , Turin, Italy
- d Neurological Division ASL 4, Ciriè Hospital , Ciriè, Italy
| | | | - Federica Avidano
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| | - Cristina Manzone
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| | - Paolo Mortara
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- b Neurological Clinic I, AOU San Giovanni Battista , Turin, Italy
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| |
Collapse
|
99
|
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011; 27:3-20. [PMID: 21035308 PMCID: PMC3478067 DOI: 10.1016/j.nut.2010.07.021] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
Lower brain glucose metabolism is present before the onset of clinically measurable cognitive decline in two groups of people at risk of Alzheimer's disease--carriers of apolipoprotein E4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and therefore contribute to the neuropathologic cascade leading to cognitive decline in AD. The reason brain hypometabolism develops is unclear but may include defects in brain glucose transport, disrupted glycolysis, and/or impaired mitochondrial function. Methodologic issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization, which, in turn, may increase the risk of declining brain glucose uptake, at least in some brain regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e., that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and hence reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to (1) improve insulin sensitivity by improving systemic glucose utilization, or (2) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia.
Collapse
Affiliation(s)
- Stephen Cunnane
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Scott Nugent
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maggie Roy
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Castellano
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Christian Bocti
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hadi Begdouri
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M'hamed Bentourkia
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michèle Allard
- UMR CNRS 5231 and Ecole Pratique des Hautes Etudes, France
| | - Pascale Barberger-Gateau
- INSERM U897, Bordeaux F-33076, France; Université Victor Segalen Bordeaux 2, Bordeaux F-33076, France
| | - Tamas Fulop
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute of Aging, Bethesda, MD, USA
| |
Collapse
|
100
|
Kannurpatti SS, Motes MA, Rypma B, Biswal BB. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Hum Brain Mapp 2010; 32:1125-40. [PMID: 20665721 DOI: 10.1002/hbm.21097] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 04/02/2010] [Accepted: 04/22/2010] [Indexed: 11/09/2022] Open
Abstract
In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects which RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intrasubject amplitude variation across regions of activated cortex, and intersubject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and intersubject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the unscaled BOLD amplitude distribution, attenuated the neural activity-related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group before and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources.
Collapse
Affiliation(s)
- Sridhar S Kannurpatti
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|