51
|
Kostka M, Morys J, Małecki A, Nowacka-Chmielewska M. Muscle-brain crosstalk mediated by exercise-induced myokines - insights from experimental studies. Front Physiol 2024; 15:1488375. [PMID: 39687518 PMCID: PMC11647023 DOI: 10.3389/fphys.2024.1488375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas. However, the exact mechanism of muscle-brain communication is yet to be determined. It is speculated that, in particular, brain-derived neurotrophic factor (BDNF), irisin, cathepsin B (CTSB), interleukin 6 (IL-6), and insulin-like growth factor-1 (IGF-1) partake in this crosstalk by promoting neuronal proliferation and synaptic plasticity, also resulting in improved cognition and ameliorated behavioral alterations. Researchers suggest that myokines might act directly on the brain parenchyma via crossing the blood-brain barrier (BBB). The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and central nervous system (CNS) impairments. Although the hypothesis of skeletal muscles being critical sources of myokines seems promising, it should not be forgotten that the origin of these factors might vary, depending on the cell types engaged in their synthesis. Limited amount of research providing information on alterations in myokines expression in various organs at the same time, results in taking them only as circumstantial evidence on the way to determine the actual involvement of skeletal muscles in the overall state of homeostasis. The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and CNS impairments.
Collapse
Affiliation(s)
| | | | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
52
|
Ranasinghe N, Huang YR, Wu WH, Lee SS, Ho CW, Lee TH, Hsiao KY. Environmental salinity differentiates responses to acute hypothermal stress in milkfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176643. [PMID: 39368505 DOI: 10.1016/j.scitotenv.2024.176643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Global warming has led to an increase in the frequency of cold extremes, causing significant economic losses in aquaculture, particularly in subtropical regions. Milkfish (Chanos chanos) holds significant importance in aquaculture within subtropical Asian regions. Despite milkfish's ability to tolerate varying salinity levels, frequent cold snaps associated with extreme weather events have caused substantial mortality. Understanding the molecular and cellular mechanisms underlying cold stress-induced cell death is crucial for developing effective strategies to mitigate such losses. Given the pivotal role of the liver in fish physiology, we established a primary milkfish hepatocyte culture demonstrating robust proliferation and expressing a unique marker leptin A. The molecular characterization of cold-treated hepatocytes at 18 °C showed that the mRNA levels of superoxide dismutase (sod1) and catalase (cat), responsible for neutralizing reactive oxygen species (ROS), were downregulated in freshwater (FW) conditions, while cat expression was upregulated in seawater (SW) conditions. This differential modulation of ROS signaling implies distinct responses in FW and SW, leading to higher ROS levels and increased cell death in FW condition compared to those in SW. Transcriptomic analysis of liver tissues from milkfish reared in FW or SW, with or without cold stress, revealed distinct gene expression patterns. Although cold stress affected a common set of genes in both FW and SW conditions, SW-specific cold responsive genes are associated with metabolic pathways while FW-specific genes were linked to cell proliferation pathways. Notably, gene set enrichment analysis highlighted the downregulation of cytochrome-related genes, a major source of ROS production, in response to cold stress in SW. In summary, our study unveils an insightful mechanism whereby the salinity of SW counteracts cold stress-induced ROS signaling, emphasizing the feasibility and practicality of preconditioning fish in SW as a preventive measure against cold stress-induced mortality.
Collapse
Affiliation(s)
- Naveen Ranasinghe
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Hua Wu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shi-Shien Lee
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 700, Taiwan
| | - Chuan-Wen Ho
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
53
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
54
|
Li Q, Liu Y, Wang Y, Zhang Q, Zhang N, Song D, Wang F, Gao Q, Chen Y, Zhang G, Wen J, Zhao G, Chen L, Gao Y. Spop deficiency impairs adipogenesis and promotes thermogenic capacity in mice. PLoS Genet 2024; 20:e1011514. [PMID: 39680603 PMCID: PMC11684654 DOI: 10.1371/journal.pgen.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1. Loss of SPOP also led to defects in body weight gain. In addition, conditional knockout mice exhibited resistance to high-fat-diet-induced obesity. Proteomics analysis found that proteins upregulated in the knockout mice are primarily enriched for functions in glycolysis/gluconeogenesis, oxidative phosphorylation, and thermogenesis. Furthermore, Spop knockout mice were more resilient during cold tolerance assay compared with the wild-type controls. Finally, the knockout of SPOP efficiently impaired adipogenesis in primary preadipocytes and the expression of associated genes. Collectively, these findings demonstrate the critical roles of SPOP in regulating adipogenesis and thermogenic capacity in mice.
Collapse
Affiliation(s)
- Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuhong Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuanyuan Wang
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Na Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Danli Song
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qianmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuxin Chen
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Chen
- Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Yu Gao
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| |
Collapse
|
55
|
Selvamani SP, Khan A, Tay ESE, Garvey M, Ajoyan H, Diefenbach E, Gloss BS, Tu T, George J, Douglas MW. Hepatitis B Virus and Hepatitis C Virus Affect Mitochondrial Function Through Different Metabolic Pathways, Explaining Virus-Specific Clinical Features of Chronic Hepatitis. J Infect Dis 2024; 230:e1012-e1022. [PMID: 38655824 PMCID: PMC11566039 DOI: 10.1093/infdis/jiae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) and hepatitis B virus (HBV) cause chronic hepatitis with important clinical differences. HCV causes hepatic steatosis and insulin resistance, while HBV confers increased risk of liver cancer. We hypothesized these differences may be due to virus-specific effects on mitochondrial function. METHODS Seahorse technology was used to investigate effects of virus infection on mitochondrial function. Cell-based assays were used to measure mitochondrial membrane potential and quantify pyruvate and lactate. Mass spectrometry was performed on mitochondria isolated from HBV-expressing, HCV-infected, and control cells cultured with isotope-labelled amino acids, to identify proteins with different abundance. Altered expression of key mitochondrial proteins was confirmed by real-time polymerase chain reaction (PCR) and western blot. RESULTS Reduced mitochondrial function and ATP production were observed with HCV infection and HBV expression. HCV impaired glycolysis and fatty acid oxidation, promoting lipid accumulation whereas HBV caused lactate accumulation. In HBV-expressing cells enrichment of pyruvate dehydrogenase kinase inhibited pyruvate to acetyl-CoA conversion thereby reducing its availability for mitochondrial oxidative phosphorylation. CONCLUSIONS HBV and HCV impair mitochondrial function. HCV infection reduces lipid oxidation causing its accumulation and fatty liver disease. HBV infection affects pyruvate processing causing lactate accumulation, cellular stress, and increased risk of liver disease and cancer.
Collapse
Affiliation(s)
- Sakthi Priya Selvamani
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Anis Khan
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Matthew Garvey
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Harout Ajoyan
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Eve Diefenbach
- Protein Core Facility, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Brian S Gloss
- Westmead Research Hub, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
56
|
Myers JW, Park WY, Eddie AM, Shinde AB, Prasad P, Murphy AC, Leonard MZ, Pinette JA, Rampy JJ, Montufar C, Shaikh Z, Hickman TT, Reynolds GN, Winn NC, Lantier L, Peck SH, Coate KC, Stein RW, Carrasco N, Calipari ES, McReynolds MR, Zaganjor E. Systemic inhibition of de novo purine biosynthesis prevents weight gain and improves metabolic health by increasing thermogenesis and decreasing food intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620705. [PMID: 39553975 PMCID: PMC11566042 DOI: 10.1101/2024.10.28.620705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue. These metabolic changes are correlated with metabolic syndrome, but little is known about the physiological effects of targeting purine biosynthesis. Methods To determine the effects of purine biosynthesis on organismal health we treated mice with mizoribine, an inhibitor of inosine monophosphate dehydrogenase 1 and 2 (IMPDH1/2), key enzymes in this pathway. Mice were fed either a low-fat (LFD; 13.5% kcal from fat) or a high-fat (HFD; 60% kcal from fat) diet for 30 days during drug or vehicle treatment. We ascertained the effects of mizoribine on weight gain, body composition, food intake and absorption, energy expenditure, and overall metabolic health. Results Mizoribine treatment prevented mice on a HFD from gaining weight, but had no effect on mice on a LFD. Body composition analysis demonstrated that mizoribine significantly reduced fat mass but did not affect lean mass. Although mizoribine had no effect on lipid absorption, food intake was reduced. Furthermore, mizoribine treatment induced adaptive thermogenesis in skeletal muscle by upregulating sarcolipin, a regulator of muscle thermogenesis. While mizoribine-treated mice exhibited less adipose tissue than controls, we did not observe lipotoxicity. Rather, mizoribine-treated mice displayed improved glucose tolerance and reduced ectopic lipid accumulation. Conclusions Inhibiting purine biosynthesis prevents mice on a HFD from gaining weight, and improves their metabolic health, to a significant degree. We also demonstrated that the purine biosynthesis pathway plays a previously unknown role in skeletal muscle thermogenesis. A deeper mechanistic understanding of how purine biosynthesis promotes thermogenesis and decreases food intake may pave the way to new anti-obesity therapies. Crucially, given that many purine inhibitors have been FDA-approved for use in treating various conditions, our results indicate that they may benefit overweight or obese patients.
Collapse
Affiliation(s)
- Jacob W. Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander M. Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abhijit B. Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael Z. Leonard
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Julia A. Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jessica J. Rampy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tara T. Hickman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett N. Reynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Sun H. Peck
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Katie C. Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
57
|
Stachowicz A, Wiśniewska A, Czepiel K, Pomierny B, Skórkowska A, Kuśnierz-Cabala B, Surmiak M, Kuś K, Wood ME, Torregrossa R, Whiteman M, Olszanecki R. Mitochondria-targeted hydrogen sulfide donor reduces atherogenesis by changing macrophage phenotypes and increasing UCP1 expression in vascular smooth muscle cells. Biomed Pharmacother 2024; 180:117527. [PMID: 39405912 DOI: 10.1016/j.biopha.2024.117527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Atherosclerosis is a leading cause of morbidity and mortality in the Western countries. Mounting evidence points to the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Recently, it has been shown that mitochondrial hydrogen sulfide (H2S) can complement the bioenergetic role of Krebs cycle leading to improved mitochondrial function. However, controlled, direct delivery of H2S to mitochondria was not investigated as a therapeutic strategy in atherosclerosis. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with mitochondrial H2S donor AP39 on the development of atherosclerotic lesions in apolipoprotein E knockout (apoE-/-) mice. Our results indicated that AP39 reduced atherosclerosis in apoE-/- mice and stabilized atherosclerotic lesions through decreased total macrophage content and increased collagen depositions. Moreover, AP39 reduced proinflammatory M1-like macrophages and increased anti-inflammatory M2-like macrophages in atherosclerotic lesions. It also upregulated pathways related to mitochondrial function, such as cellular respiration, fatty acid β-oxidation and thermogenesis while downregulated pathways associated with immune system, platelet aggregation and complement and coagulation cascades in the aorta. Furthermore, treatment with AP39 increased the expression of mitochondrial brown fat uncoupling protein 1 (UCP1) in vascular smooth muscle cells (VSMCs) in atherosclerotic lesions and upregulated mRNA expression of other thermogenesis-related genes in the aorta but not perivascular adipose tissue (PVAT) of apoE-/- mice. Finally, AP39 treatment decreased markers of activated endothelium and increased endothelial nitric oxide synthase (eNOS) expression and activation. Taken together, mitochondrial H2S donor AP39 could provide potentially a novel therapeutic approach to the treatment/prevention of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Hydrogen Sulfide/metabolism
- Macrophages/metabolism
- Macrophages/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Mice
- Phenotype
- Mice, Inbred C57BL
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Mice, Knockout, ApoE
- Mice, Knockout
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| | - Anna Wiśniewska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Imaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Poland
| | - Alicja Skórkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Imaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Poland
| | - Beata Kuśnierz-Cabala
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
58
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
59
|
Kang GS, Kim YE, Oh HR, Jo HJ, Bok S, Jeon YK, Cheon GJ, Roh TY, Chang YT, Park DJ, Ahn GO. Hypoxia-inducible factor-1α-deficient adipose-tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein-1. Lab Anim Res 2024; 40:37. [PMID: 39473019 PMCID: PMC11523771 DOI: 10.1186/s42826-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane generally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming 'beige' adipocytes. RESULTS In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking functional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased glycolysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of co-cultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals. CONCLUSIONS UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Young-Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Ho Rim Oh
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Seoyeon Bok
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | | | - Do Joong Park
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea.
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
| |
Collapse
|
60
|
Song SL, Chen XY, Zhao J, Li YY, Xiong YM, Lv L, Chang J, Wang H, Li XH, Qin ZF. Effects of the Fungicide Prothioconazole on Lipid Metabolism in Mice: Whitening Alterations of Brown Adipose Tissue. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18155-18166. [PMID: 39361549 DOI: 10.1021/acs.est.4c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
With considerable concerns about the associations between metabolic disorders and agricultural biocides, there are scattered data suggesting that the triazole fungicide prothioconazole (PTC) at lower doses than the no observed adverse effect level of 5000 μg/kg/d possibly has the potential to disrupt glycolipid metabolism in mammals. Here, we investigated the effects of 50, 500, and 5000 μg/kg/d of PTC on glycolipid metabolism in mice following 8 weeks of administration via drinking water, with specific attention on brown adipose tissue (BAT) and white adipose tissue (WAT) in addition to the liver. We found that along with the increased serum triglyceride level in the 5000 μg/kg/d group, small fatty vacuoles occurred in livers in all treatment groups, indicating lipid accumulation. No change in WAT was observed, but PTC caused BAT whitening, characterized by adipocyte hypertrophy, more unilocular adipocytes with enlarged lipid droplets, reduced UCP1 levels, and down-regulated Doi2 expression, and even the dose of 50 μg/kg/d was effective. Transcriptomic analysis revealed immune inhibition and circadian rhythm disturbance in BAT from the 5000 μg/kg/d group, which are in agreement with BAT whitening and inactivation. On employing the C3H10T1/2 cells in vitro, we found that PTC treatment concentration-dependently promoted lipid accumulation in brown adipocytes, along with altered expression of thermogenesis-related and circadian genes. Taken together, our study shows that low doses of PTC caused BAT whitening, calling for much attention to the new target by pollutants.
Collapse
Affiliation(s)
- Shi-Lin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huili Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xing Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
61
|
Cho Y, Kim YK. CARM1 phosphorylation at S595 by p38γ MAPK drives ROS-mediated cellular senescence. Redox Biol 2024; 76:103344. [PMID: 39265499 PMCID: PMC11415932 DOI: 10.1016/j.redox.2024.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
CARM1 is predominantly localized in the nucleus and plays a pivotal role in maintaining mitochondrial homeostasis by regulating gene expression. It suppresses mitochondrial biogenesis by downregulating PGC-1α and TFAM expression, while promoting mitochondrial fission through increased DNM1L expression. Under oxidative stress, CARM1 translocates to the cytoplasm, where it directly methylates DRP1 and accelerates mitochondrial fission, enhancing reactive oxygen species (ROS) production. Cytoplasmic localization of CARM1 is facilitated by its phosphorylation at S595 by ROS-activated p38γ MAPK, creating a positive feedback loop. Consequently, cytoplasmic CARM1 contributes to cellular senescence by altering mitochondrial dynamics and increasing ROS levels. This observation was supported by the increased cytoplasmic CARM1 levels and disrupted mitochondrial dynamics in the transformed 10T1/2 cells. Moreover, CARM1 inhibitors not only inhibit the proliferation of cancer cells but also induce apoptotic death in senescent cells. These findings highlight the potential of CARM1 inhibitors, particularly those targeting cytoplasmic functions, as novel strategies for eliminating cancer and senescent cells.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
62
|
Craige SM, Kaur G, Bond JM, Caliz AD, Kant S, Keaney JF. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid Redox Signal 2024. [PMID: 39213161 DOI: 10.1089/ars.2024.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
Collapse
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Gaganpreet Kaur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Bond
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, Virginia, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
63
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
64
|
Khan MI, Khan MI, Wahab F. Irisin in Reproduction: Its Roles and Therapeutic Potential in Male and Female Fertility Disorders. Biomolecules 2024; 14:1222. [PMID: 39456155 PMCID: PMC11505643 DOI: 10.3390/biom14101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The current study focused on identifying the potential of irisin in mammalian reproduction. The established role of irisin, a proteolytic product of FNDC5, in adipose tissue browning, energy metabolism, and thermogenesis suggests its role in reproductive health, often disturbed by metabolic imbalances. Various studies on mice demonstrated irisin's role in improving spermatogenesis, sperm count, and testosterone levels by influencing the hypothalamus-pituitary-gonadal axis. Moreover, in females, there is a fluctuation in levels of irisin during critical reproductive stages, including menstrual cycles, puberty, and pregnancy. Conditions like pregnancy complications, precocious puberty, and polycystic ovary syndrome (PCOS) are found to have an association with abnormal irisin levels. The potential role of irisin in endometrial receptivity and preventing endometritis is also discussed in this review. Overall, the influence of irisin on female and male reproduction is evident from various studies. However, further research is needed to elucidate irisin mechanism in reproduction and its potential as a therapeutic or diagnostic tool for reproductive dysfunctions and infertility.
Collapse
Affiliation(s)
| | | | - Fazal Wahab
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur 224000, Khyber Pakhtunkhwa, Pakistan; (M.I.K.)
| |
Collapse
|
65
|
Nawa F, Sai M, Vietor J, Schwarzenbach R, Bitić A, Wolff S, Ildefeld N, Pabel J, Wein T, Marschner JA, Heering J, Merk D. Tuning RXR Modulators for PGC1α Recruitment. J Med Chem 2024; 67:16338-16354. [PMID: 39258574 DOI: 10.1021/acs.jmedchem.4c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The molecular activation mechanism of the nuclear retinoid X receptors (RXRs) crucially involves ligand-induced corepressor release and coactivator recruitment which mediate transcriptional repression or activation. The ability of RXR to bind diverse coactivators suggests that a coregulator-selective modulation by ligands may open an avenue to tissue- or gene-selective RXR activation. Here, we identified strong induction of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) binding to RXR by a synthetic agonist but not by the endogenous ligand 9-cis retinoic acid. Structure-guided diversification of this lead resulted in a set of three structurally related RXR agonists with different ability to promote PGC1α recruitment in cell-free and cellular context. These results demonstrate that selective modulation of coregulator recruitment to RXR can be achieved with molecular glues and potentially open new therapeutic opportunities by targeting the ligand-induced RXR-PGC1α interaction.
Collapse
Affiliation(s)
- Felix Nawa
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Roman Schwarzenbach
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Anesa Bitić
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sina Wolff
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Niklas Ildefeld
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
66
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
67
|
Teramoto Y, Yang Z, Matsukawa T, Najafi MAE, Goto T, Miyamoto H. PGC1α as a downstream effector of KDM5B promotes the progression of androgen receptor-positive and androgen receptor-negative prostate cancers. Am J Cancer Res 2024; 14:4367-4377. [PMID: 39417173 PMCID: PMC11477833 DOI: 10.62347/qwzy6886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024] Open
Abstract
PPARγ coactivator-1α (PGC1α), as a co-activator, is known to optimize the action of several transcription factors, including androgen receptor (AR). However, the precise functions of PGC1α in prostate cancer, particularly those via the non-AR pathways, remain poorly understood. Meanwhile, our bioinformatics search suggested that PGC1α could be a direct downstream target of lysine-specific demethylase 5B (KDM5B/JARID1B/PLU1). We herein aimed to investigate how PGC1α induced prostate cancer outgrowth. Immunohistochemistry in radical prostatectomy specimens showed that the levels of PGC1α expression were significantly higher in prostatic adenocarcinoma [H-score (mean ± SD): 179.0 ± 111.6] than in adjacent normal-appearing tissue (16.7 ± 29.9, P<0.001) or high-grade prostatic intraepithelial neoplasia (79.0 ± 94.7, P<0.001). Although there were no strong associations of PGC1α expression with tumor grade or stage, outcome analysis revealed that patients with high PGC1α (H-score of ≥200) tumor had a significantly higher risk of postoperative biochemical recurrence even in a multivariable setting (hazard ratio 5.469, P=0.004). In prostate cancer LNCaP and C4-2 cells, PGC1α silencing resulted in considerable reduction in the levels of prostate-specific antigen expression. Interestingly, PGC1α silencing inhibited the cell viability of not only AR-positive LNCaP/C4-2/22Rv1 lines but also AR-negative PC3/DU145 lines. Chromatin immunoprecipitation assay further revealed the binding of KDM5B to the promoter region of PGC1α in these lines. Additionally, treatment with a KDM5 inhibitor KDM5-C70 considerably reduced the expression of PGC1α and prostate-specific antigen, as well as the cell viability of all the AR-positive and AR-negative lines examined. PGC1α silencing or KDM5-C70 treatment also down-regulated the expression of phospho-JAK2 and phospho-STAT3 in both AR-positive and AR-negative cells. These findings suggest the involvement of PGC1α, as a downstream effector of KDM5B, in prostate cancer progression via both AR-dependent and AR-independent pathways. KDM5B-PGC1α is thus a potential therapeutic target for both androgen-sensitive and castration-resistant tumors. Meanwhile, PGC1α overexpression may serve as a useful prognosticator in those undergoing radical prostatectomy.
Collapse
Affiliation(s)
- Yuki Teramoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Zhiming Yang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Takuo Matsukawa
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY 14642, USA
| |
Collapse
|
68
|
Coccè V, Missaglia S, Martegani E, Tavian D, Doneda L, Manfredi B, Alessandri G, Corradini C, Giannì A, Ciusani E, Paino F, Pessina A. Early Adipogenesis and Upregulation of UCP1 in Mesenchymal Stromal Cells Stimulated by Devitalized Microfragmented Fat (MiFAT). J Lipids 2024; 2024:1318186. [PMID: 39297160 PMCID: PMC11410402 DOI: 10.1155/2024/1318186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
Adipose tissue is mainly composed by adipocytes. Moreover, mesenchymal stromal/stem cells (MSCs), macrophages, endothelial cells, and extracellular matrix components are present. The variety of molecules as cytokines and growth factors of its structure very rich in blood vessel makes it also similar to a true endocrine organ that however needs still to be fully investigated. In our study, we used human lipoaspirate to obtain mechanically microfragmented fat (MiFAT) which was washed and then devitalized by freezing-thawing cycles. In our experiments, thawed MiFAT was used to stimulate cultures of MSCs from two different sources (adipose tissue and gingiva papilla) in comparison with a traditional stimulation in vitro obtained by culturing MSCs with adipogenic medium. MSCs stimulated with MiFAT showed a very early production of lipid droplets, after only 3 days, that correlated with an increased expression of adipokines. Furthermore, a significant upregulation of PPAR gamma 1 alpha coactivator (PPARGC1A) was observed with an overexpression of uncoupling protein 1 (UCP1) that suggest a pattern of differentiation compatible with the beige-brown fat.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology CRIBENS Università Cattolica del Sacro Cuore, Milan, Italy
- Department of Psychology Università Cattolica del Sacro Cuore, Milan, Italy
| | - Eleonora Martegani
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology CRIBENS Università Cattolica del Sacro Cuore, Milan, Italy
- Department of Psychology Università Cattolica del Sacro Cuore, Milan, Italy
| | - Luisa Doneda
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Barbara Manfredi
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Costantino Corradini
- Department of Biomedical Surgical and Dental Sciences Sports Trauma Researches Center University of Milan c/o 1st Division of Orthopedics and Traumatology Orthopedic Center Pini CTO-ASST Gaetano Pini, Milan, Italy
| | - Aldo Giannì
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
- Maxillo-Facial and Dental Unit Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Emilio Ciusani
- Department of Diagnostics and Technology Fondazione IRCCS Istituto Neurologico "C.Besta", Milano, Italy
| | - Francesca Paino
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Augusto Pessina
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| |
Collapse
|
69
|
Zakaria M, Matta J, Honjol Y, Schupbach D, Mwale F, Harvey E, Merle G. Decoding Cold Therapy Mechanisms of Enhanced Bone Repair through Sensory Receptors and Molecular Pathways. Biomedicines 2024; 12:2045. [PMID: 39335558 PMCID: PMC11429201 DOI: 10.3390/biomedicines12092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Applying cold to a bone injury can aid healing, though its mechanisms are complex. This study investigates how cold therapy impacts bone repair to optimize healing. Cold was applied to a rodent bone model, with the physiological responses analyzed. Vasoconstriction was mediated by an increase in the transient receptor protein channels (TRPs), transient receptor potential ankyrin 1 (TRPA1; p = 0.012), and transient receptor potential melastatin 8 (TRPM8; p < 0.001), within cortical defects, enhancing the sensory response and blood flow regulation. Cold exposure also elevated hypoxia (p < 0.01) and vascular endothelial growth factor expression (VEGF; p < 0.001), promoting angiogenesis, vital for bone regeneration. The increased expression of osteogenic proteins peroxisome proliferator-activated receptor gamma coactivator (PGC-1α; p = 0.039) and RNA-binding motif protein 3 (RBM3; p < 0.008) suggests that the reparative processes have been stimulated. Enhanced osteoblast differentiation and the presence of alkaline phosphatase (ALP) at day 5 (three-fold, p = 0.021) and 10 (two-fold, p < 0.001) were observed, along with increased osteocalcin (OCN) at day 10 (two-fold, p = 0.019), indicating the presence of mature osteoblasts capable of mineralization. These findings highlight cold therapy's multifaceted effects on bone repair, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Matthew Zakaria
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Justin Matta
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Yazan Honjol
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Drew Schupbach
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Lady Davies Institute Jewish General Hospital, 3755 Cote-St. Catherine Road, Room 602, Montréal, QC H3T 1E2, Canada;
| | - Edward Harvey
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada
| | - Geraldine Merle
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
70
|
Yilmaz U, Tanbek K. Intracerebroventricular prokineticin 2 infusion may play a role on the hypothalamus-pituitary-thyroid axis and energy metabolism. Physiol Behav 2024; 283:114601. [PMID: 38838800 DOI: 10.1016/j.physbeh.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
AIM The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
71
|
Zhang Y, Pu Y, Deng Y, Liu B, Chen K, Xu Y, Tan W, Liu H, Wang J. Therapeutic of a white adipose tissue-specific bivalent aptamer in obesity. Biochem Pharmacol 2024; 227:116452. [PMID: 39059772 DOI: 10.1016/j.bcp.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The white adipose tissue-specific aptamer Adipo8 can specificity bindwith mature adipocytes or tissues and inhibit adipogenesis.In this research, we exploredthe effect of Adipo8 intervention on the transcriptome in the process of adipogenesis using mRNA-level sequencing,analyzed the mechanism ofAdipo8 ininhibiting adipogenesis. The results showed that Adipo8 can inhibit lipid formation and downregulate PPARγ and C/EBPα in differentiated 3 T3-L1 cells. Transcriptome mRNA sequencing of 3 T3-L1 cells after Adipo8 interventionrevealed that Adipo8 might inhibit the biological function of adipogenesis by downregulating Acsl1 and Plin1 to inhibit fatty acid metabolism and PPAR signaling pathways.After that, using Spacer18 to connect the optimized and truncated Adipo8, we constructed a bivalent aptamer Adipo8cBand compared the affinity, biological effects, and biological stability between the aptamers in differentiated and mature 3 T3-L1 cells. At the cellular level,the affinity, biological effects, and serum stability of Adipo8cB were verified to be superior to those of Adipo8in 3 T3-L1 cells.We then investigated the biological properties of Adipo8cB as a lipid-inhibiting drug invivo, using C57BL/6J mice with diet-induced obesity. The body weight, blood sugar, lipid levels, liver function, glucose tolerance, and other related indicators in each group of mice were observed and compared after intervention with the bivalent aptamers Adipo8cB and Adipo8. Both Adipo8cB and Adipo8 effectively prevented weight gain caused by fat accumulation in micewith diet induced obesity, while also reducing blood lipid levels, improving glucose tolerance, and protecting against liver steatosis, moreover, Adipo8cB has a better effect than Adipo8.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ying Pu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yuanyuan Deng
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Bo Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ke Chen
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yiling Xu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Huixia Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Jinwei Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
| |
Collapse
|
72
|
Mesarosova L, Scheper M, Iyer A, Anink JJ, Mills JD, Aronica E. miR-193b-3p/ PGC-1α pathway regulates an insulin dependent anti-inflammatory response in Parkinson's disease. Neurobiol Dis 2024; 199:106587. [PMID: 38950713 DOI: 10.1016/j.nbd.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
It has been shown that many miRNAs, including miR-193b-3p, are differentially expressed in Parkinson's disease (PD). Dysregulation of miR-193b-3p/PGC-1α axis may alter homeostasis in cells and can induce an inflammatory response commonly accompanied by metabolic disturbances. The aim of the present study is to investigate if dysregulation of the miR-193-3p/PGC-1α axis may contribute to the pathological changes observed in the PD brain. Brain tissue were obtained from middle frontal gyrus of non-demented controls and individuals with a PD diagnosis. RT-qPCR was used to determine the expression of miR-193b-3p and in situ hybridization (ISH) and immunological analysis were employed to establish the cellular distribution of miR-193b-3p. Functional assays were performed using SH-SY5Y cells, including transfection and knock-down of miR-193b-3p. We found significantly lower expression of miR-193b-3p in the early stages of PD (PD4) which increased throughout disease progression. Furthermore, altered expression of PGC-1α suggested a direct inhibitory effect of miR-193b-3p in the brain of individuals with PD. Moreover, we observed changes in expression of insulin after transfection of SH-SY5Y cells with miR-193b-3p, which led to dysregulation in the expression of several pro- or anti - inflammatory genes. Our findings indicate that the miR-193b-3p/PGC-1α axis is involved in the regulation of insulin signaling. This regulation is crucial, since insulin induced inflammatory response may serve as a protective mechanism during acute situations but potentially evolve into a pathological process in chronic conditions. This novel regulatory mechanism may represent an interesting therapeutic target with potential benefits for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucia Mesarosova
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Mirte Scheper
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anand Iyer
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Jasper J Anink
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - James D Mills
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
73
|
Zhang Y, Zhao H, Li Y. Pleiotropic Regulation of PGC-1α in Tumor Initiation and Progression. Antioxid Redox Signal 2024; 41:557-572. [PMID: 38770801 DOI: 10.1089/ars.2023.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Significance: Mitochondria are recognized as a central metabolic hub with bioenergetic, biosynthetic, and signaling functions that tightly control key cellular processes. As a crucial component of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is involved in regulating various metabolic pathways, including energy metabolism and reactive oxygen species homeostasis. Recent Advances: Recent studies have highlighted the significant role of PGC-1α in tumorigenesis, cancer progression, and treatment resistance. However, PGC-1α exhibits pleiotropic effects in different cancer types, necessitating a more comprehensive and thorough understanding. Critical Issues: In this review, we discuss the structure and regulatory mechanisms of PGC-1α, analyze its cellular and metabolic functions, explore its impact on tumorigenesis, and propose potential strategies for targeting PGC-1α. Future Directions: The targeted adjustment of PGC-1α based on the metabolic preferences of different cancer types could offer a hopeful therapeutic approach for both preventing and treating tumors. Antioxid. Redox Signal. 41, 557-572.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
74
|
Li SJ, Wei JQ, Kang YY, Wang RQ, Rong WW, Zhao JJ, Deng QW, Gao PJ, Li XD, Wang JG. Natriuretic peptide receptor-C perturbs mitochondrial respiration in white adipose tissue. J Lipid Res 2024; 65:100623. [PMID: 39154732 PMCID: PMC11418126 DOI: 10.1016/j.jlr.2024.100623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024] Open
Abstract
Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.
Collapse
Affiliation(s)
- Shi-Jin Li
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jin-Qiu Wei
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Kang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Qi Wang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wu-Wei Rong
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Jia Zhao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Wan Deng
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
75
|
Kim S, Park DH, Moon S, Gu B, Mantik KEK, Kwak HB, Ryu JK, Kang JH. Ketogenic diet with aerobic exercise can induce fat browning: potential roles of β-hydroxybutyrate. Front Nutr 2024; 11:1443483. [PMID: 39267855 PMCID: PMC11390540 DOI: 10.3389/fnut.2024.1443483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Despite evidence suggesting that metabolic intermediates like β-HB influence white adipose tissue (WAT) metabolism, the precise molecular mechanisms remain unclear. The aim of this study was to investigate the impact of beta-hydroxybutyrate (β-HB) on the fat browning program and to explore the underlying molecular mechanisms using both in vitro and in vivo models. We assessed the effects of β-HB on fat browning in adipocytes using 3T3-L1 cells and rat models. Methods We evaluated the effects of β-HB on fat browning, thermogenesis, lipid accumulation, adipokine expression, and mitochondrial biogenesis by treating mature 3T3-L1 adipocytes with sodium β-HB for 24 h or by continuously exposing preadipocytes to β-HB during the 8-day differentiation process. Male Sprague Dawley rats were divided into control, exercise only (EX), ketogenic diet only (KD), and combined exercise and ketogenic diet (KE) groups for an 8-week intervention involving diet and/or exercise. After intervention, we evaluated WAT histology, plasma lipids and adipokines, and the expression of markers related to fat browning, thermogenesis and mitochondrial biogenesis in WAT of rats. Results In our adipocyte culture experiments, β-HB reduced intracellular lipid accumulation by enhancing lipolysis and stimulated the expression of thermogenic and fat browning genes like uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), and adipokines such as fibroblast growth factor 21 (FGF21) and Fibronectin type III domain-containing protein 5 (FDNC5). Additionally, β-HB activated the AMPK-SIRT1-PGC-1α pathway, with UCP1 and PRDM16 upregulation mediated by β-HB intracellular action and SIRT1 activity. In animal experiments, KE group raised β-HB levels, decreasing body weight and blood lipids. KD with EX promoted WAT browning possibly via AMPK-SIRT1-PGC-1α, augmenting PRDM16, UCP1, FGF21, and FNDC5 expression. Conclusion β-HB induction via KD and/or EX shows potential in promoting WAT browning by activating mitochondrial biogenesis, lipolysis, and thermogenesis, suggesting that dietary and physical intervention inducing β-HB may benefit metabolic health.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Keren Esther Kristina Mantik
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Urology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
76
|
Inoue SI, Emmett MJ, Lim HW, Midha M, Richter HJ, Celwyn IJ, Mehmood R, Chondronikola M, Klein S, Hauck AK, Lazar MA. Short-term cold exposure induces persistent epigenomic memory in brown fat. Cell Metab 2024; 36:1764-1778.e9. [PMID: 38889724 PMCID: PMC11305953 DOI: 10.1016/j.cmet.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPβ was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPβ in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPβ-dependent and HDAC3-independent cold-adaptive epigenomic memory.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mohit Midha
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah J Richter
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isaac J Celwyn
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rashid Mehmood
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Chondronikola
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy K Hauck
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
77
|
Sun Y, Benmhammed H, Al Abdullatif S, Habara A, Fu E, Brady J, Williams C, Ilinski A, Sharma A, Mahdaviani K, Alekseyev YO, Campbell JD, Steinberg MH, Cui S. PGC-1α agonism induces fetal hemoglobin and exerts antisickling effects in sickle cell disease. SCIENCE ADVANCES 2024; 10:eadn8750. [PMID: 39083598 PMCID: PMC11290485 DOI: 10.1126/sciadv.adn8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Sickle cell disease is a growing health burden afflicting millions around the world. Clinical observation and laboratory studies have shown that the severity of sickle cell disease is ameliorated in individuals who have elevated levels of fetal hemoglobin. Additional pharmacologic agents to induce sufficient fetal hemoglobin to diminish clinical severity is an unmet medical need. We recently found that up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) can induce fetal hemoglobin synthesis in human primary erythroblasts. Here, we report that a small molecule, SR-18292, increases PGC-1α leading to enhanced fetal hemoglobin expression in human erythroid cells, β-globin yeast artificial chromosome mice, and sickle cell disease mice. In SR-18292-treated sickle mice, sickled red blood cells are significantly reduced, and disease complications are alleviated. SR-18292, or agents in its class, could be a promising additional therapeutic for sickle cell disease.
Collapse
Affiliation(s)
- Yanan Sun
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hajar Benmhammed
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam Al Abdullatif
- Single Cell Sequencing Core Facility, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alawi Habara
- Imam Abdulrahman Bin Faisal University, Department of Clinical Biochemistry, Dammam, Saudi Arabia
| | - Eric Fu
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Jordan Brady
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Christopher Williams
- Single Cell Sequencing Core Facility, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Adrian Ilinski
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anusha Sharma
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiana Mahdaviani
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D. Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Martin H Steinberg
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
78
|
Tang X, Shi Y, Chen Y, Sun Z, Wang L, Tang P, Cui H, Zhao W, Xu W, Kopylov P, Shchekochikhin D, Afina B, Han W, Liu X, Zhang Y. Tetrahydroberberrubine exhibits preventive effect on obesity by activating PGC1α-mediated thermogenesis in white and brown adipose tissue. Biochem Pharmacol 2024; 226:116381. [PMID: 38909786 DOI: 10.1016/j.bcp.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The escalating prevalence of obesity presents formidable challenges, necessitating the development of effective therapeutic strategies. In this study, we aimed to elucidate the preventive effects on obesity of tetrahydroberberrubine (THBru), a derivative of berberine (BBR) and to unravel its underlying mechanism. Using an obese mouse model induced by a high-fat diet (HFD), THBru was found to markedly ameliorate obesity, as evidenced by reduced body weight, decreased Lee's index, diminished fat mass in epididymal white adipose tissue (WAT) and brown adipose tissue (BAT), alongside improved dyslipidemia. Notably, at the same dose, THBru exhibited superior efficacy compared to BBR. RNA-sequencing and gene set enrichment analysis indicated THBru activated thermogenesis, which was further confirmed in WAT, BAT, and 3T3-L1 cells. Bioinformatics analysis of RNA-sequencing data revealed the candidate gene Pgc1α, a key regulator involved in thermogenesis. Moreover, THBru was demonstrated to elevate the expression of PGC1α by stabilizing its mRNA in WAT, BAT and 3T3-L1 cells. Furthermore, PGC1α knockdown blocked the pro-thermogenic and anti-obesity action of THBru both in vivo and in vitro. This study unravels the preventive effects of THBru on obesity through the activation of PGC1α-mediated thermogenesis, thereby delineating its potential therapeutic implications for obesity and associated disorders.
Collapse
Affiliation(s)
- Xueqing Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yang Shi
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yongchao Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Lei Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Pingping Tang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Hao Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Wanqing Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Dmitry Shchekochikhin
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Bestavashvili Afina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Weina Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
79
|
Varuzhanyan G, Chen CC, Freeland J, He T, Tran W, Song K, Wang L, Cheng D, Xu S, Dibernardo GA, Esedebe FN, Bhatia V, Han M, Abt ER, Park JW, Memarzadeh S, Shackelford D, Lee JK, Graeber T, Shirihai O, Witte O. PGC-1α drives small cell neuroendocrine cancer progression towards an ASCL1-expressing subtype with increased mitochondrial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588489. [PMID: 38645232 PMCID: PMC11030384 DOI: 10.1101/2024.04.09.588489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adenocarcinomas from multiple tissues can evolve into lethal, treatment-resistant small cell neuroendocrine (SCN) cancers comprising multiple subtypes with poorly defined metabolic characteristics. The role of metabolism in directly driving subtype determination remains unclear. Through bioinformatics analyses of thousands of patient tumors, we identified enhanced PGC-1α-a potent regulator of oxidative phosphorylation (OXPHOS)-in various SCN cancers (SCNCs), closely linked with neuroendocrine differentiation. In a patient-derived prostate tissue SCNC transformation system, the ASCL1-expressing neuroendocrine subtype showed elevated PGC-1α expression and increased OXPHOS activity. Inhibition of PGC-1α and OXPHOS reduced the proliferation of SCN lung and prostate cancer cell lines and blocked SCN prostate tumor formation. Conversely, enhancing PGC- 1α and OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting novel metabolic vulnerabilities in SCNCs across different tissues. STATEMENT OF SIGNIFICANCE Our study provides functional evidence that metabolic reprogramming can directly impact cancer phenotypes and establishes PGC-1α-induced mitochondrial metabolism as a driver of SCNC progression and lineage determination. These mechanistic insights reveal common metabolic vulnerabilities across SCNCs originating from multiple tissues, opening new avenues for pan-SCN cancer therapeutic strategies.
Collapse
|
80
|
Sciarretta F, Ninni A, Zaccaria F, Chiurchiù V, Bertola A, Karlinsey K, Jia W, Ceci V, Di Biagio C, Xu Z, Gaudioso F, Tortolici F, Tiberi M, Zhang J, Carotti S, Boudina S, Grumati P, Zhou B, Brestoff JR, Ivanov S, Aquilano K, Lettieri-Barbato D. Lipid-associated macrophages reshape BAT cell identity in obesity. Cell Rep 2024; 43:114447. [PMID: 38963761 PMCID: PMC11693933 DOI: 10.1016/j.celrep.2024.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor β1 (TGF-β1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.
Collapse
Affiliation(s)
| | - Andrea Ninni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Veronica Ceci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Gaudioso
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jiabi Zhang
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
| | - Sihem Boudina
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT, USA
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS Fondazione Bietti, Rome, Italy.
| |
Collapse
|
81
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
82
|
Luo Y, Bollag WB. The Role of PGC-1α in Aging Skin Barrier Function. Cells 2024; 13:1135. [PMID: 38994987 PMCID: PMC11240425 DOI: 10.3390/cells13131135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
83
|
Kong C, Guo Z, Liu F, Tang N, Wang M, Yang D, Li C, Yang Z, Ma Y, Wang P, Tang Q. Triad3A-Mediated K48-Linked ubiquitination and degradation of TLR9 impairs mitochondrial bioenergetics and exacerbates diabetic cardiomyopathy. J Adv Res 2024; 61:65-81. [PMID: 37625569 PMCID: PMC11258663 DOI: 10.1016/j.jare.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Targeted protein degradation represents a promising therapeutic approach, while diabetic cardiomyopathy (DCM) arises as a consequence of aberrant insulin secretion and impaired glucose and lipid metabolism in the heart.. OBJECTIVES Considering that the Toll-like receptor 9 (TLR9) signaling pathway plays a pivotal role in regulating energy metabolism, safeguarding cardiomyocytes, and influencing glucose uptake, the primary objective of this study was to investigate the impact of TLR9 on diabetic cardiomyopathy (DCM) and elucidate its underlying mechanism. METHODS Mouse model of DCM was established using intraperitoneal injection of STZ, and mice were transfected with adeno-associated virus serotype 9-TLR9 (AAV9-TLR9) to assess the role of TLR9 in DCM. To explore the mechanism of TLR9 in regulating DCM disease progression, we conducted interactome analysis and employed multiple molecular approaches. RESULTS Our study revealed a significant correlation between TLR9 expression and mouse DCM. TLR9 overexpression markedly mitigated cardiac dysfunction, myocardial fibrosis, oxidative stress, and apoptosis in DCM, while inflammation levels remained relatively unaffected. Mechanistically, TLR9 overexpression positively modulated mitochondrial bioenergetics and activated the AMPK-PGC1a signaling pathway. Furthermore, we identified Triad3A as an interacting protein that facilitated TLR9's proteasomal degradation through K48-linked ubiquitination. Inhibiting Triad3A expression improved cardiac function and pathological changes in DCM by enhancing TLR9 activity. CONCLUSIONS The findings of this study highlight the critical role of TLR9 in maintaining cardiac function and mitigating pathological alterations in diabetic cardiomyopathy. Triad3A-mediated regulation of TLR9 expression and function has significant implications for understanding the pathogenesis of DCM. Targeting TLR9 and its interactions with Triad3A may hold promise for the development of novel therapeutic strategies for diabetic cardiomyopathy. Further research is warranted to fully explore the therapeutic potential of TLR9 modulation in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Fangyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
84
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
85
|
Yoon YS, Chung KS, Lee SY, Heo SW, Kim YR, Lee JK, Kim H, Park S, Shin YK, Lee KT. Anti-obesity effects of a standardized ethanol extract of Eisenia bicyclis by regulating the AMPK signaling pathway in 3T3-L1 cells and HFD-induced mice. Food Funct 2024; 15:6424-6437. [PMID: 38771619 DOI: 10.1039/d4fo00759j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.
Collapse
Affiliation(s)
- Young-Seo Yoon
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye-Rin Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyunjae Kim
- Department of New Material Development, COSMAXBIO, Gyeonggi, 13486, Republic of Korea
| | - Soyoon Park
- Department of New Material Development, COSMAXBIO, Gyeonggi, 13486, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Gyeonggi, 13486, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
86
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
87
|
Yang S, Liu Y, Wu X, Zhu R, Sun Y, Zou S, Zhang D, Yang X. Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes. Int J Mol Sci 2024; 25:6303. [PMID: 38928011 PMCID: PMC11203837 DOI: 10.3390/ijms25126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.
Collapse
Affiliation(s)
- Siqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yingke Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Shuoya Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| |
Collapse
|
88
|
Chen Y, Liu T, Hu D, Hu T, Ye C, Mu W. Histology, fatty acid composition, antioxidant and glycolipid metabolism, and transcriptome analyses of the acute cold stress response in Phoxinus lagowskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101242. [PMID: 38729031 DOI: 10.1016/j.cbd.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Water temperature is a crucial environmental factor that significantly affects the physiological and biochemical processes of fish. Due to the occurrence of cold events in aquaculture, it is imperative to investigate how fish respond to cold stress. This study aims to uncover the mechanisms responds to acute cold stress by conducting a comprehensive analysis of the histomorphology, glycolipid metabolic and antioxidant enzymes, fatty acid composition and transcriptome at three temperatures (16 °C, 10 °C and 4 °C) in Phoxinus lagowskii. Our results showed that cold stress not damaged muscle microstructure but caused autophagy (at 10 °C). In addition, serum glucose (Glu) and triglycerides (TG) increased during cold stress. The activities of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), fructose phosphokinase (PFK), hexokinase (HK), pyruvate kinase (PK), and malondialdehyde (MDA) content in muscle were measured and analyzed. During cold stress, superoxide dismutase and catalase activities increased, reactive oxygen species content decreased. No significant difference in Glutathione peroxidase (GPx) activity, malondialdehyde and total cholesterol (T-CHO) contents among groups. Phosphokinase and pyruvate kinase activities decreased, and HK activity increased during cold stress. Our study resulted in the identification of a total of 25,400 genes, with 2524 genes showing differential expression across different temperature treatments. Furthermore, KEGG pathway indicated that some pathways upregulated during light cold stress (at 10 °C, including autophagy, and AMP-activated protein kinase (AMPK) signaling pathway. Additionally, circadian rhythm is among the most enriched pathways in genes up-regulated during severe cold stress (at 4 °C). Our findings offer valuable insights into how cold-water fish respond to cold stress.
Collapse
Affiliation(s)
- Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tianmei Liu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Deer Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Cunrun Ye
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
89
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
90
|
Tavasoli A, Kachuei M, Talebi S, Eghdami S. Complex mitochondrial disease caused by the mutation of COX10 in a toddler: a case-report study. Ann Med Surg (Lond) 2024; 86:3753-3756. [PMID: 38846886 PMCID: PMC11152868 DOI: 10.1097/ms9.0000000000002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/14/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction and importance Cytochrome C oxidase (COX) deficiency is an uncommon inherited metabolic disorder. It is identified by a lack of the COX, also known as Complex IV. This enzyme plays a crucial role in the rate-limiting and oxygen-accepting step of the respiratory chain within the subcellular structures called mitochondria. The deficiency of COX can either be restricted to skeletal muscle tissues or can impact multiple tissues throughout the body. Case presentation A 3-year-old girl was admitted due to muscle weakness and a decline in developmental milestones 7 days after a significant stressor. Leukodystrophy was observed in the brain magnetic resonance imaging, and genome sequencing identified a homozygous mutation in exon 1 and 7 of chromosome 17. This mutation led to a deficiency in COX10, which is a component of mitochondrial complex IV. Clinical discussion In the medical field, inherited metabolic disorders can be complex to diagnose due to overlapping symptoms with other conditions. Mitochondria's oxidative phosphorylation system, including the COX enzyme complex, plays a crucial role in energy production. Mitochondrial disorders, including COX deficiency, can present at various stages of life with diverse symptoms. Treatment options focus on supportive care and potential benefits from supplements like coenzyme-Q10 and small-molecule therapies targeting mitochondrial function. Identifying genetic mutations is key for advancing treatments in this area. Conclusion This report presents a unique case of developmental regression and muscle weakness in a paediatric patient, which can be attributed to a rare occurrence of type 3 nuclear mitochondrial complex IV deficiency.
Collapse
Affiliation(s)
- Azita Tavasoli
- Department of Pediatric Neurology, Hazrat-e Ali Asghar Hospital, Iran University of Medical Sciences
| | - Maryam Kachuei
- Department of Pediatric Neurology, Hazrat-e Ali Asghar Hospital, Iran University of Medical Sciences
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS)
| | - Shayan Eghdami
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
91
|
Marqués P, Burillo J, González-Blanco C, Jiménez B, García G, García-Aguilar A, Iglesias-Fortes S, Lockwood Á, Guillén C. Regulation of TSC2 lysosome translocation and mitochondrial turnover by TSC2 acetylation status. Sci Rep 2024; 14:12521. [PMID: 38822085 PMCID: PMC11143182 DOI: 10.1038/s41598-024-63525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic β cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Patricia Marqués
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Jesús Burillo
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Gema García
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Ana García-Aguilar
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Ángela Lockwood
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain.
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain.
| |
Collapse
|
92
|
Wang M, Guo W, Chen JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signal 2024:10.1007/s11302-024-10022-1. [PMID: 38802651 DOI: 10.1007/s11302-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.
Collapse
Affiliation(s)
- Meng Wang
- International Joint Research Center on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
93
|
Kook E, Kim DH. Elucidating the Role of Lipid-Metabolism-Related Signal Transduction and Inhibitors in Skin Cancer. Metabolites 2024; 14:309. [PMID: 38921444 PMCID: PMC11205519 DOI: 10.3390/metabo14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Lipids, as multifunctional molecules, play a crucial role in a variety of cellular processes. These include regulating membrane glycoprotein functions, controlling membrane trafficking, influencing apoptotic pathways, and affecting drug transport. In addition, lipid metabolites can alter the surrounding microenvironment in ways that might encourage tumor progression. The reprogramming of lipid metabolism is pivotal in promoting tumorigenesis and cancer progression, with tumors often displaying significant changes in lipid profiles. This review concentrates on the essential factors that drive lipid metabolic reprogramming, which contributes to the advancement and drug resistance in melanoma. Moreover, we discuss recent advances and current therapeutic strategies that employ small-molecule inhibitors to target lipid metabolism in skin cancers, particularly those associated with inflammation and melanoma.
Collapse
Affiliation(s)
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| |
Collapse
|
94
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
95
|
Feng L, Lin Z, Tang Z, Zhu L, Xu S, Tan X, Wang X, Mai J, Tan Q. Emodin improves renal fibrosis in chronic kidney disease by regulating mitochondrial homeostasis through the mediation of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α). Eur J Histochem 2024; 68:3917. [PMID: 38742403 PMCID: PMC11128849 DOI: 10.4081/ejh.2024.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a leading public health issue associated with high morbidity worldwide. However, there are only a few effective therapeutic strategies for CKD. Emodin, an anthraquinone compound from rhubarb, can inhibit fibrosis in tissues and cells. Our study aims to investigate the antifibrotic effect of emodin and the underlying molecular mechanism. A unilateral ureteral obstruction (UUO)-induced rat model was established to evaluate the effect of emodin on renal fibrosis development. Hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry staining were performed to analyze histopathological changes and fibrotic features after emodin treatment. Subsequently, a transforming growth factor-beta 1 (TGF-β1)-induced cell model was used to assess the inhibition of emodin on cell fibrosis in vitro. Furthermore, Western blot analysis and real-time quantitative reverse transcription-polymerase chain reaction were performed to validate the regulatory mechanism of emodin on renal fibrosis progression. As a result, emodin significantly improved histopathological abnormalities in rats with UUO. The expression of fibrosis biomarkers and mitochondrial biogenesis-related proteins also decreased after emodin treatment. Moreover, emodin blocked TGF-β1-induced fibrotic phenotype, lipid accumulation, and mitochondrial homeostasis in NRK-52E cells. Conversely, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) silencing significantly reversed these features in emodin-treated cells. Collectively, emodin plays an important role in regulating PGC-1α-mediated mitochondria function and energy homeostasis. This indicates that emodin exhibits great inhibition against renal fibrosis and acts as a promising inhibitor of CKD.
Collapse
Affiliation(s)
- Liuchang Feng
- Department of Nephrology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Zaoqiang Lin
- Department of Nephrology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Zeyong Tang
- Department of Nephrology, Guangzhou University of Chinese Medicine, Guangzhou.
| | - Lin Zhu
- Department of Nephrology, Shenzhen Hospital; Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Shu Xu
- Department of Oncology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen.
| | - Xi Tan
- Medicopsychology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| | - Xinyuan Wang
- Medicopsychology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing.
| | - Jianling Mai
- Department of Hemodialysis, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou.
| | - Qinxiang Tan
- Department of Nephrology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen.
| |
Collapse
|
96
|
Cui X, Cao Q, Li F, Jing J, Liu Z, Yang X, Schwartz GJ, Yu L, Shi H, Shi H, Xue B. The histone methyltransferase SUV420H2 regulates brown and beige adipocyte thermogenesis. JCI Insight 2024; 9:e164771. [PMID: 38713533 PMCID: PMC11382888 DOI: 10.1172/jci.insight.164771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces - whereas Suv420h2 overexpression significantly increases - Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to downregulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn upregulates PGC1α protein levels, and this upregulation is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.
Collapse
Affiliation(s)
- Xin Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zhixue Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Xiaosong Yang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huidong Shi
- Georgia Cancer Center and
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
97
|
Mozaffaritabar S, Koltai E, Zhou L, Bori Z, Kolonics A, Kujach S, Gu Y, Koike A, Boros A, Radák Z. PGC-1α activation boosts exercise-dependent cellular response in the skeletal muscle. J Physiol Biochem 2024; 80:329-335. [PMID: 38261146 PMCID: PMC11074013 DOI: 10.1007/s13105-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The role of Peroxisome proliferator-activated receptor-gamma coactivator alpha (PGC-1α) in fat metabolism is not well known. In this study, we compared the mechanisms of muscle-specific PGC-1α overexpression and exercise-related adaptation-dependent fat metabolism. PGC-1α trained (PGC-1α Ex) and wild-trained (wt-ex) mice were trained for 10 weeks, five times a week at 30 min per day with 60 percent of their maximal running capacity. The PGC-1α overexpressed animals exhibited higher levels of Fibronectin type III domain-containing protein 5 (FNDC5), 5' adenosine monophosphate-activated protein kinase alpha (AMPK-α), the mammalian target of rapamycin (mTOR), Sirtuin 1 (SIRT1), Lon protease homolog 1 (LONP1), citrate synthase (CS), succinate dehydrogenase complex flavoprotein subunit A (SDHA), Mitofusin-1 (Mfn1), endothelial nitric oxide synthase (eNOS), Hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), G protein-coupled receptor 41 (GPR41), and Phosphatidylcholine Cytidylyltransferase 2 (PCYT2), and lower levels of Sirtuin 3 (SIRT3) compared to wild-type animals. Exercise training increased the protein content levels of SIRT1, HSL, and ATGL in both the wt-ex and PGC-1α trained groups. PGC-1α has a complex role in cellular signaling, including the upregulation of lipid metabolism-associated proteins. Our data reveals that although exercise training mimics the effects of PGC-1α overexpression, it incorporates some PGC-1α-independent adaptive mechanisms in fat uptake and cell signaling.
Collapse
Affiliation(s)
- Soroosh Mozaffaritabar
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Erika Koltai
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Lei Zhou
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Zoltan Bori
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Attila Kolonics
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Sylwester Kujach
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Atsuko Koike
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Anita Boros
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary
| | - Zsolt Radák
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, 1123, Budapest, Hungary.
- Waseda Institute for Sport Sciences, Waseda University, Saitama, 359-1192, Japan.
| |
Collapse
|
98
|
He Q, Yao W, Luo J, Wu J, Zhang F, Li C, Gao L, Zhang Y. Knockdown of PROX1 promotes milk fatty acid synthesis by targeting PPARGC1A in dairy goat mammary gland. Int J Biol Macromol 2024; 266:131043. [PMID: 38518943 DOI: 10.1016/j.ijbiomac.2024.131043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Goat milk is rich in various fatty acids that are beneficial to human health. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and RNA-seq analyses of goat mammary glands at different lactation stages revealed a novel lactation regulatory factor, Prospero homeobox 1 (PROX1). However, the mechanism whereby PROX1 regulates lipid metabolism in dairy goats remains unclear. We found that PROX1 exhibits the highest expression level during peak lactation period. PROX1 knockdown enhanced the expression of genes related to de novo fatty acid synthesis (e.g., SREBP1 and FASN) and triacylglycerol (TAG) synthesis (e.g., DGAT1 and GPAM) in goat mammary epithelial cells (GMECs). Consistently, intracellular TAG and lipid droplet contents were significantly increased in PROX1 knockdown cells and reduced in PROX1 overexpression cells, and we observed similar results in PROX1 knockout mice. Following PROX1 overexpression, RNA-seq showed a significant upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A) expression. Further, PPARGC1A knockdown attenuated the inhibitory effects of PROX1 on TAG contents and lipid-droplet formation in GMECs. Moreover, we found that PROX1 promoted PPARGC1A transcription via the PROX1 binding sites (PBSs) located in the PPARGC1A promoter. These results suggest a novel target for manipulating the goat milk-fat composition and improving the quality of goat milk.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Yunnan Agricultural University, Faculty of Animal Science and Technology, Kunming 65201, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chun Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
99
|
Abdillah AM, Yun JW. Capsaicin induces ATP-dependent thermogenesis via the activation of TRPV1/β3-AR/α1-AR in 3T3-L1 adipocytes and mouse model. Arch Biochem Biophys 2024; 755:109975. [PMID: 38531438 DOI: 10.1016/j.abb.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Capsaicin (CAP) is a natural bioactive compound in chili pepper that activates the transient receptor potential vanilloid subfamily 1 (TRPV1) and is known to stimulate uncoupling protein 1 (UCP1)-dependent thermogenesis. However, its effect on ATP-dependent thermogenesis remains unknown. In this study, we employed qRT-PCR, immunoblot, staining method, and assay kit to investigate the role of CAP on ATP-dependent thermogenesis and its modulatory roles on the TRPV1, β3-adrenergic receptor (β3-AR), and α1-AR using in vitro and in vivo models. The studies showed that CAP treatment in high-fat diet-induced obese mice resulted in lower body weight gain and elevated ATP-dependent thermogenic effectors' protein and gene expression through ATP-consuming calcium and creatine futile cycles. In both in vitro and in vivo experiments, CAP treatment elevated the protein and gene expressions of sarcoendoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), ryanodine receptor 2 (RYR2), creatine kinase B (CKB), and creatine kinase mitochondrial 2 (CKMT2) mediated by the activation of β3-AR, α1-AR, and TRPV1. Our study showed that CAP increased intracellular Ca2+ levels and the expression of voltage-dependent anion channel (VDAC) and mitochondrial calcium uniporter (MCU) which indicates that increased mitochondrial Ca2+ levels lead to increased expression of oxidative phosphorylation protein complexes as a result of ATP-futile cycle activation. A mechanistic study in 3T3-L1 adipocytes revealed that CAP induces UCP1- and ATP-dependent thermogenesis mediated by the β3-AR/PKA/p38MAPK/ERK as well as calcium-dependent α1-AR/TRPV1/CaMKII/AMPK/SIRT1 pathway. Taken together, we identified CAP's novel functional and modulatory roles in UCP1- and ATP-dependent thermogenesis, which is important for developing therapeutic strategies for combating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Alfin Mohammad Abdillah
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
100
|
Hurtado K, Scholpa NE, Schnellmann JG, Schnellmann RG. Serotonin regulation of mitochondria in kidney diseases. Pharmacol Res 2024; 203:107154. [PMID: 38521286 PMCID: PMC11823281 DOI: 10.1016/j.phrs.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Serotonin, while conventionally recognized as a neurotransmitter in the CNS, has recently gained attention for its role in the kidney. Specifically, serotonin is not only synthesized in the kidney, but it also regulates glomerular function, vascular resistance, and mitochondrial homeostasis. Because of serotonin's importance to mitochondrial health, this review is focused on the role of serotonin and its receptors in mitochondrial function in the context of acute kidney injury, chronic kidney disease, and diabetic kidney disease, all of which are characterized by mitochondrial dysfunction and none of which has approved pharmacological treatments. Evidence indicates that activation of certain serotonin receptors can stimulate mitochondrial biogenesis (MB) and restore mitochondrial homeostasis, resulting in improved renal function. Serotonin receptor agonists that induce MB are therefore of interest as potential therapeutic strategies for renal injury and disease. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is associated with many human renal diseases such as acute kidney injury, chronic kidney disease, and diabetic kidney disease, which are associated with increased morbidity and mortality. Unfortunately, none of these pathologies has an FDA-approved pharmacological intervention, underscoring the urgency of identifying new therapeutics for such disorders. Studies show that induction of mitochondrial biogenesis via serotonin (5-hydroxytryptamine, 5-HT) receptors reduces kidney injury markers, restores mitochondrial and renal function after kidney injury, and decreases mortality, suggesting that targeting 5-HT receptors may be a promising therapeutic avenue for mitochondrial dysfunction in kidney diseases. While numerous reviews describe the importance of mitochondria and mitochondrial quality control mechanisms in kidney disease, the relevance of 5-HT receptor-mediated mitochondrial metabolic modulation in the kidney has yet to be thoroughly explored.
Collapse
Affiliation(s)
- Kevin Hurtado
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States
| | | | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|