51
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
52
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
53
|
Sun JB, Cheng C, Tian QQ, Yuan H, Yang XJ, Deng H, Guo XY, Cui YP, Zhang MK, Yin ZX, Wang C, Qin W. Transcutaneous Auricular Vagus Nerve Stimulation Improves Spatial Working Memory in Healthy Young Adults. Front Neurosci 2022; 15:790793. [PMID: 35002607 PMCID: PMC8733384 DOI: 10.3389/fnins.2021.790793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023] Open
Abstract
Working memory (WM) is one of the core components of higher cognitive functions. There exists debate regarding the extent to which current techniques can enhance human WM capacity. Here, we examined the WM modulation effects of a previously less studied technique, transcutaneous auricular vagus nerve stimulation (taVNS). In experiment 1, a within-subject study, we aimed to investigate whether and which stimulation protocols of taVNS can modulate spatial WM performance in healthy adults. Forty-eight participants performed baseline spatial n-back tasks (1, 3-back) and then received online taVNS, offline taVNS, or sham stimulation before or during (online group) the posttest of spatial n-back tasks in random order. Results showed that offline taVNS could significantly increase hits in spatial 3-back task, whereas no effect was found in online taVNS or sham group. No significant taVNS effects were found on correct rejections or reaction time of accurate trials (aRT) in both online and offline protocols. To replicate the results found in experiment 1 and further investigate the generalization effect of offline taVNS, we carried out experiment 2. Sixty participants were recruited and received offline taVNS or offline earlobe stimulation in random order between baseline and posttests of behavioral tests (spatial/digit 3-back tasks). Results replicated the findings; offline taVNS could improve hits but not correct rejections or aRT in spatial WM performance, which were found in experiment 1. However, there were no significant stimulation effects on digit 3-back task. Overall, the findings suggest that offline taVNS has potential on modulating WM performance.
Collapse
Affiliation(s)
- Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Chen Cheng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Qian-Qian Tian
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hang Yuan
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Hui Deng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xiao-Yu Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Ya-Peng Cui
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Meng-Kai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Zi-Xin Yin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Cong Wang
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| |
Collapse
|
54
|
Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci 2022; 23:157-171. [PMID: 34997214 DOI: 10.1038/s41583-021-00555-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Bidirectional communication between the peripheral nervous system (PNS) and the immune system is a crucial part of an effective but balanced mammalian response to invading pathogens, tissue damage and inflammatory stimuli. Here, we review how somatosensory and autonomic neurons regulate immune cellular responses at barrier tissues and in peripheral organs. Immune cells express receptors for neuronal mediators, including neuropeptides and neurotransmitters, allowing neurons to influence their function in acute and chronic inflammatory diseases. Distinct subsets of peripheral sensory, sympathetic, parasympathetic and enteric neurons are able to signal to innate and adaptive immune cells to modulate their cellular functions. In this Review, we highlight recent studies defining the molecular mechanisms by which neuroimmune signalling mediates tissue homeostasis and pathology. Understanding the neural circuitry that regulates immune responses can offer novel targets for the treatment of a wide array of diseases.
Collapse
|
55
|
McAllen RM, McKinley MJ, Martelli D. Reflex regulation of systemic inflammation by the autonomic nervous system. Auton Neurosci 2021; 237:102926. [PMID: 34906897 DOI: 10.1016/j.autneu.2021.102926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
This short review focusses on the inflammatory reflex, which acts in negative feedback manner to moderate the inflammatory consequences of systemic microbial challenge. The historical development of the inflammatory reflex concept is reviewed, along with evidence that the endogenous reflex response to systemic inflammation is mediated by the splanchnic sympathetic nerves rather than by the vagi. We describe the coordinated nature of this reflex anti-inflammatory action: suppression of pro-inflammatory cytokines coupled with enhanced levels of the anti-inflammatory cytokine, interleukin 10. The limited information on the afferent and central pathways of the reflex is noted. We describe that the efferent anti-inflammatory action of the reflex is distributed among the abdominal viscera: several organs, including the spleen, can be removed without disabling the reflex. Understanding of the effector mechanism is incomplete, but it probably involves a very local action of neurally released noradrenaline on beta2 adrenoceptors on the surface of tissue resident macrophages and other innate immune cells. Finally we speculate on the biological and clinical significance of the reflex, citing evidence of its power to influence the resolution of experimental bacteraemia.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davide Martelli
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| |
Collapse
|
56
|
Hölsken S, Krefting F, Schedlowski M, Sondermann W. Common Fundamentals of Psoriasis and Depression. Acta Derm Venereol 2021; 101:adv00609. [PMID: 34806760 PMCID: PMC9455336 DOI: 10.2340/actadv.v101.565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Psoriasis is an inflammatory, immune-mediated disease that is frequently associated with psychological comorbidities such as depression. The stigma patients feel because of the appearance of their skin may contribute to the high psycho-social burden of psoriasis. However, there is emerging evidence that overlapping biological mechanisms are, to a substantial degree, responsible for the close interaction between psoriasis and depression. Increased proinflammatory mediators, such as C-reactive protein or interleukin-6, are present in both psoriasis and depression, indicating that inflammation may represent a pathophysiological link between the diseases. Anti-inflammatory biologic therapies treat the clinical manifestations of psoriasis, but might also play a significant role in reducing associated depressive symptoms in patients with psoriasis. Comparison between single studies focusing on the change in depressive symptoms in psoriasis is limited by inconsistency in the depression screening tools applied.
Collapse
Affiliation(s)
| | | | | | - Wiebke Sondermann
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, DE-45122 Essen, Germany.
| |
Collapse
|
57
|
Koren T, Yifa R, Amer M, Krot M, Boshnak N, Ben-Shaanan TL, Azulay-Debby H, Zalayat I, Avishai E, Hajjo H, Schiller M, Haykin H, Korin B, Farfara D, Hakim F, Kobiler O, Rosenblum K, Rolls A. Insular cortex neurons encode and retrieve specific immune responses. Cell 2021; 184:5902-5915.e17. [PMID: 34752731 DOI: 10.1016/j.cell.2021.10.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the brain regulates peripheral immunity, yet whether and how the brain represents the state of the immune system remains unclear. Here, we show that the brain's insular cortex (InsCtx) stores immune-related information. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Thus, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
Collapse
Affiliation(s)
- Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Re'ee Yifa
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Mariam Amer
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maria Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nadia Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hilla Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itay Zalayat
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eden Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Haitham Hajjo
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Schiller
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hedva Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Dorit Farfara
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Fahed Hakim
- Pediatric Pulmonary Unit, Rambam Health Care Campus, Haifa, Israel; Cancer Research Center, EMMS Hospital, Nazareth, Israel
| | - Oren Kobiler
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
58
|
Chen JH, Shih HS, Tu J, Chiou JM, Chang SH, Hsu WL, Lai LC, Chen TF, Chen YC. A Longitudinal Study on the Association of Interrelated Factors Among Frailty Dimensions, Cognitive Domains, Cognitive Frailty, and All-Cause Mortality. J Alzheimers Dis 2021; 84:1795-1809. [PMID: 34719497 DOI: 10.3233/jad-215111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cognitive frailty integrating impaired cognitive domains and frailty dimensions has not been explored. OBJECTIVE This study aimed to explore 1) associations among frailty dimensions and cognitive domains over time and 2) the extended definitions of cognitive frailty for predicting all-cause mortality. METHODS This four-year cohort study recruited 521 older adults at baseline (2011-2013). We utilized 1) generalized linear mixed models exploring associations of frailty dimensions (physical dimension: modified from Fried et al.; psychosocial dimension: integrating self-rated health, mood, and social relationship and support; global frailty: combining physical and psychosocial frailty) with cognition (global and domain-specific) over time and 2) time-dependent Cox proportional hazard models assessing associations between extended definitions of cognitive frailty (cognitive domains-frailty dimensions) and all-cause mortality. RESULTS At baseline, the prevalence was 3.0%for physical frailty and 37.6%for psychosocial frailty. Greater physical frailty was associated with poor global cognition (adjusted odds ratio = 1.43-3.29, β: -1.07), logical memory (β: -0.14 to -0.10), and executive function (β: -0.51 to -0.12). Greater psychosocial frailty was associated with poor global cognition (β: -0.44) and attention (β: -0.15 to -0.13). Three newly proposed definitions of cognitive frailty, "mild cognitive impairment (MCI)-psychosocial frailty," "MCI-global frailty," and "impaired verbal fluency-global frailty," outperformed traditional cognitive frailty for predicting all-cause mortality (adjusted hazard ratio = 3.49, 6.83, 3.29 versus 4.87; AIC = 224.3, 221.8, 226.1 versus 228.1). CONCLUSION Notably, extended definitions of cognitive frailty proposed by this study better predict all-cause mortality in older adults than the traditional definition of cognitive frailty, highlighting the importance of psychosocial frailty to reduce mortality in older adults.
Collapse
Affiliation(s)
- Jen-Hau Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-San Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jennifer Tu
- Duke University School of Medicine, Durham, NC, USA
| | - Jeng-Min Chiou
- Institute of Statistical Science, Academia Sinica, Nankang District, Taipei, Taiwan
| | - Shu-Hui Chang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hsu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
59
|
Zeibich L, Koebele SV, Bernaud VE, Ilhan ZE, Dirks B, Northup-Smith SN, Neeley R, Maldonado J, Nirmalkar K, Files JA, Mayer AP, Bimonte-Nelson HA, Krajmalnik-Brown R. Surgical Menopause and Estrogen Therapy Modulate the Gut Microbiota, Obesity Markers, and Spatial Memory in Rats. Front Cell Infect Microbiol 2021; 11:702628. [PMID: 34660336 PMCID: PMC8515187 DOI: 10.3389/fcimb.2021.702628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Menopause in human females and subsequent ovarian hormone deficiency, particularly concerning 17β-estradiol (E2), increase the risk for metabolic dysfunctions associated with obesity, diabetes type 2, cardiovascular diseases, and dementia. Several studies indicate that these disorders are also strongly associated with compositional changes in the intestinal microbiota; however, how E2 deficiency and hormone therapy affect the gut microbial community is not well understood. Using a rat model, we aimed to evaluate how ovariectomy (OVX) and subsequent E2 administration drive changes in metabolic health and the gut microbial community, as well as potential associations with learning and memory. Findings indicated that OVX-induced ovarian hormone deficiency and E2 treatment had significant impacts on several health-affecting parameters, including (a) the abundance of some intestinal bacterial taxa (e.g., Bifidobacteriaceae and Porphyromonadaceae), (b) the abundance of microbial short-chain fatty acids (SCFAs) (e.g., isobutyrate), (c) weight/BMI, and (d) high-demand spatial working memory following surgical menopause. Furthermore, exploratory correlations among intestinal bacteria abundance, cognition, and BMI underscored the putative influence of surgical menopause and E2 administration on gut-brain interactions. Collectively, this study showed that surgical menopause is associated with physiological and behavioral changes, and that E2-linked compositional changes in the intestinal microbiota might contribute to some of its related negative health consequences. Overall, this study provides novel insights into interactions among endocrine and gastrointestinal systems in the post-menopausal life stage that collectively alter the risk for the development and progression of cardiovascular, metabolic, and dementia-related diseases.
Collapse
Affiliation(s)
- Lydia Zeibich
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, United States
| | - Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Victoria E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Zehra Esra Ilhan
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, United States
| | - Blake Dirks
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, United States
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Rachel Neeley
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Juan Maldonado
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, United States.,Genomics Core, Arizona State University, Tempe, AZ, United States
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, United States
| | - Julia A Files
- Division of Women's Health Internal Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Anita P Mayer
- Division of Women's Health Internal Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
60
|
O'Brien R, Buckley MM, O'Malley D. Divergent effects of exendin-4 and interleukin-6 on rat colonic secretory and contractile activity are associated with changes in regional vagal afferent signaling. Neurogastroenterol Motil 2021; 33:e14160. [PMID: 33945195 DOI: 10.1111/nmo.14160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pro-inflammatory cytokine, interleukin (IL)-6 is elevated in individuals with the functional bowel disorder, irritable bowel syndrome (IBS). IL-6 can independently modify intestinal secreto-motor function, thereby contributing to IBS pathophysiology. Additionally, hormonal changes may underlie symptom flares. Post-prandial exacerbation of IBS symptoms has been linked to secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), which can also influence colonic secreto-motor activity. This study aimed to ascertain if the effects of GLP-1 on colonic secretory and contractile activity was impacted by elevated IL-6 levels and if sensory signals regarding such changes were reflected in altered vagal afferent activity. METHODS Colonic secretory currents and circular muscle contractile activity was investigated in Sprague Dawley rats using Ussing chamber and organ bath electrophysiology. Regional afferent signaling was assessed using extracellular electrophysiological recordings from colonic vagal afferents. KEY RESULTS Application of the GLP-1 receptor agonist, exendin-4 (Ex-4) in the presence of IL-6 potentiated colonic secretory currents and transepithelial resistance. Vagal afferent fibers originating in the submucosal layer exhibited larger responses to Ex-4 when IL-6 was also present. In contrast, co-application of Ex-4 and IL-6 to gut-bath chambers suppressed circular muscle contractile activity. The activity in extrinsic afferents originating in the colonic myenteric layer was similarly suppressed. CONCLUSIONS & INFERENCES Application of Ex-4 in the presence of IL-6 had divergent modulatory effects on colonic secretion and contractile activity. Similar patterns were observed in vagal afferent signaling originating in the submucosal and myenteric neuronal layers, indicating regional afferent activity reflected immune- and endocrine-mediated changes in colonic function.
Collapse
Affiliation(s)
- Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
61
|
Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 2021; 118:2021758118. [PMID: 33737395 DOI: 10.1073/pnas.2021758118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.
Collapse
|
62
|
Fricke F, Gebert J, Kopitz J, Plaschke K. Proinflammatory Extracellular Vesicle-Mediated Signaling Contributes to the Induction of Neuroinflammation in Animal Models of Endotoxemia and Peripheral Surgical Stress. Cell Mol Neurobiol 2021; 41:1325-1336. [PMID: 32557202 PMCID: PMC8225539 DOI: 10.1007/s10571-020-00905-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby causing neurological symptoms ranging from sickness behavior to delirium. Thus, proinflammatory signaling must be operative between the periphery and the central nervous system (CNS). In the present study, we tested whether nanometer-sized extracellular vesicles (EVs) that were produced during the peripheral inflammatory process have the capacity to induce neuroinflammation. Conditions of endotoxemia or surgical intervention were simulated in rats by lipopolysaccharide (LPS) injection or partial hepatectomy (HpX). EVs were concentrated from these animals and tested for their proinflammatory action (I) in a microglial cell line and (II) by intracerebroventricular and (III) by intravenous injections into healthy rats. EVs from both conditions induced the secretion of cytokines from the glial cell line. Intracerebroventricular injection of the EVs caused the release of inflammatory cytokines to the cerebrospinal fluid indicating their pro-neuroinflammatory capacity. Finally, proinflammatory EVs were shown to pass the blood-brain barrier and induce neuroinflammation after their intravenous injection. Based on these data, we suggest that EV-associated proinflammatory signaling contributes to the induction of neuroinflammation in endotoxemia and peripheral surgical stress. Preliminary results suggest that peripheral cholinergic signals might be involved in the control of proinflammatory EV-mediated signaling from the periphery to the brain.
Collapse
Affiliation(s)
- F Fricke
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - J Gebert
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - J Kopitz
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - K Plaschke
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
63
|
Liu Y, Forsythe P. Vagotomy and insights into the microbiota-gut-brain axis. Neurosci Res 2021; 168:20-27. [DOI: 10.1016/j.neures.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
|
64
|
GFAP and desmin expression in lymphatic tissues leads to difficulties in distinguishing between glial and stromal cells. Sci Rep 2021; 11:13322. [PMID: 34172765 PMCID: PMC8233388 DOI: 10.1038/s41598-021-92364-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/07/2021] [Indexed: 11/12/2022] Open
Abstract
Recently, we found many immune cells including antigen presenting cells neurally hard wired in the T-cell zone of most lymphoid organs like amongst others, lymph nodes in rats, mice and humans. Single immune cells were reached by single neurites and enclosed with a dense neural meshwork. As it is well known that axons are always accompanied by glial cells, we were able to identify Schwann cells in the hilum, medullary and capsule region, like expected. Unexpected was the result, that we found oligodendrocyte-like cells in these regions, myelinating more than one axon. Likewise important was the finding, that one of the standard glial markers used, a polyclonal GFAP antibody equally bound to desmin and therefore marked nearly all stromal cells in cortical, paracortical and medullary cord regions. More detailed analysis showed that these results also appeared in many other non-lymphoid organs. Therefore, polyclonal GFAP antibodies are only conditionally usable for immunohistochemical analysis in peripheral tissues outside the central nervous system. It remains to be elucidated, if the binding of the GFAP antibody to desmin has its reason in a special desmin variant that can give stromal cells glial character.
Collapse
|
65
|
Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology 2021; 195:108682. [PMID: 34175326 DOI: 10.1016/j.neuropharm.2021.108682] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
The vagus nerve is one of the major signalling components between the gut microbiota and brain. However, the exact relationship between gut-brain signaling along the vagus and the effects of gut microbes on brain function and behaviour is unclear. In particular, the relationship between the vagus nerve and immune signaling, that also appears to play a critical role in microbiota-gut-brain communication, has not been delineated. The aim of the present study was to determine the effect of subdiaphragmatic vagotomy on peripheral and central immune changes associated with the anxiolytic actions of L.rhamnosus. Male mice underwent vagotomy or sham surgery, followed by administration of L.rhamnosus for 14 days. L.rhamnosus administration following sham surgery resulted in reduced anxiety-like behaviour, and an attenuation of the hypothalamic-pituitary-adrenal axis (HPA axis), as indicated by reduced plasma corticosterone after acute restraint stress. These effects were associated with an increase in splenic T regulatory cells and a decrease in activated microglia in the hippocampus. The anxiolytic effects, HPA modulation and increase in T regulatory cells were prevented by vagotomy, whereas vagotomy alone led to a significant increase in activated microglia in the hippocampus that was not altered with L.rhamnosus treatment. Thus, both microbe induced and constitutive vagal signaling influences critical immune components of the microbiota-gut-brain axis. These findings suggest that, rather than acting as a direct neural link to the central nervous system, the role of the vagus nerve in gut-microbe to brain signalling is as an integral component of a bi-directional neuroimmunoendocrine pathway.
Collapse
|
66
|
Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms 2021; 9:723. [PMID: 33807290 PMCID: PMC8065970 DOI: 10.3390/microorganisms9040723] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Episodes of depression and anxiety commonly follow the experience of stress, however not everyone who experiences stress develops a mood disorder. Individuals who are able to experience stress without a negative emotional effect are considered stress resilient. Stress-resilience (and its counterpart stress-susceptibility) are influenced by several psychological and biological factors, including the microbiome-gut-brain axis. Emerging research shows that the gut microbiota can influence mood, and that stress is an important variable in this relationship. Stress alters the gut microbiota and plausibly this could contribute to stress-related changes in mood. Most of the reported research has been conducted using animal models and demonstrates a relationship between gut microbiome and mood. The translational evidence from human clinical studies however is rather limited. In this review we examine the microbiome-gut-brain axis research in relation to stress resilience.
Collapse
Affiliation(s)
- Tracey Bear
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
| | - Julie Dalziel
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North 4442, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Nicole Roy
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
- Department of Human Nutrition, Otago University, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand
| | - Christine Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
| | - Pramod Gopal
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
| |
Collapse
|
67
|
Wu SJ, Shi ZW, Wang X, Ren FF, Xie ZY, Lei L, Chen P. Activation of the Cholinergic Anti-inflammatory Pathway Attenuated Angiotension II-Dependent Hypertension and Renal Injury. Front Pharmacol 2021; 12:593682. [PMID: 33815099 PMCID: PMC8010129 DOI: 10.3389/fphar.2021.593682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Angiotensin II (AngII) induces renal fibrosis, characterized by fibroblast proliferation, inflammatory cell infiltration and excessive extracellular matrix deposition, all of which was relevant closely to hypertension. The vagus nerve-related cholinergic anti-inflammatory pathway (CAP) modulates local and systemic inflammatory responses. The aim of present study was to determine the effect of CAP on renal inflammation and fibrosis. Methods and Results: AngII-induced hypertension was induced in vivo by 14-days low-dose AngII infusion from osmotic minipumps. We used GTS-21 dihydrochloride, a selective nicotinic acetylcholine receptor agonist. Daily intraperitoneal GTS-21 injection and/or vagotomy started after hypertension was confirmed and continued for 4 weeks. The elevated blood pressure caused by AngII was significantly attenuated by GTS-21. Improved baroreflex sensitivity was observed after GTS-21 administration. Masson stain and immunoblotting revealed that deposition of excessive fibrosis and overexpression of inflammatory cytokines induced by AngII was reduced by GTS-21. To determine the role of autonomic control in CAP, unilateral vagotomy was performed. Vagotomy weakened the effect of CAP on AngII-induced hypertension. In vitro, GTS-21 suppressed NF-κB activation, attenuated AngII-induced epithelial-mesenchymal transition and reduced inflammation and fibrosis in NRK-52E cells; α-bungarotoxin (α-Bgt, an α7-nAChR selective antagonist) partly inhibited these effects. Conclusion: CAP protected against AngII-induced hypertension via improvement in autonomic control, suppression of NF-κB activation, and reduction of renal fibrosis and inflammatory response.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Wei Shi
- Department of Cardiology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Xue Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
68
|
Tillinger A, Mravec B. Vagotomy Affects Lipopolysaccharide-Induced Changes of Urocortin 2 Gene Expression in the Brain and on the Periphery. Neurochem Res 2021; 46:159-164. [PMID: 33170479 DOI: 10.1007/s11064-020-03165-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
The corticotropin-releasing hormone family of peptides is involved in regulating the neuroendocrine stress response. Also, the vagus nerve plays an important role in the transmission of immune system-related signals to brain structures, thereby orchestrating the neuroendocrine stress response. Therefore, we investigated gene expression of urocortin 2 (Ucn2) and c-fos, a markers of neuronal activity, within the hypothalamic paraventricular nucleus (PVN), a brain structure involved in neuroendocrine and neuroimmune responses, as well as in the adrenal medulla and spleen in vagotomized rats exposed to immune challenge. In addition, markers of neuroendocrine stress response activity were investigated in the adrenal medulla, spleen, and plasma. Intraperitoneal administration of lipopolysaccharide (LPS) induced a significant increase of c-fos and Ucn2 gene expression in the PVN, and adrenal medulla as well as increases of plasma corticosterone levels. In addition, LPS administration induced a significant increase in the gene expression of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla. In the spleen, LPS administration increased gene expression of c-fos, while gene expression of TH and PNMT was significantly reduced, and gene expression of Ucn2 was not affected. Subdiaphragmatic vagotomy significantly attenuated the LPS-induced increases of gene expression of c-fos and Ucn2 in the PVN and Ucn2 in the adrenal medulla. Our data has shown that Ucn2 may be involved in regulation of the HPA axis in response to immune challenge. In addition, our findings indicate that the effect of immune challenge on gene expression of Ucn2 is mediated by vagal pathways.
Collapse
Affiliation(s)
- Andrej Tillinger
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
69
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Removal of vasopressin cells from the paraventricular nucleus of the hypothalamus enhances lipopolysaccharide-induced sickness behaviour in mice. J Neuroendocrinol 2021; 33:e12915. [PMID: 33617060 PMCID: PMC8543850 DOI: 10.1111/jne.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Vasopressin (AVP) cells in the paraventricular nucleus of the hypothalamus (PVN) are activated during sickness and project to multiple nuclei responsible for the anxiety, social and motivated behaviours affected during sickness, suggesting that these cells may play a role in sickness behaviours, typically expressed as reduced mobility, increased anxiety, anhedonia and social withdrawal. In the present study, we selectively ablated AVP neurones in the PVN of male and female mice (Mus musculus) and induced sickness behaviour via injection of bacterial lipopolysaccharide (LPS). We found that PVN AVP ablation increased the effects of LPS, specifically by further decreasing sucrose preference in males and females and decreasing the social preference of males, monitored within 24 hours of LPS injection. These results suggest that PVN AVP contributes to the change in motivated behaviours during sickness and may help promote recovery from infection..
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
70
|
Li Z, Li Z, Lv X, Li Z, Xiong L, Hu X, Qin D. Intracerebroventricular Administration of Interferon-Alpha Induced Depressive-Like Behaviors and Neurotransmitter Changes in Rhesus Monkeys. Front Neurosci 2020; 14:585604. [PMID: 33328856 PMCID: PMC7710898 DOI: 10.3389/fnins.2020.585604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Interferon-alpha (IFN-α) is a cytokine widely used in the treatment of brain cancers and virus infections with side effects including causing depression. Monoamine neurotransmitter systems have been found playing important roles in peripheral IFN-α-induced depression, but how peripheral IFN-α accesses the central nervous system and contributes to the development of depression is poorly known. This study aimed to develop a non-human primate model using long-term intracerebroventricular (i.c.v.) administration of IFN-α (5 days/week for 6 weeks), to observe the induced depressive-like behaviors and to explore the contributions of monoamine neurotransmitter systems in the development of depression. In monkeys receiving i.c.v. IFN-α administration, anhedonia was observed as decreases of sucrose consumption, along with depressive-like symptoms including increased huddling behavior, decreases of spontaneous and reactive locomotion in home cage, as well as reduced exploration and increased motionless in the open field. Chronic central IFN-α infusion significantly increased the cerebrospinal fluid (CSF) concentrations of noradrenaline (NA), and 3,4-dihydroxyphenylacetic acid (DOPAC), but not 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA). These CSF monoamine metabolites showed associations with some specific depression-related behaviors. In conclusion, central IFN-α administration induced anhedonia and depression-related behaviors comparable to the results with peripheral administration, and the development of depression was associated with the dysfunction of monoamine neurotransmitters.
Collapse
Affiliation(s)
- Zhifei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhaoxia Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoman Lv
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dongdong Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
71
|
Owens AP. The Role of Heart Rate Variability in the Future of Remote Digital Biomarkers. Front Neurosci 2020; 14:582145. [PMID: 33281545 PMCID: PMC7691243 DOI: 10.3389/fnins.2020.582145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Heart rate variability (HRV) offers insights into humoral, neural and neurovisceral processes in health and disorders of brain, body and behavior but has yet to be fully potentiated in the digital age. Remote measurement technologies (RMTs), such as, smartphones, wearable sensors or home-based devices, can passively capture HRV as a nested parameter of neurovisceral integration and health during everyday life, providing insights across different contexts, such as activities of daily living, therapeutic interventions and behavioral tasks, to compliment ongoing clinical care. Many RMTs measure HRV, even consumer wearables and smartphones, which can be deployed as wearable sensors or digital cameras using photoplethysmography. RMTs that measure HRV provide the opportunity to identify digital biomarkers indicative of changes in health or disease status in disorders where neurovisceral processes are compromised. RMT-based HRV therefore has potential as an adjunct digital biomarker in neurovisceral digital phenotyping that can add continuously updated, objective and relevant data to existing clinical methodologies, aiding the evolution of current "diagnose and treat" care models to a more proactive and holistic approach that pairs established markers with advances in remote digital technology.
Collapse
Affiliation(s)
- Andrew P. Owens
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- The Remote Assessment of Disease and Relapse – Alzheimer’s Disease (RADAR-AD) Consortium, London, United Kingdom
| |
Collapse
|
72
|
Mosili P, Maikoo S, Mabandla MV, Qulu L. The Pathogenesis of Fever-Induced Febrile Seizures and Its Current State. Neurosci Insights 2020; 15:2633105520956973. [PMID: 33225279 PMCID: PMC7649866 DOI: 10.1177/2633105520956973] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Febrile seizures, commonly in children between the ages of 3 months to 5 years, are a neurological abnormality characterized by neuronal hyper-excitability, that occur as a result of an increased core body temperature during a fever, which was caused by an underlying systemic infection. Such infections cause the immune system to elicit an inflammatory response resulting in the release of cytokines from macrophages. The cytokines such as interleukin (IL)- 1β, IL-6, and tumour necrosis factor-α (TNF-α) combat the infection in the localized area ultimately spilling over into circulation resulting in elevated cytokine levels. The cytokines, along with pathogen-associated molecular patterns (PAMPs) expressed on pathogens for example, lipopolysaccharide (LPS), interact with the blood brain barrier (BBB) causing a ‘leaky’ BBB which facilitates cytokines and LPS entry into the central nervous system. The cytokines activate the microglia which release their own cytokines, specifically IL1β. IL-β interacts with the brain endothelium resulting in the activation of cyclooxygenase 2 which catalyzes the production of prostaglandin 2 (PGE2). PGE2 enters the hypothalamic region and induces a fever. Abnormally increased IL-1β levels also progressively increases excitatory (glutamatergic) neurotransmission, and decreases inhibitory (GABAergic) neurotransmission, thus mediating the pathogenesis of convulsions. Current treatments for febrile seizures present with side effects that are detrimental to health, which fosters the need for an alternative, more affordable treatment with fewer adverse side effects, and 1 that is easily accessible, especially in low income areas that are also affected by other underlying socio-economic factors, in which febrile seizures are of growing concern.
Collapse
Affiliation(s)
- Palesa Mosili
- University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Shreyal Maikoo
- University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | | | - Lihle Qulu
- University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
73
|
Mediavilla C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem Int 2020; 141:104882. [PMID: 33068686 DOI: 10.1016/j.neuint.2020.104882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
It is increasingly evident that bidirectional gut-brain signaling provides a communication pathway that uses neural, hormonal, and immunological routes to regulate homeostatic mechanisms such as hunger/satiety as well as emotions and inflammation. Hence, disruption of the gut-brain axis can cause numerous pathophysiologies, including obesity and intestinal inflammatory diseases. One chemical mediator in the gut-brain axis is orexin-A, given that hypothalamic orexin-A affects gastrointestinal motility and secretion, and peripheral orexin in the intestinal mucosa can modulate brain functions, making possible an orexinergic gut-brain network. It has been proposed that orexin-A acts on this axis to regulate nutritional processes, such as short-term intake, gastric acid secretion, and motor activity associated with the cephalic phase of feeding. Orexin-A has also been related to stress systems and stress responses via the hypothalamic-pituitary-adrenal axis. Recent studies on the relationship of orexin with immune system-brain communications in an animal model of colitis suggested an immunomodulatory role for orexin-A in signaling and responding to infection by reducing the production of pro-inflammatory cytokines (e.g., tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein-1). These studies suggested that orexin administration might be of potential therapeutic value in irritable bowel syndrome or chronic intestinal inflammatory diseases, in which gastrointestinal symptoms frequently coexist with behavioral disorders, including loss of appetite, anxiety, depression, and sleeping disorders. Interventions in the orexinergic system have been proposed as a therapeutic approach to these diseases and for the treatment of chemotherapeutic drug-related hyperalgesia and fatigue in cancer patients.
Collapse
Affiliation(s)
- Cristina Mediavilla
- Department of Psychobiology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| |
Collapse
|
74
|
Ofner M, Walach H. The Vegetative Receptor-Vascular Reflex (VRVR) - A New Key to Regeneration. Front Physiol 2020; 11:547526. [PMID: 33071809 PMCID: PMC7538835 DOI: 10.3389/fphys.2020.547526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We describe a potentially new physiological reflex path that has so far been neglected but which could be used for a novel therapeutic approach: The vegetative receptor-vascular reflex. This is a physiological response that starts from the connective tissue and influences the whole organism. We cross-fertilized various research areas with each other. KEY FINDINGS The matrix or the connective tissue forms a passive reservoir of substrate for the growth and development of cells, and functions as the primordial communication system of all living systems. It contains a continuous network of cells, such as fibroblasts, along with protein bundles made up of collagen that support electrical exchange through piezoelectric effects. This archaic vegetative system surrounds all cells, including neurons, and can thus be viewed as the primordial coordinating system in every organism. It is very likely the basis for a reflex which we describe here for the first time: the vegetative receptor vascular reflex. We also indicate some potential practical applications and test procedures. CONCLUSION The vegetative receptor vascular reflex describes the pathway from stimuli that originate in the connective tissue or the extracellular matrix toward organ systems. They might be chemical in nature or electrical via piezo-electric effects stimulating nerve endings, and thus can influence higher order processes such as regeneration or healing of tissue. Thus, this reflex lends itself to a novel therapeutic approach via certain types of manipulation of the connective tissue.
Collapse
Affiliation(s)
- Michael Ofner
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Harald Walach
- Department of Pediatric Gastroenterology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Psychology, Witten/Herdecke University, Witten, Germany
- Change Health Science Institute, Berlin, Germany
| |
Collapse
|
75
|
Yılmaz O, Soygüder Z, Keleş ÖF, Yaman T, Yener Z, Uyar A, Çakır T. An Immunohistochemical Study on the Presence of Nitric Oxide Synthase Isoforms (nNOS, iNOS, eNOS) in the Spinal Cord and Nodose Ganglion of Rats Receiving Ionising Gamma Radiation to their Liver. J Vet Res 2020; 64:445-453. [PMID: 32984637 PMCID: PMC7497755 DOI: 10.2478/jvetres-2020-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION This study determined the presence of nitric oxide synthesis isoforms (nNOS, iNOS, and eNOS) in thoracic spinal cord segments and nodose ganglia of rats with gamma-irradiated livers. MATERIAL AND METHODS Male rats (n = 32) were divided into equal groups A, B, C, and D. In group A, the controls, no radiation was applied, while groups B, C, and D received 10 Gy of ionising gamma radiation. The rats of group B were euthanized at the end of the first day (d1), those of group C on the second day (d2), and those of group D on the third day (d3). The liver, spinal cord segments, and nodose ganglion tissues were dissected and fixed, and the liver sections were examined histopathologically. The other tissues were observed through a light microscope. RESULTS Regeneration occurred at the end of d3 in hepatocytes which were radiation-damaged at the end of d1 and d2. On d1, some nNOS-positive staining was found in the neuronal cells of laminae I-III of the spinal cord and in neurons of the nodose ganglion, and on d3, some staining was observed in lamina X of the spinal cord, while none of note was in the nodose ganglion. Dense iNOS-positive staining was seen on d1 in the ependymal cells of the spinal cord and in the glial cells of the nodose ganglion, and on d3, there was still considerable iNOS staining in both tissues. There was clear eNOS-positive staining in the capillary endothelial cells of the spinal cord and light diffuse cytoplasmic staining in the neurons of the nodose ganglion on d1, and on d3, intense eNOS-positive staining was visible in several endothelial cells of the spinal cord, while light nuclear staining was recognised in the neurons of the nodose ganglion. CONCLUSION The nNOS, iNOS, and eNOS isoforms are activated in the spinal cord and nodose ganglion of rats after ionising radiation insult to the liver.
Collapse
Affiliation(s)
| | | | - Ömer Faruk Keleş
- Department of Pathology, Faculty of Veterinary Medicine, University of Van Yüzüncü Yıl, 65080, Van, Turkey
| | - Turan Yaman
- Department of Pathology, Faculty of Veterinary Medicine, University of Van Yüzüncü Yıl, 65080, Van, Turkey
| | - Zabit Yener
- Department of Pathology, Faculty of Veterinary Medicine, University of Van Yüzüncü Yıl, 65080, Van, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, 31040, Hatay, Turkey
| | - Tahir Çakır
- Department of Medical Physics, Faculty of Medicine, University of Van Yüzüncü Yıl, 65080, Van, Turkey
| |
Collapse
|
76
|
O'Connor KM, Lucking EF, Bastiaanssen TFS, Peterson VL, Crispie F, Cotter PD, Clarke G, Cryan JF, O'Halloran KD. Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine 2020; 59:102968. [PMID: 32861200 PMCID: PMC7475129 DOI: 10.1016/j.ebiom.2020.102968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats. METHODS Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures. FINDINGS CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes. INTERPRETATION CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease. FUNDING Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
77
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
78
|
Brain-derived neurotrophic factor polymorphism Val66Met protects against cancer-related fatigue. Transl Psychiatry 2020; 10:302. [PMID: 32848137 PMCID: PMC7450091 DOI: 10.1038/s41398-020-00990-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer-related fatigue is an extremely common and debilitating psychiatric symptom that affects up to 80% of cancer patients. Despite its negative impact on the patient's quality of life, there is no well-established biomarker or mechanisms associated with this debilitating condition. The functional brain-derived neurotrophic factor (BDNF) Val66Met single nucleotide polymorphism (SNP) has been associated with a variety of psychiatric illnesses. We hypothesized that Val66Met may influence the risk for developing cancer-related fatigue. BDNF Val66Met was analyzed by polymerase chain reaction in 180 patients with confirmed cancer diagnoses. Fatigue was measured using the Functional Assessment of Cancer Therapy-Fatigue (FACIT-Fatigue) questionnaire. Depression was measured using the Hamilton Depression Scale (HAM-D). Data were transformed when necessary and regression models were constructed to access the association between genotype and symptom severity. Participants carrying the Met allele reported significantly less fatigue compared to the Val/Val genotype group. The presence of the Met allele did not influence depression levels. The results suggest that the BDNF Val66Met polymorphism confers protective advantage against cancer-related fatigue; whereas having the Val/Val genotype may be a genetic risk factor. Findings from this study not only provide clues to the neural basis of cancer-related fatigue, but also allow for symptom severity prediction and patient education with the goal to improve symptom management.
Collapse
|
79
|
Cakulev I, Sahadevan J, Osman MN. A case report of unusually long episodes of asystole in a severe COVID-19 patient treated with a leadless pacemaker. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 4:1-6. [PMID: 33089056 PMCID: PMC7454517 DOI: 10.1093/ehjcr/ytaa238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
Background Experience has been emerging about cardiac manifestations of COVID-19-positive patients. The full cardiac spectrum is still unknown, and management of these patients is challenging. Case summary We report a COVID-19 patient who developed unusually long asystolic pauses associated with atriventricular block (AV) block and atrial fibrillation who underwent leadless pacemaker implantation. Discussion Asystole may be a manifestation of COVID-19 infection. A leadless pacemaker is a secure remedy, with limited requirements for follow-up, close interactions, and number of procedures in a COVID-19 patient.
Collapse
Affiliation(s)
- Ivan Cakulev
- University Hospitals of Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA
| | - Jayakumar Sahadevan
- Louis Stokes Veteran Affairs Hospital, Department of Medicine, Cleveland, OH, USA
| | - Mohammed Najeeb Osman
- University Hospitals of Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA.,Louis Stokes Veteran Affairs Hospital, Department of Medicine, Cleveland, OH, USA
| |
Collapse
|
80
|
Paciorek A, Skora L. Vagus Nerve Stimulation as a Gateway to Interoception. Front Psychol 2020; 11:1659. [PMID: 32849014 PMCID: PMC7403209 DOI: 10.3389/fpsyg.2020.01659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
The last two decades have seen a growing interest in the study of interoception. Interoception can be understood as a hierarchical phenomenon, referring to the body-to-brain communication of internal signals, their sensing, encoding, and representation in the brain, influence on other cognitive and affective processes, and their conscious perception. Interoceptive signals have been notoriously challenging to manipulate in experimental settings. Here, we propose that this can be achieved through electrical stimulation of the vagus nerve (either in an invasive or non-invasive fashion). The vagus nerve is the main pathway for conveying information about the internal condition of the body to the brain. Despite its intrinsic involvement in interoception, surprisingly little research in the field has used Vagus Nerve Stimulation to explicitly modulate bodily signals. Here, we review a range of cognitive, affective and clinical research using Vagus Nerve Stimulation, showing that it can be applied to the study of interoception at each level of its hierarchy. This could have considerable implications for our understanding of the interoceptive dimension of cognition and affect in both health and disease, and lead to development of new therapeutic tools.
Collapse
Affiliation(s)
| | - Lina Skora
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom.,School of Psychology, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
81
|
O'Connor KM, Lucking EF, Cryan JF, O'Halloran KD. Bugs, breathing and blood pressure: microbiota-gut-brain axis signalling in cardiorespiratory control in health and disease. J Physiol 2020; 598:4159-4179. [PMID: 32652603 DOI: 10.1113/jp280279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
There is clear evidence of physiological effects of the gut microbiota on whole-body function in health and disease. Microbiota-gut-brain axis signalling is recognised as a key player in behavioural disorders such as depression and anxiety. Recent evidence suggests that the gut microbiota affects neurocontrol networks responsible for homeostatic functions that are essential for life. We consider the evidence suggesting the potential for the gut microbiota to shape cardiorespiratory homeostasis. In various animal models of disease, there is an association between cardiorespiratory morbidity and perturbed gut microbiota, with strong evidence in support of a role of the gut microbiota in the control of blood pressure. Interventions that target the gut microbiota or manipulate the gut-brain axis, such as short-chain fatty acid supplementation, prevent hypertension in models of obstructive sleep apnoea. Emerging evidence points to a role for the microbiota-gut-brain axis in the control of breathing and ventilatory responsiveness, relevant to cardiorespiratory disease. There is also evidence for an association between the gut microbiota and disease severity in people with asthma and cystic fibrosis. There are many gaps in the knowledge base and an urgent need to better understand the mechanisms by which gut health and dysbiosis contribute to cardiorespiratory control. Nevertheless, there is a growing consensus that manipulation of the gut microbiota could prove an efficacious adjunctive strategy in the treatment of common cardiorespiratory diseases, which are the leading causes of morbidity and mortality.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
82
|
Xue B, Zhang Y, Johnson AK. Interactions of the Brain Renin-Angiotensin-System (RAS) and Inflammation in the Sensitization of Hypertension. Front Neurosci 2020; 14:650. [PMID: 32760236 PMCID: PMC7373760 DOI: 10.3389/fnins.2020.00650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mounting evidence indicates that the renin-angiotensin (RAS) and immune systems interact with one another in the central nervous system (CNS) and that they are importantly involved in the pathogenesis of hypertension. Components comprising the classic RAS were first identified in the periphery, and subsequently, similar factors were found to be generated de novo in many different organs including the brain. There is humoral-neural coupling between the systemic and brain RASs, which is important for controlling sympathetic tone and the release of endocrine factors that collectively determine blood pressure (BP). Similar to the interactions between the systemic and brain RASs is the communication between the peripheral and brain immune systems. Systemic inflammation activates the brain’s immune response. Importantly, the RAS and inflammatory factors act synergistically in brain regions involved in the regulation of BP. This review presents evidence of how such interactions between the brain RAS and central immune mechanisms contribute to the pathogenesis of hypertension. Emphasis focuses on the role of these interactions to induce neuroplastic changes in a central neural network resulting in hypertensive response sensitization (HTRS). Neuroplasticity and HTRS can be induced by challenges (stressors) presented earlier in life such as a low-dose of angiotensin II or high fat diet (HFD) feeding in adults. Similarly, the offspring of mothers with gestational hypertension or of mothers ingesting a HFD during pregnancy are reprogrammed and manifest HTRS when exposed to new stressors as adults. Consideration of the actions and interactions of the brain RAS and inflammatory mediators in the context of the induction and expression of HTRS will provide insights into the etiology of high BP that may lead to new strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Yuping Zhang
- Department of Pathophysiology, Hebei North University, Zhangjiakou, China
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States.,Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States.,Health and Human Physiology, The University of Iowa, Iowa City, IA, United States.,The François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
83
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
84
|
Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol 2020; 319:F125-F138. [PMID: 32508112 PMCID: PMC7468827 DOI: 10.1152/ajprenal.00145.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is an important clinical disorder with high prevalence, serious consequences, and limited therapeutic options. Modulation of neuroimmune interaction by nonpharmacological methods is emerging as a novel strategy for treating inflammatory diseases, including AKI. Recently, pulsed ultrasound (US) treatment was shown to protect from AKI by stimulating the cholinergic anti-inflammatory pathway. Because of the relatively simple, portable, and noninvasive nature of US procedures, US stimulation may be a valuable therapeutic option for treating inflammatory conditions. This review discusses potential impacts of US bioeffects on the nervous system and how this may generate feedback onto the immune system. We also discuss recent evidence supporting the use of US as a means to treat AKI and other inflammatory diseases.
Collapse
Affiliation(s)
- Jieru Cai
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - William T Nash
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| |
Collapse
|
85
|
Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ, Le NA, Feinberg R, Tansey MG, Miller AH. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry 2020; 25:1301-1311. [PMID: 29895893 PMCID: PMC6291384 DOI: 10.1038/s41380-018-0096-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
Peripheral blood C-reactive protein (CRP) is a biomarker used clinically to measure systemic inflammation and is reproducibly increased in a subset of patients with major depressive disorder (MDD). Furthermore, increased peripheral blood CRP in MDD has been associated with altered reward circuitry and increased brain glutamate in relation with symptoms of anhedonia. Nevertheless, the relationship between peripheral CRP and other peripheral and central markers of inflammation in depressed patients has not been established. Plasma (n = 89) and CSF (n = 73) was collected from medically stable, currently unmedicated adult outpatients with MDD. Associations among plasma and CSF CRP and plasma and CSF inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF] and IL-1beta) and their soluble receptors/antagonists were examined. Relationships between plasma and CSF inflammatory markers and depressive symptoms including anhedonia and reduced motivation (RM) were also explored. Plasma CRP was correlated with multiple plasma inflammatory markers (all p < 0.05), and a strong correlation was found between plasma and CSF CRP (r = 0.855, p < 0.001). CSF CRP in turn correlated with CSF cytokine receptors/antagonists (all p < 0.05). Principal component analyses revealed clusters of CSF inflammatory markers that were associated with high plasma CRP (>3 mg/L) and correlated with depressive symptom severity. These findings were driven by CSF TNF, which correlated with RM (r = 0.236, p = 0.045), and CSF IL-6 soluble receptor, which correlated with anhedonia (r = 0.301, p = 0.010) in the sample as a whole and particularly females. CRP appears to be a peripheral biomarker that reflects peripheral and central inflammation and seems well-suited for guiding immunotherapies targeting TNF and IL-6 in patients with MDD.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA.
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Trusharth A Patel
- Department of Anesthesiology, Emory University, Atlanta, GA, 30322, USA
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Ngoc-Anh Le
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Rachel Feinberg
- Biomarker Core Laboratory, Atlanta VAMC, Decatur, GA, 30033, USA
| | - Malu G Tansey
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
86
|
Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Curr Opin Neurobiol 2020; 62:133-140. [PMID: 32380360 PMCID: PMC7560965 DOI: 10.1016/j.conb.2020.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Our understanding of the gut system has been revolutionized over the past decade, in particular regarding its role in immune control and psychological regulation. The vagus nerve is a crucial link between gut and brain, transmitting diverse gut-derived signals, and has been implicated in many gastrointestinal, neurological, and immunological disorders. Using state-of-the-art technologies including single-cell genomic analysis, real-time neural activity recording, trans-synaptic tracing, and electron microscopy, novel physiological functions of vagal gut afferents have been uncovered, and new gut-to-brain pathways have been revealed. Here, we review the most recent findings on vagal sensory neurons and the gut-brain signaling, focusing on the anatomical basis and the underlying molecular and cellular mechanisms. Such new discoveries explain some of the old puzzling problems and also raise new questions in this exciting and rapidly growing field.
Collapse
Affiliation(s)
- Chuyue D Yu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
87
|
Korte SM, Straub RH. Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology (Oxford) 2020; 58:v35-v50. [PMID: 31682277 PMCID: PMC6827268 DOI: 10.1093/rheumatology/kez413] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Today, inflammatory rheumatic disorders are effectively treated, but many patients still suffer from residual fatigue. This work presents pathophysiological mechanisms of fatigue. First, cytokines can interfere with neurotransmitter release at the preterminal ending. Second, a long-term increase in serum concentrations of proinflammatory cytokines increase the uptake and breakdown of monoamines (serotonin, noradrenaline and dopamine). Third, chronic inflammation can also decrease monoaminergic neurotransmission via oxidative stress (oxidation of tetrahydrobiopterin [BH4]). Fourth, proinflammatory cytokines increase the level of enzyme indoleamine-2, 3-dioxygenase activity and shunt tryptophan away from the serotonin pathway. Fifth, oxidative stress stimulates astrocytes to inhibit excitatory amino acid transporters. Sixth, astrocytes produce kynurenic acid that acts as an antagonist on the α7-nicotinic acetylcholine receptor to inhibit dopamine release. Jointly, these actions result in increased glutamatergic and decreased monoaminergic neurotransmission. The above-described pathophysiological mechanisms negatively affect brain functioning in areas that are involved in fatigue.
Collapse
Affiliation(s)
- S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, (UIPS), Utrecht University, Utrecht, The Netherlands.,Department of Biopsychology, Faculty of Psychology, Ruhr-Universität, Bochum
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| |
Collapse
|
88
|
Geuter S, Reynolds Losin EA, Roy M, Atlas LY, Schmidt L, Krishnan A, Koban L, Wager TD, Lindquist MA. Multiple Brain Networks Mediating Stimulus-Pain Relationships in Humans. Cereb Cortex 2020; 30:4204-4219. [PMID: 32219311 DOI: 10.1093/cercor/bhaa048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The brain transforms nociceptive input into a complex pain experience comprised of sensory, affective, motivational, and cognitive components. However, it is still unclear how pain arises from nociceptive input and which brain networks coordinate to generate pain experiences. We introduce a new high-dimensional mediation analysis technique to estimate distributed, network-level patterns that formally mediate the relationship between stimulus intensity and pain. We applied the model to a large-scale analysis of functional magnetic resonance imaging data (N = 284), focusing on brain mediators of the relationship between noxious stimulus intensity and trial-to-trial variation in pain reports. We identify mediators in both traditional nociceptive pathways and in prefrontal, midbrain, striatal, and default-mode regions unrelated to nociception in standard analyses. The whole-brain mediators are specific for pain versus aversive sounds and are organized into five functional networks. Brain mediators predicted pain ratings better than previous brain measures, including the neurologic pain signature (Wager et al. 2013). Our results provide a broader view of the networks underlying pain experience, as well as novel brain targets for interventions.
Collapse
Affiliation(s)
- Stephan Geuter
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Vorwerk International & Co. KmG, Zurich, Switzerland
| | | | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.,National Center on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.,National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Liane Schmidt
- Control-Interoception-Attention Team, Institute du Cerveau et de la Moelle épinière, INSERM UMR 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Anjali Krishnan
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Leonie Koban
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Control-Interoception-Attention Team, Institute du Cerveau et de la Moelle épinière, INSERM UMR 1127, CNRS UMR 7225, Sorbonne University, Paris, France.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Marketing Area, INSEAD, Fontainebleau, France
| | - Tor D Wager
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Presidential Cluster in Neuroscience and Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
89
|
Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit Care Med 2020; 47:e461-e469. [PMID: 30908312 DOI: 10.1097/ccm.0000000000003714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To investigate the potential benefits of vagus nerve stimulation in a clinically-relevant large animal model of progressive sepsis. DESIGN Prospective, controlled, randomized trial. SETTING University animal research laboratory. SUBJECTS Twenty-five domestic pigs were divided into three groups: 1) sepsis group (eight pigs), 2) sepsis + vagus nerve stimulation group (nine pigs), and 3) control sham group (eight pigs). INTERVENTIONS Sepsis was induced by cultivated autologous feces inoculation in anesthetized, mechanically ventilated, and surgically instrumented pigs and followed for 24 hours. Electrical stimulation of the cervical vagus nerve was initiated 6 hours after the induction of peritonitis and maintained throughout the experiment. MEASUREMENTS AND MAIN RESULTS Measurements of hemodynamics, electrocardiography, biochemistry, blood gases, cytokines, and blood cells were collected at baseline (just before peritonitis induction) and at the end of the in vivo experiment (24 hr after peritonitis induction). Subsequent in vitro analyses addressed cardiac contractility and calcium handling in isolated tissues and myocytes and analyzed mitochondrial function by ultrasensitive oxygraphy. Vagus nerve stimulation partially or completely prevented the development of hyperlactatemia, hyperdynamic circulation, cellular myocardial depression, shift in sympathovagal balance toward sympathetic dominance, and cardiac mitochondrial dysfunction, and reduced the number of activated monocytes. Sequential Organ Failure Assessment scores and vasopressor requirements significantly decreased after vagus nerve stimulation. CONCLUSIONS In a clinically-relevant large animal model of progressive sepsis, vagus nerve stimulation was associated with a number of beneficial effects that resulted in significantly attenuated multiple organ dysfunction and reduced vasopressor and fluid resuscitation requirements. This suggests that vagus nerve stimulation might provide a significant therapeutic potential that warrants further thorough investigation.
Collapse
|
90
|
Pavlov VA, Chavan SS, Tracey KJ. Bioelectronic Medicine: From Preclinical Studies on the Inflammatory Reflex to New Approaches in Disease Diagnosis and Treatment. Cold Spring Harb Perspect Med 2020; 10:a034140. [PMID: 31138538 PMCID: PMC7050582 DOI: 10.1101/cshperspect.a034140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine is an evolving field in which new insights into the regulatory role of the nervous system and new developments in bioelectronic technology result in novel approaches in disease diagnosis and treatment. Studies on the immunoregulatory function of the vagus nerve and the inflammatory reflex have a specific place in bioelectronic medicine. These studies recently led to clinical trials with bioelectronic vagus nerve stimulation in inflammatory diseases and other conditions. Here, we outline key findings from this preclinical and clinical research. We also point to other aspects and pillars of interdisciplinary research and technological developments in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Sangeeta S Chavan
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| |
Collapse
|
91
|
Braunisch MC, Mayer CC, Bauer A, Lorenz G, Haller B, Rizas KD, Hagmair S, von Stülpnagel L, Hamm W, Günthner R, Angermann S, Matschkal J, Kemmner S, Hasenau AL, Zöllinger I, Steubl D, Mann JF, Lehnert T, Scherf J, Braun JR, Moog P, Küchle C, Renders L, Malik M, Schmidt G, Wassertheurer S, Heemann U, Schmaderer C. Cardiovascular Mortality Can Be Predicted by Heart Rate Turbulence in Hemodialysis Patients. Front Physiol 2020; 11:77. [PMID: 32116784 PMCID: PMC7027389 DOI: 10.3389/fphys.2020.00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Excess mortality in hemodialysis patients is mostly of cardiovascular origin. We examined the association of heart rate turbulence (HRT), a marker of baroreflex sensitivity, with cardiovascular mortality in hemodialysis patients. Methods A population of 290 prevalent hemodialysis patients was followed up for a median of 3 years. HRT categories 0 (both turbulence onset [TO] and slope [TS] normal), 1 (TO or TS abnormal), and 2 (both TO and TS abnormal) were obtained from 24 h Holter recordings. The primary end-point was cardiovascular mortality. Associations of HRT categories with the endpoints were analyzed by multivariable Cox regression models including HRT, age, albumin, and the improved Charlson Comorbidity Index for hemodialysis patients. Multivariable linear regression analysis identified factors associated with TO and TS. Results During the follow-up period, 20 patients died from cardiovascular causes. In patients with HRT categories 0, 1 and 2, cardiovascular mortality was 1, 10, and 22%, respectively. HRT category 2 showed the strongest independent association with cardiovascular mortality with a hazard ratio of 19.3 (95% confidence interval: 3.69-92.03; P < 0.001). Age, calcium phosphate product, and smoking status were associated with TO and TS. Diabetes mellitus and diastolic blood pressure were only associated with TS. Conclusion Independent of known risk factors, HRT assessment allows identification of hemodialysis patients with low, intermediate, and high risk of cardiovascular mortality. Future prospective studies are needed to translate risk prediction into risk reduction in hemodialysis patients.
Collapse
Affiliation(s)
- Matthias C Braunisch
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Christopher C Mayer
- Center for Health & Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Axel Bauer
- Department of Cardiology, Munich University Clinic, German Centre for Cardiovascular Research, Ludwig Maximilian University of Munich, Munich, Germany.,University Hospital for Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Lorenz
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Bernhard Haller
- Institut für Medizinische Informatik, Statistik und Epidemiologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Konstantinos D Rizas
- Department of Cardiology, Munich University Clinic, German Centre for Cardiovascular Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Hagmair
- Center for Health & Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Lukas von Stülpnagel
- Department of Cardiology, Munich University Clinic, German Centre for Cardiovascular Research, Ludwig Maximilian University of Munich, Munich, Germany.,University Hospital for Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Hamm
- Department of Cardiology, Munich University Clinic, German Centre for Cardiovascular Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Roman Günthner
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Susanne Angermann
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Julia Matschkal
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Stephan Kemmner
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Anna-Lena Hasenau
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Isabel Zöllinger
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Dominik Steubl
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Johannes F Mann
- Department of Nephrology, University of Erlangen-Nuremberg, Erlangen, Germany.,KfH Kidney Center, Munich, Germany
| | | | | | | | - Philipp Moog
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Claudius Küchle
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Lutz Renders
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Marek Malik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Georg Schmidt
- Klinik für Innere Medizin I, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Siegfried Wassertheurer
- Center for Health & Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Uwe Heemann
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| | - Christoph Schmaderer
- Abteilung für Nephrologie, Klinikum Rechts der Isar, Fakultät für Medizin, Technische Universität München, Munich, Germany
| |
Collapse
|
92
|
Caravaca AS, Centa M, Gallina AL, Tarnawski L, Olofsson PS. Neural reflex control of vascular inflammation. Bioelectron Med 2020; 6:3. [PMID: 32232111 PMCID: PMC7065709 DOI: 10.1186/s42234-020-0038-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease that underlies myocardial infarction and stroke. Efficacious treatment for hyperlipidemia and hypertension has significantly reduced morbidity and mortality in cardiovascular disease. However, atherosclerosis still confers a considerable risk of adverse cardiovascular events. In the current mechanistic understanding of the pathogenesis of atherosclerosis, inflammation is pivotal both in disease development and progression. Recent clinical data provided support for this notion and treatment targeting inflammation is currently being explored. Interestingly, neural reflexes regulate cytokine production and inflammation. Hence, new technology utilizing implantable devices to deliver electrical impulses to activate neural circuits are currently being investigated in treatment of inflammation. Hopefully, it may become possible to target vascular inflammation in cardiovascular disease using bioelectronic medicine. In this review, we discuss neural control of inflammation and the potential implications of new therapeutic strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- A. S. Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - M. Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - A. L. Gallina
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - L. Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - P. S. Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
93
|
Whylings J, Rigney N, Peters NV, de Vries GJ, Petrulis A. Sexually dimorphic role of BNST vasopressin cells in sickness and social behavior in male and female mice. Brain Behav Immun 2020; 83:68-77. [PMID: 31550501 PMCID: PMC6906230 DOI: 10.1016/j.bbi.2019.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Circumstantial evidence supports the hypothesis that the sexually dimorphic vasopressin (AVP) innervation of the brain tempers sickness behavior in males. Here we test this hypothesis directly, by comparing sickness behavior in animals with or without ablations of BNST AVP cells, a major source of sexually dimorphic AVP in the brain. We treated male and female AVP-iCre+ and AVP-iCre- mice that had been injected with viral Cre-dependent caspase-3 executioner construct into the BNST with lipopolysaccharide (LPS) or sterile saline, followed by behavioral analysis. In all groups, LPS treatment reliably reduced motor behavior, increased anxiety-related behavior, and reduced sucrose preference and consumption. Male mice, whose BNST AVP cells had been ablated (AVP-iCre+), displayed only minor reductions in LPS-induced sickness behavior, whereas their female counterparts displayed, if anything, an increase in sickness behaviors. All saline-treated mice with BNST AVP cell ablations consumed more sucrose than did control mice, and males, but not females, with BNST AVP cell ablations showed reduced preference for novel conspecifics compared to control mice. These data confirm that BNST AVP cells control social behavior in a sexually dimorphic way, but do not play a critical role in altering sickness behavior.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole V Peters
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
94
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
95
|
Goldsmith DR, Rapaport MH. Inflammation and Negative Symptoms of Schizophrenia: Implications for Reward Processing and Motivational Deficits. Front Psychiatry 2020; 11:46. [PMID: 32153436 PMCID: PMC7044128 DOI: 10.3389/fpsyt.2020.00046] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Negative symptoms of schizophrenia are debilitating and chronic in nature, are difficult to treat, and contribute to poor functional outcomes. Motivational deficits are a core negative symptom and may involve alterations in reward processing, which involve subcortical regions such as the basal ganglia. More specifically, dopamine-rich regions like the ventral striatum, have been implicated in these reward-processing deficits. Inflammation is one mechanism that may underlie negative symptoms, and specifically motivational deficits, via the effects of inflammatory cytokines on the basal ganglia. Previous work has demonstrated that inflammatory stimuli decrease neural activity in the ventral striatum and decrease connectivity in reward-relevant neural circuitry. The immune system has been shown to be involved in the pathophysiology of schizophrenia, and inflammatory cytokines have been shown to be altered in patients with the disorder. This paper reviews the literature on associations between inflammatory markers and negative symptoms of schizophrenia as well as the role of anti-inflammatory drugs to target negative symptoms. We also review the literature on the role of inflammation and reward processing deficits in both healthy controls and individuals with depression. We use the literature on inflammation and depression as a basis for a model that explores potential mechanisms responsible for inflammation modulating certain aspects of negative symptoms in patients with schizophrenia. This approach may offer novel targets to treat these symptoms of the disorder that are significant barriers to functional recovery and do not respond well to available antipsychotic medications.
Collapse
Affiliation(s)
- David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark Hyman Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
96
|
Kowalczyk M, Szemraj J, Bliźniewska K, Maes M, Berk M, Su KP, Gałecki P. An immune gate of depression - Early neuroimmune development in the formation of the underlying depressive disorder. Pharmacol Rep 2019; 71:1299-1307. [PMID: 31706254 DOI: 10.1016/j.pharep.2019.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of depression worldwide is increasing from year to year and constitutes a serious medical, economic and social problem. Currently, despite multifactorial risk factors and pathways contributing to depression development, a significant aspect is attributed to the inflammatory process. Cytokines are considered a factor activating the kynurenine pathway, which leads to the exhaustion of tryptophan in the tryptophan catabolite (TRYCAT) pathway. This results in the activation of potentially neuroprogressive processes and also affects the metabolism of many neurotransmitters. The immune system plays a coordinating role in mediating inflammatory process. Beginning from foetal life, dendritic cells have the ability to react to bacterial and viral antigens, stimulating T lymphocytes in a similar way to adult cells. Cytotoxicity in the prenatal period shapes the predisposition to the development of depression in adult life. Allostasis, i.e. the ability to maintain the body's balance in the face of environmental adversity through changes in its behaviour or physiology, allows the organism to survive but its consequences may be unfavourable if it lasts too long. As a result, Th lymphocytes, in particular T helper 17 cells, which play a central role in the immunity of the whole body, contribute to the development of both autoimmune diseases and psychiatric disorders including depression, as well as have an impact on the differentiation of T CD4+ cells into Th17 cells in the later development of the child's organism, which confirms the importance of the foetal period for the progression of depressive disorders.
Collapse
Affiliation(s)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Łódź, Poland
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
97
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
98
|
Retrospectively reported childhood physical abuse, systemic inflammation, and resting corticolimbic connectivity in midlife adults. Brain Behav Immun 2019; 82:203-213. [PMID: 31445966 PMCID: PMC6956859 DOI: 10.1016/j.bbi.2019.08.186] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/07/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Childhood abuse confers risk for psychopathology and pathophysiology in midlife through intermediate pathways that remain unclear. Systemic inflammation was tested in the present study as one pathway that may link physical abuse in childhood to the adult functioning of corticolimbic brain circuits broadly implicated in risk for poor mental and physical health. Midlife adults (N = 303; 30-51 years of age; 149 women) without psychiatric, immune, or cardiovascular diagnoses provided retrospective reports of childhood physical abuse. Functional connectivity between corticolimbic brain areas (amygdala, hippocampus, ventromedial prefrontal cortex [vmPFC], anterior cingulate cortex [ACC]) was measured at rest using functional magnetic resonance imaging. Circulating levels of interleukin(IL)-6, a pro-inflammatory cytokine previously linked to childhood abuse and corticolimbic functionality, were measured via blood draw. Consistent with prior studies, retrospectively reported childhood physical abuse was associated positively with circulating IL-6, and negatively with connectivity between the amygdala and vmPFC. IL-6 was also associated negatively with several corticolimbic functional connections, including amygdala-vmPFC connectivity. Moreover, path analyses revealed an indirect effect of IL-6 that partially explained the association between childhood physical abuse and adult amygdala-vmPFC connectivity. Consistent with recent neurobiological models of early life influences on disease risk across the lifespan, associations between childhood physical abuse and adulthood corticolimbic circuit functionality may be partially explained by inflammatory processes.
Collapse
|
99
|
Halawa AA, Rees KA, McCamy KM, Winzer-Serhan UH. Central and peripheral immune responses to low-dose lipopolysaccharide in a mouse model of the 15q13.3 microdeletion. Cytokine 2019; 126:154879. [PMID: 31629107 DOI: 10.1016/j.cyto.2019.154879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Carriers of the human 15q13.3 microdeletion (MD) present with a variable spectrum of neuropathological phenotypes that range from asymptomatic to severe clinical outcomes, suggesting an interplay of genetic and non-genetic factors. The most common 2 MB 15q13.3 MD encompasses six genes (MTMR10, FAN1, TRPM1, KLF13, OTUD7A, and CHRNA7), which are expressed in neuronal and non-neuronal tissues. The nicotinic acetylcholine receptor (nAChR) α7, encoded by CHRNA7, is a key player in the cholinergic anti-inflammatory pathway, and the transcription factor KLF13 is also involved in immune responses. Using a mouse model with a heterozygous deletion of the orthologous region of the human 15q13.3 (Df[h15q13]/+), the present study examined peripheral and central innate immune responses to an acute intraperitoneal (i.p.) injection of the bacteriomimetic, lipopolysaccharide (LPS) (100 μg/kg) in adult heterozygous (Het) and wildtype (WT) mice. Serum levels of inflammatory markers were measured 2 h post injection using a Multiplex assay. In control saline injected animals, all measured cytokines were at or below detection limits, whereas LPS significantly increased serum levels of interleukin 1beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6 and IL-10, but not interferon-γ. There was no effect of genotype but a sexual dimorphic response for TNF-α, with females exhibiting greater LPS-induced TNF-α serum levels than males. In situ hybridization revealed similar increases in LPS-induced c-fos mRNA expression in the dorsal vagal complex in all groups. The hippocampal expression of the pro-inflammatory cytokines was evaluated by real-time quantitative PCR. LPS-treatment resulted in significantly increased mRNA expression for IL-1β, IL-6, and TNF-α compared to saline controls, with no effect of genotype, but a significant sex-effect was detected for IL-1β. The present study provided no evidence for interactive effects between the heterozygous 15q13.3 MD and a low-dose LPS immune challenge in innate peripheral or central immune responses, although, sex-differential effects in males and females were detected.
Collapse
Affiliation(s)
- Amal A Halawa
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
100
|
Fonseca RC, Bassi GS, Brito CC, Rosa LB, David BA, Araújo AM, Nóbrega N, Diniz AB, Jesus ICG, Barcelos LS, Fontes MAP, Bonaventura D, Kanashiro A, Cunha TM, Guatimosim S, Cardoso VN, Fernandes SOA, Menezes GB, de Lartigue G, Oliveira AG. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain Behav Immun 2019; 81:444-454. [PMID: 31271871 PMCID: PMC7826199 DOI: 10.1016/j.bbi.2019.06.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract harbors commensal microorganisms as well as invasive bacteria, toxins and other pathogens and, therefore, plays a pivotal barrier and immunological role against pathogenic agents. The vagus nerve is an important regulator of the GI tract-associated immune system, having profound effects on inflammatory responses. Among GI tract organs, the liver is a key site of immune surveillance, as it has a large population of resident macrophages and receives the blood drained from the guts through the hepatic portal circulation. Although it is widely accepted that the hepatic tissue is a major target for vagus nerve fibers, the role of this neural circuit in liver immune functions is still poorly understood. Herein we used in vivo imaging techniques, including confocal microscopy and scintigraphy, to show that vagus nerve stimulation increases the phagocytosis activity by resident macrophages in the liver, even on the absence of an immune challenge. The activation of this neural circuit in a non-lethal model of sepsis optimized the removal of bacteria in the liver and resulted in the production of anti-inflammatory and pro-regenerative cytokines. Our findings provide new insights into the neural regulation of the immune system in the liver.
Collapse
Affiliation(s)
- Roberta Cristelli Fonseca
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Shimizu Bassi
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Camila Carvalho Brito
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Barreto Rosa
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Araújo David
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Moreira Araújo
- University of Florida, College of Pharmacy, Department of Pharmacodynamics, Gainesville, FL, USA
| | - Natália Nóbrega
- Universidade Federal de Minas Gerais, Department of Pharmacology, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes Jesus
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola Silva Barcelos
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Antônio Peliky Fontes
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Bonaventura
- Universidade Federal de Minas Gerais, Department of Pharmacology, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Kanashiro
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Sílvia Guatimosim
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Universidade Federal de Minas Gerais, College of Pharmacy, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Universidade Federal de Minas Gerais, College of Pharmacy, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Guillaume de Lartigue
- University of Florida, College of Pharmacy, Department of Pharmacodynamics, Gainesville, FL, USA
| | - André Gustavo Oliveira
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil; Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|